Skip to content

Commit

Permalink
UNet fusion and fp16 conversion for stable diffusion (#14248)
Browse files Browse the repository at this point in the history
Add script to fuse nodes to optimized operators in stable diffusion 1.5
models, and a script to convert fp32 models to fp16 models. Tested with
stable diffusion 1.5.

Note that the optimized model needs onnxruntime-gpu v1.14 (release candidate
will be available soon).

Note: We will update the script to work with latest diffusers and stable
diffusion v2 and v2.1 models.
  • Loading branch information
tianleiwu authored and rui-ren committed Feb 3, 2023
1 parent c19354e commit cd9e5cb
Show file tree
Hide file tree
Showing 7 changed files with 632 additions and 45 deletions.
1 change: 1 addition & 0 deletions onnxruntime/python/tools/symbolic_shape_infer.py
Original file line number Diff line number Diff line change
Expand Up @@ -433,6 +433,7 @@ def _onnx_infer_single_node(self, node):
"LongformerAttention",
"SkipLayerNormalization",
"PythonOp",
"MultiHeadAttention",
]

if not skip_infer:
Expand Down
294 changes: 294 additions & 0 deletions onnxruntime/python/tools/transformers/fusion_attention_unet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,294 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from typing import Tuple, Union

import numpy as np
from fusion_base import Fusion
from fusion_utils import NumpyHelper
from onnx import NodeProto, TensorProto, helper
from onnx_model import OnnxModel

logger = getLogger(__name__)


class FusionAttentionUnet(Fusion):
"""
Fuse Attention subgraph of UNet into one Attention node.
"""

def __init__(self, model: OnnxModel, hidden_size: int, num_heads: int, is_cross_attention: bool):
super().__init__(model, "MultiHeadAttention" if is_cross_attention else "Attention", ["LayerNormalization"])
self.hidden_size = hidden_size
self.num_heads = num_heads
self.is_cross_attention = is_cross_attention

# Flags to show warning only once
self.num_heads_warning = True
self.hidden_size_warning = True

def get_num_heads_and_hidden_size(self, reshape_q: NodeProto, layernorm_node: NodeProto) -> Tuple[int, int]:
"""Detect num_heads and hidden_size from a reshape node.
Args:
reshape_q (NodeProto): reshape node for Q
add_q (NodeProto): add node for Q
Returns:
Tuple[int, int]: num_heads and hidden_size
"""

# we assume that reshape fusion has done, so the shape is a tensor like [0, 0, num_heads, head_size]
q_shape_value = self.model.get_constant_value(reshape_q.input[1])
if q_shape_value is None:
logger.debug(f"{reshape_q.input[1]} is not constant.")
return self.num_heads, self.hidden_size # Fall back to user specified value

if len(q_shape_value) != 4 or q_shape_value[2] <= 0:
logger.debug(f"q_shape_value={q_shape_value}. Expected value are like [0, 0, num_heads, -1].")
return self.num_heads, self.hidden_size # Fall back to user specified value

num_heads = q_shape_value[2]

layernorm_bias = self.model.get_initializer(layernorm_node.input[1])
if layernorm_bias is None:
logger.debug(f"{layernorm_node.input[1]} is not initializer.")
return self.num_heads, self.hidden_size # Fall back to user specified value

hidden_size = NumpyHelper.to_array(layernorm_bias).shape[0]

if self.num_heads > 0 and num_heads != self.num_heads:
if self.num_heads_warning:
logger.warning(f"--num_heads is {self.num_heads}. Detected value is {num_heads}. Using detected value.")
self.num_heads_warning = False # Do not show the warning more than once

if self.hidden_size > 0 and hidden_size != self.hidden_size:
if self.hidden_size_warning:
logger.warning(
f"--hidden_size is {self.hidden_size}. Detected value is {hidden_size}. Using detected value."
)
self.hidden_size_warning = False # Do not show the warning more than once

