-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest.py
executable file
·234 lines (192 loc) · 10.1 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
import torch
import sys
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
from uce import uceloss
from calibration_plots import plot_uncert
from utils import nll_criterion_gaussian
from calibration import Scaler, AuxModel, train_scaler, train_aux
from tqdm import tqdm
def test(out_path, model, base_model, calib_loader, test_loader, outlier_freq=0.005):
device = next(model.parameters()).device
mus_calib = []
vars_calib = []
logvars_calib = []
targets_calib = []
with torch.no_grad():
for (data, target) in tqdm(calib_loader):
data, target = data.to(device), target.to(device)
mu, logvar, var_bayesian = model(data, dropout=True, mc_dropout=True)
mus_calib.append(mu.detach())
vars_calib.append(var_bayesian.detach())
logvars_calib.append(logvar.detach())
targets_calib.append(target.detach())
mu_calib = torch.cat(mus_calib, dim=0).clamp(0, 1)
var_calib = torch.cat(vars_calib, dim=0)
logvar_calib = torch.cat(logvars_calib, dim=0)
target_calib = torch.cat(targets_calib, dim=0)
print("l1 =", torch.nn.functional.l1_loss(mu_calib, target_calib).item())
err_calib = (target_calib-mu_calib).pow(2).mean(dim=1, keepdim=True).sqrt()
uncertainty = 'total'
uncert_calib_aleatoric = logvar_calib.exp().mean(dim=1, keepdim=True)
uncert_calib_epistemic = var_calib.mean(dim=1, keepdim=True)
if uncertainty == 'aleatoric':
uncert_calib = uncert_calib_aleatoric.sqrt().clamp(0, 1)
elif uncertainty == 'epistemic':
uncert_calib = uncert_calib_epistemic.sqrt().clamp(0, 1)
else:
uncert_calib = (uncert_calib_aleatoric + uncert_calib_epistemic).sqrt().clamp(0, 1) # total
print('rmse_calib', (target_calib-mu_calib).pow(2).sum(dim=1, keepdim=True).mean().sqrt().item())
print('uncert_calib', uncert_calib.mean().item())
print('uncert_calib_aleatoric', uncert_calib_aleatoric.sqrt().mean().item())
print('uncert_calib_epistemic', uncert_calib_epistemic.sqrt().mean().item())
fig, ax = plt.subplots(1)
ax.plot(uncert_calib.cpu(), err_calib.cpu()[:, 0], '.')
max_val = max(err_calib.max().item(), uncert_calib.max().item())
ax.plot([0, max_val], [0, max_val], '--')
ax.set_xlabel('uncert')
ax.set_ylabel('err')
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_scatter.pdf")
# calculate optimal T
S = err_calib.sum() / uncert_calib.sum()
print('S', S)
# find optimal S
scaler = Scaler(init_S=S.item()).to(device)
train_scaler(scaler, nll_criterion_gaussian, mu_calib, uncert_calib, target_calib)
print('scaler.S', scaler.S.item())
# find optimal aux
aux = AuxModel(1).to(device)
train_aux(aux, nll_criterion_gaussian, mu_calib, uncert_calib, target_calib)
aux.train()
print('nll_criterion_gaussian')
print(nll_criterion_gaussian(mu_calib, uncert_calib.pow(2).log(), target_calib).item())
print(nll_criterion_gaussian(mu_calib, (S*uncert_calib).pow(2).log(), target_calib).item())
print(nll_criterion_gaussian(mu_calib, scaler(uncert_calib).pow(2).log(), target_calib).item())
print(nll_criterion_gaussian(mu_calib, aux(uncert_calib), target_calib).item())
