-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
executable file
·58 lines (41 loc) · 1.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import datetime
import numpy as np
import torch
import torch.nn as nn
import transformers
#from sentence_transformers import SentenceTransformer
from tqdm import tqdm
def argmax(vec):
# return the argmax as a python int
_, idx = torch.max(vec, 1)
return idx.item()
def pad_collate(batch):
target = [item[0] for item in batch]
tweet = [item[1] for item in batch]
data = [item[2] for item in batch]
lens = [len(x) for x in data]
data = nn.utils.rnn.pad_sequence(data, batch_first=True, padding_value=0)
# data = torch.tensor(data)
target = torch.tensor(target)
tweet = torch.tensor(tweet)
lens = torch.tensor(lens)
return [target, tweet, data, lens]
def pad_ts_collate(batch):
target = [item[0] for item in batch]
tweet = [item[1] for item in batch]
data = [item[2] for item in batch]
timestamp = [item[3] for item in batch]
lens = [len(x) for x in data]
data = nn.utils.rnn.pad_sequence(data, batch_first=True, padding_value=0)
timestamp = nn.utils.rnn.pad_sequence(timestamp, batch_first=True, padding_value=0)
# data = torch.tensor(data)
target = torch.tensor(target)
tweet = torch.tensor(tweet)
lens = torch.tensor(lens)
return [target, tweet, data, lens, timestamp]
def get_timestamp(x):
timestamp = []
for t in x:
timestamp.append(datetime.datetime.timestamp(t))
np.array(timestamp) - timestamp[-1]
return timestamp