-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinverse_hessian.jl
134 lines (115 loc) · 4.94 KB
/
inverse_hessian.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# eq 4.9
# Gilbert, J.C., Lemaréchal, C. Some numerical experiments with variable-storage quasi-Newton algorithms.
# Mathematical Programming 45, 407–435 (1989). https://doi.org/10.1007/BF01589113
function gilbert_init(α, s, y)
a = dot(y, Diagonal(α), y)
b = dot(y, s)
c = dot(s, inv(Diagonal(α)), s)
return @. b / (a / α + y^2 - (a / c) * (s / α)^2)
end
"""
lbfgs_inverse_hessians(
θs, ∇logpθs; Hinit=gilbert_init, history_length=5, ϵ=1e-12
) -> Tuple{Vector{WoodburyPDMat},Int}
From an L-BFGS trajectory and gradients, compute the inverse Hessian approximations at each point.
Given positions `θs` with gradients `∇logpθs`, construct LBFGS inverse Hessian
approximations with the provided `history_length`.
The 2nd returned value is the number of BFGS updates to the inverse Hessian matrices that
were rejected due to keeping the inverse Hessian positive definite.
"""
function lbfgs_inverse_hessians(θs, ∇logpθs; Hinit=gilbert_init, history_length=5, ϵ=1e-12)
L = length(θs) - 1
θ = θs[1]
∇logpθ = ∇logpθs[1]
n = length(θ)
# allocate caches/containers
history_ind = 0 # index of last set history entry
history_length_effective = 0 # length of history so far
s = similar(θ) # cache for BFGS update, i.e. sₗ = θₗ₊₁ - θₗ = -λ Hₗ ∇logpθₗ
y = similar(∇logpθ) # cache for yₗ = ∇logpθₗ₊₁ - ∇logpθₗ = Hₗ₊₁ \ s₁ (secant equation)
S = similar(s, n, min(history_length, L)) # history of s
Y = similar(y, n, min(history_length, L)) # history of y
α = fill!(similar(θ), true) # diag(H₀)
H = lbfgs_inverse_hessian(Diagonal(α), S, Y, history_ind, history_length_effective) # H₀ = I
Hs = [H] # trace of H
num_bfgs_updates_rejected = 0
for l in 1:L
θlp1, ∇logpθlp1 = θs[l + 1], ∇logpθs[l + 1]
s .= θlp1 .- θ
y .= ∇logpθ .- ∇logpθlp1
if dot(y, s) > ϵ * sum(abs2, y) # curvature is positive, safe to update inverse Hessian
# add s and y to history
history_ind = mod1(history_ind + 1, history_length)
history_length_effective = max(history_ind, history_length_effective)
S[1:n, history_ind] .= s
Y[1:n, history_ind] .= y
# initial diagonal estimate of H
α = Hinit(α, s, y)
else
num_bfgs_updates_rejected += 1
end
θ, ∇logpθ = θlp1, ∇logpθlp1
H = lbfgs_inverse_hessian(Diagonal(α), S, Y, history_ind, history_length_effective)
push!(Hs, H)
end
return Hs, num_bfgs_updates_rejected
end
"""
lbfgs_inverse_hessian(H₀, S₀, Y₀, history_ind, history_length) -> WoodburyPDMat
Compute approximate inverse Hessian initialized from `H₀` from history stored in `S₀` and `Y₀`.
`history_ind` indicates the column in `S₀` and `Y₀` that was most recently added to the
history, while `history_length` indicates the number of first columns in `S₀` and `Y₀`
currently being used for storing history.
`S = S₀[:, history_ind+1:history_length; 1:history_ind]` reorders the columns of `₀` so that the
oldest is first and newest is last.
From Theorem 2.2 of [^Byrd1994], the expression for the inverse Hessian ``H`` is
```math
\\begin{align}
B &= \\begin{pmatrix}H_0 Y & S\\end{pmatrix}\\\\
R &= \\operatorname{triu}(S^\\mathrm{T} Y)\\\\
E &= I \\circ R\\\\
D &= \\begin{pmatrix}
0 & -R^{-1}\\\\
-R^{-\\mathrm{T}} & R^\\mathrm{-T} (E + Y^\\mathrm{T} H_0 Y ) R^\\mathrm{-1}\\\\
\\end{pmatrix}\\
H &= H_0 + B D B^\\mathrm{T}
\\end{align}
```
[^Byrd1994]: Byrd, R.H., Nocedal, J. & Schnabel, R.B.
Representations of quasi-Newton matrices and their use in limited memory methods.
Mathematical Programming 63, 129–156 (1994).
doi: [10.1007/BF01582063](https://doi.org/10.1007/BF01582063)
"""
function lbfgs_inverse_hessian(H₀::Diagonal, S0, Y0, history_ind, history_length)
J = history_length
α = H₀.diag
B = similar(α, size(α, 1), 2J)
D = fill!(similar(α, 2J, 2J), false)
iszero(J) && return WoodburyPDMat(H₀, B, D)
hist_inds = [(history_ind + 1):history_length; 1:history_ind]
@views begin
S = S0[:, hist_inds]
Y = Y0[:, hist_inds]
B₁ = B[:, 1:J]
B₂ = B[:, (J + 1):(2J)]
D₁₁ = D[1:J, 1:J]
D₁₂ = D[1:J, (J + 1):(2J)]
D₂₁ = D[(J + 1):(2J), 1:J]
D₂₂ = D[(J + 1):(2J), (J + 1):(2J)]
end
mul!(B₁, Diagonal(α), Y)
copyto!(B₂, S)
mul!(D₂₂, S', Y)
triu!(D₂₂)
R = UpperTriangular(D₂₂)
nRinv = UpperTriangular(D₁₂)
copyto!(nRinv, -I)
ldiv!(R, nRinv)
nRinv′ = LowerTriangular(copyto!(D₂₁, nRinv'))
tril!(D₂₂) # eliminate all but diagonal
mul!(D₂₂, Y', B₁, true, true)
LinearAlgebra.copytri!(D₂₂, 'U', false, false)
rmul!(D₂₂, nRinv)
lmul!(nRinv′, D₂₂)
return WoodburyPDMat(H₀, B, D)
end