-
Notifications
You must be signed in to change notification settings - Fork 70
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
BERT-large unpadded workload "NameError: name 'InitMHACUDAExtension' is not defined" #2
Comments
Terminal output for the padded workload that fully completes. Torch distributed is available. Torch distributed is not initialized. :::MLLOG {"namespace": "", "time_ms": 1595939600343, "event_type": "POINT_IN_TIME", "key": "seed", "value": 10483, "metadata": {"file": "run_pretraining.py", "lineno": 690}} :::MLLOG {"namespace": "", "time_ms": 1595939600343, "event_type": "POINT_IN_TIME", "key": "global_batch_size", "value": 8, "metadata": {"file": "run_pretraining.py", "lineno": 692}} :::MLLOG {"namespace": "", "time_ms": 1595939600343, "event_type": "POINT_IN_TIME", "key": "opt_gradient_accumulation_steps", "value": 1, "metadata": {"file": "run_pretraining.py", "lineno": 694}} :::MLLOG {"namespace": "", "time_ms": 1595939600344, "event_type": "POINT_IN_TIME", "key": "max_predictions_per_seq", "value": 76, "metadata": {"file": "run_pretraining.py", "lineno": 696}} :::MLLOG {"namespace": "", "time_ms": 1595939600344, "event_type": "POINT_IN_TIME", "key": "opt_learning_rate_training_steps", "value": 300.0, "metadata": {"file": "run_pretraining.py", "lineno": 698}} :::MLLOG {"namespace": "", "time_ms": 1595939600344, "event_type": "POINT_IN_TIME", "key": "num_warmup_steps", "value": 0, "metadata": {"file": "run_pretraining.py", "lineno": 701}} parsed args: Namespace(allreduce_post_accumulation=True, allreduce_post_accumulation_fp16=True, bert_config_path='data/uncased_L-24_H-1024_A-16/bert_config.json', bert_model='bert-large-uncased', cache_eval_data=False, checkpoint_activations=False, dense_seq_output=True, disable_apex_softmax=False, disable_fuse_mask=False, disable_fuse_qkv=False, disable_fuse_scale=False, do_train=True, enable_fuse_dropout=True, enable_stream=False, eval_batch_size=128, eval_dir=None, eval_iter_samples=-1, eval_iter_start_samples=3000000, fp16=True, fused_gelu_bias=True, fused_mha=True, gradient_accumulation_steps=1, init_checkpoint='bert_large.pt', init_tf_checkpoint=None, input_dir='./data/hdf5/', keep_n_most_recent_checkpoints=20, learning_rate=0.0004, local_rank=-1, log_freq=1.0, loss_scale=0.0, max_predictions_per_seq=76, max_samples_termination=4500000.0, max_seq_length=512, max_steps=300.0, min_samples_to_start_checkpoints=3000000, n_gpu=1, num_epochs_to_generate_seeds_for=2, num_eval_examples=10000, num_samples_per_checkpoint=500000, opt_lamb_beta_1=0.9, opt_lamb_beta_2=0.999, output_dir='/results', pad=True, phase2=True, resume_from_checkpoint=False, seed=10483, skip_checkpoint=True, target_mlm_accuracy=0.712, train_batch_size=8, train_mlm_accuracy_window_size=0, unpad=False, use_env=False, warmup_proportion=0.0) :::MLLOG {"namespace": "", "time_ms": 1595939612139, "event_type": "POINT_IN_TIME", "key": "opt_base_learning_rate", "value": 0.0004, "metadata": {"file": "run_pretraining.py", "lineno": 524}} :::MLLOG {"namespace": "", "time_ms": 1595939612142, "event_type": "POINT_IN_TIME", "key": "opt_epsilon", "value": 1e-06, "metadata": {"file": "run_pretraining.py", "lineno": 529}} :::MLLOG {"namespace": "", "time_ms": 1595939612142, "event_type": "POINT_IN_TIME", "key": "opt_lamb_beta_1", "value": 0.9, "metadata": {"file": "run_pretraining.py", "lineno": 531}} :::MLLOG {"namespace": "", "time_ms": 1595939612143, "event_type": "POINT_IN_TIME", "key": "opt_lamb_beta_2", "value": 0.999, "metadata": {"file": "run_pretraining.py", "lineno": 532}} :::MLLOG {"namespace": "", "time_ms": 1595939612143, "event_type": "POINT_IN_TIME", "key": "opt_lamb_weight_decay_rate", "value": 0.01, "metadata": {"file": "run_pretraining.py", "lineno": 535}} :::MLLOG {"namespace": "", "time_ms": 1595939612143, "event_type": "POINT_IN_TIME", "key": "opt_learning_rate_warmup_steps", "value": 0, "metadata": {"file": "/workspace/bert/implementations/pytorch/schedulers.py", "lineno": 85}} :::MLLOG {"namespace": "", "time_ms": 1595939612144, "event_type": "POINT_IN_TIME", "key": "opt_lamb_learning_rate_decay_poly_power", "value": 1.0, "metadata": {"file": "/workspace/bert/implementations/pytorch/schedulers.py", "lineno": 86}} :::MLLOG {"namespace": "", "time_ms": 1595939612144, "event_type": "POINT_IN_TIME", "key": "start_warmup_step", "value": 0, "metadata": {"file": "run_pretraining.py", "lineno": 543}} Selected optimization level O2: FP16 training with FP32 batchnorm and FP32 master weights. Defaults for this optimization level are: enabled : True opt_level : O2 cast_model_type : torch.float16 patch_torch_functions : False keep_batchnorm_fp32 : True master_weights : True loss_scale : dynamic Processing user overrides (additional kwargs that are not None)... After processing overrides, optimization options are: enabled : True opt_level : O2 cast_model_type : torch.float16 patch_torch_functions : False keep_batchnorm_fp32 : True master_weights : True loss_scale : dynamic :::MLLOG {"namespace": "", "time_ms": 1595939612188, "event_type": "INTERVAL_END", "key": "init_stop", "value": null, "metadata": {"file": "run_pretraining.py", "lineno": 750}} :::MLLOG {"namespace": "", "time_ms": 1595939612188, "event_type": "INTERVAL_START", "key": "run_start", "value": null, "metadata": {"file": "run_pretraining.py", "lineno": 751}} :::MLLOG {"namespace": "", "time_ms": 1595939612188, "event_type": "INTERVAL_START", "key": "epoch_start", "value": null, "metadata": {"file": "run_pretraining.py", "lineno": 760, "epoch_num": 1}} :::MLLOG {"namespace": "", "time_ms": 1595939612188, "event_type": "INTERVAL_START", "key": "block_start", "value": null, "metadata": {"file": "run_pretraining.py", "lineno": 764, "first_epoch_num": 1, "epoch_count": 1}} parsed args: Namespace(allreduce_post_accumulation=True, allreduce_post_accumulation_fp16=True, bert_config_path='data/uncased_L-24_H-1024_A-16/bert_config.json', bert_model='bert-large-uncased', cache_eval_data=False, checkpoint_activations=False, dense_seq_output=True, disable_apex_softmax=False, disable_fuse_mask=False, disable_fuse_qkv=False, disable_fuse_scale=False, do_train=True, enable_fuse_dropout=True, enable_stream=False, eval_batch_size=128, eval_dir=None, eval_iter_samples=-1, eval_iter_start_samples=3000000, fp16=True, fused_gelu_bias=True, fused_mha=True, gradient_accumulation_steps=1, init_checkpoint='bert_large.pt', init_tf_checkpoint=None, input_dir='./data/hdf5/', keep_n_most_recent_checkpoints=20, learning_rate=0.0004, local_rank=-1, log_freq=1.0, loss_scale=0.0, max_predictions_per_seq=76, max_samples_termination=4500000.0, max_seq_length=512, max_steps=300.0, min_samples_to_start_checkpoints=3000000, n_gpu=1, num_epochs_to_generate_seeds_for=2, num_eval_examples=10000, num_samples_per_checkpoint=500000, opt_lamb_beta_1=0.9, opt_lamb_beta_2=0.999, output_dir='/results', pad=True, phase2=True, resume_from_checkpoint=False, resume_step=0, seed=10483, skip_checkpoint=True, target_mlm_accuracy=0.712, train_batch_size=8, train_mlm_accuracy_window_size=0, unpad=False, use_env=False, warmup_proportion=0.0) epoch: 1 {'training_steps': 1, 'average_loss': 4.625, 'step_loss': 4.625, 'learning_rate': 0.0003986666666666667, 'seq/s': 0.4327840547969736, 'global_steps': 0, 'samples_trained': 0, 'skipped_steps': 1, 'timestamp': 1595939630.674186} {'training_steps': 2, 'average_loss': 5.734375, 'step_loss': 5.734375, 'learning_rate': 0.0003986666666666667, 'seq/s': 33.1319008682275, 'global_steps': 0, 'samples_trained': 0, 'skipped_steps': 2, 'timestamp': 1595939630.9156468} {'training_steps': 3, 'average_loss': 4.953125, 'step_loss': 4.953125, 'learning_rate': 0.0003986666666666667, 'seq/s': 33.377398279525394, 'global_steps': 0, 'samples_trained': 0, 'skipped_steps': 3, 'timestamp': 1595939631.1553311} {{.... and completes till end }} Below is the run command from our shell script that specifies at the end whether to explicitly "pad" or "unpad" the BERT-large training. #nvprof --print-gpu-trace --profile-from-start off --log-file bert.nvlog \ python -u run_pretraining.py \ |
Hi, have you solved this problem? |
hi, have you solved this problem? |
Trying to run the training for the BERT-large topology, unpadded. We set up an nvidia-docker to run the training workload. However, we run into an error for the unpadded run. Here's an excerpt from the terminal output. The padded workload successfully runs to completion. Padded workload terminal output is below in the comment.
