From 61730bd6930758be05d3009cb5a58197d5ee2f1a Mon Sep 17 00:00:00 2001 From: fxmarty <9808326+fxmarty@users.noreply.github.com> Date: Wed, 14 Feb 2024 00:49:19 +0100 Subject: [PATCH] Fix subgraph quantization regression in onnxruntime 1.17 (#19421) As per title, fixes https://github.com/microsoft/onnxruntime/issues/19418 ONNX Runtime 1.17 broke the quantization of ONNX models with subgraphs where initializers are placed on the top-level graph, while different subgraphs use the same initializer. --- .../tools/quantization/onnx_quantizer.py | 10 ++- .../test/python/quantization/test_subgraph.py | 64 +++++++++++++++++++ 2 files changed, 72 insertions(+), 2 deletions(-) create mode 100644 onnxruntime/test/python/quantization/test_subgraph.py diff --git a/onnxruntime/python/tools/quantization/onnx_quantizer.py b/onnxruntime/python/tools/quantization/onnx_quantizer.py index 898a5f70ac45e..7110bf6010e8c 100644 --- a/onnxruntime/python/tools/quantization/onnx_quantizer.py +++ b/onnxruntime/python/tools/quantization/onnx_quantizer.py @@ -1336,9 +1336,15 @@ def _dequantize_value(self, value_name): if (value_name in self.quantized_value_map) and (value_name not in self.generated_value_names): quantized_value = self.quantized_value_map[value_name] # Add DequantizeLinear Node for this input + scale_init = find_by_name(quantized_value.scale_name, self.model.initializer()) - # axis is not specified so scale_init must be a scalar. - assert onnx.numpy_helper.to_array(scale_init).size == 1 + + # In case we are working with subgraphs, the graph `producer_name` is set to `"onnx-quantizer"` in the `quantize_subgraph` method. In this case, the scale initializer may be on the top level graph, so the check below can not be done. + if self.model.model.producer_name != "onnx-quantizer" or ( + self.model.model.producer_name == "onnx-quantizer" and scale_init is not None + ): + # axis is not specified so scale_init must be a scalar. + assert onnx.numpy_helper.to_array(scale_init).size == 1 dqlinear_name = value_name + "_DequantizeLinear" dqlinear_node = self.model.find_node_by_name(dqlinear_name, self.new_nodes, self.model.graph()) diff --git a/onnxruntime/test/python/quantization/test_subgraph.py b/onnxruntime/test/python/quantization/test_subgraph.py new file mode 100644 index 0000000000000..c425bf956f976 --- /dev/null +++ b/onnxruntime/test/python/quantization/test_subgraph.py @@ -0,0 +1,64 @@ +# ------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for +# license information. +# -------------------------------------------------------------------------- + +import os +import tempfile +import unittest +import urllib.request + +import onnx + +from onnxruntime.quantization import quantize_dynamic + + +class TestDynamicQuantizationSubgraph(unittest.TestCase): + def test_dynamic_quantization_subgraph(self): + with tempfile.TemporaryDirectory() as tmpdir: + onnx_path = os.path.join(tmpdir, "decoder_model_merged.onnx") + quantized_onnx_path = os.path.join(tmpdir, "decoder_model_merged_quantized.onnx") + urllib.request.urlretrieve( + "https://huggingface.co/fxmarty/t5-tiny-onnx-testing/resolve/main/decoder_model_merged.onnx", onnx_path + ) + + quantize_dynamic( + model_input=onnx_path, + model_output=quantized_onnx_path, + per_channel=True, + op_types_to_quantize=[ + "Conv", + "MatMul", + "Attention", + "LSTM", + "Gather", + "Transpose", + "EmbedLayerNormalization", + ], + extra_options={"EnableSubgraph": True}, + ) + model = onnx.load(quantized_onnx_path) + + # The initializer `shared.weight_merged_0` is attached to the top-level graph, and used in a Gather node in each subgraphs. + # We expect the quantized Gather (after which a DequantizeLinear is attached) initializer to also be attached to the top-level graph. + found_gather_quantized = False + for initializer in model.graph.initializer: + if initializer.name == "shared.weight_merged_0_quantized": + found_gather_quantized = True + break + self.assertTrue(found_gather_quantized) + + found_gather_scale = False + for initializer in model.graph.initializer: + if initializer.name == "shared.weight_merged_0_scale": + found_gather_scale = True + break + self.assertTrue(found_gather_scale) + + # No initializers related to the Gather node should be attached to the subgraphs. + for node in model.graph.node: + for attr in node.attribute: + if attr.type == onnx.AttributeProto.GRAPH: + for initializer in attr.g.initializer: + self.assertTrue("shared.weight" not in initializer.name)