-
Notifications
You must be signed in to change notification settings - Fork 462
/
evaluate_pytorch.py
164 lines (134 loc) · 5.53 KB
/
evaluate_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (C) 2021-2025, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import os
os.environ["USE_TORCH"] = "1"
import multiprocessing as mp
import time
import torch
from torch.utils.data import DataLoader, SequentialSampler
from torchvision.transforms import Normalize
from tqdm import tqdm
from doctr import datasets
from doctr import transforms as T
from doctr.datasets import VOCABS
from doctr.models import recognition
from doctr.utils.metrics import TextMatch
@torch.inference_mode()
def evaluate(model, val_loader, batch_transforms, val_metric, amp=False):
# Model in eval mode
model.eval()
# Reset val metric
val_metric.reset()
# Validation loop
val_loss, batch_cnt = 0, 0
for images, targets in tqdm(val_loader):
try:
if torch.cuda.is_available():
images = images.cuda()
images = batch_transforms(images)
if amp:
with torch.cuda.amp.autocast():
out = model(images, targets, return_preds=True)
else:
out = model(images, targets, return_preds=True)
# Compute metric
if len(out["preds"]):
words, _ = zip(*out["preds"])
else:
words = []
val_metric.update(targets, words)
val_loss += out["loss"].item()
batch_cnt += 1
except ValueError:
print(f"unexpected symbol/s in targets:\n{targets} \n--> skip batch")
continue
val_loss /= batch_cnt
result = val_metric.summary()
return val_loss, result["raw"], result["unicase"]
def main(args):
print(args)
torch.backends.cudnn.benchmark = True
if not isinstance(args.workers, int):
args.workers = min(16, mp.cpu_count())
# Load doctr model
model = recognition.__dict__[args.arch](
pretrained=True if args.resume is None else False,
input_shape=(3, args.input_size, 4 * args.input_size),
vocab=VOCABS[args.vocab],
).eval()
# Resume weights
if isinstance(args.resume, str):
print(f"Resuming {args.resume}")
checkpoint = torch.load(args.resume, map_location="cpu")
model.load_state_dict(checkpoint)
st = time.time()
ds = datasets.__dict__[args.dataset](
train=True,
download=True,
recognition_task=True,
use_polygons=args.regular,
img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
)
_ds = datasets.__dict__[args.dataset](
train=False,
download=True,
recognition_task=True,
use_polygons=args.regular,
img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
)
ds.data.extend((np_img, target) for np_img, target in _ds.data)
test_loader = DataLoader(
ds,
batch_size=args.batch_size,
drop_last=False,
num_workers=args.workers,
sampler=SequentialSampler(ds),
pin_memory=torch.cuda.is_available(),
collate_fn=ds.collate_fn,
)
print(f"Test set loaded in {time.time() - st:.4}s ({len(ds)} samples in {len(test_loader)} batches)")
mean, std = model.cfg["mean"], model.cfg["std"]
batch_transforms = Normalize(mean=mean, std=std)
# Metrics
val_metric = TextMatch()
# GPU
if isinstance(args.device, int):
if not torch.cuda.is_available():
raise AssertionError("PyTorch cannot access your GPU. Please investigate!")
if args.device >= torch.cuda.device_count():
raise ValueError("Invalid device index")
# Silent default switch to GPU if available
elif torch.cuda.is_available():
args.device = 0
else:
print("No accessible GPU, targe device set to CPU.")
if torch.cuda.is_available():
torch.cuda.set_device(args.device)
model = model.cuda()
print("Running evaluation")
val_loss, exact_match, partial_match = evaluate(model, test_loader, batch_transforms, val_metric, amp=args.amp)
print(f"Validation loss: {val_loss:.6} (Exact: {exact_match:.2%} | Partial: {partial_match:.2%})")
def parse_args():
import argparse
parser = argparse.ArgumentParser(
description="docTR evaluation script for text recognition (PyTorch)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("arch", type=str, help="text-recognition model to evaluate")
parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for evaluation")
parser.add_argument("--dataset", type=str, default="FUNSD", help="Dataset to evaluate on")
parser.add_argument("--device", default=None, type=int, help="device")
parser.add_argument("-b", "--batch_size", type=int, default=1, help="batch size for evaluation")
parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H")
parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading")
parser.add_argument(
"--only_regular", dest="regular", action="store_true", help="test set contains only regular text"
)
parser.add_argument("--resume", type=str, default=None, help="Checkpoint to resume")
parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)