Skip to content

Latest commit

 

History

History
63 lines (55 loc) · 2.2 KB

File metadata and controls

63 lines (55 loc) · 2.2 KB

Evaluation

We provide instructions to reproduce class-agnostic object detection results of MDef-DETR with and without language branch. Please refer to Tables 1, 2, 4 & 5 of our paper for more details.

Download the datasets (annotations & images) and arrange them as,

code_root/
└─ data
    └─ voc2007
        ├─ Annotations
        ├─ JPEGImages
    └─ coco
        ├─ instances_val2017.json
        ├─ val2017
    └─ kitti
        ├─ Annotations
        ├─ JPEGImages
    └─ kitchen
        ├─ Annotations
        ├─ JPEGImages
    └─ cliaprt
        ├─ Annotations
        ├─ JPEGImages
    └─ comic
        ├─ Annotations
        ├─ JPEGImages
    └─ watercolor
        ├─ Annotations
        ├─ JPEGImages
    └─ dota
        ├─ Annotations
        ├─ JPEGImages

Once the above directory structure is created,

  1. Download the pretrained weights from this link.
  2. Set the environment variable
export PYTHONPATH="./:$PYTHONPATH"
  1. Run the following script to generate predictions and calculate metrics.
    1. MDef-DETR
    bash scripts/get_mvit_multi_query_metrics.sh <dataset root dir path> <model checkpoints path> 
    1. MDef-DETR w/o Language Branch (trained by maintaining the structure introduced by captions)
    bash scripts/get_mvit_minus_language_metrics.sh <dataset root dir path> <model checkpoints path> 

The calculated evaluation metrics will be stored in a *.csv file in the same directory.