diff --git a/.github/workflows/codeql.yml b/.github/workflows/codeql.yml index 4a5b87b3e69ed..e4d1b91bab736 100644 --- a/.github/workflows/codeql.yml +++ b/.github/workflows/codeql.yml @@ -47,6 +47,14 @@ jobs: # Details on CodeQL's query packs refer to: https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs queries: security-extended,security-and-quality + # Setup Java to use a version that is not too old for the project + - if: ${{ matrix.language == 'java' }} + name: Setup Java 11 + uses: actions/setup-java@v4 + with: + java-version: '11' + distribution: 'microsoft' + # Autobuild attempts to build any compiled languages (C/C++, C#, or Java). # If this step fails, then you should remove it and run the build manually (see below) - if: ${{ matrix.language != 'cpp' }} diff --git a/.github/workflows/labeler.yml b/.github/workflows/labeler.yml index 936ab0de899a2..a196226a4b836 100644 --- a/.github/workflows/labeler.yml +++ b/.github/workflows/labeler.yml @@ -3,6 +3,9 @@ on: issues: types: [opened, edited] +permissions: + issues: write + jobs: triage: runs-on: ubuntu-latest diff --git a/.github/workflows/publish-objectivec-apidocs.yml b/.github/workflows/publish-objectivec-apidocs.yml index b9f3c0b9a398b..ebacd38f1f882 100644 --- a/.github/workflows/publish-objectivec-apidocs.yml +++ b/.github/workflows/publish-objectivec-apidocs.yml @@ -21,7 +21,7 @@ permissions: jobs: build: name: Generate Objective-C API docs - runs-on: macos-13 + runs-on: macos-latest steps: - uses: actions/checkout@v4 diff --git a/.github/workflows/stale.yml b/.github/workflows/stale.yml index c94e3fa5bcb8c..181f3fb17d332 100644 --- a/.github/workflows/stale.yml +++ b/.github/workflows/stale.yml @@ -13,7 +13,7 @@ jobs: issues: write pull-requests: write steps: - - uses: actions/stale@v9.0.0 + - uses: actions/stale@v8 with: # Comma separated list of labels that can be assigned to issues to exclude them from being marked as stale exempt-issue-labels: contributions welcome, feature request, regression diff --git a/.lintrunner.toml b/.lintrunner.toml index 4e5d077b08ff4..be95e03479cf9 100644 --- a/.lintrunner.toml +++ b/.lintrunner.toml @@ -132,6 +132,7 @@ exclude_patterns = [ 'onnxruntime/core/flatbuffers/schema/*.fbs.h', # Generated code 'onnxruntime/core/graph/contrib_ops/quantization_defs.cc', 'onnxruntime/core/mlas/**', # Contains assembly code + 'onnxruntime/core/mickey/cutlass_ext/**', # CUTLASS lib recommends NO automatic code formatting 'winml/lib/Api.Image/shaders/**', # Contains data chunks ] command = [ diff --git a/.pipelines/windowsai-steps.yml b/.pipelines/windowsai-steps.yml index ff5179e6135c2..855573de753b0 100644 --- a/.pipelines/windowsai-steps.yml +++ b/.pipelines/windowsai-steps.yml @@ -80,11 +80,11 @@ jobs: # must call vsdevcmd first to add cmake to PATH - script: | - curl -O -L https://github.com/Kitware/CMake/releases/download/v3.26.3/cmake-3.26.3-windows-x86_64.zip - 7z x cmake-3.26.3-windows-x86_64.zip + curl -O -L https://github.com/Kitware/CMake/releases/download/v3.28.3/cmake-3.28.3-windows-x86_64.zip + 7z x cmake-3.28.3-windows-x86_64.zip set PYTHONHOME=$(Build.BinariesDirectory)\${{ parameters.PythonPackageName }}.3.9.7\tools set PYTHONPATH=$(Build.BinariesDirectory)\${{ parameters.PythonPackageName }}.3.9.7\tools - $(Build.BinariesDirectory)\${{ parameters.PythonPackageName }}.3.9.7\tools\python.exe "$(Build.SourcesDirectory)\tools\ci_build\build.py" --build_dir $(Build.BinariesDirectory) --parallel --use_binskim_compliant_compile_flags --build_shared_lib --enable_onnx_tests --ms_experimental --use_dml --use_winml --cmake_generator "Visual Studio 17 2022" --update --config RelWithDebInfo --enable_lto --use_telemetry --disable_rtti --enable_wcos $(BuildFlags) --cmake_extra_defines "CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO=/PROFILE" "CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO=/PROFILE" CMAKE_SYSTEM_VERSION=10.0.19041.0 --cmake_path $(Build.BinariesDirectory)\cmake-3.26.3-windows-x86_64\bin\cmake.exe --ctest_path $(Build.BinariesDirectory)\cmake-3.26.3-windows-x86_64\bin\ctest.exe + $(Build.BinariesDirectory)\${{ parameters.PythonPackageName }}.3.9.7\tools\python.exe "$(Build.SourcesDirectory)\tools\ci_build\build.py" --build_dir $(Build.BinariesDirectory) --parallel --use_binskim_compliant_compile_flags --build_shared_lib --enable_onnx_tests --ms_experimental --use_dml --use_winml --cmake_generator "Visual Studio 17 2022" --update --config RelWithDebInfo --enable_lto --use_telemetry --disable_rtti --enable_wcos --windows_sdk_version "10.0.22621.0" $(BuildFlags) --cmake_extra_defines "CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO=/PROFILE" "CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO=/PROFILE" --cmake_path $(Build.BinariesDirectory)\cmake-3.28.3-windows-x86_64\bin\cmake.exe --ctest_path $(Build.BinariesDirectory)\cmake-3.28.3-windows-x86_64\bin\ctest.exe workingDirectory: '$(Build.BinariesDirectory)' displayName: 'Generate cmake config' diff --git a/.vscode/settings.json b/.vscode/settings.json index 3e2b1f31dd6cf..98d23090fd474 100644 --- a/.vscode/settings.json +++ b/.vscode/settings.json @@ -21,5 +21,8 @@ "cpplint.filters": [ "-build/include_subdir", "-runtime/references" - ] + ], + "files.associations": { + "span": "cpp" + } } diff --git a/CITATION.cff b/CITATION.cff index 82bcac5a7b750..10b7290022aef 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -3,8 +3,7 @@ title: ONNX Runtime message: "Please use this information to cite ONNX Runtime in research or other publications." authors: - - affiliation: Microsoft Corporation - given-names: ONNX Runtime developers + - name: ONNX Runtime developers date-released: 2018-11-29 url: "https://onnxruntime.ai" repository-code: "https://github.com/microsoft/onnxruntime" diff --git a/cgmanifests/generate_cgmanifest.py b/cgmanifests/generate_cgmanifest.py index 81181d3ccfb20..3cecbb0cc977f 100644 --- a/cgmanifests/generate_cgmanifest.py +++ b/cgmanifests/generate_cgmanifest.py @@ -115,8 +115,8 @@ def normalize_path_separators(path): submodule_lines = proc.stdout.splitlines() for submodule_line in submodule_lines: (absolute_path, url, commit) = submodule_line.split(" ") - git_deps[GitDep(commit, url)] = "git submodule at {}".format( - normalize_path_separators(os.path.relpath(absolute_path, REPO_DIR)) + git_deps[GitDep(commit, url)] = ( + f"git submodule at {normalize_path_separators(os.path.relpath(absolute_path, REPO_DIR))}" ) with open(os.path.join(SCRIPT_DIR, "..", "cmake", "deps.txt")) as f: diff --git a/cgmanifests/generated/cgmanifest.json b/cgmanifests/generated/cgmanifest.json index efd901787fdb7..5a955324414e1 100644 --- a/cgmanifests/generated/cgmanifest.json +++ b/cgmanifests/generated/cgmanifest.json @@ -86,7 +86,7 @@ "component": { "type": "git", "git": { - "commitHash": "6df40a2471737b27271bdd9b900ab5f3aec746c7", + "commitHash": "0100f6a5779831fa7a651e4b67ef389a8752bd9b", "repositoryUrl": "https://github.com/google/flatbuffers.git" }, "comments": "flatbuffers" @@ -116,7 +116,7 @@ "component": { "type": "git", "git": { - "commitHash": "361e8d1cfe0c6c36d30b39f1b61302ece5507320", + "commitHash": "344117638c8ff7e239044fd0fa7085839fc03021", "repositoryUrl": "https://github.com/google/benchmark.git" }, "comments": "google_benchmark" @@ -206,7 +206,7 @@ "component": { "type": "git", "git": { - "commitHash": "c11386eb632eec7c1c2aa323142f73519f946e2a", + "commitHash": "150e7527d5286ddd3a995c228dedf8d76a7a86bc", "repositoryUrl": "https://github.com/intel/neural-speed.git" }, "comments": "neural_speed" @@ -216,7 +216,7 @@ "component": { "type": "git", "git": { - "commitHash": "a43ce67187bab219520fd80f21af8bbd4354bc8c", + "commitHash": "bacfaaa951653cd4e72efe727a543567cb38f7de", "repositoryUrl": "https://github.com/onnx/onnx-tensorrt.git" }, "comments": "onnx_tensorrt" @@ -341,6 +341,16 @@ }, "comments": "composable_kernel" } + }, + { + "component": { + "type": "git", + "git": { + "commitHash": "de28d93dfa9ebf3e473127c1c657e1920a5345ee", + "repositoryUrl": "https://github.com/microsoft/DirectX-Headers.git" + }, + "comments": "directx_headers" + } } ] } diff --git a/cmake/CMakeLists.txt b/cmake/CMakeLists.txt index ff1c7a84f077f..3293506141689 100644 --- a/cmake/CMakeLists.txt +++ b/cmake/CMakeLists.txt @@ -76,7 +76,7 @@ option(onnxruntime_USE_CUDA "Build with CUDA support" OFF) # Enable ONNX Runtime CUDA EP's internal unit tests that directly access the EP's internal functions instead of through # OpKernels. When the option is ON, we will have two copies of GTest library in the same process. It is not a typical # use. If you hit any problem with that, please do not report it to GTest. Turn OFF the following build option instead. -cmake_dependent_option(onnxruntime_ENABLE_CUDA_EP_INTERNAL_TESTS "Build with CUDA unit tests" OFF "onnxruntime_USE_CUDA;onnxruntime_BUILD_UNIT_TESTS;LINUX" OFF) +cmake_dependent_option(onnxruntime_ENABLE_CUDA_EP_INTERNAL_TESTS "Build with CUDA unit tests" OFF "onnxruntime_USE_CUDA;onnxruntime_BUILD_UNIT_TESTS" OFF) option(onnxruntime_USE_CUDA_NHWC_OPS "Build CUDA with NHWC op support" OFF) option(onnxruntime_CUDA_MINIMAL "Build CUDA without any operations apart from memcpy ops. Usefuel for a very minial TRT build" OFF) @@ -88,7 +88,7 @@ option(onnxruntime_USE_QNN "Build with QNN support" OFF) option(onnxruntime_USE_SNPE "Build with SNPE support" OFF) option(onnxruntime_USE_RKNPU "Build with RKNPU support" OFF) option(onnxruntime_USE_DNNL "Build with DNNL support" OFF) -option(onnxruntime_USE_NEURAL_SPEED "Build with Neural Speed support" OFF) +option(onnxruntime_USE_NEURAL_SPEED "Build with Neural Speed support" ON) option(onnxruntime_USE_JSEP "Build with JavaScript implemented kernels support" OFF) option(onnxruntime_BUILD_UNIT_TESTS "Build ONNXRuntime unit tests" ON) option(onnxruntime_BUILD_CSHARP "Build C# library" OFF) @@ -118,7 +118,6 @@ option(onnxruntime_GCOV_COVERAGE "Compile with options necessary to run code cov option(onnxruntime_DONT_VECTORIZE "Do not vectorize operations in Eigen" OFF) option(onnxruntime_USE_FULL_PROTOBUF "Link to libprotobuf instead of libprotobuf-lite when this option is ON" OFF) -option(tensorflow_C_PACKAGE_PATH "Path to tensorflow C package installation dir") option(onnxruntime_ENABLE_LANGUAGE_INTEROP_OPS "Enable operator implemented in language other than cpp" OFF) option(onnxruntime_DEBUG_NODE_INPUTS_OUTPUTS "Dump debug information about node inputs and outputs when executing the model." OFF) cmake_dependent_option(onnxruntime_DEBUG_NODE_INPUTS_OUTPUTS_ENABLE_DUMP_TO_SQLDB "Build dump debug information about node inputs and outputs with support for sql database." OFF "onnxruntime_DEBUG_NODE_INPUTS_OUTPUTS" OFF) @@ -324,17 +323,29 @@ if (onnxruntime_USE_ROCM) endif() # replicate strategy used by pytorch to get ROCM_VERSION - # https://github.com/pytorch/pytorch/blob/8eb21488fdcdb8b0e6fa2e46179b5fa6c42e75af/cmake/public/LoadHIP.cmake#L153-L173 - file(READ "${onnxruntime_ROCM_HOME}/.info/version-dev" ROCM_VERSION_DEV_RAW) - string(REGEX MATCH "^([0-9]+)\.([0-9]+)\.([0-9]+)-.*$" ROCM_VERSION_DEV_MATCH ${ROCM_VERSION_DEV_RAW}) - if (ROCM_VERSION_DEV_MATCH) + # https://github.com/pytorch/pytorch/blob/5c5b71b6eebae76d744261715231093e62f0d090/cmake/public/LoadHIP.cmake + # with modification + if (EXISTS "${onnxruntime_ROCM_HOME}/.info/version") + file(READ "${onnxruntime_ROCM_HOME}/.info/version" ROCM_VERSION_DEV_RAW) + string(REGEX MATCH "^([0-9]+)\.([0-9]+)\.([0-9]+)-.*$" ROCM_VERSION_MATCH ${ROCM_VERSION_DEV_RAW}) + elseif (EXISTS "${onnxruntime_ROCM_HOME}/include/rocm_version.h") + file(READ "${onnxruntime_ROCM_HOME}/include/rocm_version.h" ROCM_VERSION_H_RAW) + string(REGEX MATCH "\"([0-9]+)\.([0-9]+)\.([0-9]+).*\"" ROCM_VERSION_MATCH ${ROCM_VERSION_H_RAW}) + elseif (EXISTS "${onnxruntime_ROCM_HOME}/include/rocm-core/rocm_version.h") + file(READ "${onnxruntime_ROCM_HOME}/include/rocm-core/rocm_version.h" ROCM_VERSION_H_RAW) + string(REGEX MATCH "\"([0-9]+)\.([0-9]+)\.([0-9]+).*\"" ROCM_VERSION_MATCH ${ROCM_VERSION_H_RAW}) + endif() + + if (ROCM_VERSION_MATCH) set(ROCM_VERSION_DEV_MAJOR ${CMAKE_MATCH_1}) set(ROCM_VERSION_DEV_MINOR ${CMAKE_MATCH_2}) set(ROCM_VERSION_DEV_PATCH ${CMAKE_MATCH_3}) set(ROCM_VERSION_DEV "${ROCM_VERSION_DEV_MAJOR}.${ROCM_VERSION_DEV_MINOR}.