forked from matterport/Mask_RCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net_kp_heads.py
478 lines (378 loc) · 20.3 KB
/
net_kp_heads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 9 07:50:39 2018
@author: RockyZhou
"""
import tensorflow as tf
import keras.layers as KL
import keras.engine as KE
import keras.backend as K
from keras.initializers import Constant
from net_backbone import BatchNorm
import numpy as np
def log2_graph(x):
"""Implementatin of Log2. TF doesn't have a native implemenation."""
return tf.log(x) / tf.log(2.0)
class PyramidROIAlign(KE.Layer):
"""Implements ROI Pooling on multiple levels of the feature pyramid.
Params:
- pool_shape: [height, width] of the output pooled regions. Usually [7, 7]
- image_shape: [height, width, chanells]. Shape of input image in pixels
Inputs:
- boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized
coordinates. Possibly padded with zeros if not enough
boxes to fill the array.
- Feature maps: List of feature maps from different levels of the pyramid.
Each is [batch, height, width, channels]
Output:
Pooled regions in the shape: [batch, num_boxes, height, width, channels].
The width and height are those specific in the pool_shape in the layer
constructor.
"""
def __init__(self, pool_shape, image_shape, **kwargs):
super(PyramidROIAlign, self).__init__(**kwargs)
self.pool_shape = tuple(pool_shape)
self.image_shape = tuple(image_shape)
def call(self, inputs):
# Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords
boxes = inputs[0]
# Feature Maps. List of feature maps from different level of the
# feature pyramid. Each is [batch, height, width, channels]
feature_maps = inputs[1:]
# Assign each ROI to a level in the pyramid based on the ROI area.
y1, x1, y2, x2 = tf.split(boxes, 4, axis=2)
h = y2 - y1
w = x2 - x1
# Equation 1 in the Feature Pyramid Networks paper. Account for
# the fact that our coordinates are normalized here.
# e.g. a 224x224 ROI (in pixels) maps to P4
image_area = tf.cast(
self.image_shape[0] * self.image_shape[1], tf.float32)
roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area)))
roi_level = tf.minimum(5, tf.maximum(
2, 4 + tf.cast(tf.round(roi_level), tf.int32)))
roi_level = tf.squeeze(roi_level, 2)
# Loop through levels and apply ROI pooling to each. P2 to P5.
pooled = []
box_to_level = []
for i, level in enumerate(range(2, 6)):
ix = tf.where(tf.equal(roi_level, level))
level_boxes = tf.gather_nd(boxes, ix)
# Box indicies for crop_and_resize.
box_indices = tf.cast(ix[:, 0], tf.int32)
# Keep track of which box is mapped to which level
box_to_level.append(ix)
# Stop gradient propogation to ROI proposals
level_boxes = tf.stop_gradient(level_boxes)
box_indices = tf.stop_gradient(box_indices)
# Crop and Resize
# From Mask R-CNN paper: "We sample four regular locations, so
# that we can evaluate either max or average pooling. In fact,
# interpolating only a single value at each bin center (without
# pooling) is nearly as effective."
#
# Here we use the simplified approach of a single value per bin,
# which is how it's done in tf.crop_and_resize()
# Result: [batch * num_boxes, pool_height, pool_width, channels]
pooled.append(tf.image.crop_and_resize(
feature_maps[i], level_boxes, box_indices, self.pool_shape,
method="bilinear"))
# Pack pooled features into one tensor
pooled = tf.concat(pooled, axis=0)
# Pack box_to_level mapping into one array and add another
# column representing the order of pooled boxes
box_to_level = tf.concat(box_to_level, axis=0)
box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1)
box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range],
axis=1)
# Rearrange pooled features to match the order of the original boxes
# Sort box_to_level by batch then box index
# TF doesn't have a way to sort by two columns, so merge them and sort.
sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1]
ix = tf.nn.top_k(sorting_tensor, k=tf.shape(
box_to_level)[0]).indices[::-1]
ix = tf.gather(box_to_level[:, 2], ix)
pooled = tf.gather(pooled, ix)
# Re-add the batch dimension
pooled = tf.expand_dims(pooled, 0)
return pooled
def compute_output_shape(self, input_shape):
return input_shape[0][:2] + self.pool_shape + (input_shape[1][-1], )
class UpSamplingLayer(KE.Layer):
def __init__(self, factor, **kwargs):
self.factor = factor
super(UpSamplingLayer, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
# self.kernel = self.add_weight(name='kernel',
# shape=(input_shape[1], self.output_dim),
# initializer='uniform',
# trainable=True)
self.new_height = input_shape[1]*self.factor
self.new_width = input_shape[2]*self.factor
super(UpSamplingLayer, self).build(input_shape) # Be sure to call this somewhere!
def call(self, x):
return tf.image.resize_images(x, [self.new_height, self.new_width])
def compute_output_shape(self, input_shape):
return (input_shape[0], self.new_height, self.new_width, 17)
#https://kivantium.net/keras-bilinear
def upsample_filt(size):
"""
Make a 2D bilinear kernel suitable for upsampling of the given (h, w) size.