return num_heads, hidden_size

def create_attention_node(
self,
q_matmul: NodeProto,
k_matmul: NodeProto,
v_matmul: NodeProto,
num_heads: int,
hidden_size: int,
input: str,
output: str,
) -> Union[NodeProto, None]:
"""Create an Attention node.
Args:
q_matmul (NodeProto): MatMul node in fully connection for Q
k_matmul (NodeProto): MatMul node in fully connection for K
v_matmul (NodeProto): MatMul node in fully connection for V
q_add (NodeProto): Add bias node in fully connection for Q
k_add (NodeProto): Add bias node in fully connection for K
v_add (NodeProto): Add bias node in fully connection for V
num_heads (int): number of attention heads. If a model is pruned, it is the number of heads after pruning.
hidden_size (int): hidden dimension. If a model is pruned, it is the hidden dimension after pruning.
input (str): input name
output (str): output name
Returns:
Union[NodeProto, None]: the node created or None if failed.
"""
is_self_attention = not self.is_cross_attention

if is_self_attention:
if q_matmul.input[0] != input or k_matmul.input[0] != input or q_matmul.input[0] != input:
logger.debug("q_matmul.input[0] != input or k_matmul.input[0] != input or q_matmul.input[0] != input")
return None

if hidden_size > 0 and (hidden_size % num_heads) != 0:
logger.debug(f"input hidden size {hidden_size} is not a multiple of num of heads {num_heads}")
return None

q_weight = self.model.get_initializer(q_matmul.input[1])
k_weight = self.model.get_initializer(k_matmul.input[1])
v_weight = self.model.get_initializer(v_matmul.input[1])
if not (q_weight and k_weight and v_weight):
return None

# Sometimes weights are stored in fp16
if q_weight.data_type == 10:
logger.debug("weights are in fp16. Please run fp16 conversion after optimization")
return None

qw = NumpyHelper.to_array(q_weight)
kw = NumpyHelper.to_array(k_weight)
vw = NumpyHelper.to_array(v_weight)
logger.debug(f"qw={qw.shape} kw={kw.shape} vw={vw.shape} hidden_size={hidden_size}")

# assert q and k have same shape as expected
if is_self_attention:
if qw.shape != kw.shape or qw.shape != vw.shape:
return None

qw_in_size = qw.shape[0]
kw_in_size = kw.shape[0]
vw_in_size = vw.shape[0]

assert qw_in_size == kw_in_size == vw_in_size

if hidden_size > 0 and hidden_size != qw_in_size:
raise ValueError(
f"Input hidden size ({hidden_size}) is not same as weight dimension of q,k,v ({qw_in_size}). "
"Please provide a correct input hidden size or pass in 0"
)

# All the matrices can have the same shape or q, k matrics can have the same shape with v being different
# For 2d weights, the shapes would be [in_size, out_size].
# For 3d weights, shape would be [in_size, a, b] where a*b = out_size
qw_out_size = np.prod(qw.shape[1:])

qkv_weight = np.stack((qw, kw, vw), axis=1)
qkv_weight_dim = 3 * qw_out_size

attention_node_name = self.model.create_node_name("Attention")

weight = helper.make_tensor(
name=attention_node_name + "_qkv_weight",
data_type=TensorProto.FLOAT,
dims=[qw_in_size, qkv_weight_dim],
vals=qkv_weight.flatten().tolist(),
)

self.model.add_initializer(weight, self.this_graph_name)
else:
attention_node_name = self.model.create_node_name("MultiHeadAttention")

