-
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathreplaygain.cpp
374 lines (325 loc) · 15.6 KB
/
replaygain.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
* ReplayGainAnalysis - analyzes input samples and give the recommended dB change
* Copyright (C) 2001 David Robinson and Glen Sawyer
* Copyright (C) 2012 Vittorio Calao and RJ Ryan
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* concept and filter values by David Robinson ([email protected])
* -- blame him if you think the idea is flawed
* original coding by Glen Sawyer ([email protected])
* -- blame him if you think this runs too slowly, or the coding is otherwise flawed
*
* lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ )
* -- credit him for all the _good_ programming ;)
*
* minor cosmetic tweaks to integrate with FLAC by Josh Coalson
*
*
* For an explanation of the concepts and the basic algorithms involved, go to:
* http://www.replaygain.org/
*/
/*
* Here's the deal. Call
*
* InitGainAnalysis ( long samplefreq );
*
* to initialize everything. Call
*
* AnalyzeSamples ( const Float_t* left_samples,
* const Float_t* right_samples,
* size_t num_samples,
* int num_channels );
*
* as many times as you want, with as many or as few samples as you want.
* If mono, pass the sample buffer in through left_samples, leave
* right_samples NULL, and make sure num_channels = 1.
*
* GetTitleGain()
*
* will return the recommended dB level change for all samples analyzed
* SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
*
* GetAlbumGain()
*
* will return the recommended dB level change for all samples analyzed
* since InitGainAnalysis() was called and finalized with GetTitleGain().
*
* Pseudo-code to process an album:
*
* Float_t l_samples [4096];
* Float_t r_samples [4096];
* size_t num_samples;
* unsigned int num_songs;
* unsigned int i;
*
* InitGainAnalysis ( 44100 );
* for ( i = 1; i <= num_songs; i++ ) {
* while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 )
* AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
* fprintf ("Recommended dB change for song %2d: %+6.2f dB\n", i, GetTitleGain() );
* }
* fprintf ("Recommended dB change for whole album: %+6.2f dB\n", GetAlbumGain() );
*/
/*
* So here's the main source of potential code confusion:
*
* The filters applied to the incoming samples are IIR filters,
* meaning they rely on up to <filter order> number of previous samples
* AND up to <filter order> number of previous filtered samples.
*
* I set up the AnalyzeSamples routine to minimize memory usage and interface
* complexity. The speed isn't compromised too much (I don't think), but the
* internal complexity is higher than it should be for such a relatively
* simple routine.
*
* Optimization/clarity suggestions are welcome.
*/
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "replaygain.h"
#if defined(_MSC_VER)
#include <stdint.h>
#endif
typedef float Float_t;
static const Float_t AYule [9] [11] = {
{ 1., -3.84664617118067, 7.81501653005538,-11.34170355132042, 13.05504219327545,-12.28759895145294, 9.48293806319790, -5.87257861775999, 2.75465861874613, -0.86984376593551, 0.13919314567432 },
{ 1., -3.47845948550071, 6.36317777566148, -8.54751527471874, 9.47693607801280, -8.81498681370155, 6.85401540936998, -4.39470996079559, 2.19611684890774, -0.75104302451432, 0.13149317958808 },
