-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
Copy pathplan.py
397 lines (340 loc) · 15 KB
/
plan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright (c) Microsoft. All rights reserved.
import logging
import re
import threading
from collections.abc import Callable
from copy import copy
from typing import Any, ClassVar, Optional
from pydantic import PrivateAttr
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai import PromptExecutionSettings
from semantic_kernel.exceptions import KernelFunctionNotFoundError, KernelInvokeException, KernelPluginNotFoundError
from semantic_kernel.functions.function_result import FunctionResult
from semantic_kernel.functions.kernel_arguments import KernelArguments
from semantic_kernel.functions.kernel_function import KernelFunction
from semantic_kernel.functions.kernel_function_metadata import KernelFunctionMetadata
from semantic_kernel.utils.naming import generate_random_ascii_name
logger: logging.Logger = logging.getLogger(__name__)
class Plan:
"""A plan for the kernel."""
_state: KernelArguments = PrivateAttr()
_steps: list["Plan"] = PrivateAttr()
_function: KernelFunction = PrivateAttr()
_parameters: KernelArguments = PrivateAttr()
_outputs: list[str] = PrivateAttr()
_has_next_step: bool = PrivateAttr()
_next_step_index: int = PrivateAttr()
_name: str = PrivateAttr()
_plugin_name: str = PrivateAttr()
_description: str = PrivateAttr()
_is_prompt: bool = PrivateAttr()
_prompt_execution_settings: PromptExecutionSettings = PrivateAttr()
DEFAULT_RESULT_KEY: ClassVar[str] = "PLAN.RESULT"
@property
def name(self) -> str:
"""Get the name for the plan."""
return self._name
@property
def state(self) -> KernelArguments:
"""Get the state for the plan."""
return self._state
@property
def steps(self) -> list["Plan"]:
"""Get the steps for the plan."""
return self._steps
@property
def plugin_name(self) -> str:
"""Get the plugin name for the plan."""
return self._plugin_name
@property
def description(self) -> str:
"""Get the description for the plan."""
return self._description
@property
def function(self) -> Callable[..., Any]:
"""Get the function for the plan."""
return self._function
@property
def parameters(self) -> KernelArguments:
"""Get the parameters for the plan."""
return self._parameters
@property
def is_prompt(self) -> bool:
"""Check if the plan is a prompt."""
return self._is_prompt
@property
def is_native(self) -> bool:
"""Check if the plan is native code."""
if self._is_prompt is None:
return None
return not self._is_prompt
@property
def prompt_execution_settings(self) -> PromptExecutionSettings:
"""Get the AI configuration for the plan."""
return self._prompt_execution_settings
@property
def has_next_step(self) -> bool:
"""Check if the plan has a next step."""
return self._next_step_index < len(self._steps)
@property
def next_step_index(self) -> int:
"""Get the next step index."""
return self._next_step_index
def __init__(
self,
name: str | None = None,
plugin_name: str | None = None,
description: str | None = None,
next_step_index: int | None = None,
state: KernelArguments | None = None,
parameters: KernelArguments | None = None,
outputs: list[str] | None = None,
steps: list["Plan"] | None = None,
function: KernelFunction | None = None,
) -> None:
"""Initializes a new instance of the Plan class."""
self._name = f"plan_{generate_random_ascii_name()}" if name is None else name
self._plugin_name = f"p_{generate_random_ascii_name()}" if plugin_name is None else plugin_name
self._description = "" if description is None else description
self._next_step_index = 0 if next_step_index is None else next_step_index
self._state = KernelArguments() if state is None else state
self._parameters = KernelArguments() if parameters is None else parameters
self._outputs = [] if outputs is None else outputs
self._steps = [] if steps is None else steps
self._has_next_step = len(self._steps) > 0
self._is_prompt = None
self._function = function or None
self._prompt_execution_settings = None
if function is not None:
self.set_function(function)
@classmethod
def from_goal(cls, goal: str) -> "Plan":
"""Create a plan from a goal."""
return cls(description=goal, plugin_name=cls.__name__)
@classmethod
def from_function(cls, function: KernelFunction) -> "Plan":
"""Create a plan from a function."""
plan = cls()
plan.set_function(function)
return plan
async def invoke(
self,
kernel: Kernel,
arguments: KernelArguments | None = None,
) -> FunctionResult:
"""Invoke the plan asynchronously.
