diff --git a/js/web/docs/webnn-operators.md b/js/web/docs/webnn-operators.md index 8711d4d20e370..9934c758621cb 100644 --- a/js/web/docs/webnn-operators.md +++ b/js/web/docs/webnn-operators.md @@ -25,6 +25,7 @@ operators and the supported opset domain/versions in **WebNN EP** by ONNX Runtim | ConvTranspose | ai.onnx(7-10, 11+) | convTranspose2d | ✓ | ✓ | Only supports 3-D or 4-D input and 'W' (weight). WebNN CPU backend only supports default dilations and group | | Cos | ai.onnx(7+) | cos | ✓ | ✓ | | | Div | ai.onnx(7-12, 13, 14+) | div | ✓ | ✓ | | +| Dropout | ai.onnx(7-9, 10-11, 12, 13-21, 22+) | identity | ✓ | ✓ | Only supports test mode | | Elu | ai.onnx(7+) | elu | ✓ | ✓ | WebNN CPU backend only supports 'alpha' value is 1.0 | | Equal | ai.onnx(7-10, 11-12, 13-18, 19+) | equal | ✓ | ✓ | | | Erf | ai.onnx(7-9, 10-12, 13+) | erf | ✗ | ✓ | | diff --git a/onnxruntime/core/providers/webnn/builders/helper.h b/onnxruntime/core/providers/webnn/builders/helper.h index 63fd97abb9a9a..9917e4543d30e 100644 --- a/onnxruntime/core/providers/webnn/builders/helper.h +++ b/onnxruntime/core/providers/webnn/builders/helper.h @@ -171,6 +171,7 @@ static const InlinedHashMap op_map = { {"Cos", {"cos", true}}, {"Div", {"div", true}}, {"DequantizeLinear", {"dequantizeLinear", false}}, + {"Dropout", {"identity", true}}, {"DynamicQuantizeLinear", {"dynamicQuantizeLinear", false}}, {"Elu", {"elu", true}}, {"Equal", {"equal", true}}, diff --git a/onnxruntime/core/providers/webnn/builders/impl/dropout_op_builder.cc b/onnxruntime/core/providers/webnn/builders/impl/dropout_op_builder.cc new file mode 100644 index 0000000000000..469acbc7a7e18 --- /dev/null +++ b/onnxruntime/core/providers/webnn/builders/impl/dropout_op_builder.cc @@ -0,0 +1,101 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Copyright (c) Intel Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "core/providers/common.h" +#include "core/providers/shared/utils/utils.h" +#include "core/providers/webnn/builders/helper.h" +#include "core/providers/webnn/builders/model_builder.h" +#include "core/providers/webnn/builders/op_builder_factory.h" + +#include "base_op_builder.h" + +namespace onnxruntime { +namespace webnn { + +class DropoutOpBuilder : public BaseOpBuilder { + // Add operator related. + public: + void AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const override; + + private: + Status AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node, + const logging::Logger& logger) const override ORT_MUST_USE_RESULT; + + // Operator support related. + private: + bool IsOpSupportedImpl(const InitializedTensorSet& initializers, const Node& node, + const WebnnDeviceType /* device_type */, const logging::Logger& logger) const override; +}; + +// Add operator related. + +void DropoutOpBuilder::AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const { + // Skip ratio and training_mode if present. + for (size_t i = 1; i < node.InputDefs().size(); i++) { + const auto input_name = node.InputDefs()[i]->Name(); + model_builder.AddInitializerToSkip(input_name); + model_builder.AddInputToSkip(input_name); + } +} + +Status DropoutOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, + const Node& node, + const logging::Logger& logger) const { + const auto& input_defs = node.InputDefs(); + const auto& output_defs = node.OutputDefs(); + emscripten::val input = model_builder.GetOperand(input_defs[0]->Name()); + emscripten::val options = emscripten::val::object(); + options.set("label", node.Name()); + + // WebNN EP only supports test mode. So we don't need to care about other inputs or + // attributes about training mode. Simply use WebNN's identity op to copy the input. + emscripten::val output = model_builder.GetBuilder().call("identity", input, options); + + model_builder.AddOperand(output_defs[0]->Name(), std::move(output)); + + // If mask output is requested as output it will contain all ones (bool tensor). + if (output_defs.size() > 1) { + std::vector mask_shape; + ORT_RETURN_IF_NOT(GetShape(*output_defs[1], mask_shape, logger), "Cannot get mask output's shape"); + std::vector dims = GetVecUint32FromVecInt64(mask_shape); + + emscripten::val desc = emscripten::val::object(); + desc.set("dataType", "uint8"); + desc.set("dimensions", emscripten::val::array(dims)); + const auto num_elements = narrow(Product(mask_shape)); + emscripten::val ones_buffer = emscripten::val::global("Uint8Array").new_(num_elements); + ones_buffer.call("fill", 1); + + emscripten::val mask_output = model_builder.GetBuilder().call("constant", desc, ones_buffer); + + emscripten::val options = emscripten::val::object(); + options.set("label", output_defs[1]->Name() + "_identity"); + // Add additional identity op in case the mask is the output of a WebNN graph, + // beacuse WebNN does not support a constant operand as output. + mask_output = model_builder.GetBuilder().call("identity", mask_output, options); + model_builder.AddOperand(output_defs[1]->Name(), std::move(mask_output)); + } + return Status::OK(); +} + +// Operator support related. +bool DropoutOpBuilder::IsOpSupportedImpl(const InitializedTensorSet& initializers, + const Node& node, + const WebnnDeviceType /* device_type */, + const logging::Logger& logger) const { + const auto& input_defs = node.InputDefs(); + std::vector input_shape; + if (!GetShape(*input_defs[0], input_shape, logger)) + return false; + + return true; +} + +void CreateDropoutOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations) { + op_registrations.builders.push_back(std::make_unique()); + op_registrations.op_builder_map.emplace(op_type, op_registrations.builders.back().get()); +} + +} // namespace webnn +} // namespace onnxruntime diff --git a/onnxruntime/core/providers/webnn/builders/op_builder_factory.cc b/onnxruntime/core/providers/webnn/builders/op_builder_factory.cc index dfe015725c121..862cf5ded15bc 100644 --- a/onnxruntime/core/providers/webnn/builders/op_builder_factory.cc +++ b/onnxruntime/core/providers/webnn/builders/op_builder_factory.cc @@ -81,6 +81,10 @@ static OpBuilderRegistrations CreateOpBuilderRegistrations() { CreateConcatOpBuilder("Concat", op_registrations); } + { // Dropout + CreateDropoutOpBuilder("Dropout", op_registrations); + } + { // Quantize/Dequantize CreateDynamicQuantizeLinearOpBuilder("DynamicQuantizeLinear", op_registrations); CreateDequantizeLinearOpBuilder("DequantizeLinear", op_registrations); diff --git a/onnxruntime/core/providers/webnn/builders/op_builder_factory.h b/onnxruntime/core/providers/webnn/builders/op_builder_factory.h index 818ff094fb640..e11938d8fa406 100644 --- a/onnxruntime/core/providers/webnn/builders/op_builder_factory.h +++ b/onnxruntime/core/providers/webnn/builders/op_builder_factory.h @@ -26,6 +26,7 @@ void CreateCastOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_ void CreateClipOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations); void CreateConvOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations); void CreateConcatOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations); +void CreateDropoutOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations); void CreateDynamicQuantizeLinearOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations); void CreateDequantizeLinearOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations); void CreateExpandOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);