{ 1., -2.37898834973084, 2.84868151156327, -2.64577170229825, 2.23697657451713, -1.67148153367602, 1.00595954808547, -0.45953458054983, 0.16378164858596, -0.05032077717131, 0.02347897407020 },
{ 1., -1.61273165137247, 1.07977492259970, -0.25656257754070, -0.16276719120440, -0.22638893773906, 0.39120800788284, -0.22138138954925, 0.04500235387352, 0.02005851806501, 0.00302439095741 },
{ 1., -1.49858979367799, 0.87350271418188, 0.12205022308084, -0.80774944671438, 0.47854794562326, -0.12453458140019, -0.04067510197014, 0.08333755284107, -0.04237348025746, 0.02977207319925 },
{ 1., -0.62820619233671, 0.29661783706366, -0.37256372942400, 0.00213767857124, -0.42029820170918, 0.22199650564824, 0.00613424350682, 0.06747620744683, 0.05784820375801, 0.03222754072173 },
{ 1., -1.04800335126349, 0.29156311971249, -0.26806001042947, 0.00819999645858, 0.45054734505008, -0.33032403314006, 0.06739368333110, -0.04784254229033, 0.01639907836189, 0.01807364323573 },
{ 1., -0.51035327095184, -0.31863563325245, -0.20256413484477, 0.14728154134330, 0.38952639978999, -0.23313271880868, -0.05246019024463, -0.02505961724053, 0.02442357316099, 0.01818801111503 },
{ 1., -0.25049871956020, -0.43193942311114, -0.03424681017675, -0.04678328784242, 0.26408300200955, 0.15113130533216, -0.17556493366449, -0.18823009262115, 0.05477720428674, 0.04704409688120 }
};
static const Float_t BYule [9] [11] = {
{ 0.03857599435200, -0.02160367184185, -0.00123395316851, -0.00009291677959, -0.01655260341619, 0.02161526843274, -0.02074045215285, 0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916 },
{ 0.05418656406430, -0.02911007808948, -0.00848709379851, -0.00851165645469, -0.00834990904936, 0.02245293253339, -0.02596338512915, 0.01624864962975, -0.00240879051584, 0.00674613682247, -0.00187763777362 },
{ 0.15457299681924, -0.09331049056315, -0.06247880153653, 0.02163541888798, -0.05588393329856, 0.04781476674921, 0.00222312597743, 0.03174092540049, -0.01390589421898, 0.00651420667831, -0.00881362733839 },
{ 0.30296907319327, -0.22613988682123, -0.08587323730772, 0.03282930172664, -0.00915702933434, -0.02364141202522, -0.00584456039913, 0.06276101321749, -0.00000828086748, 0.00205861885564, -0.02950134983287 },
{ 0.33642304856132, -0.25572241425570, -0.11828570177555, 0.11921148675203, -0.07834489609479, -0.00469977914380, -0.00589500224440, 0.05724228140351, 0.00832043980773, -0.01635381384540, -0.01760176568150 },
{ 0.44915256608450, -0.14351757464547, -0.22784394429749, -0.01419140100551, 0.04078262797139, -0.12398163381748, 0.04097565135648, 0.10478503600251, -0.01863887810927, -0.03193428438915, 0.00541907748707 },
{ 0.56619470757641, -0.75464456939302, 0.16242137742230, 0.16744243493672, -0.18901604199609, 0.30931782841830, -0.27562961986224, 0.00647310677246, 0.08647503780351, -0.03788984554840, -0.00588215443421 },
{ 0.58100494960553, -0.53174909058578, -0.14289799034253, 0.17520704835522, 0.02377945217615, 0.15558449135573, -0.25344790059353, 0.01628462406333, 0.06920467763959, -0.03721611395801, -0.00749618797172 },
{ 0.53648789255105, -0.42163034350696, -0.00275953611929, 0.04267842219415, -0.10214864179676, 0.14590772289388, -0.02459864859345, -0.11202315195388, -0.04060034127000, 0.04788665548180, -0.02217936801134 }
};
static const Float_t AButter [9] [3] = {
{ 1., -1.97223372919527, 0.97261396931306 },