${ROCM_VERSION_DEV_PATCH}") math(EXPR ROCM_VERSION_DEV_INT "(${ROCM_VERSION_DEV_MAJOR}*10000) + (${ROCM_VERSION_DEV_MINOR}*100) + ${ROCM_VERSION_DEV_PATCH}") + else() + message(FATAL_ERROR "Cannot determine ROCm version string") endif() - message("\n***** ROCm version from ${onnxruntime_ROCM_HOME}/.info/version-dev ****\n") + message("\n***** ROCm version from ${onnxruntime_ROCM_HOME}/.info/version ****\n") message("ROCM_VERSION_DEV: ${ROCM_VERSION_DEV}") message("ROCM_VERSION_DEV_MAJOR: ${ROCM_VERSION_DEV_MAJOR}") message("ROCM_VERSION_DEV_MINOR: ${ROCM_VERSION_DEV_MINOR}") @@ -715,6 +726,9 @@ if (onnxruntime_USE_CUDA) set(onnxruntime_USE_FLASH_ATTENTION OFF) set(onnxruntime_USE_MEMORY_EFFICIENT_ATTENTION OFF) endif() + if (CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.4) + message( FATAL_ERROR "Failed build due to CUDA compiler version < 11.4") + endif() else() set(onnxruntime_USE_FLASH_ATTENTION OFF) set(onnxruntime_USE_MEMORY_EFFICIENT_ATTENTION OFF) @@ -735,8 +749,8 @@ if (onnxruntime_USE_CUDA) list(APPEND ORT_PROVIDER_FLAGS -DUSE_MEMORY_EFFICIENT_ATTENTION=1) list(APPEND ORT_PROVIDER_CMAKE_FLAGS -Donnxruntime_USE_MEMORY_EFFICIENT_ATTENTION=1) endif() - endif() + if (onnxruntime_USE_VITISAI) list(APPEND ORT_PROVIDER_FLAGS -DUSE_VITISAI=1) list(APPEND ORT_PROVIDER_CMAKE_FLAGS -Donnxruntime_USE_VITISAI=1) @@ -1192,7 +1206,7 @@ if (onnxruntime_USE_DNNL) add_compile_definitions(DNNL_OPENMP) endif() -if (onnxruntime_USE_NEURAL_SPEED AND NOT onnxruntime_MINIMAL_BUILD) +if (onnxruntime_USE_NEURAL_SPEED AND NOT onnxruntime_MINIMAL_BUILD AND NOT onnxruntime_USE_TVM) include(neural_speed) if (USE_NEURAL_SPEED) list(APPEND onnxruntime_EXTERNAL_LIBRARIES neural_speed::bestla) @@ -1239,17 +1253,15 @@ if (onnxruntime_USE_TVM) $) set(onnxruntime_tvm_libs onnxruntime_providers_tvm) - - # needs to link with stdc++fs in Linux - if (UNIX) - if (NOT APPLE) - set(FS_STDLIB stdc++fs) - endif() - endif() - list(APPEND onnxruntime_EXTERNAL_LIBRARIES tvm ${FS_STDLIB}) + list(APPEND onnxruntime_EXTERNAL_LIBRARIES tvm) list(APPEND onnxruntime_EXTERNAL_DEPENDENCIES tvm) endif() +# needs to link with stdc++fs in Linux +if (UNIX AND "${CMAKE_C_COMPILER_ID}" STREQUAL "GNU" AND CMAKE_C_COMPILER_VERSION VERSION_LESS 9) + set(FS_STDLIB stdc++fs) +endif() +list(APPEND onnxruntime_EXTERNAL_LIBRARIES ${FS_STDLIB}) # onnxruntime-extensions if (onnxruntime_USE_EXTENSIONS) @@ -1259,11 +1271,7 @@ endif() #Dependencies end. In the next we'll enable "treat warning as error" #Adjust warning flags -if (onnxruntime_USE_CUDA) - set_msvc_c_cpp_compiler_warning_level(3) -else() - set_msvc_c_cpp_compiler_warning_level(4) -endif() +set_msvc_c_cpp_compiler_warning_level(4) set(onnxruntime_DELAYLOAD_FLAGS "") @@ -1282,34 +1290,6 @@ if (onnxruntime_USE_OPENVINO) add_definitions(-DUSE_OPENVINO=1) - if (EXISTS "$ENV{INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/version.txt") - file(READ $ENV{INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/version.txt VER) - endif() - - if (NOT DEFINED ENV{INTEL_OPENVINO_DIR}) - message(FATAL_ERROR "[Couldn't locate OpenVINO] OpenVINO may not have been initialized") - endif() - - # Check OpenVINO version for support - if ($ENV{INTEL_OPENVINO_DIR} MATCHES "2023.0") - set(OPENVINO_VERSION "2023.0") - add_definitions(-DOPENVINO_2023_0=1) - elseif ($ENV{INTEL_OPENVINO_DIR} MATCHES "2023.1") - set(OPENVINO_VERSION "2023.1") - add_definitions(-DOPENVINO_2023_1=1) - elseif ($ENV{INTEL_OPENVINO_DIR} MATCHES "2023.2") - set(OPENVINO_VERSION "2023.2") - add_definitions(-DOPENVINO_2023_2=1) - elseif ($ENV{INTEL_OPENVINO_DIR} MATCHES "2023.3") - set(OPENVINO_VERSION "2023.3") - add_definitions(-DOPENVINO_2023_3=1) - elseif ($ENV{INTEL_OPENVINO_DIR} MATCHES "openvino") - set(OPENVINO_VERSION "2023.3") - add_definitions(-DOPENVINO_2023_3=1) - else() - message(FATAL_ERROR "Unsupported OpenVINO version: ${INTEL_OPENVINO_DIR}") - endif() - if (onnxruntime_USE_OPENVINO_GPU_FP32) add_definitions(-DOPENVINO_CONFIG_GPU_FP32=1) endif() @@ -1326,6 +1306,10 @@ if (onnxruntime_USE_OPENVINO) add_definitions(-DOPENVINO_CONFIG_CPU_FP16=1) endif() + if (onnxruntime_USE_OPENVINO_NPU) + add_definitions(-DOPENVINO_CONFIG_NPU=1) + endif() + if (onnxruntime_USE_OPENVINO_GPU_FP32_NP) add_definitions(-DOPENVINO_CONFIG_GPU_FP32=1) add_definitions(-DOPENVINO_DISABLE_GRAPH_PARTITION=1) @@ -1346,6 +1330,11 @@ if (onnxruntime_USE_OPENVINO) add_definitions(-DOPENVINO_DISABLE_GRAPH_PARTITION=1) endif() + if (onnxruntime_USE_OPENVINO_NPU_NP) + add_definitions(-DOPENVINO_CONFIG_NPU=1) + add_definitions(-DOPENVINO_DISABLE_GRAPH_PARTITION=1) + endif() + if (onnxruntime_USE_OPENVINO_HETERO) add_definitions(-DOPENVINO_CONFIG_HETERO=1) add_definitions(-DDEVICE_NAME="${onnxruntime_USE_OPENVINO_DEVICE}") @@ -1400,6 +1389,10 @@ endif() if (onnxruntime_USE_CUDA) set(CMAKE_CUDA_RUNTIME_LIBRARY Shared) set(CMAKE_CUDA_STANDARD 17) + if(onnxruntime_CUDA_HOME) + file(TO_CMAKE_PATH CUDAToolkit_ROOT ${onnxruntime_CUDA_HOME}) + endif() + find_package(CUDAToolkit REQUIRED) if(onnxruntime_CUDNN_HOME) file(TO_CMAKE_PATH ${onnxruntime_CUDNN_HOME} onnxruntime_CUDNN_HOME) endif() @@ -1600,7 +1593,7 @@ if (UNIX AND onnxruntime_USE_NCCL) else() set(onnxruntime_USE_NCCL OFF) set(onnxruntime_USE_MPI OFF) -message( WARNING "MPI and NCCL disabled on Win build." ) + message( WARNING "MPI and NCCL are disabled because build is on Windows or USE_NCCL is set to OFF." ) endif() if (onnxruntime_USE_MPI) @@ -1729,14 +1722,12 @@ if(onnxruntime_BUILD_KERNEL_EXPLORER) endif() # When GDK_PLATFORM is set then WINAPI_FAMILY is defined in gdk_toolchain.cmake (along with other relevant flags/definitions). -if (WIN32 AND NOT GDK_PLATFORM) +if (WIN32 AND NOT GDK_PLATFORM AND NOT CMAKE_CROSSCOMPILING) if (NOT CMAKE_CXX_STANDARD_LIBRARIES MATCHES kernel32.lib) # On onecore, link to the onecore build of the MSVC runtime get_filename_component(msvc_path "${CMAKE_C_COMPILER}/../../../.." ABSOLUTE) link_directories(BEFORE "${msvc_path}/lib/onecore/${onnxruntime_target_platform}") - # The .lib files in the MSVC runtime have a DEFAULITLIB entry for onecore.lib, which in turn links to reverse forwarders. - # We ignore that entry and use onecore_apiset.lib instead, since system components must not rely on reverse forwarders. - add_link_options("/NODEFAULTLIB:onecore.lib") + # The .lib files in the MSVC runtime have a DEFAULITLIB entry for onecore.lib, but it shold not cause any conflict with onecoreuap.lib endif() endif() diff --git a/cmake/adjust_global_compile_flags.cmake b/cmake/adjust_global_compile_flags.cmake index a56864ebf4644..9a3bc3302cc2b 100644 --- a/cmake/adjust_global_compile_flags.cmake +++ b/cmake/adjust_global_compile_flags.cmake @@ -8,6 +8,15 @@ if (CMAKE_SYSTEM_NAME STREQUAL "Android") string(APPEND CMAKE_ASM_FLAGS_RELEASE " -O3") endif() +# Suggested by https://gitlab.kitware.com/cmake/cmake/-/issues/20132 +# MacCatalyst is not well supported in CMake +# The error that can emerge without this flag can look like: +# "clang : error : overriding '-mmacosx-version-min=11.0' option with '-target x86_64-apple-ios14.0-macabi' [-Werror,-Woverriding-t-option]" +if (PLATFORM_NAME STREQUAL "macabi") + add_compile_options(-Wno-overriding-t-option) + add_link_options(-Wno-overriding-t-option) +endif() + # Enable space optimization for gcc/clang # Cannot use "-ffunction-sections -fdata-sections" if we enable bitcode (iOS) if (NOT MSVC AND NOT onnxruntime_ENABLE_BITCODE) @@ -92,13 +101,8 @@ if (onnxruntime_MINIMAL_BUILD) endif() endif() -# Enable stream for all the non-minimal build, except for DML. There's currently a bug -# in the allocation planner when reusing buffers and more than one streams are used that -# make it possible (although rarely) to reach a reference count of 0 for a buffer that is -# still being used. Since DML doesn't benefit from multiple streams, disabling it is the -# safest option for now. -# https://github.com/microsoft/onnxruntime/issues/19480 -if (NOT onnxruntime_MINIMAL_BUILD AND NOT onnxruntime_USE_DML) +# Enable stream for all the non-minimal build +if (NOT onnxruntime_MINIMAL_BUILD) add_compile_definitions(ORT_ENABLE_STREAM) endif() @@ -210,7 +214,7 @@ endif() macro(check_nvcc_compiler_flag _FLAG _RESULT) - execute_process(COMMAND ${onnxruntime_CUDA_HOME}/bin/nvcc "${_FLAG}" RESULT_VARIABLE NVCC_OUT ERROR_VARIABLE NVCC_ERROR) + execute_process(COMMAND ${CUDAToolkit_BIN_DIR}/nvcc "${_FLAG}" RESULT_VARIABLE NVCC_OUT ERROR_VARIABLE NVCC_ERROR) message("NVCC_ERROR = ${NVCC_ERROR}") message("NVCC_OUT = ${NVCC_OUT}") if ("${NVCC_OUT}" MATCHES "0") diff --git a/cmake/deps.txt b/cmake/deps.txt index cb431f8c77397..720dbe107c9f1 100644 --- a/cmake/deps.txt +++ b/cmake/deps.txt @@ -23,10 +23,10 @@ dlpack;https://github.com/dmlc/dlpack/archive/refs/tags/v0.6.zip;4d565dd2e5b3132 # Until the 3.4.1 release this is the best option we have. # Issue link: https://gitlab.com/libeigen/eigen/-/issues/2744 eigen;https://gitlab.com/libeigen/eigen/-/archive/e7248b26a1ed53fa030c5c459f7ea095dfd276ac/eigen-e7248b26a1ed53fa030c5c459f7ea095dfd276ac.zip;be8be39fdbc6e60e94fa7870b280707069b5b81a -flatbuffers;https://github.com/google/flatbuffers/archive/refs/tags/v1.12.0.zip;ba0a75fd12dbef8f6557a74e611b7a3d0c5fe7bf +flatbuffers;https://github.com/google/flatbuffers/archive/refs/tags/v23.5.26.zip;59422c3b5e573dd192fead2834d25951f1c1670c fp16;https://github.com/Maratyszcza/FP16/archive/0a92994d729ff76a58f692d3028ca1b64b145d91.zip;b985f6985a05a1c03ff1bb71190f66d8f98a1494 fxdiv;https://github.com/Maratyszcza/FXdiv/archive/63058eff77e11aa15bf531df5dd34395ec3017c8.zip;a5658f4036402dbca7cebee32be57fb8149811e1 -google_benchmark;https://github.com/google/benchmark/archive/refs/tags/v1.7.0.zip;e97c368b176e8614e3f1bf13dd9abcf6a7ad9908 +google_benchmark;https://github.com/google/benchmark/archive/refs/tags/v1.8.3.zip;bf9870756ee3f8d2d3b346b24ee3600a41c74d3d google_nsync;https://github.com/google/nsync/archive/refs/tags/1.26.0.zip;5e7c00ef6bf5b787386fc040067903ec774e2752 googletest;https://github.com/google/googletest/archive/530d5c8c84abd2a46f38583ee817743c9b3a42b4.zip;5e3a61db2aa975cfd0f97ba92c818744e7fa7034 googlexnnpack;https://github.com/google/XNNPACK/archive/0da379fc4808f9601faef392352018c741c0f297.zip;663883491e380b628e0a5b162b5f2658032fae73 @@ -35,10 +35,10 @@ microsoft_gsl;https://github.com/microsoft/GSL/archive/refs/tags/v4.0.0.zip;cf36 microsoft_wil;https://github.com/microsoft/wil/archive/refs/tags/v1.0.230629.1.zip;e4a542a323c070376f7c2d1973d0f7ddbc1d2fa5 mimalloc;https://github.com/microsoft/mimalloc/archive/refs/tags/v2.1.1.zip;d5ee7d34223d0567892db5179849939c8769dc41 mp11;https://github.com/boostorg/mp11/archive/refs/tags/boost-1.82.0.zip;9bc9e01dffb64d9e0773b2e44d2f22c51aace063 -neural_speed;https://github.com/intel/neural-speed/archive/refs/tags/bestlav0.1.1.zip;65b0f7a0d04f72f0d5a8d48af70f0366f2ab3939 +neural_speed;https://github.com/intel/neural-speed/archive/refs/tags/v0.3.zip;5ec64e3071edc7347ebd8a81679cf06e2bb9b851 onnx;https://github.com/onnx/onnx/archive/refs/tags/v1.15.0.zip;54c3f960a0541c5d8d3e60c2933e11f5d3688a11 -#use the commit of supporting all the plugins and TRT 8.6-GA (https://github.com/onnx/onnx-tensorrt/commit/0462dc31ae78f48744b6141ae376df1f96d3f459) -onnx_tensorrt;https://github.com/onnx/onnx-tensorrt/archive/a43ce67187bab219520fd80f21af8bbd4354bc8c.zip;572535aefef477050f86744dfab1fef840198035 +#use the commit of Final DDS removal. DDS output is now supported by ORT TRT. +onnx_tensorrt;https://github.com/onnx/onnx-tensorrt/archive/bacfaaa951653cd4e72efe727a543567cb38f7de.zip;26434329612e804164ab7baa6ae629ada56c1b26 protobuf;https://github.com/protocolbuffers/protobuf/archive/refs/tags/v21.12.zip;7cf2733949036c7d52fda017badcab093fe73bfa protoc_win64;https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip;b4521f7ada5b260380f94c4bd7f1b7684c76969a protoc_win32;https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win32.zip;3688010318192c46ce73213cdfb6b3e5656da874 @@ -57,3 +57,4 @@ cutlass;https://github.com/NVIDIA/cutlass/archive/refs/tags/v3.1.0.zip;757f90a79 utf8_range;https://github.com/protocolbuffers/utf8_range/archive/72c943dea2b9240cd09efde15191e144bc7c7d38.zip;9925739c9debc0efa2adcb194d371a35b6a03156 extensions;https://github.com/microsoft/onnxruntime-extensions/archive/94142d8391c9791ec71c38336436319a2d4ac7a0.zip;4365ac5140338b4cb75a39944a4be276e3829b3c composable_kernel;https://github.com/ROCmSoftwarePlatform/composable_kernel/archive/5356c4a943a35e74d7cdc69486afcb8703b9a59a.zip;522382c2af437e09124287e5879ab64af5b2e299 +directx_headers;https://github.com/microsoft/DirectX-Headers/archive/refs/tags/v1.613.1.zip;47653509a3371eabb156360f42faf582f314bf2e \ No newline at end of file diff --git a/cmake/deps_update_and_upload.py b/cmake/deps_update_and_upload.py index d357284d91225..63df3f6f03869 100644 --- a/cmake/deps_update_and_upload.py +++ b/cmake/deps_update_and_upload.py @@ -1,56 +1,109 @@ -# in case deps.txt is updated, run this file to update and upload the dependencies so that CI can use them. -# Before running the script, increase the version number found at: +# If deps.txt is updated, run this file to update and upload the dependencies so that CI can use them. +# +# Before running the script, find the latest version number at: # https://aiinfra.visualstudio.com/Lotus/_artifacts/feed/Lotus/UPack/onnxruntime_build_dependencies/versions +# Increment it to obtain a new version number to use. +# # Run without --do-upload once to verify downloading. Use --do-upload when you are ready to publish. -# python cmake/deps_update_and_upload.py --root-path C:/temp/onnxruntime_deps --version 1.0.82 --do-upload -# update version number in tools\ci_build\github\azure-pipelines\templates\download-deps.yml +# E.g.: +# python cmake/deps_update_and_upload.py --root-path C:/temp/onnxruntime_deps --version 1.0.82 +# # check contents of C:/temp/onnxruntime_deps +# python cmake/deps_update_and_upload.py --root-path C:/temp/onnxruntime_deps --version 1.0.82 --no-download --do-upload +# +# Next, update the version number in tools/ci_build/github/azure-pipelines/templates/download-deps.yml. + +import argparse +import contextlib +import pathlib import re import subprocess -import os -import argparse import tempfile +script_dir = pathlib.Path(__file__).parent + parser = argparse.ArgumentParser(description="Update dependencies and publish to Azure Artifacts") parser.add_argument( - "--root-path", type=str, default=tempfile.gettempdir(), help="Target root path for downloaded files" + "--root-path", + type=pathlib.Path, + help="Target root path for downloaded files. If not provided, a temporary directory is used.", +) +parser.add_argument( + "--version", + type=str, + help="Package version to publish", +) +parser.add_argument( + "--do-upload", + action="store_true", + dest="upload", + help="Upload the package to Azure Artifacts", +) +parser.add_argument( + "--no-download", + action="store_false", + dest="download", + help="Skip downloading the dependency files. " + "Use with '--do-upload' and '--root-path' to upload the package from existing dependency files.", ) -parser.add_argument("--version", type=str, default="1.0.82", help="Package version to publish") -parser.add_argument("--do-upload", action="store_true", help="Upload the package to Azure Artifacts") args = parser.parse_args() -with open("cmake/deps.txt") as file: +if args.upload: + assert args.version is not None, "'--version' must be specified if uploading." + +if args.upload != args.download: + assert args.root_path is not None, "'--root-path' must be specified if only downloading or uploading." + +deps_path = script_dir / "deps.txt" +with open(deps_path) as file: text = file.read() lines = [line for line in text.split("\n") if not line.startswith("#") and ";" in line] -root_path = args.root_path - -for line in lines: - url = re.sub("^[^;]+?;https://([^;]+?);.*", r"https://\1", line) - filename = re.sub("^[^;]+?;https://([^;]+?);.*", r"\1", line) - full_path = os.path.join(root_path, filename) - subprocess.run(["curl", "-sSL", "--create-dirs", "-o", full_path, url]) # noqa: PLW1510 - -package_name = "onnxruntime_build_dependencies" -version = args.version - -# Check if the user is logged in to Azure -result = subprocess.run("az account show", shell=True, capture_output=True, text=True) # noqa: PLW1510 -if "No subscriptions found" in result.stderr: - # Prompt the user to log in to Azure - print("You are not logged in to Azure. Please log in to continue.") - subprocess.run("az login", shell=True) # noqa: PLW1510 - -# Publish the package to Azure Artifacts if --no-upload is not specified - -cmd = f'az artifacts universal publish --organization https://dev.azure.com/onnxruntime --feed onnxruntime --name {package_name} --version {version} --description "onnxruntime build time dependencies" --path {root_path}' -if args.do_upload: - subprocess.run(cmd, shell=True) # noqa: PLW1510 -else: - print("would have run: " + cmd) - -cmd = f'az artifacts universal publish --organization https://dev.azure.com/aiinfra --feed Lotus --name {package_name} --version {version} --description "onnxruntime build time dependencies" --path {root_path}' -if args.do_upload: - subprocess.run(cmd, shell=True) # noqa: PLW1510 -else: - print("would have run: " + cmd) +with contextlib.ExitStack() as context_stack: + if args.root_path is not None: + root_path = args.root_path.resolve() + root_path.mkdir(parents=True, exist_ok=True) + else: + temp_dir_name = context_stack.enter_context(tempfile.TemporaryDirectory()) + root_path = pathlib.Path(temp_dir_name) + + if args.download: + print(f"Downloading dependencies to directory: {root_path}") + + dep_pattern = re.compile(r"^[^;]+;https://([^;]+);.*$") + + for line in lines: + match = dep_pattern.fullmatch(line) + if match is None: + continue + + dep_path = match[1] + url = f"https://{dep_path}" + full_path = root_path / dep_path + + subprocess.run(["curl", "-sSL", "--create-dirs", "-o", str(full_path), url], check=True) + + package_name = "onnxruntime_build_dependencies" + version = args.version if args.version is not None else "VERSION_PLACEHOLDER" + + if args.upload: + # Check if the user is logged in to Azure + result = subprocess.run("az account show", shell=True, capture_output=True, text=True, check=False) + if "No subscriptions found" in result.stderr: + # Prompt the user to log in to Azure + print("You are not logged in to Azure. Please log in to continue.") + subprocess.run("az login", shell=True, check=True) + + # Publish the package to Azure Artifacts if --do-upload is specified + + cmd = f'az artifacts universal publish --organization https://dev.azure.com/onnxruntime --feed onnxruntime --name {package_name} --version {version} --description "onnxruntime build time dependencies" --path {root_path}' + if args.upload: + subprocess.run(cmd, shell=True, check=True) + else: + print("would have run: " + cmd) + + cmd = f'az artifacts universal publish --organization https://dev.azure.com/aiinfra --feed Lotus --name {package_name} --version {version} --description "onnxruntime build time dependencies" --path {root_path}' + if args.upload: + subprocess.run(cmd, shell=True, check=True) + else: + print("would have run: " + cmd) diff --git a/cmake/external/dml.cmake b/cmake/external/dml.cmake index ae7e6d3801a64..8f18059ffdfe5 100644 --- a/cmake/external/dml.cmake +++ b/cmake/external/dml.cmake @@ -99,3 +99,14 @@ else() set(DML_PACKAGE_DIR ${dml_INCLUDE_DIR}/..) endif() endif() + +FetchContent_Declare( + directx_headers + URL ${DEP_URL_directx_headers} + URL_HASH SHA1=${DEP_SHA1_directx_headers} +) + +FetchContent_Populate(directx_headers) +set(directx_headers_INCLUDE_DIRS "${directx_headers_SOURCE_DIR}/include") + +include_directories(BEFORE ${directx_headers_INCLUDE_DIRS}) diff --git a/cmake/external/neural_speed.cmake b/cmake/external/neural_speed.cmake index ed711351403a7..3fe9c660f89d6 100644 --- a/cmake/external/neural_speed.cmake +++ b/cmake/external/neural_speed.cmake @@ -9,6 +9,7 @@ if(USE_NEURAL_SPEED) neural_speed URL ${DEP_URL_neural_speed} URL_HASH SHA1=${DEP_SHA1_neural_speed} + PATCH_COMMAND ${Patch_EXECUTABLE} -p1 < ${PROJECT_SOURCE_DIR}/patches/neural_speed/150e7527d5286ddd3a995c228dedf8d76a7a86bc.patch ) set(BTLA_USE_OPENMP OFF) onnxruntime_fetchcontent_makeavailable(neural_speed) diff --git a/cmake/external/onnxruntime_external_deps.cmake b/cmake/external/onnxruntime_external_deps.cmake index 22d12b128dc1f..8839dbc8fda4f 100644 --- a/cmake/external/onnxruntime_external_deps.cmake +++ b/cmake/external/onnxruntime_external_deps.cmake @@ -14,6 +14,16 @@ foreach(ONNXRUNTIME_DEP IN LISTS ONNXRUNTIME_DEPS_LIST) set(DEP_URL_${ONNXRUNTIME_DEP_NAME} ${ONNXRUNTIME_DEP_URL}) # The third column is SHA1 hash value set(DEP_SHA1_${ONNXRUNTIME_DEP_NAME} ${ONNXRUNTIME_DEP}) + + if(ONNXRUNTIME_DEP_URL MATCHES "^https://") + # Search a local mirror folder + string(REGEX REPLACE "^https://" "${REPO_ROOT}/mirror/" LOCAL_URL "${ONNXRUNTIME_DEP_URL}") + + if(EXISTS "${LOCAL_URL}") + cmake_path(ABSOLUTE_PATH LOCAL_URL) + set(DEP_URL_${ONNXRUNTIME_DEP_NAME} "${LOCAL_URL}") + endif() + endif() endif() endforeach() @@ -37,8 +47,13 @@ if (onnxruntime_BUILD_UNIT_TESTS) set(gtest_disable_pthreads ON) endif() set(INSTALL_GTEST OFF CACHE BOOL "" FORCE) - if (CMAKE_SYSTEM_NAME STREQUAL "iOS") - # Needs to update onnxruntime/test/xctest/xcgtest.mm + if (IOS OR ANDROID) + # on mobile platforms the absl flags class dumps the flag names (assumably for binary size), which breaks passing + # any args to gtest executables, such as using --gtest_filter to debug a specific test. + # Processing of compile definitions: + # https://github.com/abseil/abseil-cpp/blob/8dc90ff07402cd027daec520bb77f46e51855889/absl/flags/config.h#L21 + # If set, this code throws away the flag and does nothing on registration, which results in no flags being known: + # https://github.com/abseil/abseil-cpp/blob/8dc90ff07402cd027daec520bb77f46e51855889/absl/flags/flag.h#L205-L217 set(GTEST_HAS_ABSL OFF CACHE BOOL "" FORCE) else() set(GTEST_HAS_ABSL ON CACHE BOOL "" FORCE) @@ -104,7 +119,7 @@ FetchContent_Declare( URL ${DEP_URL_flatbuffers} URL_HASH SHA1=${DEP_SHA1_flatbuffers} PATCH_COMMAND ${ONNXRUNTIME_FLATBUFFERS_PATCH_COMMAND} - FIND_PACKAGE_ARGS 1.12.0...<2.0.0 NAMES Flatbuffers + FIND_PACKAGE_ARGS 23.5.9 NAMES Flatbuffers ) # Download a protoc binary from Internet if needed @@ -256,14 +271,7 @@ if (onnxruntime_ENABLE_CPUINFO) set(CPUINFO_SUPPORTED TRUE) endif() if (WIN32) - # Exclude Windows ARM build and Windows Store - if (${onnxruntime_target_platform} MATCHES "^(ARM.*|arm.*)$" ) - message(WARNING "Cpuinfo not included for compilation problems with Windows ARM.") - set(CPUINFO_SUPPORTED FALSE) - elseif (WIN32 AND NOT CMAKE_CXX_STANDARD_LIBRARIES MATCHES kernel32.lib) - message(WARNING "Cpuinfo not included non-Desktop builds") - set(CPUINFO_SUPPORTED FALSE) - endif() + set(CPUINFO_SUPPORTED TRUE) elseif (NOT ${onnxruntime_target_platform} MATCHES "^(i[3-6]86|AMD64|x86(_64)?|armv[5-8].*|aarch64|arm64)$") message(WARNING "Target processor architecture \"${onnxruntime_target_platform}\" is not supported in cpuinfo. " @@ -307,13 +315,23 @@ if (CPUINFO_SUPPORTED) set(CPUINFO_BUILD_UNIT_TESTS OFF CACHE INTERNAL "") set(CPUINFO_BUILD_MOCK_TESTS OFF CACHE INTERNAL "") set(CPUINFO_BUILD_BENCHMARKS OFF CACHE INTERNAL "") - - FetchContent_Declare( - pytorch_cpuinfo - URL ${DEP_URL_pytorch_cpuinfo} - URL_HASH SHA1=${DEP_SHA1_pytorch_cpuinfo} - FIND_PACKAGE_ARGS NAMES cpuinfo - ) + if(onnxruntime_target_platform STREQUAL "ARM64EC") + message("Applying a patch for Windows ARM64EC in cpuinfo") + FetchContent_Declare( + pytorch_cpuinfo + URL ${DEP_URL_pytorch_cpuinfo} + URL_HASH SHA1=${DEP_SHA1_pytorch_cpuinfo} + PATCH_COMMAND ${Patch_EXECUTABLE} -p1 < ${PROJECT_SOURCE_DIR}/patches/cpuinfo/9bb12d342fd9479679d505d93a478a6f9cd50a47.patch + FIND_PACKAGE_ARGS NAMES cpuinfo + ) + else() + FetchContent_Declare( + pytorch_cpuinfo + URL ${DEP_URL_pytorch_cpuinfo} + URL_HASH SHA1=${DEP_SHA1_pytorch_cpuinfo} + FIND_PACKAGE_ARGS NAMES cpuinfo + ) + endif() set(ONNXRUNTIME_CPUINFO_PROJ pytorch_cpuinfo) endif() @@ -556,16 +574,15 @@ message("Finished fetching external dependencies") set(onnxruntime_LINK_DIRS ) if (onnxruntime_USE_CUDA) #TODO: combine onnxruntime_CUDNN_HOME and onnxruntime_CUDA_HOME, assume they are the same + find_package(CUDAToolkit REQUIRED) if (WIN32) if(onnxruntime_CUDNN_HOME) list(APPEND onnxruntime_LINK_DIRS ${onnxruntime_CUDNN_HOME}/lib ${onnxruntime_CUDNN_HOME}/lib/x64) endif() - list(APPEND onnxruntime_LINK_DIRS ${onnxruntime_CUDA_HOME}/x64/lib64) else() if(onnxruntime_CUDNN_HOME) list(APPEND onnxruntime_LINK_DIRS ${onnxruntime_CUDNN_HOME}/lib ${onnxruntime_CUDNN_HOME}/lib64) endif() - list(APPEND onnxruntime_LINK_DIRS ${onnxruntime_CUDA_HOME}/lib64) endif() endif() diff --git a/cmake/maccatalyst_prepare_objects_for_prelink.py b/cmake/maccatalyst_prepare_objects_for_prelink.py new file mode 100644 index 0000000000000..34664b4e05237 --- /dev/null +++ b/cmake/maccatalyst_prepare_objects_for_prelink.py @@ -0,0 +1,72 @@ +#!