You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
:::MLLOG {"namespace": "", "time_ms": 1728306460732, "event_type": "POINT_IN_TIME", "key": "swa_decay_rate", "value": 0.9, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 594}}
:::MLLOG {"namespace": "", "time_ms": 1728306461790, "event_type": "POINT_IN_TIME", "key": "model_parameters_count", "value": 93229082, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 601}}
:::MLLOG {"namespace": "", "time_ms": 1728306461791, "event_type": "POINT_IN_TIME", "key": "staging_start", "value": null, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 617}}
:::MLLOG {"namespace": "", "time_ms": 1728306461791, "event_type": "POINT_IN_TIME", "key": "staging_stop", "value": null, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 624, "staging_duration": 4.1606836020946503e-07, "instance": 0}}
:::MLLOG {"namespace": "", "time_ms": 1728306461791, "event_type": "POINT_IN_TIME", "key": "tracked_stats", "value": {"staging_duration": 4.1606836020946503e-07}, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 629, "step": 0, "instance": 0}}
:::MLLOG {"namespace": "", "time_ms": 1728306461857, "event_type": "INTERVAL_END", "key": "init_stop", "value": null, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 637}}
:::MLLOG {"namespace": "", "time_ms": 1728306461920, "event_type": "INTERVAL_START", "key": "run_start", "value": null, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 637}}
:::MLLOG {"namespace": "", "time_ms": 1728306516300, "event_type": "POINT_IN_TIME", "key": "train_samples", "value": 594595, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 651}}
:::MLLOG {"namespace": "", "time_ms": 1728306547952, "event_type": "POINT_IN_TIME", "key": "eval_samples", "value": 180, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 669}}
:::MLLOG {"namespace": "", "time_ms": 1728306548901, "event_type": "POINT_IN_TIME", "key": "initial_training_dataloader_type", "value": "InitialTrainingDataloaderPT", "metadata": {"file": "/workspace/openfold/train.py", "lineno": 715}}
:::MLLOG {"namespace": "", "time_ms": 1728306548902, "event_type": "INTERVAL_START", "key": "epoch_start", "value": null, "metadata": {"file": "/workspace/openfold/train.py", "lineno": 738, "epoch_num": 640, "instance": 0}}
/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py:631: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py:631: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py:631: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py:631: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
Since I want to use close division, how to get ride of this warning.
Shall it change the code or I should use another version of pytorch?
Thanks
The text was updated successfully, but these errors were encountered:
I'm want to do a benchmark on OPENFOLD branch.
When I run this code:
It gave me this error:
Since I want to use close division, how to get ride of this warning.
Shall it change the code or I should use another version of pytorch?
Thanks
The text was updated successfully, but these errors were encountered: