forked from wmcbrine/pytivo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
lrucache.py
226 lines (182 loc) · 6.91 KB
/
lrucache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# lrucache.py -- a simple LRU (Least-Recently-Used) cache class
# Copyright 2004 Evan Prodromou <[email protected]>
# Licensed under the Academic Free License 2.1
# Licensed for ftputil under the revised BSD license
# with permission by the author, Evan Prodromou. Many
# thanks, Evan! :-)
#
# The original file is available at
# http://pypi.python.org/pypi/lrucache/0.2 .
# arch-tag: LRU cache main module
"""a simple LRU (Least-Recently-Used) cache module
This module provides very simple LRU (Least-Recently-Used) cache
functionality.
An *in-memory cache* is useful for storing the results of an
'expensive' process (one that takes a lot of time or resources) for
later re-use. Typical examples are accessing data from the filesystem,
a database, or a network location. If you know you'll need to re-read
the data again, it can help to keep it in a cache.
You *can* use a Python dictionary as a cache for some purposes.
However, if the results you're caching are large, or you have a lot of
possible results, this can be impractical memory-wise.
An *LRU cache*, on the other hand, only keeps _some_ of the results in
memory, which keeps you from overusing resources. The cache is bounded
by a maximum size; if you try to add more values to the cache, it will
automatically discard the values that you haven't read or written to
in the longest time. In other words, the least-recently-used items are
discarded. [1]_
.. [1]: 'Discarded' here means 'removed from the cache'.
"""
import time
from heapq import heappush, heappop, heapify
from functools import total_ordering
__version__ = "0.2"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE']
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError):
"""Error raised when cache requests fail
When a cache record is accessed which no longer exists (or never did),
this error is raised. To avoid it, you may want to check for the existence
of a cache record before reading or deleting it."""
pass
class LRUCache(object):
"""Least-Recently-Used (LRU) cache.
Instances of this class provide a least-recently-used (LRU) cache. They
emulate a Python mapping type. You can use an LRU cache more or less like
a Python dictionary, with the exception that objects you put into the
cache may be discarded before you take them out.
Some example usage::
cache = LRUCache(32) # new cache
cache['foo'] = get_file_contents('foo') # or whatever
if 'foo' in cache: # if it's still in cache...
# use cached version
contents = cache['foo']
else:
# recalculate
contents = get_file_contents('foo')
# store in cache for next time
cache['foo'] = contents
print cache.size # Maximum size
print len(cache) # 0 <= len(cache) <= cache.size
cache.size = 10 # Auto-shrink on size assignment
for i in range(50): # note: larger than cache size
cache[i] = i
if 0 not in cache: print 'Zero was discarded.'
if 42 in cache:
del cache[42] # Manual deletion
for j in cache: # iterate (in LRU order)
print j, cache[j] # iterator produces keys, not values
"""
@total_ordering
class __Node(object):
"""Record of a cached value. Not for public consumption."""
def __init__(self, key, obj, timestamp):
object.__init__(self)
self.key = key
self.obj = obj
self.atime = timestamp
self.mtime = self.atime
def __lt__(self, other):
return self.atime < other.atime
def __eq__(self, other):
return self.atime == other.atime
def __repr__(self):
return "<%s %s => %s (%s)>" % \
(self.__class__, self.key, self.obj, \
time.asctime(time.localtime(self.atime)))
def __init__(self, size=DEFAULT_SIZE):
# Check arguments
if size <= 0:
raise ValueError(size)
elif not isinstance(size, type(0)):
raise TypeError(size)
object.__init__(self)
self.__heap = []
self.__dict = {}
self.size = size
"""Maximum size of the cache.
If more than 'size' elements are added to the cache,
the least-recently-used ones will be discarded."""
def __len__(self):
return len(self.__heap)
def __contains__(self, key):
return key in self.__dict
def __setitem__(self, key, obj):
if key in self.__dict:
node = self.__dict[key]
node.obj = obj
node.atime = time.time()
node.mtime = node.atime
heapify(self.__heap)
else:
# size may have been reset, so we loop
overage = len(self.__heap) - self.size + 1
for i in range(overage):
lru = heappop(self.__heap)
del self.__dict[lru.key]
node = self.__Node(key, obj, time.time())
self.__dict[key] = node
heappush(self.__heap, node)
def __getitem__(self, key):
if key not in self.__dict:
raise CacheKeyError(key)
else:
node = self.__dict[key]
node.atime = time.time()
heapify(self.__heap)
return node.obj
def __delitem__(self, key):
if key not in self.__dict:
raise CacheKeyError(key)
else:
node = self.__dict[key]
del self.__dict[key]
self.__heap.remove(node)
heapify(self.__heap)
return node.obj
def __iter__(self):
copy = self.__heap[:]
while len(copy) > 0:
node = heappop(copy)
yield node.key
def __setattr__(self, name, value):
object.__setattr__(self, name, value)
# automagically shrink heap on resize
if name == 'size':
overage = len(self.__heap) - value
for i in range(overage):
lru = heappop(self.__heap)
del self.__dict[lru.key]
def __repr__(self):
return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap))
def mtime(self, key):
"""Return the last modification time for the cache record with key.
May be useful for cache instances where the stored values can get
'stale', such as caching file or network resource contents."""
if key not in self.__dict:
raise CacheKeyError(key)
else:
node = self.__dict[key]
return node.mtime
if __name__ == "__main__":
cache = LRUCache(25)
print(cache)
for i in range(50):
cache[i] = str(i)
print(cache)
if 46 in cache:
del cache[46]
print(cache)
cache.size = 10
print(cache)
cache[46] = '46'
print(cache)
print(len(cache))
for c in cache:
print(c)
print(cache)
print(cache.mtime(46))
for c in cache:
print(c)