/usr/bin/env python3 +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. + +import os +import shutil +import sys + + +# Note: This script is mainly used for sanity checking/validating the files in the .a library equal to the .o files +# in the source dir to handle the case of source files having duplicate names under different subdirectories for +# each onnxruntime library. (Only applicable when doing a Mac Catalyst build.) +def main(): + source_dir = sys.argv[1] + dest_dir = sys.argv[2] + files_from_static_lib = sys.argv[3] + files_from_source_dir = [] + for subdir, _, files in os.walk(source_dir): + for file_name in files: + if file_name.endswith(".o"): + files_from_source_dir.append(file_name.strip()) + dest_name_without_extension, _ = os.path.splitext(file_name) + counter = 0 + + dest_file = f"{dest_name_without_extension}.o" + while os.path.exists(os.path.join(dest_dir, dest_file)): + print("Duplicate file name from source: " + os.path.join(source_dir, subdir, file_name)) + counter += 1 + dest_file = f"{dest_name_without_extension}_{counter}.o" + print("Renamed file name in destination: " + os.path.join(dest_dir, dest_file)) + + destination_path = os.path.join(dest_dir, dest_file) + source_file = os.path.join(source_dir, subdir, file_name) + shutil.copy(source_file, destination_path) + + # Sanity check to ensure the number of .o object from the original cmake source directory matches with the number + # of .o files extracted from each .a onnxruntime library + file_lists_from_static_lib = [] + with open(files_from_static_lib) as file: + filenames = file.readlines() + for filename in filenames: + file_lists_from_static_lib.append(filename.strip()) + + sorted_list1 = sorted(file_lists_from_static_lib) + sorted_list2 = sorted(files_from_source_dir) + + if len(sorted_list1) != len(sorted_list2): + print( + "Caught a mismatch in the number of .o object files from the original cmake source directory: ", + len(sorted_list1), + "the number of .o files extracted from the static onnxruntime lib: ", + len(sorted_list2), + "for: ", + os.path.basename(source_dir), + ) + + if sorted_list1 == sorted_list2: + print( + "Sanity check passed: object files from original source directory matches with files extracted " + "from static library for: ", + os.path.basename(source_dir), + ) + else: + print( + "Error: Mismatch between object files from original source directory " + "and the .o files extracted from static library for: ", + os.path.basename(source_dir), + ) + + +if __name__ == "__main__": + main() diff --git a/cmake/onnxruntime.cmake b/cmake/onnxruntime.cmake index 2ead13e554197..e15c8a046dc20 100644 --- a/cmake/onnxruntime.cmake +++ b/cmake/onnxruntime.cmake @@ -281,7 +281,13 @@ endif() # Assemble the Apple static framework (iOS and macOS) if(onnxruntime_BUILD_APPLE_FRAMEWORK) - set(STATIC_FRAMEWORK_OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_BUILD_TYPE}-${CMAKE_OSX_SYSROOT}) + # when building for mac catalyst, the CMAKE_OSX_SYSROOT is set to MacOSX as well, to avoid duplication, + # we specify as `-macabi` in the name of the output static apple framework directory. + if (PLATFORM_NAME STREQUAL "macabi") + set(STATIC_FRAMEWORK_OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_BUILD_TYPE}-macabi) + else() + set(STATIC_FRAMEWORK_OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_BUILD_TYPE}-${CMAKE_OSX_SYSROOT}) + endif() # Setup the various directories required. Remove any existing ones so we start with a clean directory. set(STATIC_LIB_DIR ${CMAKE_CURRENT_BINARY_DIR}/static_libraries) @@ -299,18 +305,34 @@ if(onnxruntime_BUILD_APPLE_FRAMEWORK) # to enforce symbol visibility. doing it this way limits the symbols included from the .a files to symbols used # by the ORT .o files. - # If it's an onnxruntime library, extract .o files to a separate directory for each library to avoid any clashes - # with filenames (e.g. utils.o) + # If it's an onnxruntime library, extract .o files from the original cmake build path to a separate directory for + # each library to avoid any clashes with filenames (e.g. utils.o) foreach(_LIB ${onnxruntime_INTERNAL_LIBRARIES} ) GET_TARGET_PROPERTY(_LIB_TYPE ${_LIB} TYPE) if(_LIB_TYPE STREQUAL "STATIC_LIBRARY") set(CUR_STATIC_LIB_OBJ_DIR ${STATIC_LIB_TEMP_DIR}/$) add_custom_command(TARGET onnxruntime POST_BUILD COMMAND ${CMAKE_COMMAND} -E make_directory ${CUR_STATIC_LIB_OBJ_DIR}) - - add_custom_command(TARGET onnxruntime POST_BUILD - COMMAND ar ARGS -x $ - WORKING_DIRECTORY ${CUR_STATIC_LIB_OBJ_DIR}) + if (PLATFORM_NAME STREQUAL "macabi") + # There exists several duplicate names for source files under different subdirectories within + # each onnxruntime library. (e.g. onnxruntime/contrib_ops/cpu/element_wise_ops.o + # vs. onnxruntime/providers/core/cpu/math/element_wise_ops.o) + # In that case, using 'ar ARGS -x' to extract the .o files from .a lib would possibly cause duplicate naming files being overwritten + # and lead to missing undefined symbol error in the generated binary. + # So we use the below python script as a sanity check to do a recursive find of all .o files in ${CUR_TARGET_CMAKE_SOURCE_LIB_DIR} + # and verifies that matches the content of the .a, and then copy from the source dir. + # TODO: The copying action here isn't really necessary. For future fix, consider using the script extracts from the ar with the rename to potentially + # make both maccatalyst and other builds do the same thing. + set(CUR_TARGET_CMAKE_SOURCE_LIB_DIR ${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/${_LIB}.dir) + add_custom_command(TARGET onnxruntime POST_BUILD + COMMAND ar -t $ | grep "\.o$" > ${_LIB}.object_file_list.txt + COMMAND ${CMAKE_COMMAND} -E env python3 ${CMAKE_CURRENT_SOURCE_DIR}/maccatalyst_prepare_objects_for_prelink.py ${CUR_TARGET_CMAKE_SOURCE_LIB_DIR} ${CUR_STATIC_LIB_OBJ_DIR} ${CUR_STATIC_LIB_OBJ_DIR}/${_LIB}.object_file_list.txt + WORKING_DIRECTORY ${CUR_STATIC_LIB_OBJ_DIR}) + else() + add_custom_command(TARGET onnxruntime POST_BUILD + COMMAND ar ARGS -x $ + WORKING_DIRECTORY ${CUR_STATIC_LIB_OBJ_DIR}) + endif() endif() endforeach() diff --git a/cmake/onnxruntime_common.cmake b/cmake/onnxruntime_common.cmake index 6b8c2560b1714..fb56e3f3445d4 100644 --- a/cmake/onnxruntime_common.cmake +++ b/cmake/onnxruntime_common.cmake @@ -201,10 +201,6 @@ endif() if (RISCV64 OR ARM64 OR ARM OR X86 OR X64 OR X86_64) - if((WIN32 AND NOT CMAKE_CXX_STANDARD_LIBRARIES MATCHES kernel32.lib) OR ((ARM64 OR ARM) AND MSVC)) - # msvc compiler report syntax error with cpuinfo arm source files - # and cpuinfo does not have code for getting arm uarch info under windows - else() # Link cpuinfo if supported # Using it mainly in ARM with Android. # Its functionality in detecting x86 cpu features are lacking, so is support for Windows. @@ -212,7 +208,6 @@ if (RISCV64 OR ARM64 OR ARM OR X86 OR X64 OR X86_64) onnxruntime_add_include_to_target(onnxruntime_common cpuinfo::cpuinfo) list(APPEND onnxruntime_EXTERNAL_LIBRARIES cpuinfo::cpuinfo ${ONNXRUNTIME_CLOG_TARGET_NAME}) endif() - endif() endif() if (NOT onnxruntime_BUILD_SHARED_LIB) diff --git a/cmake/onnxruntime_graph.cmake b/cmake/onnxruntime_graph.cmake index 3f532ec2c3261..4d51325b8414e 100644 --- a/cmake/onnxruntime_graph.cmake +++ b/cmake/onnxruntime_graph.cmake @@ -7,8 +7,26 @@ file(GLOB_RECURSE onnxruntime_graph_src CONFIGURE_DEPENDS "${ONNXRUNTIME_ROOT}/core/graph/*.cc" ) -# create empty list for any excludes +# start with empty training srcs list +set(orttraining_graph_src) + +if (onnxruntime_ENABLE_TRAINING_OPS AND NOT onnxruntime_ENABLE_TRAINING) + set(orttraining_graph_src + "${ORTTRAINING_SOURCE_DIR}/core/graph/training_op_defs.cc" + "${ORTTRAINING_SOURCE_DIR}/core/graph/training_op_defs.h" + ) +endif() + +if (onnxruntime_ENABLE_TRAINING) + file(GLOB_RECURSE orttraining_graph_src CONFIGURE_DEPENDS + "${ORTTRAINING_SOURCE_DIR}/core/graph/*.h" + "${ORTTRAINING_SOURCE_DIR}/core/graph/*.cc" + ) +endif() + +# create empty lists for any excludes set(onnxruntime_graph_src_exclude_patterns) +set(orttraining_graph_src_exclude_patterns) if (onnxruntime_MINIMAL_BUILD) # remove schema registration support @@ -22,11 +40,18 @@ if (onnxruntime_MINIMAL_BUILD) "${ONNXRUNTIME_ROOT}/core/graph/contrib_ops/onnx_function_util.cc" "${ONNXRUNTIME_ROOT}/core/graph/contrib_ops/shape_inference_functions.h" "${ONNXRUNTIME_ROOT}/core/graph/contrib_ops/shape_inference_functions.cc" + "${ONNXRUNTIME_ROOT}/core/graph/dml_ops/dml_defs.h" + "${ONNXRUNTIME_ROOT}/core/graph/dml_ops/dml_defs.cc" "${ONNXRUNTIME_ROOT}/core/graph/function_template.h" "${ONNXRUNTIME_ROOT}/core/graph/function_utils.h" "${ONNXRUNTIME_ROOT}/core/graph/function_utils.cc" ) + list(APPEND orttraining_graph_src_exclude_patterns + "${ORTTRAINING_SOURCE_DIR}/core/graph/training_op_defs.h" + "${ORTTRAINING_SOURCE_DIR}/core/graph/training_op_defs.cc" + ) + # no Function support initially list(APPEND onnxruntime_graph_src_exclude_patterns "${ONNXRUNTIME_ROOT}/core/graph/function*" @@ -64,30 +89,12 @@ endif() file(GLOB onnxruntime_graph_src_exclude ${onnxruntime_graph_src_exclude_patterns}) list(REMOVE_ITEM onnxruntime_graph_src ${onnxruntime_graph_src_exclude}) -file(GLOB_RECURSE onnxruntime_ir_defs_src CONFIGURE_DEPENDS - "${ONNXRUNTIME_ROOT}/core/defs/*.cc" -) - -if (onnxruntime_ENABLE_TRAINING_OPS AND NOT onnxruntime_ENABLE_TRAINING) - set(orttraining_graph_src - "${ORTTRAINING_SOURCE_DIR}/core/graph/training_op_defs.cc" - "${ORTTRAINING_SOURCE_DIR}/core/graph/training_op_defs.h" - ) -endif() - -if (onnxruntime_ENABLE_TRAINING) - file(GLOB_RECURSE orttraining_graph_src CONFIGURE_DEPENDS - "${ORTTRAINING_SOURCE_DIR}/core/graph/*.h" - "${ORTTRAINING_SOURCE_DIR}/core/graph/*.cc" - ) -endif() - -set(onnxruntime_graph_lib_src ${onnxruntime_graph_src} ${onnxruntime_ir_defs_src}) if (onnxruntime_ENABLE_TRAINING_OPS) - list(APPEND onnxruntime_graph_lib_src ${orttraining_graph_src}) + file(GLOB orttraining_graph_src_exclude ${orttraining_graph_src_exclude_patterns}) + list(REMOVE_ITEM orttraining_graph_src ${orttraining_graph_src_exclude}) endif() -onnxruntime_add_static_library(onnxruntime_graph ${onnxruntime_graph_lib_src}) +onnxruntime_add_static_library(onnxruntime_graph ${onnxruntime_graph_src} ${orttraining_graph_src}) add_dependencies(onnxruntime_graph onnx_proto flatbuffers::flatbuffers) onnxruntime_add_include_to_target(onnxruntime_graph onnxruntime_common ${WIL_TARGET} onnx onnx_proto ${PROTOBUF_LIB} flatbuffers::flatbuffers safeint_interface Boost::mp11) @@ -120,7 +127,7 @@ endif() set_target_properties(onnxruntime_graph PROPERTIES FOLDER "ONNXRuntime") set_target_properties(onnxruntime_graph PROPERTIES LINKER_LANGUAGE CXX) -source_group(TREE ${REPO_ROOT} FILES ${onnxruntime_graph_src} ${onnxruntime_ir_defs_src}) +source_group(TREE ${REPO_ROOT} FILES ${onnxruntime_graph_src}) if (onnxruntime_ENABLE_TRAINING_OPS) source_group(TREE ${ORTTRAINING_ROOT} FILES ${orttraining_graph_src}) endif() diff --git a/cmake/onnxruntime_mlas.cmake b/cmake/onnxruntime_mlas.cmake index 17de2aa4aaea6..6b7d4402be8eb 100644 --- a/cmake/onnxruntime_mlas.cmake +++ b/cmake/onnxruntime_mlas.cmake @@ -631,6 +631,12 @@ if (WIN32) endif() endif() +if (PLATFORM_NAME STREQUAL "macabi") + # Needed for maccatalyst C compilation + # i.e. the flags below add "--target=x86_64-apple-ios14.0-macabi -ffunction-sections -fdata-sections" + target_compile_options(onnxruntime_mlas PRIVATE ${CMAKE_C_FLAGS}) +endif() + if (NOT onnxruntime_BUILD_SHARED_LIB) install(TARGETS onnxruntime_mlas ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} diff --git a/cmake/onnxruntime_providers_coreml.cmake b/cmake/onnxruntime_providers_coreml.cmake index c9f35e5337f9b..b8ebc4ca53239 100644 --- a/cmake/onnxruntime_providers_coreml.cmake +++ b/cmake/onnxruntime_providers_coreml.cmake @@ -70,8 +70,8 @@ list(FILTER coreml_proto_generated_srcs INCLUDE REGEX "\.pb\.