diff --git a/common/src/main/java/org/opensearch/ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunction.java b/common/src/main/java/org/opensearch/ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunction.java index 7d25fa7202..31180d7ef8 100644 --- a/common/src/main/java/org/opensearch/ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunction.java +++ b/common/src/main/java/org/opensearch/ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunction.java @@ -25,7 +25,7 @@ public CohereMultiModalEmbeddingPreProcessFunction() { public void validate(MLInput mlInput) { validateTextDocsInput(mlInput); List docs = ((TextDocsInputDataSet) mlInput.getInputDataset()).getDocs(); - if (docs == null || docs.isEmpty() || (docs.size() == 1 && docs.get(0) == null)) { + if (docs == null || docs.isEmpty() || docs.get(0) == null) { throw new IllegalArgumentException("No image provided"); } @@ -34,7 +34,7 @@ public void validate(MLInput mlInput) { @Override public RemoteInferenceInputDataSet process(MLInput mlInput) { TextDocsInputDataSet inputData = (TextDocsInputDataSet) mlInput.getInputDataset(); - Map parametersMap = new HashMap<>(); + Map parametersMap = new HashMap<>(); /** * Cohere multi-modal model expects either image or texts, not both. @@ -42,7 +42,7 @@ public RemoteInferenceInputDataSet process(MLInput mlInput) { * connector.pre_process.cohere.embedding * Cohere expects An array of image data URIs for the model to embed. Maximum number of images per call is 1. */ - parametersMap.put("images", inputData.getDocs().get(0)); + parametersMap.put("images", inputData.getDocs()); return RemoteInferenceInputDataSet .builder() .parameters(convertScriptStringToJsonString(Map.of("parameters", parametersMap))) diff --git a/common/src/test/java/org/opensearch/ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunctionTest.java b/common/src/test/java/org/opensearch/ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunctionTest.java index e16f56287d..2334811690 100644 --- a/common/src/test/java/org/opensearch/ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunctionTest.java +++ b/common/src/test/java/org/opensearch/ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunctionTest.java @@ -66,7 +66,7 @@ public void testProcess_whenCorrectInput_expectCorrectOutput() { MLInput mlInput = MLInput.builder().algorithm(FunctionName.TEXT_EMBEDDING).inputDataset(textDocsInputDataSet).build(); RemoteInferenceInputDataSet dataSet = function.apply(mlInput); assertEquals(1, dataSet.getParameters().size()); - assertEquals("imageString", dataSet.getParameters().get("images")); + assertEquals("[\"imageString\"]", dataSet.getParameters().get("images")); } diff --git a/docs/remote_inference_blueprints/cohere_connector_embedding_blueprint.md b/docs/remote_inference_blueprints/cohere_connector_embedding_blueprint.md index fe910d0c79..4386251c00 100644 --- a/docs/remote_inference_blueprints/cohere_connector_embedding_blueprint.md +++ b/docs/remote_inference_blueprints/cohere_connector_embedding_blueprint.md @@ -1,6 +1,6 @@ ### Cohere Embedding Connector Blueprint: -This blueprint will show you how to connect a Cohere embedding model to your Opensearch cluster, including creating a k-nn index and your own Embedding pipeline. You will require a Cohere API key to create a connector. +This blueprint will show you how to connect a Cohere embedding model to your OpenSearch cluster, including creating a k-nn index and your own Embedding pipeline. You will require a Cohere API key to create a connector. Cohere currently offers the following Embedding models (with model name and embedding dimensions). Note that only the following have been tested with the blueprint guide. @@ -97,7 +97,7 @@ The last step is to deploy your model. Use the `model_id` returned by the regist POST /_plugins/_ml/models//_deploy ``` -This will once again spawn a task to deploy your Model, with a response that will look like: +This will once again spawn a task to deploy your model, with a response that will look like: ```json { @@ -113,11 +113,11 @@ You can run the GET tasks request again to verify the status. GET /_plugins/_ml/tasks/ ``` -Once this is complete, your Model is deployed and ready! +Once this is complete, your model is deployed and ready! ##### 1e. Test model -You can try this request to test that the Model behaves correctly: +You can try this request to test that the model behaves correctly: ```json POST /_plugins/_ml/models//_predict diff --git a/docs/remote_inference_blueprints/cohere_connector_image_embedding_blueprint.md b/docs/remote_inference_blueprints/cohere_connector_image_embedding_blueprint.md new file mode 100644 index 0000000000..06af2c9b90 --- /dev/null +++ b/docs/remote_inference_blueprints/cohere_connector_image_embedding_blueprint.md @@ -0,0 +1,324 @@ +### Cohere Embedding Connector Blueprint: + +This blueprint will show you how to connect a Cohere multi-modal embedding model to your OpenSearch cluster, including creating a k-nn index and your own Embedding pipeline. You will require a Cohere API key to create a connector. + +Cohere currently offers the following Embedding models (with model name and embedding dimensions). Note that only the following have been tested with the blueprint guide. + +- embed-english-v3.0 1024 +- embed-english-v2.0 4096 + +See [Cohere's /embed API docs](https://docs.cohere.com/reference/embed) for more details. + +#### 1. Create a connector and model group + +##### 1a. Register model group + +```json +POST /_plugins/_ml/model_groups/_register + +{ + "name": "cohere_model_group", + "description": "Your Cohere model group" +} +``` + +This request response will return the `model_group_id`, note it down. + +##### 1b. Create a connector + +See above for all the values the `parameters > model` parameter can take. + +```json +POST /_plugins/_ml/connectors/_create +{ + "name": "Cohere Embed Model", + "description": "The connector to Cohere's public embed API", + "version": "1", + "protocol": "http", + "credential": { + "cohere_key": "" + }, + "parameters": { + "model": "", // Choose a Model from the provided list above + "input_type":"image", + "truncate": "END" + }, + "actions": [ + { + "action_type": "predict", + "method": "POST", + "url": "https://api.cohere.ai/v1/embed", + "headers": { + "Authorization": "Bearer ${credential.cohere_key}", + "Request-Source": "unspecified:opensearch" + }, + "request_body": "{ \"images\": ${parameters.images}, \"truncate\": \"${parameters.truncate}\", \"model\": \"${parameters.model}\", \"input_type\": \"${parameters.input_type}\" }", + "pre_process_function": "connector.pre_process.cohere.multimodal_embedding", + "post_process_function": "connector.post_process.cohere.embedding" + } + ] +} +``` + +This request response will return the `connector_id`, note it down. + +##### 1c. Register a model with your connector + +You can now register your model with the `model_group_id` and `connector_id` created from the previous steps. + +```json +POST /_plugins/_ml/models/_register +Content-Type: application/json + +{ + "name": "Cohere Embed Model", + "function_name": "remote", + "model_group_id": "", + "description": "Your Cohere Embedding Model", + "connector_id": "" +} +``` + +This will create a registration task, the response should look like: + +```json +{ + "task_id": "9bXpRY0BRil1qhQaUK-u", + "status": "CREATED", + "model_id": "9rXpRY0BRil1qhQaUK_8" +} +``` + +##### 1d. Deploy model + +The last step is to deploy your model. Use the `model_id` returned by the registration request, and run: + +```json +POST /_plugins/_ml/models//_deploy +``` + +This will once again spawn a task to deploy your model, with a response that will look like: + +```json +{ + "task_id": "97XrRY0BRil1qhQaQK_c", + "task_type": "DEPLOY_MODEL", + "status": "COMPLETED" +} +``` + +You can run the GET tasks request again to verify the status. + +```json +GET /_plugins/_ml/tasks/ +``` + +Once this is complete, your model is deployed and ready! + +##### 1e. Test model + +You can try this request to test that the model behaves correctly: + +```json +POST /_plugins/_ml/models//_predict +{ + "parameters": { + "images": [""] + } +} +``` + +It should return a response similar to this: + +```json +{ + "inference_results": [ + { + "output": [ + { + "name": "sentence_embedding", + "data_type": "FLOAT32", + "shape": [ + 1024 + ], + "data": [ + -0.0024547577, + 0.0062217712, + -0.01675415, + -0.020736694, + -0.020263672, + ... ... + 0.038635254 + ] + } + ], + "status_code": 200 + } + ] +} +``` + +#### (Optional) 2. Setup k-NN index and ingestion pipeline + +##### 2a. Create your pipeline + +It is important that the `field_map` parameter contains all the document fields you'd like to embed as a vector. The key value is the document field name, and the value will be the field containing the embedding. + +```json +PUT /_ingest/pipeline/cohere-ingest-pipeline +{ + "description": "Test Cohere Embedding pipeline", + "processors": [ + { + "text_embedding": { + "model_id": "", + "field_map": { + "image_base64": "image_embedding" + } + } + } + ] +} +``` + +Sample response: + +```json +{ + "acknowledged": true +} +``` + +##### 2b. Create a k-NN index + +Here `cohere-nlp-index` is the name of your index, you can change it as needed. + +````json +PUT /cohere-nlp-index + +{ + "settings": { + "index.knn": true, + "default_pipeline": "cohere-ingest-pipeline" + }, + "mappings": { + "properties": { + "id": { + "type": "text" + }, + "image_embedding": { + "type": "knn_vector", + "dimension": 1024, + "method": { + "engine": "lucene", + "space_type": "l2", + "name": "hnsw", + "parameters": {} + } + }, + "image_base64": { + "type": "text" + } + } + } +} + +Sample response: + +```json +{ + "acknowledged": true, + "shards_acknowledged": true, + "index": "cohere-nlp-index" +} +```` + +##### 2c. Testing the index and pipeline + +First, you can insert a record: + +```json +PUT /cohere-nlp-index/_doc/1 +{ + "image_base64": "", + "id": "c1" +} +``` + +Sample response: + +```json +{ + "_index": "cohere-nlp-index", + "_id": "1", + "_version": 1, + "result": "created", + "_shards": { + "total": 2, + "successful": 1, + "failed": 0 + }, + "_seq_no": 0, + "_primary_term": 1 +} +``` + +The last step is to check that the embeddings were properly created. Notice that the embedding field created corresponds to the `field_map` mapping you defined in step 3a. + +```json +GET /cohere-nlp-index/\_search + +{ + "query": { + "match_all": {} + } +} +``` + +Sample response: + +```json +{ + "took": 2, + "timed_out": false, + "_shards": { + "total": 1, + "successful": 1, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 1, + "relation": "eq" + }, + "max_score": 1, + "hits": [ + { + "_index": "cohere-nlp-index", + "_id": "1", + "_score": 1, + "_source": { + "image_base64": "", + "image_embedding": [ + 0.02494812, + -0.009391785, + -0.015716553, + -0.051849365, + -0.015930176, + -0.024734497, + -0.028518677, + -0.008323669, + -0.008323669, + ............. + + ], + "id": "c1" + } + } + ] + } +} +``` + +Congratulations! You've successfully created your ingestion pipeline.