-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgenerate_onestep.py
173 lines (140 loc) · 7.5 KB
/
generate_onestep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2024, Mingyuan Zhou. All rights reserved.
#
# This work is licensed under APACHE LICENSE, VERSION 2.0
# You should have received a copy of the license along with this
# work. If not, see https://www.apache.org/licenses/LICENSE-2.0.txt
import os
import re
import click
import tqdm
import pickle
import numpy as np
import torch
import PIL.Image
import dnnlib
from torch_utils import distributed as dist
#----------------------------------------------------------------------------
# One-step generator that allows specifying a different random seed for each generated sample
class StackedRandomGenerator:
def __init__(self, device, seeds):
super().__init__()
self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds]
def randn(self, size, **kwargs):
assert size[0] == len(self.generators)
return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators])
def randn_like(self, input):
return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device)
def randint(self, *args, size, **kwargs):
assert size[0] == len(self.generators)
return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators])
#----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]
def parse_int_list(s):
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
else:
ranges.append(int(p))
return ranges
#----------------------------------------------------------------------------
def compress_to_npz(folder_path, num=50000):
# Get the list of all files in the folder
npz_path = f"{folder_path}.npz"
file_names = os.listdir(folder_path)
# Filter the list of files to include only images
file_names = [file_name for file_name in file_names if file_name.endswith(('.png', '.jpg', '.jpeg'))]
num = min(num, len(file_names))
file_names = file_names[:num]
# Initialize a dictionary to hold image arrays and their filenames
samples = []
# Iterate through the files, load each image, and add it to the dictionary with a progress bar
for file_name in tqdm.tqdm(file_names, desc=f"Compressing images to {npz_path}"):
# Create the full path to the image file
file_path = os.path.join(folder_path, file_name)
# Read the image using PIL and convert it to a NumPy array
image = PIL.Image.open(file_path)
image_array = np.asarray(image).astype(np.uint8)
samples.append(image_array)
samples = np.stack(samples)
# Save the images as a .npz file
np.savez(npz_path, arr_0=samples)
print(f"Images from folder {folder_path} have been saved as {npz_path}")
#----------------------------------------------------------------------------
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', metavar='PATH|URL', type=str, required=True)
@click.option('--outdir', help='Where to save the output images', metavar='DIR', type=str, required=True)
@click.option('--seeds', help='Random seeds (e.g. 1,2,5-10)', metavar='LIST', type=parse_int_list, default='0-63', show_default=True)
@click.option('--subdirs', help='Create subdirectory for every 1000 seeds', is_flag=True)
@click.option('--class', 'class_idx', help='Class label [default: random]', metavar='INT', type=click.IntRange(min=0), default=None)
@click.option('--batch', 'max_batch_size', help='Maximum batch size', metavar='INT', type=click.IntRange(min=1), default=64, show_default=True)
@click.option('--num', 'num_fid_samples', help='Maximum num of images', metavar='INT', type=click.IntRange(min=1), default=50000, show_default=True)
@click.option('--sigma_G', 'sigma_G', help='Stoch. noise std', metavar='FLOAT', type=float, default=2.5, show_default=True)
def main(network_pkl, outdir, subdirs, seeds, class_idx, max_batch_size, num_fid_samples, sigma_G, device=torch.device('cuda')):
"""Generate random images using SiD".
Examples:
\b
# Generate 64 images and save them as out/*.png and out.npz
python generate_onestep.py --outdir=out --seeds=0-63 --batch=64 \
--network=<network_path>
\b
# Generate 1024 images using 2 GPUs
torchrun --standalone --nproc_per_node=2 generate_onestep.py --outdir=out --seeds=0-999 --batch=64 \\
--network=<network_path>
"""
dist.init()
num_batches = ((len(seeds) - 1) // (max_batch_size * dist.get_world_size()) + 1) * dist.get_world_size()
all_batches = torch.as_tensor(seeds).tensor_split(num_batches)
rank_batches = all_batches[dist.get_rank() :: dist.get_world_size()]
# Rank 0 goes first.
if dist.get_rank() != 0:
torch.distributed.barrier()
# Load network.
dist.print0(f'Loading network from "{network_pkl}"...')
with dnnlib.util.open_url(network_pkl, verbose=(dist.get_rank() == 0)) as f:
net = pickle.load(f)['ema'].to(device)
# Other ranks follow.
if dist.get_rank() == 0:
torch.distributed.barrier()
# Loop over batches.
dist.print0(f'Generating {len(seeds)} images to "{outdir}"...')
for batch_seeds in tqdm.tqdm(rank_batches, unit='batch', disable=(dist.get_rank() != 0)):
torch.distributed.barrier()
batch_size = len(batch_seeds)
if batch_size == 0:
continue
# Pick latents and labels.
rnd = StackedRandomGenerator(device, batch_seeds)
latents = rnd.randn([batch_size, net.img_channels, net.img_resolution, net.img_resolution], device=device)
sigma = sigma_G*torch.ones([batch_size, 1, 1, 1], device=device)
class_labels = None
if net.label_dim:
class_labels = torch.eye(net.label_dim, device=device)[rnd.randint(net.label_dim, size=[batch_size], device=device)]
if class_idx is not None:
class_labels[:, :] = 0
class_labels[:, class_idx] = 1
images = net(sigma_G*latents.to(torch.float64), sigma, class_labels).to(torch.float64)
# Save images.
images_np = (images * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()
for seed, image_np in zip(batch_seeds, images_np):
image_dir = os.path.join(outdir, f'{seed-seed%1000:06d}') if subdirs else outdir
os.makedirs(image_dir, exist_ok=True)
image_path = os.path.join(image_dir, f'{seed:06d}.png')
if image_np.shape[2] == 1:
PIL.Image.fromarray(image_np[:, :, 0], 'L').save(image_path)
else:
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
# Done.
torch.distributed.barrier()
if dist.get_rank() == 0:
compress_to_npz(outdir, num_fid_samples)
torch.distributed.barrier()
dist.print0('Done.')
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------