(h|cc)$") source_group(TREE ${CMAKE_CURRENT_BINARY_DIR} PREFIX coreml_proto_generated FILES ${coreml_proto_generated_srcs}) # These are shared utils, -# TODO, move this to a separated lib when used by EPs other than NNAPI and CoreML -file(GLOB_RECURSE onnxruntime_providers_shared_utils_cc_srcs CONFIGURE_DEPENDS +# TODO, move this to a separate lib when used by EPs other than NNAPI and CoreML +file(GLOB onnxruntime_providers_shared_utils_cc_srcs CONFIGURE_DEPENDS "${ONNXRUNTIME_ROOT}/core/providers/shared/utils/utils.h" "${ONNXRUNTIME_ROOT}/core/providers/shared/utils/utils.cc" ) @@ -111,7 +111,7 @@ if(_enable_ML_PROGRAM) file(GLOB onnxruntime_providers_coreml_modelpackage_cc_srcs CONFIGURE_DEPENDS "${coremltools_SOURCE_DIR}/modelpackage/src/ModelPackage.?pp" - "${coremltools_SOURCE_DIR}/modelpackage/src/Utils/JsonMap.?pp" + "${coremltools_SOURCE_DIR}/modelpackage/src/utils/JsonMap.?pp" ) set(coremltools_srcs diff --git a/cmake/onnxruntime_providers_cuda.cmake b/cmake/onnxruntime_providers_cuda.cmake index 9887d615c92d7..1346a9ce968c6 100644 --- a/cmake/onnxruntime_providers_cuda.cmake +++ b/cmake/onnxruntime_providers_cuda.cmake @@ -122,7 +122,7 @@ endif() if(onnxruntime_ENABLE_CUDA_EP_INTERNAL_TESTS) # cuda_provider_interface.cc is removed from the object target: onnxruntime_providers_cuda_obj and - # add to the lib onnxruntime_providers_cuda separatedly. + # added to the lib onnxruntime_providers_cuda separately. # onnxruntime_providers_cuda_ut can share all the object files with onnxruntime_providers_cuda except cuda_provider_interface.cc. set(cuda_provider_interface_src ${ONNXRUNTIME_ROOT}/core/providers/cuda/cuda_provider_interface.cc) list(REMOVE_ITEM onnxruntime_providers_cuda_src ${cuda_provider_interface_src}) @@ -141,18 +141,22 @@ if (HAS_GUARD_CF) target_compile_options(${target} PRIVATE "$<$:SHELL:-Xcompiler /guard:cf>") endif() + if (HAS_QSPECTRE) target_compile_options(${target} PRIVATE "$<$:SHELL:-Xcompiler /Qspectre>") endif() + foreach(ORT_FLAG ${ORT_WARNING_FLAGS}) target_compile_options(${target} PRIVATE "$<$:SHELL:-Xcompiler \"${ORT_FLAG}\">") endforeach() + # CUDA 11.3+ supports parallel compilation # https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#options-for-guiding-compiler-driver-threads if (CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 11.3) option(onnxruntime_NVCC_THREADS "Number of threads that NVCC can use for compilation." 1) target_compile_options(${target} PRIVATE "$<$:SHELL:--threads \"${onnxruntime_NVCC_THREADS}\">") endif() + if (UNIX) target_compile_options(${target} PRIVATE "$<$:SHELL:-Xcompiler -Wno-reorder>" "$<$>:-Wno-reorder>") @@ -162,6 +166,13 @@ #mutex.cuh(91): warning C4834: discarding return value of function with 'nodiscard' attribute target_compile_options(${target} PRIVATE "$<$:SHELL:-Xcompiler /wd4834>") target_compile_options(${target} PRIVATE "$<$:SHELL:-Xcompiler /wd4127>") + if (MSVC) + # the VS warnings for 'Conditional Expression is Constant' are spurious as they don't handle multiple conditions + # e.g. `if (std::is_same_v && not_a_const)` will generate the warning even though constexpr cannot + # be used due to `&& not_a_const`. This affects too many places for it to be reasonable to disable at a finer + # granularity. + target_compile_options(${target} PRIVATE "$<$:/wd4127>") + endif() endif() onnxruntime_add_include_to_target(${target} onnxruntime_common onnxruntime_framework onnx onnx_proto ${PROTOBUF_LIB} flatbuffers::flatbuffers) @@ -178,9 +189,10 @@ add_dependencies(${target} onnxruntime_providers_shared ${onnxruntime_EXTERNAL_DEPENDENCIES}) if(onnxruntime_CUDA_MINIMAL) target_compile_definitions(${target} PRIVATE USE_CUDA_MINIMAL) - target_link_libraries(${target} PRIVATE ${ABSEIL_LIBS} ${ONNXRUNTIME_PROVIDERS_SHARED} Boost::mp11 safeint_interface) + target_link_libraries(${target} PRIVATE ${ABSEIL_LIBS} ${ONNXRUNTIME_PROVIDERS_SHARED} Boost::mp11 safeint_interface CUDA::cudart) else() - target_link_libraries(${target} PRIVATE cublasLt cublas cudnn curand cufft ${ABSEIL_LIBS} ${ONNXRUNTIME_PROVIDERS_SHARED} Boost::mp11 safeint_interface) + target_link_libraries(${target} PRIVATE CUDA::cublasLt CUDA::cublas cudnn CUDA::curand CUDA::cufft CUDA::cudart + ${ABSEIL_LIBS} ${ONNXRUNTIME_PROVIDERS_SHARED} Boost::mp11 safeint_interface) if(onnxruntime_CUDNN_HOME) target_include_directories(${target} PRIVATE ${onnxruntime_CUDNN_HOME}/include) target_link_directories(${target} PRIVATE ${onnxruntime_CUDNN_HOME}/lib) @@ -196,25 +208,24 @@ target_include_directories(${target} PRIVATE ${triton_kernel_header_dir}) target_link_libraries(${target} PUBLIC -Wl,--whole-archive ${triton_kernel_obj_file} -Wl,--no-whole-archive) # lib cuda needed by cuLaunchKernel - target_link_libraries(${target} PRIVATE cuda) + target_link_libraries(${target} PRIVATE CUDA::cuda_driver) endif() include(cutlass) - target_include_directories(${target} PRIVATE ${cutlass_SOURCE_DIR}/include ${cutlass_SOURCE_DIR}/examples) + target_include_directories(${target} PRIVATE ${cutlass_SOURCE_DIR}/include ${cutlass_SOURCE_DIR}/examples ${cutlass_SOURCE_DIR}/tools/util/include) - target_include_directories(${target} PRIVATE ${ONNXRUNTIME_ROOT} ${CMAKE_CURRENT_BINARY_DIR} ${eigen_INCLUDE_DIRS} ${TVM_INCLUDES} PUBLIC ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES}) + target_include_directories(${target} PRIVATE ${ONNXRUNTIME_ROOT} ${CMAKE_CURRENT_BINARY_DIR} ${eigen_INCLUDE_DIRS} ${TVM_INCLUDES} + PUBLIC ${CUDAToolkit_INCLUDE_DIRS}) # ${CMAKE_CURRENT_BINARY_DIR} is so that #include "onnxruntime_config.h" inside tensor_shape.h is found set_target_properties(${target} PROPERTIES LINKER_LANGUAGE CUDA) set_target_properties(${target} PROPERTIES FOLDER "ONNXRuntime") if (onnxruntime_ENABLE_CUDA_PROFILING) # configure cupti for cuda profiling - target_include_directories(${target} PRIVATE ${onnxruntime_CUDA_HOME}/extras/CUPTI/include) - target_link_directories(${target} PRIVATE ${onnxruntime_CUDA_HOME}/extras/CUPTI/lib64) - target_link_libraries(${target} PRIVATE cupti) + target_link_libraries(${target} PRIVATE CUDA::cupti) endif() - if (onnxruntime_ENABLE_NVTX_PROFILE AND NOT WIN32) - target_link_libraries(${target} PRIVATE nvToolsExt) + if (onnxruntime_ENABLE_NVTX_PROFILE) + target_link_libraries(${target} PRIVATE CUDA::nvtx3) endif() if (onnxruntime_ENABLE_TRAINING_OPS) diff --git a/cmake/onnxruntime_providers_nnapi.cmake b/cmake/onnxruntime_providers_nnapi.cmake index 5ac25a3b76efb..b718a976eb26f 100644 --- a/cmake/onnxruntime_providers_nnapi.cmake +++ b/cmake/onnxruntime_providers_nnapi.cmake @@ -49,12 +49,10 @@ endif() # These are shared utils, - # TODO, move this to a separated lib when used by EPs other than NNAPI and CoreML + # TODO, move this to a separate lib when used by EPs other than NNAPI and CoreML list(APPEND onnxruntime_provider_nnapi_cc_src_patterns "${ONNXRUNTIME_ROOT}/core/providers/shared/utils/utils.h" "${ONNXRUNTIME_ROOT}/core/providers/shared/utils/utils.cc" - "${ONNXRUNTIME_ROOT}/core/providers/shared/node_unit/node_unit.h" - "${ONNXRUNTIME_ROOT}/core/providers/shared/node_unit/node_unit.cc" ) file(GLOB onnxruntime_providers_nnapi_cc_srcs CONFIGURE_DEPENDS ${onnxruntime_provider_nnapi_cc_src_patterns}) @@ -81,4 +79,4 @@ LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} FRAMEWORK DESTINATION ${CMAKE_INSTALL_BINDIR}) - endif() \ No newline at end of file + endif() diff --git a/cmake/onnxruntime_providers_openvino.cmake b/cmake/onnxruntime_providers_openvino.cmake index e26f0bfc0b751..5876b2b5c448b 100644 --- a/cmake/onnxruntime_providers_openvino.cmake +++ b/cmake/onnxruntime_providers_openvino.cmake @@ -16,23 +16,19 @@ endif() # Header paths - find_package(InferenceEngine REQUIRED) - find_package(ngraph REQUIRED) - - if (OPENVINO_2022_1 OR OPENVINO_2022_2) find_package(OpenVINO REQUIRED COMPONENTS Runtime ONNX) - list (OV_20_LIBS openvino::frontend::onnx openvino::runtime) + if(OpenVINO_VERSION VERSION_LESS 2023.0) + message(FATAL_ERROR "OpenVINO 2023.0 and newer are supported. Please, latest OpenVINO release") endif() if (WIN32) unset(CMAKE_MAP_IMPORTED_CONFIG_RELWITHDEBINFO) endif() + list(APPEND OPENVINO_LIB_LIST openvino::frontend::onnx openvino::runtime ${PYTHON_LIBRARIES}) if ((DEFINED ENV{OPENCL_LIBS}) AND (DEFINED ENV{OPENCL_INCS})) add_definitions(-DIO_BUFFER_ENABLED=1) - list(APPEND OPENVINO_LIB_LIST $ENV{OPENCL_LIBS} ${OV_20_LIBS} ${InferenceEngine_LIBRARIES} ${NGRAPH_LIBRARIES} ngraph::onnx_importer ${PYTHON_LIBRARIES}) - else() - list(APPEND OPENVINO_LIB_LIST ${OV_20_LIBS} ${InferenceEngine_LIBRARIES} ${NGRAPH_LIBRARIES} ngraph::onnx_importer ${PYTHON_LIBRARIES}) + list(APPEND OPENVINO_LIB_LIST $ENV{OPENCL_LIBS}) endif() source_group(TREE ${ONNXRUNTIME_ROOT}/core FILES ${onnxruntime_providers_openvino_cc_srcs}) @@ -75,7 +71,14 @@ message(FATAL_ERROR "onnxruntime_providers_openvino unknown platform, need to specify shared library exports for it") endif() - install(TARGETS onnxruntime_providers_openvino - ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} - LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} - RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) \ No newline at end of file + if (CMAKE_OPENVINO_LIBRARY_INSTALL_DIR) + install(TARGETS onnxruntime_providers_openvino + ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} + LIBRARY DESTINATION ${CMAKE_OPENVINO_LIBRARY_INSTALL_DIR} + RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) + else() + install(TARGETS onnxruntime_providers_openvino + ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} + LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} + RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) + endif() diff --git a/cmake/onnxruntime_providers_qnn.cmake b/cmake/onnxruntime_providers_qnn.cmake index a93a06e960c81..b68d84c23bb32 100644 --- a/cmake/onnxruntime_providers_qnn.cmake +++ b/cmake/onnxruntime_providers_qnn.cmake @@ -4,12 +4,10 @@ add_compile_definitions(USE_QNN=1) # These are shared utils, - # TODO, move this to a separated lib when used by EPs other than QNN, NNAPI and CoreML - file(GLOB_RECURSE onnxruntime_providers_shared_utils_cc_srcs CONFIGURE_DEPENDS + # TODO, move to a separate lib when used by EPs other than QNN, NNAPI and CoreML + file(GLOB onnxruntime_providers_shared_utils_cc_srcs CONFIGURE_DEPENDS "${ONNXRUNTIME_ROOT}/core/providers/shared/utils/utils.h" "${ONNXRUNTIME_ROOT}/core/providers/shared/utils/utils.cc" - "${ONNXRUNTIME_ROOT}/core/providers/shared/node_unit/node_unit.h" - "${ONNXRUNTIME_ROOT}/core/providers/shared/node_unit/node_unit.cc" ) file(GLOB_RECURSE @@ -42,4 +40,4 @@ # ignore the warning unknown-pragmas on "pragma region" if(NOT MSVC) target_compile_options(onnxruntime_providers_qnn PRIVATE "-Wno-unknown-pragmas") - endif() \ No newline at end of file + endif() diff --git a/cmake/onnxruntime_providers_tensorrt.cmake b/cmake/onnxruntime_providers_tensorrt.cmake index 686a993de3a4a..15ffc29e79ff4 100644 --- a/cmake/onnxruntime_providers_tensorrt.cmake +++ b/cmake/onnxruntime_providers_tensorrt.cmake @@ -8,7 +8,7 @@ set(BUILD_LIBRARY_ONLY 1) add_definitions("-DONNX_ML=1") add_definitions("-DONNX_NAMESPACE=onnx") - set(CUDA_INCLUDE_DIRS ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES}) + set(CUDA_INCLUDE_DIRS ${CUDAToolkit_INCLUDE_DIRS}) set(TENSORRT_ROOT ${onnxruntime_TENSORRT_HOME}) set(OLD_CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) set(PROTOBUF_LIBRARY ${PROTOBUF_LIB}) @@ -58,7 +58,7 @@ URL_HASH SHA1=${DEP_SHA1_onnx_tensorrt} ) if (NOT CUDA_INCLUDE_DIR) - set(CUDA_INCLUDE_DIR ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES}) # onnx-tensorrt repo needs this variable to build + set(CUDA_INCLUDE_DIR ${CUDAToolkit_INCLUDE_DIRS}) # onnx-tensorrt repo needs this variable to build endif() # The onnx_tensorrt repo contains a test program, getSupportedAPITest, which doesn't support Windows. It uses # unistd.h. So we must exclude it from our build. onnxruntime_fetchcontent_makeavailable is for the purpose. @@ -102,11 +102,12 @@ onnxruntime_add_include_to_target(onnxruntime_providers_tensorrt onnxruntime_common onnx flatbuffers::flatbuffers Boost::mp11 safeint_interface) add_dependencies(onnxruntime_providers_tensorrt onnxruntime_providers_shared ${onnxruntime_EXTERNAL_DEPENDENCIES}) if (onnxruntime_USE_TENSORRT_BUILTIN_PARSER) - target_link_libraries(onnxruntime_providers_tensorrt PRIVATE ${trt_link_libs} cudart ${ONNXRUNTIME_PROVIDERS_SHARED} ${PROTOBUF_LIB} flatbuffers::flatbuffers Boost::mp11 safeint_interface ${ABSEIL_LIBS}) + target_link_libraries(onnxruntime_providers_tensorrt PRIVATE ${trt_link_libs} ${ONNXRUNTIME_PROVIDERS_SHARED} ${PROTOBUF_LIB} flatbuffers::flatbuffers Boost::mp11 safeint_interface ${ABSEIL_LIBS} PUBLIC CUDA::cudart) else() - target_link_libraries(onnxruntime_providers_tensorrt PRIVATE ${onnxparser_link_libs} ${trt_link_libs} cudart ${ONNXRUNTIME_PROVIDERS_SHARED} ${PROTOBUF_LIB} flatbuffers::flatbuffers ${ABSEIL_LIBS}) + target_link_libraries(onnxruntime_providers_tensorrt PRIVATE ${onnxparser_link_libs} ${trt_link_libs} ${ONNXRUNTIME_PROVIDERS_SHARED} ${PROTOBUF_LIB} flatbuffers::flatbuffers ${ABSEIL_LIBS} PUBLIC CUDA::cudart) endif() - target_include_directories(onnxruntime_providers_tensorrt PRIVATE ${ONNXRUNTIME_ROOT} ${CMAKE_CURRENT_BINARY_DIR} ${eigen_INCLUDE_DIRS} PUBLIC ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES}) + target_include_directories(onnxruntime_providers_tensorrt PRIVATE ${ONNXRUNTIME_ROOT} ${CMAKE_CURRENT_BINARY_DIR} ${eigen_INCLUDE_DIRS} + PUBLIC ${CUDAToolkit_INCLUDE_DIRS}) if(onnxruntime_CUDNN_HOME) target_include_directories(onnxruntime_providers_tensorrt PRIVATE ${onnxruntime_CUDNN_HOME}/include) endif() diff --git a/cmake/onnxruntime_providers_xnnpack.cmake b/cmake/onnxruntime_providers_xnnpack.cmake index 6342c24b2917e..796536ac9d12b 100644 --- a/cmake/onnxruntime_providers_xnnpack.cmake +++ b/cmake/onnxruntime_providers_xnnpack.cmake @@ -7,9 +7,6 @@ "${ONNXRUNTIME_INCLUDE_DIR}/core/providers/xnnpack/*.h" "${ONNXRUNTIME_ROOT}/core/providers/xnnpack/*.h" "${ONNXRUNTIME_ROOT}/core/providers/xnnpack/*.cc" - # utils for handling QDQ models - "${ONNXRUNTIME_ROOT}/core/providers/shared/node_unit/node_unit.h" - "${ONNXRUNTIME_ROOT}/core/providers/shared/node_unit/node_unit.cc" ) source_group(TREE ${REPO_ROOT} FILES ${onnxruntime_providers_xnnpack_cc_srcs}) diff --git a/cmake/onnxruntime_python.cmake b/cmake/onnxruntime_python.cmake index 3f20787e87425..23c6e5e430875 100644 --- a/cmake/onnxruntime_python.cmake +++ b/cmake/onnxruntime_python.cmake @@ -282,10 +282,7 @@ if (WIN32) get_filename_component(CUDNN_DLL_NAME ${CUDNN_DLL_PATH} NAME_WE) string(REPLACE "cudnn64_" "" CUDNN_VERSION "${CUDNN_DLL_NAME}") if(NOT onnxruntime_CUDA_VERSION) - message("Reading json file ${onnxruntime_CUDA_HOME}/version.json") - set(CUDA_SDK_JSON_FILE_PATH "${onnxruntime_CUDA_HOME}/version.json") - file(READ ${CUDA_SDK_JSON_FILE_PATH} CUDA_SDK_JSON_CONTENT) - string(JSON onnxruntime_CUDA_VERSION GET ${CUDA_SDK_JSON_CONTENT} "cuda" "version") + set(onnxruntime_CUDA_VERSION ${CUDAToolkit_VERSION}) message("onnxruntime_CUDA_VERSION=${onnxruntime_CUDA_VERSION}") endif() file(APPEND "${VERSION_INFO_FILE}" diff --git a/cmake/onnxruntime_rocm_hipify.cmake b/cmake/onnxruntime_rocm_hipify.cmake index d485abe6bb1a6..0051f241e4f9b 100644 --- a/cmake/onnxruntime_rocm_hipify.cmake +++ b/cmake/onnxruntime_rocm_hipify.cmake @@ -20,10 +20,6 @@ set(contrib_ops_excluded_files "bert/fastertransformer_decoder_attention/*" "bert/multihead_attention.cc" "bert/multihead_attention.h" - "bert/fast_gelu_impl.cu" - "bert/fast_gelu_impl.h" - "bert/fast_gelu.cc" - "bert/fast_gelu.h" "bert/relative_attn_bias.cc" "bert/relative_attn_bias.h" "bert/relative_attn_bias_impl.cu" @@ -44,12 +40,7 @@ set(contrib_ops_excluded_files "bert/packed_multihead_attention.cc" "bert/packed_multihead_attention_impl.h" "bert/packed_multihead_attention_impl.cu" - "diffusion/group_norm.cc" "diffusion/group_norm_impl.cu" - "diffusion/group_norm_impl.h" - "diffusion/group_norm_impl_kernel.cuh" - "diffusion/group_norm_common_base.h" - "diffusion/group_norm_common_base.cc" "diffusion/nhwc_conv.cc" "math/gemm_float8.cc" "math/gemm_float8.cu" @@ -69,6 +60,8 @@ set(contrib_ops_excluded_files "quantization/matmul_nbits.cc" "quantization/matmul_nbits.cuh" "quantization/matmul_nbits.cu" + "quantization/moe_quantization.h" + "quantization/moe_quantization.cc" "quantization/quantize_dequantize_linear.cc" "quantization/qordered_ops/qordered_attention_impl.cu" "quantization/qordered_ops/qordered_attention_impl.h" @@ -103,26 +96,18 @@ set(contrib_ops_excluded_files "bert/group_query_attention.cc" "bert/group_query_attention_impl.h" "bert/group_query_attention_impl.cu" + "collective/distributed_*" + "collective/shard*" ) -if (NOT onnxruntime_ENABLE_ATEN) - list(APPEND contrib_ops_excluded_files "aten_ops/aten_op.cc") -endif() if (NOT onnxruntime_USE_NCCL) # Those are string patterns to exclude. Do NOT use stars such as # collective/*.cc or *.h. list(APPEND contrib_ops_excluded_files "collective/nccl_kernels.cc") - list(APPEND contrib_ops_excluded_files "collective/sharded_moe.h") - list(APPEND contrib_ops_excluded_files "collective/sharded_moe.cc") - list(APPEND contrib_ops_excluded_files "collective/sharding.cc") - list(APPEND contrib_ops_excluded_files "collective/sharding_spec.cc") - list(APPEND contrib_ops_excluded_files "collective/distributed_matmul.cc") - list(APPEND contrib_ops_excluded_files "collective/distributed_slice.cc") - list(APPEND contrib_ops_excluded_files "collective/distributed_reshape.cc") - list(APPEND contrib_ops_excluded_files "collective/distributed_expand.cc") - list(APPEND contrib_ops_excluded_files "collective/distributed_reduce.cc") - list(APPEND contrib_ops_excluded_files "collective/distributed_unsqueeze.cc") - list(APPEND contrib_ops_excluded_files "collective/distributed_squeeze.cc") +endif() + +if (NOT onnxruntime_ENABLE_ATEN) + list(APPEND contrib_ops_excluded_files "aten_ops/aten_op.cc") endif() set(provider_excluded_files diff --git a/cmake/onnxruntime_unittests.cmake b/cmake/onnxruntime_unittests.cmake index 3ed695327c183..4a351dcf90d45 100644 --- a/cmake/onnxruntime_unittests.cmake +++ b/cmake/onnxruntime_unittests.cmake @@ -1,6 +1,6 @@ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. -if (${CMAKE_SYSTEM_NAME} STREQUAL "iOS") +if (IOS) find_package(XCTest REQUIRED) endif() @@ -18,7 +18,7 @@ function(AddTest) cmake_parse_arguments(_UT "DYN" "TARGET" "LIBS;SOURCES;DEPENDS;TEST_ARGS" ${ARGN}) list(REMOVE_DUPLICATES _UT_SOURCES) - if (${CMAKE_SYSTEM_NAME} STREQUAL "iOS") + if (IOS) onnxruntime_add_executable(${_UT_TARGET} ${TEST_SRC_DIR}/xctest/orttestmain.m) else() onnxruntime_add_executable(${_UT_TARGET} ${_UT_SOURCES}) @@ -67,7 +67,7 @@ function(AddTest) if(onnxruntime_USE_CUDA) #XXX: we should not need to do this. onnxruntime_test_all.exe should not have direct dependency on CUDA DLLs, # otherwise it will impact when CUDA DLLs can be unloaded. - target_link_libraries(${_UT_TARGET} PRIVATE cudart) + target_link_libraries(${_UT_TARGET} PRIVATE CUDA::cudart) endif() target_link_libraries(${_UT_TARGET} PRIVATE ${_UT_LIBS} GTest::gtest GTest::gmock ${onnxruntime_EXTERNAL_LIBRARIES}) endif() @@ -129,7 +129,7 @@ function(AddTest) endif() endif(onnxruntime_GENERATE_TEST_REPORTS) - if (${CMAKE_SYSTEM_NAME} STREQUAL "iOS") + if (IOS) # target_sources(${_UT_TARGET} PRIVATE ${TEST_SRC_DIR}/xctest/orttestmain.m) set_target_properties(${_UT_TARGET} PROPERTIES FOLDER "ONNXRuntimeTest" MACOSX_BUNDLE_BUNDLE_NAME ${_UT_TARGET} @@ -734,34 +734,37 @@ target_include_directories(onnxruntime_test_utils PUBLIC "${TEST_SRC_DIR}/util/i set_target_properties(onnxruntime_test_utils PROPERTIES FOLDER "ONNXRuntimeTest") source_group(TREE ${TEST_SRC_DIR} FILES ${onnxruntime_test_utils_src}) -set(onnx_test_runner_src_dir ${TEST_SRC_DIR}/onnx) -file(GLOB onnx_test_runner_common_srcs CONFIGURE_DEPENDS - ${onnx_test_runner_src_dir}/*.h - ${onnx_test_runner_src_dir}/*.cc) +if(NOT IOS) + set(onnx_test_runner_src_dir ${TEST_SRC_DIR}/onnx) + file(GLOB onnx_test_runner_common_srcs CONFIGURE_DEPENDS + ${onnx_test_runner_src_dir}/*.h + ${onnx_test_runner_src_dir}/*.cc) -list(REMOVE_ITEM onnx_test_runner_common_srcs ${onnx_test_runner_src_dir}/main.cc) + list(REMOVE_ITEM onnx_test_runner_common_srcs ${onnx_test_runner_src_dir}/main.cc) -onnxruntime_add_static_library(onnx_test_runner_common ${onnx_test_runner_common_srcs}) -if(MSVC) - target_compile_options(onnx_test_runner_common PRIVATE "$<$:SHELL:--compiler-options /utf-8>" - "$<$>:/utf-8>") -else() - target_compile_definitions(onnx_test_runner_common PUBLIC -DNSYNC_ATOMIC_CPP11) - target_include_directories(onnx_test_runner_common PRIVATE ${CMAKE_CURRENT_BINARY_DIR} ${ONNXRUNTIME_ROOT}) - onnxruntime_add_include_to_target(onnx_test_runner_common nsync::nsync_cpp) -endif() -if (MSVC AND NOT CMAKE_SIZEOF_VOID_P EQUAL 8) - #TODO: fix the warnings, they are dangerous - target_compile_options(onnx_test_runner_common PRIVATE "/wd4244") -endif() -onnxruntime_add_include_to_target(onnx_test_runner_common onnxruntime_common onnxruntime_framework - onnxruntime_test_utils onnx onnx_proto re2::re2 flatbuffers::flatbuffers Boost::mp11 safeint_interface) + onnxruntime_add_static_library(onnx_test_runner_common ${onnx_test_runner_common_srcs}) + if(MSVC) + target_compile_options(onnx_test_runner_common PRIVATE "$<$:SHELL:--compiler-options /utf-8>" + "$<$>:/utf-8>") + else() + target_compile_definitions(onnx_test_runner_common PUBLIC -DNSYNC_ATOMIC_CPP11) + target_include_directories(onnx_test_runner_common PRIVATE ${CMAKE_CURRENT_BINARY_DIR} ${ONNXRUNTIME_ROOT}) + onnxruntime_add_include_to_target(onnx_test_runner_common nsync::nsync_cpp) + endif() + if (MSVC AND NOT CMAKE_SIZEOF_VOID_P EQUAL 8) + #TODO: fix the warnings, they are dangerous + target_compile_options(onnx_test_runner_common PRIVATE "/wd4244") + endif() + onnxruntime_add_include_to_target(onnx_test_runner_common onnxruntime_common onnxruntime_framework + onnxruntime_test_utils onnx onnx_proto re2::re2 flatbuffers::flatbuffers Boost::mp11 safeint_interface) -add_dependencies(onnx_test_runner_common onnx_test_data_proto ${onnxruntime_EXTERNAL_DEPENDENCIES}) -target_include_directories(onnx_test_runner_common PRIVATE ${eigen_INCLUDE_DIRS} - ${CMAKE_CURRENT_BINARY_DIR} ${ONNXRUNTIME_ROOT}) + add_dependencies(onnx_test_runner_common onnx_test_data_proto ${onnxruntime_EXTERNAL_DEPENDENCIES}) + target_include_directories(onnx_test_runner_common PRIVATE ${eigen_INCLUDE_DIRS} + ${CMAKE_CURRENT_BINARY_DIR} ${ONNXRUNTIME_ROOT}) -set_target_properties(onnx_test_runner_common PROPERTIES FOLDER "ONNXRuntimeTest") + set_target_properties(onnx_test_runner_common PROPERTIES FOLDER "ONNXRuntimeTest") + set(onnx_test_runner_common_lib onnx_test_runner_common) +endif() set(all_tests ${onnxruntime_test_common_src} ${onnxruntime_test_ir_src} ${onnxruntime_test_optimizer_src} ${onnxruntime_test_framework_src} ${onnxruntime_test_providers_src} ${onnxruntime_test_quantiztion_src}) @@ -774,7 +777,15 @@ if (onnxruntime_ENABLE_CUDA_EP_INTERNAL_TESTS) onnxruntime_add_shared_library_module(onnxruntime_providers_cuda_ut ${onnxruntime_test_providers_cuda_ut_src} $) config_cuda_provider_shared_module(onnxruntime_providers_cuda_ut) onnxruntime_add_include_to_target(onnxruntime_providers_cuda_ut GTest::gtest GTest::gmock) + target_include_directories(onnxruntime_providers_cuda_ut PRIVATE ${ONNXRUNTIME_ROOT}/core/mickey) target_link_libraries(onnxruntime_providers_cuda_ut PRIVATE GTest::gtest GTest::gmock ${ONNXRUNTIME_MLAS_LIBS} onnxruntime_common) + if (MSVC) + # Cutlass code has an issue with the following: + # warning C4100: 'magic': unreferenced formal parameter + target_compile_options(onnxruntime_providers_cuda_ut PRIVATE "$<$:SHELL:--compiler-options /wd4100>" + "$<$>:/wd4100>") + endif() + list(APPEND onnxruntime_test_providers_dependencies onnxruntime_providers_cuda_ut) endif() @@ -819,6 +830,15 @@ if (CMAKE_SYSTEM_NAME STREQUAL "Emscripten") "${TEST_SRC_DIR}/providers/cpu/tensor/grid_sample_test.cc") endif() +if (CMAKE_SYSTEM_NAME STREQUAL "Emscripten" OR IOS) + # Because we do not run these model tests in our web or iOS CI build pipelines, and some test code uses C++17 + # filesystem functions that are not available in the iOS version we target. + message("Disable model tests in onnxruntime_test_all") + list(REMOVE_ITEM all_tests + "${TEST_SRC_DIR}/providers/cpu/model_tests.cc" + ) +endif() + set(test_all_args) if (onnxruntime_USE_TENSORRT) # TRT EP CI takes much longer time when updating to TRT 8.2 @@ -836,7 +856,7 @@ AddTest( TARGET onnxruntime_test_all SOURCES ${all_tests} ${onnxruntime_unittest_main_src} LIBS - onnx_test_runner_common ${onnxruntime_test_providers_libs} ${onnxruntime_test_common_libs} + ${onnx_test_runner_common_lib} ${onnxruntime_test_providers_libs} ${onnxruntime_test_common_libs} onnx_test_data_proto DEPENDS ${all_dependencies} TEST_ARGS ${test_all_args} @@ -874,7 +894,7 @@ endif() # the default logger tests conflict with the need to have an overall default logger # so skip in this type of target_compile_definitions(onnxruntime_test_all PUBLIC -DSKIP_DEFAULT_LOGGER_TESTS) -if (CMAKE_SYSTEM_NAME STREQUAL "iOS") +if (IOS) target_compile_definitions(onnxruntime_test_all_xc PUBLIC -DSKIP_DEFAULT_LOGGER_TESTS) endif() if(onnxruntime_RUN_MODELTEST_IN_DEBUG_MODE) @@ -987,7 +1007,9 @@ if (NOT onnxruntime_ENABLE_TRAINING_TORCH_INTEROP) if (MSVC OR ${CMAKE_SYSTEM_NAME} STREQUAL "Linux") file(GLOB QNN_LIB_FILES LIST_DIRECTORIES false "${onnxruntime_QNN_HOME}/lib/${QNN_ARCH_ABI}/*.so" "${onnxruntime_QNN_HOME}/lib/${QNN_ARCH_ABI}/*.dll") if (${QNN_ARCH_ABI} STREQUAL "aarch64-windows-msvc") - file(GLOB EXTRA_HTP_LIB LIST_DIRECTORIES false "${onnxruntime_QNN_HOME}/lib/hexagon-v68/unsigned/libQnnHtpV68Skel.so" "${onnxruntime_QNN_HOME}/lib/hexagon-v73/unsigned/libQnnHtpV73Skel.so") + file(GLOB EXTRA_HTP_LIB LIST_DIRECTORIES false "${onnxruntime_QNN_HOME}/lib/hexagon-v68/unsigned/libQnnHtpV68Skel.so" + "${onnxruntime_QNN_HOME}/lib/hexagon-v73/unsigned/libQnnHtpV73Skel.so" + "${onnxruntime_QNN_HOME}/lib/hexagon-v73/unsigned/libqnnhtpv73.cat") list(APPEND QNN_LIB_FILES ${EXTRA_HTP_LIB}) endif() message(STATUS "QNN lib files: " ${QNN_LIB_FILES}) @@ -1045,45 +1067,42 @@ if (onnxruntime_ENABLE_LANGUAGE_INTEROP_OPS) list(APPEND onnx_test_libs onnxruntime_language_interop onnxruntime_pyop) endif() -onnxruntime_add_executable(onnx_test_runner ${onnx_test_runner_src_dir}/main.cc) -if(MSVC) - target_compile_options(onnx_test_runner PRIVATE "$<$:SHELL:--compiler-options /utf-8>" - "$<$>:/utf-8>") -endif() -if(${CMAKE_SYSTEM_NAME} STREQUAL "iOS") - set_target_properties(onnx_test_runner PROPERTIES - XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED "NO" - ) -endif() -if (CMAKE_SYSTEM_NAME STREQUAL "Emscripten") - if (onnxruntime_ENABLE_WEBASSEMBLY_THREADS) - set_target_properties(onnx_test_runner PROPERTIES LINK_FLAGS "-s NODERAWFS=1 -s ALLOW_MEMORY_GROWTH=1 -s PROXY_TO_PTHREAD=1 -s EXIT_RUNTIME=1") - else() - set_target_properties(onnx_test_runner PROPERTIES LINK_FLAGS "-s NODERAWFS=1 -s ALLOW_MEMORY_GROWTH=1") - endif() -endif() +if (NOT IOS) + onnxruntime_add_executable(onnx_test_runner ${onnx_test_runner_src_dir}/main.cc) + if(MSVC) + target_compile_options(onnx_test_runner PRIVATE "$<$:SHELL:--compiler-options /utf-8>" + "$<$>:/utf-8>") + endif() + if (CMAKE_SYSTEM_NAME STREQUAL "Emscripten") + if (onnxruntime_ENABLE_WEBASSEMBLY_THREADS) + set_target_properties(onnx_test_runner PROPERTIES LINK_FLAGS "-s NODERAWFS=1 -s ALLOW_MEMORY_GROWTH=1 -s PROXY_TO_PTHREAD=1 -s EXIT_RUNTIME=1") + else() + set_target_properties(onnx_test_runner PROPERTIES LINK_FLAGS "-s NODERAWFS=1 -s ALLOW_MEMORY_GROWTH=1") + endif() + endif() -target_link_libraries(onnx_test_runner PRIVATE onnx_test_runner_common ${GETOPT_LIB_WIDE} ${onnx_test_libs} nlohmann_json::nlohmann_json) -target_include_directories(onnx_test_runner PRIVATE ${ONNXRUNTIME_ROOT}) -if (onnxruntime_USE_ROCM) - target_include_directories(onnx_test_runner PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/amdgpu/onnxruntime ${CMAKE_CURRENT_BINARY_DIR}/amdgpu/orttraining) -endif() -if (onnxruntime_ENABLE_TRAINING_TORCH_INTEROP) - target_link_libraries(onnx_test_runner PRIVATE Python::Python) -endif() -set_target_properties(onnx_test_runner PROPERTIES FOLDER "ONNXRuntimeTest") + target_link_libraries(onnx_test_runner PRIVATE onnx_test_runner_common ${GETOPT_LIB_WIDE} ${onnx_test_libs} nlohmann_json::nlohmann_json) + target_include_directories(onnx_test_runner PRIVATE ${ONNXRUNTIME_ROOT}) + if (onnxruntime_USE_ROCM) + target_include_directories(onnx_test_runner PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/amdgpu/onnxruntime ${CMAKE_CURRENT_BINARY_DIR}/amdgpu/orttraining) + endif() + if (onnxruntime_ENABLE_TRAINING_TORCH_INTEROP) + target_link_libraries(onnx_test_runner PRIVATE Python::Python) + endif() + set_target_properties(onnx_test_runner PROPERTIES FOLDER "ONNXRuntimeTest") -if (onnxruntime_USE_TVM) - if (WIN32) - target_link_options(onnx_test_runner PRIVATE "/STACK:4000000") - endif() -endif() + if (onnxruntime_USE_TVM) + if (WIN32) + target_link_options(onnx_test_runner PRIVATE "/STACK:4000000") + endif() + endif() -install(TARGETS onnx_test_runner - ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} - LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} - BUNDLE DESTINATION ${CMAKE_INSTALL_LIBDIR} - RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) + install(TARGETS onnx_test_runner + ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} + LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} + BUNDLE DESTINATION ${CMAKE_INSTALL_LIBDIR} + RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) +endif() if (NOT onnxruntime_ENABLE_TRAINING_TORCH_INTEROP) if(onnxruntime_BUILD_BENCHMARKS) @@ -1164,90 +1183,80 @@ endif() if (NOT onnxruntime_ENABLE_TRAINING_TORCH_INTEROP) - #perf test runner - set(onnxruntime_perf_test_src_dir ${TEST_SRC_DIR}/perftest) - set(onnxruntime_perf_test_src_patterns - "${onnxruntime_perf_test_src_dir}/*.cc" - "${onnxruntime_perf_test_src_dir}/*.h") + if(NOT IOS) + #perf test runner + set(onnxruntime_perf_test_src_dir ${TEST_SRC_DIR}/perftest) + set(onnxruntime_perf_test_src_patterns + "${onnxruntime_perf_test_src_dir}/*.cc" + "${onnxruntime_perf_test_src_dir}/*.h") - if(WIN32) - list(APPEND onnxruntime_perf_test_src_patterns - "${onnxruntime_perf_test_src_dir}/windows/*.cc" - "${onnxruntime_perf_test_src_dir}/windows/*.h" ) - else () - list(APPEND onnxruntime_perf_test_src_patterns - "${onnxruntime_perf_test_src_dir}/posix/*.cc" - "${onnxruntime_perf_test_src_dir}/posix/*.h" ) - endif() + if(WIN32) + list(APPEND onnxruntime_perf_test_src_patterns + "${onnxruntime_perf_test_src_dir}/windows/*.cc" + "${onnxruntime_perf_test_src_dir}/windows/*.h" ) + else () + list(APPEND onnxruntime_perf_test_src_patterns + "${onnxruntime_perf_test_src_dir}/posix/*.cc" + "${onnxruntime_perf_test_src_dir}/posix/*.h" ) + endif() - file(GLOB onnxruntime_perf_test_src CONFIGURE_DEPENDS - ${onnxruntime_perf_test_src_patterns} - ) - onnxruntime_add_executable(onnxruntime_perf_test ${onnxruntime_perf_test_src} ${ONNXRUNTIME_ROOT}/core/platform/path_lib.cc) - if(MSVC) - target_compile_options(onnxruntime_perf_test PRIVATE "$<$:SHELL:--compiler-options /utf-8>" + file(GLOB onnxruntime_perf_test_src CONFIGURE_DEPENDS + ${onnxruntime_perf_test_src_patterns} + ) + onnxruntime_add_executable(onnxruntime_perf_test ${onnxruntime_perf_test_src} ${ONNXRUNTIME_ROOT}/core/platform/path_lib.cc) + if(MSVC) + target_compile_options(onnxruntime_perf_test PRIVATE "$<$:SHELL:--compiler-options /utf-8>" "$<$>:/utf-8>") - endif() - target_include_directories(onnxruntime_perf_test PRIVATE ${onnx_test_runner_src_dir} ${ONNXRUNTIME_ROOT} + endif() + target_include_directories(onnxruntime_perf_test PRIVATE ${onnx_test_runner_src_dir} ${ONNXRUNTIME_ROOT} ${eigen_INCLUDE_DIRS} ${onnxruntime_graph_header} ${onnxruntime_exec_src_dir} ${CMAKE_CURRENT_BINARY_DIR}) - if (onnxruntime_USE_ROCM) - target_include_directories(onnxruntime_perf_test PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/amdgpu/onnxruntime ${CMAKE_CURRENT_BINARY_DIR}/amdgpu/orttraining) - endif() - if (WIN32) - target_compile_options(onnxruntime_perf_test PRIVATE ${disabled_warnings}) - if (NOT DEFINED SYS_PATH_LIB) - set(SYS_PATH_LIB shlwapi) + if (onnxruntime_USE_ROCM) + target_include_directories(onnxruntime_perf_test PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/amdgpu/onnxruntime ${CMAKE_CURRENT_BINARY_DIR}/amdgpu/orttraining) + endif() + if (WIN32) + target_compile_options(onnxruntime_perf_test PRIVATE ${disabled_warnings}) + if (NOT DEFINED SYS_PATH_LIB) + set(SYS_PATH_LIB shlwapi) + endif() endif() - endif() - if(${CMAKE_SYSTEM_NAME} STREQUAL "iOS") - set_target_properties(onnxruntime_perf_test PROPERTIES - XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED "NO" - ) - endif() - if (onnxruntime_BUILD_SHARED_LIB) - #It will dynamically link to onnxruntime. So please don't add onxruntime_graph/onxruntime_framework/... here. - #onnxruntime_common is kind of ok because it is thin, tiny and totally stateless. - set(onnxruntime_perf_test_libs + if (onnxruntime_BUILD_SHARED_LIB) + #It will dynamically link to onnxruntime. So please don't add onxruntime_graph/onxruntime_framework/... here. + #onnxruntime_common is kind of ok because it is thin, tiny and totally stateless. + set(onnxruntime_perf_test_libs onnx_test_runner_common onnxruntime_test_utils onnxruntime_common onnxruntime onnxruntime_flatbuffers onnx_test_data_proto ${onnxruntime_EXTERNAL_LIBRARIES} ${GETOPT_LIB_WIDE} ${SYS_PATH_LIB} ${CMAKE_DL_LIBS}) - if(NOT WIN32) - list(APPEND onnxruntime_perf_test_libs nsync::nsync_cpp) - if(onnxruntime_USE_SNPE) - list(APPEND onnxruntime_perf_test_libs onnxruntime_providers_snpe) + if(NOT WIN32) + list(APPEND onnxruntime_perf_test_libs nsync::nsync_cpp) + if(onnxruntime_USE_SNPE) + list(APPEND onnxruntime_perf_test_libs onnxruntime_providers_snpe) + endif() endif() + if (CMAKE_SYSTEM_NAME STREQUAL "Android") + list(APPEND onnxruntime_perf_test_libs ${android_shared_libs}) + endif() + target_link_libraries(onnxruntime_perf_test PRIVATE ${onnxruntime_perf_test_libs} Threads::Threads) + if(WIN32) + target_link_libraries(onnxruntime_perf_test PRIVATE debug dbghelp advapi32) + endif() + else() + target_link_libraries(onnxruntime_perf_test PRIVATE onnx_test_runner_common ${GETOPT_LIB_WIDE} ${onnx_test_libs}) endif() - if (CMAKE_SYSTEM_NAME STREQUAL "Android") - list(APPEND onnxruntime_perf_test_libs ${android_shared_libs}) - endif() - target_link_libraries(onnxruntime_perf_test PRIVATE ${onnxruntime_perf_test_libs} Threads::Threads) - if(WIN32) - target_link_libraries(onnxruntime_perf_test PRIVATE debug dbghelp advapi32) - endif() - if(tensorflow_C_PACKAGE_PATH) - target_include_directories(onnxruntime_perf_test PRIVATE ${tensorflow_C_PACKAGE_PATH}/include) - target_link_directories(onnxruntime_perf_test PRIVATE ${tensorflow_C_PACKAGE_PATH}/lib) - target_link_libraries(onnxruntime_perf_test PRIVATE tensorflow) - target_compile_definitions(onnxruntime_perf_test PRIVATE HAVE_TENSORFLOW) - endif() - else() - target_link_libraries(onnxruntime_perf_test PRIVATE onnx_test_runner_common ${GETOPT_LIB_WIDE} ${onnx_test_libs}) - endif() - set_target_properties(onnxruntime_perf_test PROPERTIES FOLDER "ONNXRuntimeTest") + set_target_properties(onnxruntime_perf_test PROPERTIES FOLDER "ONNXRuntimeTest") - if (onnxruntime_ENABLE_LANGUAGE_INTEROP_OPS AND NOT onnxruntime_BUILD_SHARED_LIB) - target_link_libraries(onnxruntime_perf_test PRIVATE onnxruntime_language_interop onnxruntime_pyop) - endif() + if (onnxruntime_ENABLE_LANGUAGE_INTEROP_OPS AND NOT onnxruntime_BUILD_SHARED_LIB) + target_link_libraries(onnxruntime_perf_test PRIVATE onnxruntime_language_interop onnxruntime_pyop) + endif() - if (onnxruntime_USE_TVM) - if (WIN32) - target_link_options(onnxruntime_perf_test PRIVATE "/STACK:4000000") + if (onnxruntime_USE_TVM) + if (WIN32) + target_link_options(onnxruntime_perf_test PRIVATE "/STACK:4000000") + endif() endif() endif() - # shared lib if (onnxruntime_BUILD_SHARED_LIB) onnxruntime_add_static_library(onnxruntime_mocked_allocator ${TEST_SRC_DIR}/util/test_allocator.cc) @@ -1268,7 +1277,7 @@ if (NOT onnxruntime_ENABLE_TRAINING_TORCH_INTEROP) list(APPEND onnxruntime_shared_lib_test_LIBS cpuinfo) endif() if (onnxruntime_USE_CUDA) - list(APPEND onnxruntime_shared_lib_test_LIBS cudart) + list(APPEND onnxruntime_shared_lib_test_LIBS CUDA::cudart) endif() if (onnxruntime_USE_ROCM) list(APPEND onnxruntime_shared_lib_test_LIBS hip::host) @@ -1302,7 +1311,7 @@ if (NOT onnxruntime_ENABLE_TRAINING_TORCH_INTEROP) target_compile_definitions(onnxruntime_shared_lib_test PRIVATE USE_DUMMY_EXA_DEMANGLE=1) endif() - if (CMAKE_SYSTEM_NAME STREQUAL "iOS") + if (IOS) add_custom_command( TARGET onnxruntime_shared_lib_test POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy_directory @@ -1389,7 +1398,7 @@ if (NOT onnxruntime_ENABLE_TRAINING_TORCH_INTEROP) target_compile_options(onnxruntime_mlas_test PRIVATE "$<$:SHELL:--compiler-options /wd26426>" "$<$>:/wd26426>") endif() - if(${CMAKE_SYSTEM_NAME} STREQUAL "iOS") + if(IOS) set_target_properties(onnxruntime_mlas_test PROPERTIES XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED "NO" ) @@ -1590,7 +1599,7 @@ if (NOT CMAKE_SYSTEM_NAME STREQUAL "Emscripten") DEPENDS ${all_dependencies} ) - if (CMAKE_SYSTEM_NAME STREQUAL "iOS") + if (IOS) add_custom_command( TARGET onnxruntime_customopregistration_test POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy_directory