# No bias, use zeros
qkv_bias = np.zeros([3, hidden_size], dtype=np.float32)
qkv_bias_dim = 3 * hidden_size

bias = helper.make_tensor(
name=attention_node_name + "_qkv_bias",
data_type=TensorProto.FLOAT,
dims=[qkv_bias_dim],
vals=qkv_bias.flatten().tolist(),
)
self.model.add_initializer(bias, self.this_graph_name)

if is_self_attention:
attention_inputs = [
input,
attention_node_name + "_qkv_weight",
attention_node_name + "_qkv_bias",
]
else:
attention_inputs = [
q_matmul.output[0],
k_matmul.output[0],
v_matmul.output[0],
attention_node_name + "_qkv_bias",
]

attention_node = helper.make_node(
"Attention" if is_self_attention else "MultiHeadAttention",
inputs=attention_inputs,
outputs=[output],
name=attention_node_name,
)
attention_node.domain = "com.microsoft"
attention_node.attribute.extend([helper.make_attribute("num_heads", num_heads)])

return attention_node

def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
node_before_layernorm = self.model.match_parent(
normalize_node, "Add" if self.is_cross_attention else "Reshape", 0
)
if node_before_layernorm is None:
return

root_input = node_before_layernorm.output[0]

children_nodes = input_name_to_nodes[root_input]
skip_add = None
for node in children_nodes:
if node.op_type == "Add": # or node.op_type == "SkipLayerNormalization":
skip_add = node
break
if skip_add is None:
return

another_input = 1 if skip_add.input[0] == root_input else 0
qkv_nodes = self.model.match_parent_path(
skip_add,
["Add", "MatMul", "Reshape", "Transpose", "Reshape", "MatMul"],
[another_input, None, None, 0, 0, 0],
)

if qkv_nodes is None:
return

(_, _, reshape_qkv, transpose_qkv, _, matmul_qkv) = qkv_nodes

# No bias. For cross-attention, the input of the MatMul is encoder_hidden_states graph input.
v_nodes = self.model.match_parent_path(matmul_qkv, ["Reshape", "Transpose", "Reshape", "MatMul"], [1, 0, 0, 0])
if v_nodes is None:
logger.debug("fuse_attention: failed to match v path")
return
(_, _, _, matmul_v) = v_nodes

qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Mul", "MatMul"], [0, 0, 0])
if qk_nodes is not None:
(softmax_qk, mul_qk, matmul_qk) = qk_nodes
else:
qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Add", "Mul", "MatMul"], [0, 0, 0, 0])
if qk_nodes is not None:
(softmax_qk, add_zero, mul_qk, matmul_qk) = qk_nodes
else:
logger.debug("fuse_attention: failed to match qk path")
return

q_nodes = self.model.match_parent_path(matmul_qk, ["Reshape", "Transpose", "Reshape", "MatMul"], [0, 0, 0, 0])
if q_nodes is None:
logger.debug("fuse_attention: failed to match q path")
return
(_, _transpose_q, reshape_q, matmul_q) = q_nodes

k_nodes = self.model.match_parent_path(
matmul_qk, ["Transpose", "Reshape", "Transpose", "Reshape", "MatMul"], [1, 0, 0, 0, 0]
)
if k_nodes is None:
logger.debug("fuse_attention: failed to match k path")
return

(_, _, _, _, matmul_k) = k_nodes

attention_last_node = reshape_qkv

q_num_heads, q_hidden_size = self.get_num_heads_and_hidden_size(reshape_q, normalize_node)
if q_num_heads <= 0:
logger.debug("fuse_attention: failed to detect num_heads")
return

# number of heads are same for all the paths, hence to create attention node, we pass the q_num_heads
new_node = self.create_attention_node(
matmul_q,
matmul_k,
matmul_v,
q_num_heads,
q_hidden_size,
input=normalize_node.output[0],
output=attention_last_node.output[0],
)
if new_node is None:
return

self.nodes_to_add.append(new_node)
self.node_name_to_graph_name[new_node.name] = self.this_graph_name

self.nodes_to_remove.extend([attention_last_node, transpose_qkv])

# Use prune graph to remove nodes since they are shared by all attention nodes.
self.prune_graph = True
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
Loading

0 comments on commit cd9e5cb

Please sign in to comment.