Args:
kernel (Kernel): The kernel to use for invocation.
arguments (KernelArguments, optional): The context to use. Defaults to None.
Returns:
FunctionResult: The result of the function.
"""
if not arguments:
arguments = copy(self._state)
if self._function is not None:
try:
result = await self._function.invoke(kernel=kernel, arguments=arguments)
except Exception as exc:
logger.error(f"Something went wrong in plan step {self._plugin_name}.{self._name}:'{exc}'")
raise KernelInvokeException(
"Error occurred while running plan step: " + str(exc),
exc,
) from exc
return result
# loop through steps until completion
partial_results = []
while self.has_next_step:
function_arguments = copy(arguments)
self.add_variables_to_state(self._state, function_arguments)
logger.info(
"Invoking next step: "
+ str(self._steps[self._next_step_index].name)
+ " with arguments: "
+ str(function_arguments)
)
result = await self.invoke_next_step(kernel, function_arguments)
if result:
partial_results.append(result)
self._state[Plan.DEFAULT_RESULT_KEY] = str(result)
arguments = self.update_arguments_with_outputs(arguments)
logger.info(f"updated arguments: {arguments}")
result_string = str(partial_results[-1]) if len(partial_results) > 0 else ""
return FunctionResult(function=self.metadata, value=result_string, metadata={"results": partial_results})
def set_ai_configuration(
self,
settings: PromptExecutionSettings,
) -> None:
"""Set the AI configuration for the plan."""
self._prompt_execution_settings = settings
@property
def metadata(self) -> KernelFunctionMetadata:
"""Get the metadata for the plan."""
if self._function is not None:
return self._function.metadata
return KernelFunctionMetadata(
name=self._name or "Plan",
plugin_name=self._plugin_name,
parameters=[],
description=self._description,
is_prompt=self._is_prompt or False,
)
def set_available_functions(self, plan: "Plan", kernel: "Kernel", arguments: "KernelArguments") -> "Plan":
"""Set the available functions for the plan."""
if len(plan.steps) == 0:
try:
plugin_function = kernel.get_function(plan.plugin_name, plan.name)
plan.set_function(plugin_function)
except (KernelFunctionNotFoundError, KernelPluginNotFoundError) as exc:
logger.error(
f"Something went wrong when setting available functions in {self._plugin_name}.{self._name}:'{exc}'"
)
pass
else:
for step in plan.steps:
step = self.set_available_functions(step, kernel, arguments)
return plan
def add_steps(self, steps: list["Plan"] | list[KernelFunction]) -> None:
"""Add steps to the plan."""
for step in steps:
if type(step) is Plan:
self._steps.append(step)
else:
new_step = Plan(
name=step.name,
plugin_name=step.plugin_name,
description=step.description,
next_step_index=0,
state=KernelArguments(),
parameters=KernelArguments(),
outputs=[],
steps=[],
)
new_step.set_function(step)
self._steps.append(new_step)
def set_function(self, function: KernelFunction) -> None:
"""Set the function for the plan."""
self._function = function
self._name = function.name
self._plugin_name = function.plugin_name
self._description = function.description
self._is_prompt = function.is_prompt
if hasattr(function, "prompt_execution_settings"):
self._prompt_execution_settings = function.prompt_execution_settings
async def run_next_step(
self,
kernel: Kernel,
arguments: KernelArguments,
) -> Optional["FunctionResult"]:
"""Run the next step in the plan."""
return await self.invoke_next_step(kernel, arguments)
async def invoke_next_step(self, kernel: Kernel, arguments: KernelArguments) -> Optional["FunctionResult"]:
"""Invoke the next step in the plan."""