"""
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
return (1 - abs(og[0] - center) / factor) * \
(1 - abs(og[1] - center) / factor)
def bilinear_upsample_weights(factor, number_of_classes):
"""
Create weights matrix for transposed convolution with bilinear filter
initialization.
"""
filter_size = 2 * factor - factor % 2
weights = np.zeros((filter_size,
filter_size,
number_of_classes,
number_of_classes), dtype=np.float32)
upsample_kernel = upsample_filt(filter_size)
for i in range(number_of_classes):
weights[:, :, i, i] = upsample_kernel
return weights
def build_fpn_kp_mask_graph(rois, feature_maps,
image_shape, pool_size, num_kp_classes):
"""Builds the computation graph of the mask head of Feature Pyramid Network.
rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
coordinates.
feature_maps: List of feature maps from diffent layers of the pyramid,
[P2, P3, P4, P5]. Each has a different resolution.
image_shape: [height, width, depth]
pool_size: The width of the square feature map generated from ROI Pooling.
num_kp_classes: number of classes, which determines the depth of the results
Returns: Masks [batch, roi_count, height, width, num_kp_classes]
"""
# ROI Pooling
# Shape: [batch, boxes, pool_height, pool_width, channels]
x = PyramidROIAlign([pool_size, pool_size], image_shape,
name="roi_align_kp_mask")([rois] + feature_maps)
# Conv layers
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv1")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn1')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv2")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn2')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv3")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn3')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv4")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn4')(x)
x = KL.Activation('relu')(x)
# Conv layers
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv5")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn5')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv6")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn6')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv7")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn7')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv8")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn8')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2DTranspose(17, (2, 2), strides=2), name="mrcnn_kp_mask_deconv")(x)
x = KL.TimeDistributed(KL.Conv2DTranspose(17, (4, 4), strides=2, padding='same',
kernel_initializer=Constant(bilinear_upsample_weights(2, 17)) ),
name="kp_mask_bilinear_up")(x) #not trainable
x = KL.Activation('sigmoid')(x)
# x = KL.TimeDistributed(KL.Conv2D(17, (1, 1), strides=1, activation="linear"),
# name="mrcnn_kp_mask")(x)
# x = KL.TimeDistributed(UpSamplingLayer(2),
# name="mrcnn_kp_mask_bilinear_up")(x)
return x
def mrcnn_kp_mask_loss_graph_v2(target_masks, target_class_ids, pred_masks):
"""
target_masks: [batch, num_rois, height, width, 17].
A float32 tensor of values 0 or 1. Uses zero padding to fill array.
target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded.
pred_masks: [batch, num_rois, height, width, 17] float32 tensor
with values from 0 to 1.
"""
#**************************************************************
#!!!!!!!!!!!!!!
#The same problem: Ran out of GPU memory when allocating 0 bytes
#*************************************************************
# Only positive ROIs contribute to the loss. And only
# the class specific mask of each ROI.
target_class_ids = K.reshape(target_class_ids, (-1,))
positive_ix = tf.where(target_class_ids > 0)[:, 0]
# Predicted masks and target masks are reshaped in [N, height*width, 14 (body parts)]
# mask_shape = tf.shape(target_masks)
target_masks = K.reshape(target_masks, (-1, 28 * 28, 17))
pred_masks = K.reshape(pred_masks, (-1, 28 * 28, 17))
# Gather the masks (predicted and true) that contribute to loss
y_true = tf.gather(target_masks, positive_ix)
y_pred = tf.gather(pred_masks, positive_ix)
# compute the loss function in second dimmention (28*28), result = [N, 17]
loss = K.switch(tf.size(y_true) > 0,
tf.nn.softmax_cross_entropy_with_logits(logits=y_pred, labels=y_true, dim=1),
tf.constant(0.0))
loss = K.mean(loss)
loss = K.reshape(loss, [1, 1])
return loss
def mrcnn_kp_mask_loss_graph(target_masks, target_kp_class_ids, pred_masks):
"""Mask binary cross-entropy loss for the masks head.
target_masks: [batch, num_rois, height, width, kp_num].
A float32 tensor of values 0 or 1. Uses zero padding to fill array.
target_kp_class_ids: [batch, num_rois, kp_num]. Integer class IDs. Zero padded.
pred_masks: [batch, proposals, height, width, kp_num] float32 tensor
with values from 0 to 1.
