-
Notifications
You must be signed in to change notification settings - Fork 0
/
top88DesignL.m
127 lines (126 loc) · 5.36 KB
/
top88DesignL.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
%%%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov, 2010 %%%%
function [xPhys,c]=top88DesignL(nelx,nely,volfrac,penal,rmin,ft)
%% MATERIAL PROPERTIES
E0 = 1;
Emin = 1e-9;
nu = 0.3;
%% PREPARE FINITE ELEMENT ANALYSIS
A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];
A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];
B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];
B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];
KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F = sparse(2*(nelx*(nely+1)+nely/2+1),1,-1,2*(nely+1)*(nelx+1),1);
U = zeros(2*(nely+1)*(nelx+1),1);
fixeddofs = union([2*(1:(nely+1):(nelx/2)*(nely+1)+1)-1],[2*(1:(nely+1):(nelx/2)*(nely+1)+1)]);
alldofs = [1:2*(nely+1)*(nelx+1)];
freedofs = setdiff(alldofs,fixeddofs);
% USER-DEFINED ACTIVE ELEMENTS
emptyelts=(nelx/2)*(nely)+1:(nelx)*(nely);
emptyelts=reshape(emptyelts, nely,nelx/2);
emptyelts=emptyelts(1:nely/2,:);
emptyelts=emptyelts(:);
activeelts=ones(nelx*nely,1);
activeelts(emptyelts)=0;
volfrac=volfrac*mean(activeelts);
%% PREPARE FILTER
iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for i1 = 1:nelx
for j1 = 1:nely
e1 = (i1-1)*nely+j1;
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2;
k = k+1;
iH(k) = e1;
jH(k) = e2;
sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
end
end
end
end
H = sparse(iH,jH,sH);
Hs = sum(H,2);
%% INITIALIZE ITERATION
x = repmat(volfrac,nely,nelx);
xPhys = x;
loop = 0;
change = 1;
%% START ITERATION
while change > 0.01 && loop<=200
loop = loop + 1;
%% FE-ANALYSIS
sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*nelx*nely,1);
K = sparse(iK,jK,sK); K = (K+K')/2;
U(freedofs) = K(freedofs,freedofs)\F(freedofs);
%% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);
c = sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce));
dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;
dv = ones(nely,nelx);
%% FILTERING/MODIFICATION OF SENSITIVITIES
if ft == 1
dc(:) = H*(x(:).*dc(:))./Hs./max(1e-3,x(:));
dc(:) = dc(:).*activeelts;
elseif ft == 2
dc(:) = H*(dc(:)./Hs);
dc(:) = dc(:).*activeelts;
dv(:) = H*(dv(:)./Hs);
dv(:) = dv(:).*activeelts;
end
%% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
l1 = 0; l2 = 1e9; move = 0.2;
while (l2-l1)/(l1+l2) > 1e-3
lmid = 0.5*(l2+l1);
xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/lmid)))));
if ft == 1
xPhys = xnew;
xPhys(:) = xPhys(:).*activeelts;
elseif ft == 2
xPhys(:) = (H*xnew(:))./Hs;
xPhys(:) = xPhys(:).*activeelts;
end
if sum(xPhys(:)) > volfrac*nelx*nely, l1 = lmid; else l2 = lmid; end
end
change = max(abs(xnew(:)-x(:)));
x = xnew;
%% PRINT RESULTS
fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f\n',loop,c, ...
mean(xPhys(:)),change);
%% PLOT DENSITIES
colormap(gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow;
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This Matlab code was written by E. Andreassen, A. Clausen, M. Schevenels,%
% B. S. Lazarov and O. Sigmund, Department of Solid Mechanics, %
% Technical University of Denmark, %
% DK-2800 Lyngby, Denmark. %
% Please sent your comments to: [email protected] %
% %
% The code is intended for educational purposes and theoretical details %
% are discussed in the paper %
% "Efficient topology optimization in MATLAB using 88 lines of code, %
% E. Andreassen, A. Clausen, M. Schevenels, %
% B. S. Lazarov and O. Sigmund, Struct Multidisc Optim, 2010 %
% This version is based on earlier 99-line code %
% by Ole Sigmund (2001), Structural and Multidisciplinary Optimization, %
% Vol 21, pp. 120--127. %
% %
% The code as well as a postscript version of the paper can be %
% downloaded from the web-site: http://www.topopt.dtu.dk %
% %
% Disclaimer: %
% The authors reserves all rights but do not guaranty that the code is %
% free from errors. Furthermore, we shall not be liable in any event %
% caused by the use of the program. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%