diff --git a/pymilvus/client/entity_helper.py b/pymilvus/client/entity_helper.py index 8d39acc75..4d493e445 100644 --- a/pymilvus/client/entity_helper.py +++ b/pymilvus/client/entity_helper.py @@ -114,8 +114,7 @@ def is_float_type(v: Any): # parses plain bytes to a sparse float vector(SparseRowOutputType) def sparse_parse_single_row(data: bytes) -> SparseRowOutputType: if len(data) % 8 != 0: - msg = f"The length of data must be a multiple of 8, got {len(data)}" - raise ValueError(msg) + raise ParamError(message=f"The length of data must be a multiple of 8, got {len(data)}") return { struct.unpack("I", data[i : i + 4])[0]: struct.unpack("f", data[i + 4 : i + 8])[0] @@ -129,16 +128,17 @@ def sparse_rows_to_proto(data: SparseMatrixInputType) -> schema_types.SparseFloa # milvus interprets/persists the data. def sparse_float_row_to_bytes(indices: Iterable[int], values: Iterable[float]): if len(indices) != len(values): - msg = f"length of indices and values must be the same, got {len(indices)} and {len(values)}" - raise ValueError(msg) + raise ParamError( + message=f"length of indices and values must be the same, got {len(indices)} and {len(values)}" + ) data = b"" for i, v in sorted(zip(indices, values), key=lambda x: x[0]): if not (0 <= i < 2**32 - 1): - msg = f"sparse vector index must be positive and less than 2^32-1: {i}" - raise ValueError(msg) + raise ParamError( + message=f"sparse vector index must be positive and less than 2^32-1: {i}" + ) if math.isnan(v): - msg = "sparse vector value must not be NaN" - raise ValueError(msg) + raise ParamError(message="sparse vector value must not be NaN") data += struct.pack("I", i) data += struct.pack("f", v) return data @@ -163,8 +163,7 @@ def unify_sparse_input(data: SparseMatrixInputType) -> sparse.csr_array: return sparse.csr_array((values, (row_indices, col_indices))) if not entity_is_sparse_matrix(data): - msg = "input must be a sparse matrix in supported format" - raise TypeError(msg) + raise ParamError(message="input must be a sparse matrix in supported format") csr = unify_sparse_input(data) result = schema_types.SparseFloatArray() result.dim = csr.shape[1] @@ -180,8 +179,7 @@ def sparse_proto_to_rows( sfv: schema_types.SparseFloatArray, start: Optional[int] = None, end: Optional[int] = None ) -> Iterable[SparseRowOutputType]: if not isinstance(sfv, schema_types.SparseFloatArray): - msg = "Vector must be a sparse float vector" - raise TypeError(msg) + raise ParamError(message="Vector must be a sparse float vector") start = start or 0 end = end or len(sfv.contents) return [sparse_parse_single_row(row_bytes) for row_bytes in sfv.contents[start:end]]