"""
with tf.device('/cpu:0'):
# Permute predicted masks to [batch, proposals, kp_num, height, width]
#print(tf.shape(target_masks))
target_masks = tf.transpose(target_masks, [0, 1, 4, 2, 3])
mask_shape = tf.shape(target_masks)
target_masks = K.reshape(target_masks, (-1, mask_shape[-2]*mask_shape[-1]))
pred_masks = tf.transpose(pred_masks, [0, 1, 4, 2, 3])
pred_shape = tf.shape(pred_masks)
pred_masks = K.reshape(pred_masks, (-1, pred_shape[-2]*pred_shape[-1]))
target_kp_class_ids = K.reshape(target_kp_class_ids, (-1,))
positive_ix = tf.where(target_kp_class_ids > 1)[:, 0] #only visible
#positive_class_ids = tf.cast(
# tf.gather(target_class_ids, positive_ix), tf.int64)
#indices = tf.stack([positive_ix, positive_class_ids], axis=1)
# Gather the masks (predicted and true) that contribute to loss
y_true = tf.gather(target_masks, positive_ix) #(batch*proposals*kp_num, height*width)
y_pred = tf.gather(pred_masks, positive_ix) #(batch*proposals*kp_num, height*width)
# y_pred = tf.gather_nd(pred_masks, indices)
# compute the loss function in second dimmention (56*56)
loss = K.switch(tf.size(y_true) > 0,
tf.nn.softmax_cross_entropy_with_logits(logits=y_pred, labels=y_true),
tf.constant(0.0))
# loss = tf.gather(K.reshape(loss, (-1,)), target_mask_class)
loss = K.mean(loss)
loss = K.reshape(loss, [1, 1])
return loss
def mrcnn_kp_vs_loss_graph(target_mask_class, target_class_ids, pred_class):
"""Loss for Mask class R-CNN whether key points are in picture.
target_mask_class: [batch, num_rois, 17(number of keypoints)]
pred_class: [batch, num_rois, 17, 3]
target_class_ids: [batch, num_rois]. Integer class IDs.
"""
# Reshape to merge batch and roi dimensions for simplicity.
target_mask_class = tf.cast(target_mask_class, tf.int64)
target_class_ids = K.reshape(target_class_ids, (-1,))
pred_class = K.reshape(pred_class, (-1, 17, 3)) #K.int_shape(pred_class)[3]))
target_mask_class = tf.cast(K.reshape(target_mask_class, (-1, 17)), tf.int64)
positive_roi_ix = tf.where(target_class_ids > 0)[:, 0]
# Gather the positive classes (predicted and true) that contribute to loss
target_class = tf.gather(target_mask_class, positive_roi_ix)
pred_class = tf.gather(pred_class, positive_roi_ix)
# # Loss
# loss = K.switch(tf.size(target_class) > 0,
# lambda: tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_class, logits=pred_class),
# lambda: tf.constant(0.0))
# # Computer loss mean. Use only predictions that contribute
# # to the loss to get a correct mean.
# loss = tf.reduce_mean(loss)
#loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_class, logits=pred_class)
loss = K.sparse_categorical_crossentropy(target=target_class,
output=pred_class,
from_logits=True)
loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
return loss
def build_fpn_shared_kp_mask_graph(rois, feature_maps,
image_shape, pool_size, num_classes):
"""Builds the computation graph of the mask head of Feature Pyramid Network.
rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
coordinates.
feature_maps: List of feature maps from diffent layers of the pyramid,
[P2, P3, P4, P5]. Each has a different resolution.
image_shape: [height, width, depth]
pool_size: The width of the square feature map generated from ROI Pooling.
num_kp_classes: number of classes, which determines the depth of the results
Returns: Masks [batch, roi_count, height, width, num_classes]
"""
x = PyramidROIAlign([pool_size, pool_size], image_shape,
name="roi_align_mask")([rois] + feature_maps)
# Conv layers
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_mask_conv1")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_mask_bn1')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_mask_conv2")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_mask_bn2')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_mask_conv3")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_mask_bn3')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_mask_conv4")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_mask_bn4')(x)
shared = KL.Activation('relu')(x)
##mask branch
x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"),
name="mrcnn_mask_deconv")(shared)
mrcnn_mask_probs = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"),
name="mrcnn_mask")(x)
##kp branch
# Conv layers
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv5")(shared)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn5')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv6")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn6')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv7")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn7')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_kp_mask_conv8")(x)
x = KL.TimeDistributed(BatchNorm(axis=3),
name='mrcnn_kp_mask_bn8')(x)
x = KL.Activation('relu')(x)
# x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2), name="mrcnn_kp_mask_deconv")(x)
#
# mrcnn_kp_mask = KL.TimeDistributed(KL.Conv2D(17, (1, 1), strides=1, activation="tanh"),
# name="mrcnn_kp_mask")(x)
mrcnn_kp_mask = KL.TimeDistributed(KL.Conv2DTranspose(17, (2, 2), strides=2, activation="tanh"), name="mrcnn_kp_mask_deconv")(x)
# mrcnn_kp_mask = KL.TimeDistributed(KL.Conv2DTranspose(17, (4, 4), strides=2, padding='same',
# kernel_initializer=Constant(bilinear_upsample_weights(2, 17)) ),
# name="kp_mask_bilinear_up")(mrcnn_kp_mask) #not trainable
#Scaling before cross entropy with logits
mrcnn_kp_mask = KL.Lambda(lambda x: x * 10, name="output_mrcnn_kp_mask")(mrcnn_kp_mask)
# mrcnn_kp_mask = KL.Activation('sigmoid')(x)
return mrcnn_mask_probs, mrcnn_kp_mask