{ 1., -1.96977855582618, 0.97022847566350 },
{ 1., -1.95835380975398, 0.95920349965459 },
{ 1., -1.95002759149878, 0.95124613669835 },
{ 1., -1.94561023566527, 0.94705070426118 },
{ 1., -1.92783286977036, 0.93034775234268 },
{ 1., -1.91858953033784, 0.92177618768381 },
{ 1., -1.91542108074780, 0.91885558323625 },
{ 1., -1.88903307939452, 0.89487434461664 }
};
static const Float_t BButter [9] [3] = {
{ 0.98621192462708, -1.97242384925416, 0.98621192462708 },
{ 0.98500175787242, -1.97000351574484, 0.98500175787242 },
{ 0.97938932735214, -1.95877865470428, 0.97938932735214 },
{ 0.97531843204928, -1.95063686409857, 0.97531843204928 },
{ 0.97316523498161, -1.94633046996323, 0.97316523498161 },
{ 0.96454515552826, -1.92909031105652, 0.96454515552826 },
{ 0.96009142950541, -1.92018285901082, 0.96009142950541 },
{ 0.95856916599601, -1.91713833199203, 0.95856916599601 },
{ 0.94597685600279, -1.89195371200558, 0.94597685600279 }
};
ReplayGain::ReplayGain() :
num_channels(1),
freqindex(0) {
}
ReplayGain::~ReplayGain() {
}
bool ReplayGain::initialise(long samplefreq, size_t channels) {
if (channels < 1 || channels > 2) {
return false;
}
bool ok = ResetSampleFrequency(samplefreq);
if (!ok) {
return false;
}
linpre = linprebuf + MAX_ORDER;
rinpre = rinprebuf + MAX_ORDER;
lstep = lstepbuf + MAX_ORDER;
rstep = rstepbuf + MAX_ORDER;
lout = loutbuf + MAX_ORDER;
rout = routbuf + MAX_ORDER;
num_channels = channels;
return true;
}
bool ReplayGain::process(const float* left_samples, const float* right_samples, size_t blockSize) {
const float* curleft = NULL;
const float* curright = NULL;
long batchsamples;
long cursamples;
long cursamplepos;
int i;
if ( blockSize == 0 )
return true;
cursamplepos = 0;
batchsamples = blockSize;
switch ( num_channels) {
case 1: right_samples = left_samples;
case 2: break;
default: return false;
}
if (blockSize < MAX_ORDER) {
memcpy ( linprebuf + MAX_ORDER, left_samples , blockSize * sizeof(float) );
memcpy ( rinprebuf + MAX_ORDER, right_samples, blockSize * sizeof(float) );
}
else {
memcpy ( linprebuf + MAX_ORDER, left_samples, MAX_ORDER * sizeof(float) );
memcpy ( rinprebuf + MAX_ORDER, right_samples, MAX_ORDER * sizeof(float) );
}
while ( batchsamples > 0 ) {
cursamples = batchsamples > (long)(sampleWindow-totsamp) ? (long)(sampleWindow - totsamp) : batchsamples;
if ( cursamplepos < MAX_ORDER ) {
curleft = linpre+cursamplepos;
curright = rinpre+cursamplepos;
if (cursamples > MAX_ORDER - cursamplepos )
cursamples = MAX_ORDER - cursamplepos;
}
else {
curleft = left_samples + cursamplepos;
curright = right_samples + cursamplepos;
}
filterYule( curleft , lstep + totsamp, cursamples );
filterYule( curright, rstep + totsamp, cursamples );
filterButter( lstep + totsamp, lout + totsamp, cursamples );
filterButter( rstep + totsamp, rout + totsamp, cursamples );
for ( i = 0; i < cursamples; i++ ) { /* Get the squared values */
lsum += lout [totsamp+i] * lout [totsamp+i];
rsum += rout [totsamp+i] * rout [totsamp+i];
}
batchsamples -= cursamples;
cursamplepos += cursamples;
totsamp += cursamples;
if ( totsamp == sampleWindow ) { /* Get the Root Mean Square (RMS) for this set of samples */
double val = STEPS_per_dB * 10 * log10 ( (lsum+rsum) / totsamp * 0.5 + 1.e-37 );
int ival = (int) val;
if ( ival < 0 ) ival = 0;
if ( ival >= (int)(sizeof(A)/sizeof(*A)) ) ival = (int)(sizeof(A)/sizeof(*A)) - 1;
