forked from mfillpot/mathomatic
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcomplex_lib.c
171 lines (149 loc) · 3.4 KB
/
complex_lib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
* A handy, tested, small, stand-alone, double precision floating point
* complex number arithmetic library for C.
* Just include "complex.h" if you use this.
*
* Copyright (C) 1987-2012 George Gesslein II.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at [email protected], or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
#include "complex.h"
#include <math.h>
#ifndef true
#define true 1
#define false 0
#endif
#define epsilon 0.00000000000005 /* a good value for doubles */
/*
* Zero out relatively very small real or imaginary parts of a complex number,
* because they probably are a result of accumulated floating point inaccuracies.
*
* Return true if something was zeroed out.
*/
int
complex_fixup(ap)
complexs *ap; /* complex number pointer */
{
if (fabs(ap->re * epsilon) > fabs(ap->im)) {
ap->im = 0.0;
return true;
}
if (fabs(ap->im * epsilon) > fabs(ap->re)) {
ap->re = 0.0;
return true;
}
return false;
}
/*
* Add two complex numbers (a + b)
* and return the complex number result.
*
* Complex number subtraction (a - b) is done by
* complex_add(a, complex_negate(b)).
*/
complexs
complex_add(a, b)
complexs a, b;
{
a.re += b.re;
a.im += b.im;
return(a);
}
/*
* Negate a complex number (-a)
* and return the complex number result.
*/
complexs
complex_negate(a)
complexs a;
{
a.re = -a.re;
a.im = -a.im;
return(a);
}
/*
* Multiply two complex numbers (a * b)
* and return the complex number result.
*/
complexs
complex_mult(a, b)
complexs a, b;
{
complexs r;
r.re = a.re * b.re - a.im * b.im;
r.im = a.re * b.im + a.im * b.re;
return(r);
}
/*
* Divide two complex numbers (a / b)
* and return the complex number result.
*/
complexs
complex_div(a, b)
complexs a; /* dividend */
complexs b; /* divisor */
{
complexs r, num;
double denom;
b.im = -b.im;
num = complex_mult(a, b);
denom = b.re * b.re + b.im * b.im;
r.re = num.re / denom;
r.im = num.im / denom;
return r;
}
/*
* Take the natural logarithm of a complex number
* and return the complex number result.
*/
complexs
complex_log(a)
complexs a;
{
complexs r;
r.re = log(a.re * a.re + a.im * a.im) / 2.0;
r.im = atan2(a.im, a.re);
return(r);
}
/*
* Raise the natural number (e) to the power of a complex number (e^a)
* and return the complex number result.
*/
complexs
complex_exp(a)
complexs a;
{
complexs r;
double m;
m = exp(a.re);
r.re = m * cos(a.im);
r.im = m * sin(a.im);
return(r);
}
/*
* Raise complex number "a" to the power of complex number "b" (a^b)
* and return the complex number result.
*/
complexs
complex_pow(a, b)
complexs a, b;
{
complexs r;
r = complex_log(a);
r = complex_mult(r, b);
r = complex_exp(r);
complex_fixup(&r);
return(r);
}
#undef epsilon