print("")
aux.eval()
print("mse_loss")
print(torch.nn.functional.mse_loss(uncert_calib, err_calib, reduction='sum').item())
print(torch.nn.functional.mse_loss((S*uncert_calib), err_calib, reduction='sum').item())
print(torch.nn.functional.mse_loss(scaler(uncert_calib), err_calib, reduction='sum').item())
print(torch.nn.functional.mse_loss(aux(uncert_calib), err_calib, reduction='sum').item())
print("")
uce_uncal, err_in_bin_uncal, avg_sigma_in_bin_uncal, _ = uceloss(err_calib, uncert_calib)
plot_uncert(err_in_bin_uncal.cpu(), avg_sigma_in_bin_uncal.cpu())
plt.title(str(uce_uncal.item()))
print('uce_uncal', uce_uncal.item())
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_calib_uncal.pdf")
uce_s, err_in_bin_s, avg_sigma_in_bin_s, _ = uceloss(err_calib, (S*uncert_calib))
plot_uncert(err_in_bin_s.cpu(), avg_sigma_in_bin_s.cpu())
print('uce_s', uce_s.item())
plt.title(str(uce_s.item()))
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_calib_s.pdf")
uce_cal, err_in_bin_cal, avg_uncert_in_bin_cal, _ = uceloss(err_calib, scaler(uncert_calib))
plot_uncert(err_in_bin_cal.cpu(), avg_uncert_in_bin_cal.cpu())
print('uce_cal', uce_cal.item())
plt.title(str(uce_cal.item()))
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_calib_cal.pdf")
uce_aux, err_in_bin_aux, avg_uncert_in_bin_aux, _ = uceloss(err_calib, aux(uncert_calib))
plot_uncert(err_in_bin_aux.cpu(), avg_uncert_in_bin_aux.cpu())
print('uce_aux', uce_aux.item())
plt.title(str(uce_aux.item()))
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_calib_aux.pdf")
print('')
mus_test = []
vars_test = []
logvars_test = []
targets_test = []
with torch.no_grad():
for (data, target) in tqdm(test_loader):
data, target = data.to(device), target.to(device)
mu, logvar, var_bayesian = model(data, dropout=True, mc_dropout=True)
mus_test.append(mu.detach())
vars_test.append(var_bayesian.detach())
logvars_test.append(logvar.detach())
targets_test.append(target.detach())
mu_test = torch.cat(mus_test, dim=0).clamp(0, 1)
var_test = torch.cat(vars_test, dim=0)
logvar_test = torch.cat(logvars_test, dim=0)
target_test = torch.cat(targets_test, dim=0)
print("l1 =", torch.nn.functional.l1_loss(mu_test, target_test).item())
err_test = (target_test-mu_test).pow(2).mean(dim=1, keepdim=True).sqrt()
uncert_aleatoric_test = logvar_test.exp()
uncert_epistemic_test = var_test.mean(dim=1, keepdim=True)
if uncertainty == 'aleatoric':
uncert_test = uncert_aleatoric_test.sqrt().clamp(0, 1)
elif uncertainty == 'epistemic':
uncert_test = uncert_epistemic_test.sqrt().clamp(0, 1)
else:
uncert_test = (uncert_aleatoric_test + uncert_epistemic_test).sqrt().clamp(0, 1) # total
print('rmse_test', (target_test-mu_test).pow(2).sum(dim=1, keepdim=True).mean().sqrt().item())
print('uncert_test', uncert_test.mean().item())
print('uncert_aleatoric_test', uncert_aleatoric_test.sqrt().mean().item())
print('uncert_epistemic_test', uncert_epistemic_test.sqrt().mean().item())
aux.train()
print('nll_criterion_gaussian')
print(nll_criterion_gaussian(mu_test, uncert_test.pow(2).log(), target_test).item())
print(nll_criterion_gaussian(mu_test, (S*uncert_test).pow(2).log(), target_test).item())
print(nll_criterion_gaussian(mu_test, scaler(uncert_test).pow(2).log(), target_test).item())
print(nll_criterion_gaussian(mu_test, aux(uncert_test), target_test).item())
print('')
aux.eval()
print('mse_loss')
print(torch.nn.functional.mse_loss(uncert_test, err_test, reduction='sum').item())
print(torch.nn.functional.mse_loss((S*uncert_test), err_test, reduction='sum').item())
print(torch.nn.functional.mse_loss(scaler(uncert_test), err_test, reduction='sum').item())
print(torch.nn.functional.mse_loss(aux(uncert_test), err_test, reduction='sum').item())
print('')
uce_uncal_test, err_in_bin_uncal_test, avg_sigma_in_bin_uncal_test, freq_in_bin_uncal_test = uceloss(err_test, uncert_test)
plot_uncert(err_in_bin_uncal_test.cpu(), avg_sigma_in_bin_uncal_test.cpu(), freq_in_bin_uncal_test, outlier_freq)
plt.title(str(uce_uncal_test.item()))
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_test_uncal.pdf")
print('uce_uncal', uce_uncal_test.item())
uce_s_test, err_in_bin_s_test, avg_sigma_in_bin_s_test, freq_in_bin_s_test = uceloss(err_test, S*uncert_test)
plot_uncert(err_in_bin_s_test.cpu(), avg_sigma_in_bin_s_test.cpu(), freq_in_bin_s_test, outlier_freq)
plt.title(str(uce_s_test.item()))
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_test_s.pdf")
print('uce_s', uce_s_test.item())
uce_cal_test, err_in_bin_cal_test, avg_sigma_in_bin_cal_test, freq_in_bin_cal_test = uceloss(err_test, scaler(uncert_test))
plot_uncert(err_in_bin_cal_test.cpu(), avg_sigma_in_bin_cal_test.cpu(), freq_in_bin_cal_test, outlier_freq)
plt.title(str(uce_cal_test.item()))
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_test_cal.pdf")
print('uce_cal', uce_cal_test.item())
uce_aux_test, err_in_bin_aux_test, avg_sigma_in_bin_aux_test, freq_in_bin_aux_test = uceloss(err_test, aux(uncert_test))
plot_uncert(err_in_bin_aux_test.cpu(), avg_sigma_in_bin_aux_test.cpu(), freq_in_bin_aux_test, outlier_freq)
plt.title(str(uce_aux_test.item()))
plt.tight_layout()
plt.savefig(f"./{out_path}/{base_model}_test_aux.pdf")
print('uce_aux', uce_aux_test.item())
np.savez(f"./{out_path}/results_{base_model}",
uce_uncal_test=uce_uncal_test.cpu().numpy(),
err_in_bin_uncal_test=err_in_bin_uncal_test.cpu().numpy(),
avg_sigma_in_bin_uncal_test=avg_sigma_in_bin_uncal_test.cpu().numpy(),
freq_in_bin_uncal_test=freq_in_bin_uncal_test.cpu().numpy(),
uce_s_test=uce_s_test.cpu().numpy(),
err_in_bin_s_test=err_in_bin_s_test.cpu().numpy(),
avg_sigma_in_bin_s_test=avg_sigma_in_bin_s_test.cpu().numpy(),
freq_in_bin_s_test=freq_in_bin_s_test.cpu().numpy(),
uce_cal_test=uce_cal_test.detach().cpu().numpy(),
err_in_bin_cal_test=err_in_bin_cal_test.cpu().numpy(),
avg_sigma_in_bin_cal_test=avg_sigma_in_bin_cal_test.cpu().numpy(),
freq_in_bin_cal_test=freq_in_bin_cal_test.cpu().numpy(),
uce_aux_test=uce_aux_test.detach().cpu().numpy(),
err_in_bin_aux_test=err_in_bin_aux_test.cpu().numpy(),
avg_sigma_in_bin_aux_test=avg_sigma_in_bin_aux_test.cpu().numpy(),
freq_in_bin_aux_test=freq_in_bin_aux_test.cpu().numpy(),
)
print("#"*80)
plt.close('all')
sys.stdout.flush()