-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
utils.py
188 lines (154 loc) · 6.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) Microsoft. All rights reserved.
import asyncio
import contextlib
import json
from datetime import datetime
from typing import Any
import numpy as np
from redis.asyncio.client import Redis
from redis.commands.search.document import Document
from redis.commands.search.field import Field as RedisField
from redis.commands.search.field import NumericField, TagField, TextField, VectorField
from semantic_kernel.connectors.memory.azure_ai_search.const import DISTANCE_FUNCTION_MAP
from semantic_kernel.connectors.memory.redis.const import TYPE_MAPPER_VECTOR, RedisCollectionTypes
from semantic_kernel.data.vector_store_model_definition import VectorStoreRecordDefinition
from semantic_kernel.data.vector_store_record_fields import (
VectorStoreRecordDataField,
VectorStoreRecordKeyField,
VectorStoreRecordVectorField,
)
from semantic_kernel.memory.memory_record import MemoryRecord
def get_redis_key(collection_name: str, record_id: str) -> str: # pragma: no cover
"""Returns the Redis key for an element called record_id within collection_name.
Args:
collection_name (str): Name for a collection of embeddings
record_id (str): ID associated with a memory record
Returns:
str: Redis key in the format collection_name:id
"""
return f"{collection_name}:{record_id}"
def split_redis_key(redis_key: str) -> tuple[str, str]: # pragma: no cover
"""Split a Redis key into its collection name and record ID.
Args:
redis_key (str): Redis key
Returns:
tuple[str, str]: Tuple of the collection name and ID
"""
collection, record_id = redis_key.split(":")
return collection, record_id
def serialize_record_to_redis(record: MemoryRecord, vector_type: np.dtype) -> dict[str, Any]: # pragma: no cover
"""Serialize a MemoryRecord to Redis fields."""
all_metadata = {
"is_reference": record._is_reference,
"external_source_name": record._external_source_name or "",
"id": record._id or "",
"description": record._description or "",
"text": record._text or "",
"additional_metadata": record._additional_metadata or "",
}
return {
"key": record._key or "",
"timestamp": record._timestamp.isoformat() if record._timestamp else "",
"metadata": json.dumps(all_metadata),
"embedding": (record._embedding.astype(vector_type).tobytes() if record._embedding is not None else ""),
}
def deserialize_redis_to_record(
fields: dict[str, Any], vector_type: np.dtype, with_embedding: bool
) -> MemoryRecord: # pragma: no cover
"""Deserialize Redis fields to a MemoryRecord."""
metadata = json.loads(fields[b"metadata"])
record = MemoryRecord(
id=metadata["id"],
is_reference=metadata["is_reference"] is True,
description=metadata["description"],
external_source_name=metadata["external_source_name"],
text=metadata["text"],
additional_metadata=metadata["additional_metadata"],
embedding=None,
)
if fields[b"timestamp"] != b"":
record._timestamp = datetime.fromisoformat(fields[b"timestamp"].decode())
if with_embedding:
# Extract using the vector type, then convert to regular Python float type
record._embedding = np.frombuffer(fields[b"embedding"], dtype=vector_type).astype(float)
return record
def deserialize_document_to_record(
database: Redis, doc: Document, vector_type: np.dtype, with_embedding: bool
) -> MemoryRecord: # pragma: no cover
"""Deserialize document to a MemoryRecord."""
# Document's ID refers to the Redis key
redis_key = doc["id"]
_, id_str = split_redis_key(redis_key)
metadata = json.loads(doc["metadata"])
record = MemoryRecord(
id=id_str,
is_reference=metadata["is_reference"] is True,
description=metadata["description"],
external_source_name=metadata["external_source_name"],
text=metadata["text"],
additional_metadata=metadata["additional_metadata"],
embedding=None,
)
if doc["timestamp"] != "":
record._timestamp = datetime.fromisoformat(doc["timestamp"])
if with_embedding:
# Some bytes are lost when retrieving a document, fetch raw embedding
eb = database.hget(redis_key, "embedding")
record._embedding = np.frombuffer(eb, dtype=vector_type).astype(float)
return record
class RedisWrapper(Redis):
"""Wrapper to make sure the connection is closed when the object is deleted."""
def __del__(self) -> None:
"""Close connection, done when the object is deleted, used when SK creates a client."""
with contextlib.suppress(Exception):
asyncio.get_running_loop().create_task(self.close())
def data_model_definition_to_redis_fields(
data_model_definition: VectorStoreRecordDefinition, collection_type: RedisCollectionTypes
) -> list[RedisField]:
"""Create a list of fields for Redis from a data_model_definition."""
fields: list[RedisField] = []
for name, field in data_model_definition.fields.items():
if isinstance(field, VectorStoreRecordKeyField):
continue
if collection_type == RedisCollectionTypes.HASHSET:
fields.append(_field_to_redis_field_hashset(name, field))
elif collection_type == RedisCollectionTypes.JSON:
fields.append(_field_to_redis_field_json(name, field))
return fields
def _field_to_redis_field_hashset(
name: str, field: VectorStoreRecordVectorField | VectorStoreRecordDataField
) -> RedisField:
if isinstance(field, VectorStoreRecordVectorField):
return VectorField(
name=name,
algorithm=field.index_kind.value.upper() if field.index_kind else "HNSW",
attributes={
"type": TYPE_MAPPER_VECTOR[field.property_type or "default"],
"dim": field.dimensions,
"distance_metric": DISTANCE_FUNCTION_MAP[field.distance_function or "default"],
},
)
if field.property_type in ["int", "float"]:
return NumericField(name=name)
if field.is_full_text_searchable:
return TextField(name=name)
return TagField(name=name)
def _field_to_redis_field_json(
name: str, field: VectorStoreRecordVectorField | VectorStoreRecordDataField
) -> RedisField:
if isinstance(field, VectorStoreRecordVectorField):
return VectorField(
name=f"$.{name}",
algorithm=field.index_kind.value.upper() if field.index_kind else "HNSW",
attributes={
"type": TYPE_MAPPER_VECTOR[field.property_type or "default"],
"dim": field.dimensions,
"distance_metric": DISTANCE_FUNCTION_MAP[field.distance_function or "default"],
},
as_name=name,
)
if field.property_type in ["int", "float"]:
return NumericField(name=f"$.{name}", as_name=name)
if field.is_full_text_searchable:
return TextField(name=f"$.{name}", as_name=name)
return TagField(name=f"$.{name}", as_name=name)