-
Notifications
You must be signed in to change notification settings - Fork 971
/
Copy pathlora.py
308 lines (272 loc) · 8.4 KB
/
lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright © 2024 Apple Inc.
import argparse
import math
import os
import re
import types
from pathlib import Path
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
import yaml
from .tokenizer_utils import TokenizerWrapper
from .tuner.datasets import load_dataset
from .tuner.trainer import TrainingArgs, TrainingCallback, evaluate, train
from .tuner.utils import (
build_schedule,
linear_to_lora_layers,
load_adapters,
print_trainable_parameters,
)
from .utils import load, save_config
yaml_loader = yaml.SafeLoader
yaml_loader.add_implicit_resolver(
"tag:yaml.org,2002:float",
re.compile(
"""^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$""",
re.X,
),
list("-+0123456789."),
)
CONFIG_DEFAULTS = {
"model": "mlx_model",
"train": False,
"fine_tune_type": "lora",
"data": "data/",
"seed": 0,
"num_layers": 16,
"batch_size": 4,
"iters": 1000,
"val_batches": 25,
"learning_rate": 1e-5,
"steps_per_report": 10,
"steps_per_eval": 200,
"resume_adapter_file": None,
"adapter_path": "adapters",
"save_every": 100,
"test": False,
"test_batches": 500,
"max_seq_length": 2048,
"config": None,
"grad_checkpoint": False,
"lr_schedule": None,
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
}
def build_parser():
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
parser.add_argument(
"--model",
type=str,
help="The path to the local model directory or Hugging Face repo.",
)
# Training args
parser.add_argument(
"--train",
action="store_true",
help="Do training",
default=None,
)
parser.add_argument(
"--data",
type=str,
help=(
"Directory with {train, valid, test}.jsonl files or the name "
"of a Hugging Face dataset (e.g., 'mlx-community/wikisql')"
),
)
parser.add_argument(
"--fine-tune-type",
type=str,
choices=["lora", "dora", "full"],
help="Type of fine-tuning to perform: lora, dora, or full.",
)
parser.add_argument(
"--mask-prompt",
action="store_true",
help="Mask the prompt in the loss when training",
default=False,
)
parser.add_argument(
"--num-layers",
type=int,
help="Number of layers to fine-tune. Default is 16, use -1 for all.",
)
parser.add_argument("--batch-size", type=int, help="Minibatch size.")
parser.add_argument("--iters", type=int, help="Iterations to train for.")
parser.add_argument(
"--val-batches",
type=int,
help="Number of validation batches, -1 uses the entire validation set.",
)
parser.add_argument("--learning-rate", type=float, help="Adam learning rate.")
parser.add_argument(
"--steps-per-report",
type=int,
help="Number of training steps between loss reporting.",
)
parser.add_argument(
"--steps-per-eval",
type=int,
help="Number of training steps between validations.",
)
parser.add_argument(
"--resume-adapter-file",
type=str,
help="Load path to resume training from the given fine-tuned weights.",
)
parser.add_argument(
"--adapter-path",
type=str,
help="Save/load path for the fine-tuned weights.",
)
parser.add_argument(
"--save-every",
type=int,
help="Save the model every N iterations.",
)
parser.add_argument(
"--test",
action="store_true",
help="Evaluate on the test set after training",
default=None,
)
parser.add_argument(
"--test-batches",
type=int,
help="Number of test set batches, -1 uses the entire test set.",
)
parser.add_argument(
"--max-seq-length",
type=int,
help="Maximum sequence length.",
)
parser.add_argument(
"-c",
"--config",
type=str,
help="A YAML configuration file with the training options",
)
parser.add_argument(
"--grad-checkpoint",
action="store_true",
help="Use gradient checkpointing to reduce memory use.",
default=None,
)
parser.add_argument("--seed", type=int, help="The PRNG seed")
return parser
def train_model(
args,
model: nn.Module,
tokenizer: TokenizerWrapper,
train_set,
valid_set,
training_callback: TrainingCallback = None,
):
model.freeze()
if args.fine_tune_type == "full":
for l in model.layers[-min(args.num_layers, 0) :]:
l.unfreeze()
elif args.fine_tune_type in ["lora", "dora"]:
# Convert linear layers to lora/dora layers and unfreeze in the process
linear_to_lora_layers(
model,
args.num_layers,
args.lora_parameters,
use_dora=(args.fine_tune_type == "dora"),
)
else:
raise ValueError(f"Received unknown fine-tune-type {args.fine_tune_type}")
# Resume from weights if provided
if args.resume_adapter_file is not None:
print(f"Loading fine-tuned weights from {args.resume_adapter_file}")
model.load_weights(args.resume_adapter_file, strict=False)
print_trainable_parameters(model)
adapter_path = Path(args.adapter_path)
adapter_path.mkdir(parents=True, exist_ok=True)
adapter_file = adapter_path / "adapters.safetensors"
save_config(vars(args), adapter_path / "adapter_config.json")
# init training args
training_args = TrainingArgs(
batch_size=args.batch_size,
iters=args.iters,
val_batches=args.val_batches,
steps_per_report=args.steps_per_report,
steps_per_eval=args.steps_per_eval,
steps_per_save=args.save_every,
adapter_file=adapter_file,
max_seq_length=args.max_seq_length,
grad_checkpoint=args.grad_checkpoint,
)
model.train()
opt = optim.Adam(
learning_rate=(
build_schedule(args.lr_schedule) if args.lr_schedule else args.learning_rate
)
)
# Train model
train(
model=model,
tokenizer=tokenizer,
args=training_args,
optimizer=opt,
train_dataset=train_set,
val_dataset=valid_set,
training_callback=training_callback,
)
def evaluate_model(args, model: nn.Module, tokenizer: TokenizerWrapper, test_set):
model.eval()
test_loss = evaluate(
model=model,
dataset=test_set,
tokenizer=tokenizer,
batch_size=args.batch_size,
num_batches=args.test_batches,
max_seq_length=args.max_seq_length,
)
test_ppl = math.exp(test_loss)
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
def run(args, training_callback: TrainingCallback = None):
np.random.seed(args.seed)
print("Loading pretrained model")
model, tokenizer = load(args.model)
print("Loading datasets")
train_set, valid_set, test_set = load_dataset(args, tokenizer)
if args.test and not args.train:
# Allow testing without LoRA layers by providing empty path
if args.adapter_path != "":
load_adapters(model, args.adapter_path)
elif args.train:
print("Training")
train_model(args, model, tokenizer, train_set, valid_set, training_callback)
else:
raise ValueError("Must provide at least one of --train or --test")
if args.test:
print("Testing")
evaluate_model(args, model, tokenizer, test_set)
def main():
os.environ["TOKENIZERS_PARALLELISM"] = "true"
parser = build_parser()
args = parser.parse_args()
config = args.config
args = vars(args)
if config:
print("Loading configuration file", config)
with open(config, "r") as file:
config = yaml.load(file, yaml_loader)
# Prefer parameters from command-line arguments
for k, v in config.items():
if args.get(k, None) is None:
args[k] = v
# Update defaults for unspecified parameters
for k, v in CONFIG_DEFAULTS.items():
if args.get(k, None) is None:
args[k] = v
run(types.SimpleNamespace(**args))
if __name__ == "__main__":
main()