if not self.has_next_step:
return None
step = self._steps[self._next_step_index]
# merge the state with the current context variables for step execution
arguments = self.get_next_step_arguments(arguments, step)
try:
result = await step.invoke(kernel, arguments)
except Exception as exc:
raise KernelInvokeException(
"Error occurred while running plan step: " + str(exc),
exc,
) from exc
# Update state with result
self._state["input"] = str(result)
# Update plan result in state with matching outputs (if any)
if set(self._outputs).intersection(set(step._outputs)):
current_plan_result = ""
if Plan.DEFAULT_RESULT_KEY in self._state:
current_plan_result = self._state[Plan.DEFAULT_RESULT_KEY]
self._state[Plan.DEFAULT_RESULT_KEY] = current_plan_result.strip() + str(result)
# Increment the step
self._next_step_index += 1
return result
def add_variables_to_state(self, state: KernelArguments, variables: KernelArguments) -> None:
"""Add variables to the state."""
for key in variables:
if key not in state:
state[key] = variables[key]
def update_arguments_with_outputs(self, arguments: KernelArguments) -> KernelArguments:
"""Update the arguments with the outputs from the current step."""
if Plan.DEFAULT_RESULT_KEY in self._state:
result_string = self._state[Plan.DEFAULT_RESULT_KEY]
else:
result_string = str(self._state)
arguments["input"] = result_string
for item in self._steps[self._next_step_index - 1]._outputs:
arguments[item] = self._state.get(item, result_string)
return arguments
def get_next_step_arguments(self, arguments: KernelArguments, step: "Plan") -> KernelArguments:
"""Get the arguments for the next step."""
# Priority for Input
# - Parameters (expand from variables if needed)
# - KernelArguments
# - Plan.State
# - Empty if sending to another plan
# - Plan.Description
input_ = None
step_input_value = step._parameters.get("input")
variables_input_value = arguments.get("input")
state_input_value = self._state.get("input")
if step_input_value and step_input_value != "":
input_ = step_input_value
elif variables_input_value and variables_input_value != "":
input_ = variables_input_value
elif state_input_value and state_input_value != "":
input_ = state_input_value
elif len(step._steps) > 0:
input_ = ""
elif self._description is not None and self._description != "":
input_ = self._description
step_arguments = KernelArguments(input=input_)
logger.debug(f"Step input: {step_arguments}")
# Priority for remaining stepVariables is:
# - Function Parameters (pull from variables or state by a key value)
# - Step Parameters (pull from variables or state by a key value)
# - All other variables. These are carried over in case the function wants access to the ambient content.
function_params = step.metadata
if function_params:
logger.debug(f"Function parameters: {function_params.parameters}")
for param in function_params.parameters:
if param.name in arguments:
step_arguments[param.name] = arguments[param.name]
elif param.name in self._state and (
self._state[param.name] is not None and self._state[param.name] != ""
):
step_arguments[param.name] = self._state[param.name]
logger.debug(f"Added other parameters: {step_arguments}")
for param_name, param_val in step.parameters.items():
if param_name in step_arguments:
continue
if param_name in arguments:
step_arguments[param_name] = param_val
elif param_name in self._state:
step_arguments[param_name] = self._state[param_name]
else:
expanded_value = self.expand_from_arguments(arguments, param_val)
step_arguments[param_name] = expanded_value
for item in arguments:
if item not in step_arguments:
step_arguments[item] = arguments[item]
logger.debug(f"Final step arguments: {step_arguments}")
return step_arguments
def expand_from_arguments(self, arguments: KernelArguments, input_from_step: Any) -> str:
"""Expand variables in the input from the step using the arguments."""
result = input_from_step
variables_regex = r"\$(?P<var>\w+)"
matches = [m for m in re.finditer(variables_regex, str(input_from_step))]
ordered_matches = sorted(matches, key=lambda m: len(m.group("var")), reverse=True)
for match in ordered_matches:
var_name = match.group("var")
if var_name in arguments:
result = result.replace(f"${var_name}", arguments[var_name])
return result
def _runThread(self, code: Callable):
result = []
thread = threading.Thread(target=self._runCode, args=(code, result))
thread.start()
thread.join()
return result[0]