A [ival]++;
lsum = rsum = 0.;
memmove ( loutbuf , loutbuf + totsamp, MAX_ORDER * sizeof(float) );
memmove ( routbuf , routbuf + totsamp, MAX_ORDER * sizeof(float) );
memmove ( lstepbuf, lstepbuf + totsamp, MAX_ORDER * sizeof(float) );
memmove ( rstepbuf, rstepbuf + totsamp, MAX_ORDER * sizeof(float) );
totsamp = 0;
}
if ( totsamp > sampleWindow ) /* somehow I really screwed up: Error in programming! Contact author about totsamp > sampleWindow */
return false;
}
if ( blockSize < MAX_ORDER ) {
memmove ( linprebuf, linprebuf + blockSize, (MAX_ORDER- blockSize) * sizeof(float) );
memmove ( rinprebuf, rinprebuf + blockSize, (MAX_ORDER- blockSize) * sizeof(float) );
memcpy ( linprebuf + MAX_ORDER - blockSize, left_samples, blockSize * sizeof(float) );
memcpy ( rinprebuf + MAX_ORDER - blockSize, right_samples, blockSize * sizeof(float) );
}
else {
memcpy ( linprebuf, left_samples + blockSize - MAX_ORDER, MAX_ORDER * sizeof(float) );
memcpy ( rinprebuf, right_samples + blockSize - MAX_ORDER, MAX_ORDER * sizeof(float) );
}
return true;
}
float ReplayGain::end()
{
float retval;
unsigned int i;
retval = analyzeResult( A, sizeof(A)/sizeof(*A) );
for ( i = 0; i < (int)(sizeof(A)/sizeof(*A)); i++ ) {
A[i] = 0;
}
for ( i = 0; i < MAX_ORDER; i++ )
linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.f;
totsamp = 0;
lsum = rsum = 0.;
return retval;
}
//private functions
void
ReplayGain::filterYule (const float* input, float* output, size_t nSamples) {
const float* a = AYule[freqindex];
const float* b = BYule[freqindex];
for (size_t i = 0; i < nSamples; i++) {
// TODO(XXX) Add back 1e-10 hack for denormal range?
double y = input[i] * b[0];
for (size_t k = 1; k <= YULE_ORDER; k++) {
y += input[i - k] * b[k] - output[i-k] * a[k];
}
output[i] = (Float_t)y;
}
}
void
ReplayGain::filterButter(const float* input, float* output, size_t nSamples) {
const float* a = AButter[freqindex];
const float* b = BButter[freqindex];
for (size_t i = 0; i < nSamples; i++) {
// TODO(XXX) Add back 1e-10 hack for denormal range?
double y = input[i] * b[0];
for (size_t k = 1; k <= BUTTER_ORDER; k++) {
y += input[i - k] * b[k] - output[i-k] * a[k];
}
output[i] = (Float_t)y;
}
}
bool
ReplayGain::ResetSampleFrequency(long samplefreq){
int i;
// zero out initial values
for ( i = 0; i < MAX_ORDER; i++ )
linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.;
switch ( (int)(samplefreq) ) {
case 48000: freqindex = 0; break;
case 44100: freqindex = 1; break;
case 32000: freqindex = 2; break;
case 24000: freqindex = 3; break;
case 22050: freqindex = 4; break;
case 16000: freqindex = 5; break;
case 12000: freqindex = 6; break;
case 11025: freqindex = 7; break;
case 8000: freqindex = 8; break;
default: return false;
}
sampleWindow = (int) ceil (samplefreq * RMS_WINDOW_TIME);
lsum = 0.;
rsum = 0.;
totsamp = 0;
memset ( A, 0, sizeof(A) );
return true;
}
float
ReplayGain::analyzeResult ( unsigned int* Array, size_t len ){
Uint32_t elems;
Int32_t upper;
size_t i;
elems = 0;
// TODO(XXX) possible overflow?
for ( i = 0; i < len; i++ )
elems += Array[i];
if ( elems == 0 )
return GAIN_NOT_ENOUGH_SAMPLES;
upper = (Int32_t) ceil (elems * (1. - RMS_PERCENTILE));
for ( i = len; i-- > 0; ) {
if ( (upper -= Array[i]) <= 0 )
break;
}
return (float) ((float)PINK_REF - (float)i / (float)STEPS_per_dB);
}