From 1eaade2747037736bfbdd69f88176c50736c6dfc Mon Sep 17 00:00:00 2001 From: David Meaux <48763344+dmeaux@users.noreply.github.com> Date: Sat, 2 Mar 2024 21:33:51 +0100 Subject: [PATCH] Clarify RasterDataset documentation for is_image and dtype (#1811) * Change DEMs from mask to image (is_image=True) * fix to revert to upstream file * fix unused type: ignore comment * Update torchgeo/datasets/geo.py Co-authored-by: Adam J. Stewart * Update documentation to explain is_image and dtype. Update asterdem to override dtype. * fix linting errors * Made comment for is_image more succint. * change asterdem dtype back to float32 (same as RasterDataset) * removed integer images from documentation * change Digital Elevation Model to DEM * Clarify is_image and dtype. Revert DEMs to masks * Finish reverting DEMs to masks * address review comments * Changed Aster Global DEM and EU-DEM Dataset types to "DEM" * Reorganize some information * Use better formatting --------- Co-authored-by: Adam J. Stewart --- docs/api/geo_datasets.csv | 4 +- docs/tutorials/custom_raster_dataset.ipynb | 6 ++- torchgeo/datasets/geo.py | 53 ++++++++++++++++------ 3 files changed, 46 insertions(+), 17 deletions(-) diff --git a/docs/api/geo_datasets.csv b/docs/api/geo_datasets.csv index ac611c00e45..a44a82c77ea 100644 --- a/docs/api/geo_datasets.csv +++ b/docs/api/geo_datasets.csv @@ -2,7 +2,7 @@ Dataset,Type,Source,License,Size (px),Resolution (m) `Aboveground Woody Biomass`_,Masks,"Landsat, LiDAR","CC-BY-4.0","40,000x40,000",30 `AgriFieldNet`_,"Imagery, Masks",Sentinel-2,"CC-BY-4.0","256x256",10 `Airphen`_,Imagery,Airphen,-,"1,280x960",0.047--0.09 -`Aster Global DEM`_,Masks,Aster,"public domain","3,601x3,601",30 +`Aster Global DEM`_,DEM,Aster,"public domain","3,601x3,601",30 `Canadian Building Footprints`_,Geometries,Bing Imagery,"ODbL-1.0",-,- `Chesapeake Land Cover`_,"Imagery, Masks",NAIP,"CC-BY-4.0",-,1 `Global Mangrove Distribution`_,Masks,"Remote Sensing, In Situ Measurements","public domain",-,3 @@ -10,7 +10,7 @@ Dataset,Type,Source,License,Size (px),Resolution (m) `EDDMapS`_,Points,Citizen Scientists,-,-,- `EnviroAtlas`_,"Imagery, Masks","NAIP, NLCD, OpenStreetMap","CC-BY-4.0",-,1 `Esri2020`_,Masks,Sentinel-2,"CC-BY-4.0",-,10 -`EU-DEM`_,Masks,"Aster, SRTM, Russian Topomaps","CSCDA-ESA",-,25 +`EU-DEM`_,DEM,"Aster, SRTM, Russian Topomaps","CSCDA-ESA",-,25 `EuroCrops`_,Geometries,EU Countries,"CC-BY-SA-4.0",-,- `GBIF`_,Points,Citizen Scientists,"CC0-1.0 OR CC-BY-4.0 OR CC-BY-NC-4.0",-,- `GlobBiomass`_,Masks,Landsat,"CC-BY-4.0","45,000x45,000",100 diff --git a/docs/tutorials/custom_raster_dataset.ipynb b/docs/tutorials/custom_raster_dataset.ipynb index 91021fc0ba7..7401e580edb 100644 --- a/docs/tutorials/custom_raster_dataset.ipynb +++ b/docs/tutorials/custom_raster_dataset.ipynb @@ -329,7 +329,11 @@ "\n", "### `is_image`\n", "\n", - "If your data only contains image files, as is the case with Sentinel-2, use `is_image = True`. If your data only contains segmentation masks, use `is_image = False` instead.\n", + "If your data only contains model inputs (such as images), use `is_image = True`. If your data only contains ground truth model outputs (such as segmentation masks), use `is_image = False` instead.\n", + "\n", + "### `dtype`\n", + "\n", + "Defaults to float32 for `is_image == True` and long for `is_image == False`. This is what you want for 99% of datasets, but can be overridden for tasks like pixel-wise regression (where the target mask should be float32).\n", "\n", "### `separate_files`\n", "\n", diff --git a/torchgeo/datasets/geo.py b/torchgeo/datasets/geo.py index 1f1ede5890d..6aeb1699bae 100644 --- a/torchgeo/datasets/geo.py +++ b/torchgeo/datasets/geo.py @@ -55,9 +55,11 @@ class GeoDataset(Dataset[dict[str, Any]], abc.ABC): based on latitude/longitude. This allows users to do things like: * Combine image and target labels and sample from both simultaneously - (e.g. Landsat and CDL) + (e.g., Landsat and CDL) * Combine datasets for multiple image sources for multimodal learning or data fusion - (e.g. Landsat and Sentinel) + (e.g., Landsat and Sentinel) + * Combine image and other raster data (e.g., elevation, temperature, pressure) + and sample from both simultaneously (e.g., Landsat and Aster Global DEM) These combinations require that all queries are present in *both* datasets, and can be combined using an :class:`IntersectionDataset`: @@ -69,9 +71,9 @@ class GeoDataset(Dataset[dict[str, Any]], abc.ABC): Users may also want to: * Combine datasets for multiple image sources and treat them as equivalent - (e.g. Landsat 7 and Landsat 8) + (e.g., Landsat 7 and Landsat 8) * Combine datasets for disparate geospatial locations - (e.g. Chesapeake NY and PA) + (e.g., Chesapeake NY and PA) These combinations require that all queries are present in *at least one* dataset, and can be combined using a :class:`UnionDataset`: @@ -108,7 +110,7 @@ class GeoDataset(Dataset[dict[str, Any]], abc.ABC): def __init__( self, transforms: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None ) -> None: - """Initialize a new Dataset instance. + """Initialize a new GeoDataset instance. Args: transforms: a function/transform that takes an input sample @@ -344,7 +346,14 @@ class RasterDataset(GeoDataset): #: ``start`` and ``stop`` groups. date_format = "%Y%m%d" - #: True if dataset contains imagery, False if dataset contains mask + #: True if the dataset only contains model inputs (such as images). False if the + #: dataset only contains ground truth model outputs (such as segmentation masks). + #: + #: The sample returned by the dataset/data loader will use the "image" key if + #: *is_image* is True, otherwise it will use the "mask" key. + #: + #: For datasets with both model inputs and outputs, a custom + #: :func:`~RasterDataset.__getitem__` method must be implemented. is_image = True #: True if data is stored in a separate file for each band, else False. @@ -363,6 +372,10 @@ class RasterDataset(GeoDataset): def dtype(self) -> torch.dtype: """The dtype of the dataset (overrides the dtype of the data file via a cast). + Defaults to float32 if :attr:`~RasterDataset.is_image` is True, else long. + Can be overridden for tasks like pixel-wise regression where the mask should be + float32 instead of long. + Returns: the dtype of the dataset @@ -382,7 +395,7 @@ def __init__( transforms: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None, cache: bool = True, ) -> None: - """Initialize a new Dataset instance. + """Initialize a new RasterDataset instance. Args: paths: one or more root directories to search or files to load @@ -605,7 +618,7 @@ def __init__( transforms: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None, label_name: Optional[str] = None, ) -> None: - """Initialize a new Dataset instance. + """Initialize a new VectorDataset instance. Args: paths: one or more root directories to search or files to load @@ -873,9 +886,11 @@ class IntersectionDataset(GeoDataset): This allows users to do things like: * Combine image and target labels and sample from both simultaneously - (e.g. Landsat and CDL) + (e.g., Landsat and CDL) * Combine datasets for multiple image sources for multimodal learning or data fusion - (e.g. Landsat and Sentinel) + (e.g., Landsat and Sentinel) + * Combine image and other raster data (e.g., elevation, temperature, pressure) + and sample from both simultaneously (e.g., Landsat and Aster Global DEM) These combinations require that all queries are present in *both* datasets, and can be combined using an :class:`IntersectionDataset`: @@ -896,7 +911,12 @@ def __init__( ] = concat_samples, transforms: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None, ) -> None: - """Initialize a new Dataset instance. + """Initialize a new IntersectionDataset instance. + + When computing the intersection between two datasets that both contain model + inputs (such as images) or model outputs (such as masks), the default behavior + is to stack the data along the channel dimension. The *collate_fn* parameter + can be used to change this behavior. Args: dataset1: the first dataset @@ -1026,9 +1046,9 @@ class UnionDataset(GeoDataset): This allows users to do things like: * Combine datasets for multiple image sources and treat them as equivalent - (e.g. Landsat 7 and Landsat 8) + (e.g., Landsat 7 and Landsat 8) * Combine datasets for disparate geospatial locations - (e.g. Chesapeake NY and PA) + (e.g., Chesapeake NY and PA) These combinations require that all queries are present in *at least one* dataset, and can be combined using a :class:`UnionDataset`: @@ -1049,7 +1069,12 @@ def __init__( ] = merge_samples, transforms: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None, ) -> None: - """Initialize a new Dataset instance. + """Initialize a new UnionDataset instance. + + When computing the union between two datasets that both contain model inputs + (such as images) or model outputs (such as masks), the default behavior is to + merge the data to create a single image/mask. The *collate_fn* parameter can be + used to change this behavior. Args: dataset1: the first dataset