"Namespace(allreduce_post_accumulation=True, allreduce_post_accumulation_fp16=True, bert_config_path='data/uncased_L-24_H-1024_A-16/bert_config.json', bert_model='bert-large-uncased', cache_eval_data=False, checkpoint_activations=False, dense_seq_output=True, disable_apex_softmax=False, disable_fuse_mask=False, disable_fuse_qkv=False, disable_fuse_scale=False, do_train=True, enable_fuse_dropout=True, enable_stream=False, eval_batch_size=128, eval_dir=None, eval_iter_samples=-1, eval_iter_start_samples=3000000, fp16=True, fused_gelu_bias=True, fused_mha=True, gradient_accumulation_steps=1, init_checkpoint='bert_large.pt', init_tf_checkpoint=None, input_dir='./data/hdf5/', keep_n_most_recent_checkpoints=20, learning_rate=0.0004, local_rank=-1, log_freq=1.0, loss_scale=0.0, max_predictions_per_seq=76, max_samples_termination=4500000.0, max_seq_length=512, max_steps=300.0, min_samples_to_start_checkpoints=3000000, n_gpu=1, num_epochs_to_generate_seeds_for=2, num_eval_examples=10000, num_samples_per_checkpoint=500000, opt_lamb_beta_1=0.9, opt_lamb_beta_2=0.999, output_dir='/results', pad=False, phase2=True, resume_from_checkpoint=False, seed=10483, skip_checkpoint=True, target_mlm_accuracy=0.712, train_batch_size=1, train_mlm_accuracy_window_size=0, unpad=True, use_env=False, warmup_proportion=0.0) :::MLLOG {"namespace": "", "time_ms": 1594948688327, "event_type": "POINT_IN_TIME", "key": "opt_base_learning_rate", "value": 0.0004, "metadata": {"file": "run_pretraining.py", "lineno": 524}} :::MLLOG {"namespace": "", "time_ms": 1594948688329, "event_type": "POINT_IN_TIME", "key": "opt_epsilon", "value": 1e-06, "metadata": {"file": "run_pretraining.py", "lineno": 529}} :::MLLOG {"namespace": "", "time_ms": 1594948688329, "event_type": "POINT_IN_TIME", "key": "opt_lamb_beta_1", "value": 0.9, "metadata": {"file": "run_pretraining.py", "lineno": 531}} :::MLLOG {"namespace": "", "time_ms": 1594948688329, "event_type": "POINT_IN_TIME", "key": "opt_lamb_beta_2", "value": 0.999, "metadata": {"file": "run_pretraining.py", "lineno": 532}} :::MLLOG {"namespace": "", "time_ms": 1594948688329, "event_type": "POINT_IN_TIME", "key": "opt_lamb_weight_decay_rate", "value": 0.01, "metadata": {"file": "run_pretraining.py", "lineno": 535}} :::MLLOG {"namespace": "", "time_ms": 1594948688330, "event_type": "POINT_IN_TIME", "key": "opt_learning_rate_warmup_steps", "value": 0, "metadata": {"file": ".../benchmarks/bert/implementations/pytorch/schedulers.py", "lineno": 85}} :::MLLOG {"namespace": "", "time_ms": 1594948688330, "event_type": "POINT_IN_TIME", "key": "opt_lamb_learning_rate_decay_poly_power", "value": 1.0, "metadata": {"file": ".../benchmarks/bert/implementations/pytorch/schedulers.py", "lineno": 86}} :::MLLOG {"namespace": "", "time_ms": 1594948688330, "event_type": "POINT_IN_TIME", "key": "start_warmup_step", "value": 0, "metadata": {"file": "run_pretraining.py", "lineno": 543}} Selected optimization level O2: FP16 training with FP32 batchnorm and FP32 master weights.
Defaults for this optimization level are: enabled : True opt_level : O2 cast_model_type : torch.float16 patch_torch_functions : False keep_batchnorm_fp32 : True master_weights : True loss_scale : dynamic Processing user overrides (additional kwargs that are not None)... After processing overrides, optimization options are: enabled : True opt_level : O2 cast_model_type : torch.float16 patch_torch_functions : False keep_batchnorm_fp32 : True master_weights : True loss_scale : dynamic
Traceback (most recent call last):
File "run_pretraining.py", line 995, in args, final_loss, train_time_raw = main()
File "run_pretraining.py", line 712, in main InitMHACUDAExtension()
NameError: name 'InitMHACUDAExtension' is not defined"
The text was updated successfully, but these errors were encountered: