-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathinference.py
45 lines (35 loc) · 1.33 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import net
import torch
import os
from face_alignment import align
import numpy as np
adaface_models = {
'ir_50':"pretrained/adaface_ir50_ms1mv2.ckpt",
}
def load_pretrained_model(architecture='ir_50'):
# load model and pretrained statedict
assert architecture in adaface_models.keys()
model = net.build_model(architecture)
statedict = torch.load(adaface_models[architecture])['state_dict']
model_statedict = {key[6:]:val for key, val in statedict.items() if key.startswith('model.')}
model.load_state_dict(model_statedict)
model.eval()
return model
def to_input(pil_rgb_image):
np_img = np.array(pil_rgb_image)
brg_img = ((np_img[:,:,::-1] / 255.) - 0.5) / 0.5
tensor = torch.tensor([brg_img.transpose(2,0,1)]).float()
return tensor
if __name__ == '__main__':
model = load_pretrained_model('ir_50')
feature, norm = model(torch.randn(2,3,112,112))
test_image_path = 'face_alignment/test_images'
features = []
for fname in sorted(os.listdir(test_image_path)):
path = os.path.join(test_image_path, fname)
aligned_rgb_img = align.get_aligned_face(path)
input = to_input(aligned_rgb_img)
feature, _ = model(input)
features.append(feature)
similarity_scores = torch.cat(features) @ torch.cat(features).T
print(similarity_scores)