diff --git a/cmake/patches/abseil/absl_windows.patch b/cmake/patches/abseil/absl_windows.patch index 66ef0c5125a74..584c49d612293 100644 --- a/cmake/patches/abseil/absl_windows.patch +++ b/cmake/patches/abseil/absl_windows.patch @@ -25,17 +25,91 @@ index a6efc98e..8c4de8e7 100644 "/wd4800", ] diff --git a/absl/copts/copts.py b/absl/copts/copts.py -index 0d6c1ec3..75fd935f 100644 +index e6e11949..0aa7d868 100644 --- a/absl/copts/copts.py +++ b/absl/copts/copts.py -@@ -132,10 +132,6 @@ COPT_VARS = { - "/wd4068", # unknown pragma - # qualifier applied to function type has no meaning; ignored - "/wd4180", -- # conversion from 'type1' to 'type2', possible loss of data -- "/wd4244", -- # conversion from 'size_t' to 'type', possible loss of data -- "/wd4267", - # The decorated name was longer than the compiler limit - "/wd4503", - # forcing value to bool 'true' or 'false' (performance warning) +@@ -115,10 +115,6 @@ MSVC_WARNING_FLAGS = [ + "/wd4068", # unknown pragma + # qualifier applied to function type has no meaning; ignored + "/wd4180", +- # conversion from 'type1' to 'type2', possible loss of data +- "/wd4244", +- # conversion from 'size_t' to 'type', possible loss of data +- "/wd4267", + # The decorated name was longer than the compiler limit + "/wd4503", + # forcing value to bool 'true' or 'false' (performance warning) +diff --git a/absl/debugging/symbolize_win32.inc b/absl/debugging/symbolize_win32.inc +index 53a099a1..34d210d6 100644 +--- a/absl/debugging/symbolize_win32.inc ++++ b/absl/debugging/symbolize_win32.inc +@@ -35,15 +35,15 @@ ABSL_NAMESPACE_BEGIN + + static HANDLE process = NULL; + +-void InitializeSymbolizer(const char*) { +- if (process != nullptr) { +- return; +- } ++namespace { ++void InitializeSymbolizerImpl() { ++ + process = GetCurrentProcess(); + + // Symbols are not loaded until a reference is made requiring the + // symbols be loaded. This is the fastest, most efficient way to use + // the symbol handler. ++ + SymSetOptions(SYMOPT_DEFERRED_LOADS | SYMOPT_UNDNAME); + if (!SymInitialize(process, nullptr, true)) { + // GetLastError() returns a Win32 DWORD, but we assign to +@@ -54,6 +54,36 @@ void InitializeSymbolizer(const char*) { + } + } + ++bool LookupAndInitialize(const void* pc, SYMBOL_INFO* symbol) { ++ auto hProcess = (process != NULL) ? process : GetCurrentProcess(); ++ if (SymFromAddr(hProcess, reinterpret_cast(pc), nullptr, symbol) != TRUE) { ++ if (GetLastError() == ERROR_INVALID_HANDLE && process == NULL) { ++ InitializeSymbolizerImpl(); ++ if (SymFromAddr(process, reinterpret_cast(pc), nullptr, symbol) != TRUE) { ++ return false; ++ } ++ } else { ++ return false; ++ } ++ return false; ++ } ++ return true; ++} ++} ++ ++void InitializeSymbolizer(const char*) { ++ if (process != nullptr) { ++ return; ++ } ++ ++ alignas(SYMBOL_INFO) char buf[sizeof(SYMBOL_INFO) + MAX_SYM_NAME]; ++ SYMBOL_INFO* symbol = reinterpret_cast(buf); ++ symbol->SizeOfStruct = sizeof(SYMBOL_INFO); ++ symbol->MaxNameLen = MAX_SYM_NAME; ++ ++ static_cast(LookupAndInitialize(reinterpret_cast(&InitializeSymbolizer), symbol)); ++} ++ + bool Symbolize(const void* pc, char* out, int out_size) { + if (out_size <= 0) { + return false; +@@ -62,9 +92,11 @@ bool Symbolize(const void* pc, char* out, int out_size) { + SYMBOL_INFO* symbol = reinterpret_cast(buf); + symbol->SizeOfStruct = sizeof(SYMBOL_INFO); + symbol->MaxNameLen = MAX_SYM_NAME; +- if (!SymFromAddr(process, reinterpret_cast(pc), nullptr, symbol)) { ++ ++ if(!LookupAndInitialize(pc, symbol)) { + return false; + } ++ + const size_t out_size_t = static_cast(out_size); + strncpy(out, symbol->Name, out_size_t); + if (out[out_size_t - 1] != '\0') { diff --git a/cmake/patches/cpuinfo/9bb12d342fd9479679d505d93a478a6f9cd50a47.patch b/cmake/patches/cpuinfo/9bb12d342fd9479679d505d93a478a6f9cd50a47.patch new file mode 100644 index 0000000000000..afb19a45ce0f4 --- /dev/null +++ b/cmake/patches/cpuinfo/9bb12d342fd9479679d505d93a478a6f9cd50a47.patch @@ -0,0 +1,22 @@ +diff --git a/include/cpuinfo.h b/include/cpuinfo.h +index c46b65e..8b83a64 100644 +--- a/include/cpuinfo.h ++++ b/include/cpuinfo.h +@@ -18,7 +18,7 @@ + #define CPUINFO_ARCH_X86 1 + #endif + +-#if defined(__x86_64__) || defined(__x86_64) || defined(_M_X64) || defined(_M_AMD64) ++#if defined(__x86_64__) || (defined(_M_X64) && !defined(_M_ARM64EC)) || (defined(_M_AMD64) && !defined(_M_ARM64EC)) + #define CPUINFO_ARCH_X86_64 1 + #endif + +@@ -26,7 +26,7 @@ + #define CPUINFO_ARCH_ARM 1 + #endif + +-#if defined(__aarch64__) || defined(_M_ARM64) ++#if defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC) + #define CPUINFO_ARCH_ARM64 1 + #endif + diff --git a/cmake/patches/flatbuffers/flatbuffers.patch b/cmake/patches/flatbuffers/flatbuffers.patch index f141d358c54b6..fbe8db37ecb0e 100644 --- a/cmake/patches/flatbuffers/flatbuffers.patch +++ b/cmake/patches/flatbuffers/flatbuffers.patch @@ -2,35 +2,11 @@ diff --git a/CMakeLists.txt b/CMakeLists.txt index 3987eac9..5e5462f1 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt -@@ -223,7 +223,7 @@ elseif(CMAKE_COMPILER_IS_GNUCXX) - "${CMAKE_CXX_FLAGS} -std=c++0x") - endif(CYGWIN) - set(CMAKE_CXX_FLAGS -- "${CMAKE_CXX_FLAGS} -Wall -pedantic -Werror -Wextra -Werror=shadow") -+ "${CMAKE_CXX_FLAGS} -Wall -pedantic -Wextra -Werror=shadow -Wno-error=stringop-overflow") - set(FLATBUFFERS_PRIVATE_CXX_FLAGS "-Wold-style-cast") - if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.4) - if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 7.0) -diff --git a/src/idl_gen_rust.cpp b/src/idl_gen_rust.cpp -index 55b8439b..dc03e8a8 100644 ---- a/src/idl_gen_rust.cpp -+++ b/src/idl_gen_rust.cpp -@@ -406,7 +406,8 @@ class RustGenerator : public BaseGenerator { - // example: f(A, D::E) -> super::D::E - // does not include leaf object (typically a struct type). - -- size_t i = 0; -+ // fix unused but set variable warning -+ //size_t i = 0; - std::stringstream stream; - - auto s = src->components.begin(); -@@ -417,7 +418,7 @@ class RustGenerator : public BaseGenerator { - if (*s != *d) { break; } - ++s; - ++d; -- ++i; -+ //++i; - } - - for (; s != src->components.end(); ++s) { stream << "super::"; } +@@ -279,5 +279,5 @@ + # Append FLATBUFFERS_CXX_FLAGS to CMAKE_CXX_FLAGS. + if(DEFINED FLATBUFFERS_CXX_FLAGS) + message(STATUS "extend CXX_FLAGS with ${FLATBUFFERS_CXX_FLAGS}") +- set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLATBUFFERS_CXX_FLAGS}") ++ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLATBUFFERS_CXX_FLAGS} -Wno-error=stringop-overflow") + endif() + message(STATUS "CMAKE_CXX_FLAGS: ${CMAKE_CXX_FLAGS}") diff --git a/cmake/patches/neural_speed/150e7527d5286ddd3a995c228dedf8d76a7a86bc.patch b/cmake/patches/neural_speed/150e7527d5286ddd3a995c228dedf8d76a7a86bc.patch new file mode 100644 index 0000000000000..e503a512a74ff --- /dev/null +++ b/cmake/patches/neural_speed/150e7527d5286ddd3a995c228dedf8d76a7a86bc.patch @@ -0,0 +1,30 @@ +diff --git a/bestla/bestla/bestla_prologue_b.h b/bestla/bestla/bestla_prologue_b.h +index 99f3ccc..a11de9d 100644 +--- a/bestla/bestla/bestla_prologue_b.h ++++ b/bestla/bestla/bestla_prologue_b.h +@@ -456,9 +456,8 @@ class WeightKBlockNInteger { + auto tmpscales = tmp; + auto tmpzeropoints = reinterpret_cast(tmpscales + N * blks); + if (scales) { +- for (size_t i = 0; i < N * blks; i += 2) { ++ for (size_t i = 0; i < N * blks; i ++) { + tmpscales[i] = scales[i] / 16; +- tmpscales[i + 1] = scales[i + 1] / 16; + } + } + if (zero_points) { +diff --git a/bestla/bestla/kernel_avx512f.h b/bestla/bestla/kernel_avx512f.h +index 6783ee8..59822e5 100644 +--- a/bestla/bestla/kernel_avx512f.h ++++ b/bestla/bestla/kernel_avx512f.h +@@ -673,8 +673,8 @@ inline BTLA_CODE decompress_kblock_s3_s8fp(utils::bit2x4* bit2ptr, utils::bit1x8 + zmm1 = _mm512_sllv_epi32(zmm1, zmm_shift); // int3_clip => int8 + zmm2 = _mm512_sllv_epi32(zmm2, zmm_shift); // int3_clip => int8 + +- _mm512_storeu_epi8((__m512i*)dst, zmm1); +- _mm512_storeu_epi8((__m512i*)(dst + 64), zmm2); ++ _mm512_storeu_si512((__m512i*)dst, zmm1); ++ _mm512_storeu_si512((__m512i*)(dst + 64), zmm2); + }; + + assert(head_ignore_num % 8 == 0); diff --git a/cmake/wcos_rules_override.cmake b/cmake/wcos_rules_override.cmake index f3d8093629a42..ec2303b073d5e 100644 --- a/cmake/wcos_rules_override.cmake +++ b/cmake/wcos_rules_override.cmake @@ -1,2 +1,2 @@ -set(CMAKE_C_STANDARD_LIBRARIES_INIT onecoreuap_apiset.lib) -set(CMAKE_CXX_STANDARD_LIBRARIES_INIT onecoreuap_apiset.lib) +set(CMAKE_C_STANDARD_LIBRARIES_INIT onecoreuap.lib) +set(CMAKE_CXX_STANDARD_LIBRARIES_INIT onecoreuap.lib) diff --git a/cmake/winml.cmake b/cmake/winml.cmake index 268ee3960e75a..d74250b962628 100644 --- a/cmake/winml.cmake +++ b/cmake/winml.cmake @@ -836,6 +836,13 @@ if (winml_is_inbox) target_include_directories(${new_target} PRIVATE ${include_directories}) target_link_libraries(${new_target} PRIVATE ${link_libraries}) target_link_options(${new_target} PRIVATE ${link_options}) + + # Attempt to copy linker flags + get_target_property(link_flags ${target} LINK_FLAGS) + + if (NOT link_flags MATCHES ".*NOTFOUND") + set_property(TARGET ${new_target} PROPERTY LINK_FLAGS "${link_flags}") + endif() endfunction() if (WAI_ARCH STREQUAL x64 OR WAI_ARCH STREQUAL arm64) diff --git a/csharp/src/Microsoft.ML.OnnxRuntime/NativeMethods.shared.cs b/csharp/src/Microsoft.ML.OnnxRuntime/NativeMethods.shared.cs index 4128524b30483..8a8426a0b3054 100644 --- a/csharp/src/Microsoft.ML.OnnxRuntime/NativeMethods.shared.cs +++ b/csharp/src/Microsoft.ML.OnnxRuntime/NativeMethods.shared.cs @@ -362,6 +362,7 @@ static NativeMethods() OrtDisableMemPattern = (DOrtDisableMemPattern)Marshal.GetDelegateForFunctionPointer(api_.DisableMemPattern, typeof(DOrtDisableMemPattern)); OrtEnableCpuMemArena = (DOrtEnableCpuMemArena)Marshal.GetDelegateForFunctionPointer(api_.EnableCpuMemArena, typeof(DOrtEnableCpuMemArena)); OrtDisableCpuMemArena = (DOrtDisableCpuMemArena)Marshal.GetDelegateForFunctionPointer(api_.DisableCpuMemArena, typeof(DOrtDisableCpuMemArena)); + OrtDisablePerSessionThreads = (DOrtDisablePerSessionThreads)Marshal.GetDelegateForFunctionPointer(api_.DisablePerSessionThreads, typeof(DOrtDisablePerSessionThreads)); OrtSetSessionLogId = (DOrtSetSessionLogId)Marshal.GetDelegateForFunctionPointer(api_.SetSessionLogId, typeof(DOrtSetSessionLogId)); OrtSetSessionLogVerbosityLevel = (DOrtSetSessionLogVerbosityLevel)Marshal.GetDelegateForFunctionPointer(api_.SetSessionLogVerbosityLevel, typeof(DOrtSetSessionLogVerbosityLevel)); OrtSetSessionLogSeverityLevel = (DOrtSetSessionLogSeverityLevel)Marshal.GetDelegateForFunctionPointer(api_.SetSessionLogSeverityLevel, typeof(DOrtSetSessionLogSeverityLevel)); @@ -992,6 +993,10 @@ IntPtr[] outputValues /* An array of output value pointers. Array must be alloca public delegate IntPtr /*(OrtStatus*)*/ DOrtDisableCpuMemArena(IntPtr /* OrtSessionOptions* */ options); public static DOrtDisableCpuMemArena OrtDisableCpuMemArena; + [UnmanagedFunctionPointer(CallingConvention.Winapi)] + public delegate IntPtr /*(OrtStatus*)*/ DOrtDisablePerSessionThreads(IntPtr /* OrtSessionOptions* */ options); + public static DOrtDisablePerSessionThreads OrtDisablePerSessionThreads; + [UnmanagedFunctionPointer(CallingConvention.Winapi)] public delegate IntPtr /*(OrtStatus*)*/ DOrtSetSessionLogId(IntPtr /* OrtSessionOptions* */ options, byte[] /* const char* */ logId); public static DOrtSetSessionLogId OrtSetSessionLogId; diff --git a/csharp/src/Microsoft.ML.OnnxRuntime/SessionOptions.shared.cs b/csharp/src/Microsoft.ML.OnnxRuntime/SessionOptions.shared.cs index 7a68246c9b67a..30d005b3c4236 100644 --- a/csharp/src/Microsoft.ML.OnnxRuntime/SessionOptions.shared.cs +++ b/csharp/src/Microsoft.ML.OnnxRuntime/SessionOptions.shared.cs @@ -696,6 +696,15 @@ public bool EnableCpuMemArena } private bool _enableCpuMemArena = true; + /// + /// Disables the per session threads. Default is true. + /// This makes all sessions in the process use a global TP. + /// + public void DisablePerSessionThreads() + { + NativeApiStatus.VerifySuccess(NativeMethods.OrtDisablePerSessionThreads(handle)); + } + /// /// Log Id to be used for the session. Default is empty string. /// diff --git a/csharp/test/Microsoft.ML.OnnxRuntime.Tests.Common/InferenceTest.cs b/csharp/test/Microsoft.ML.OnnxRuntime.Tests.Common/InferenceTest.cs index fd8feda359f90..d6a6b9627f418 100644 --- a/csharp/test/Microsoft.ML.OnnxRuntime.Tests.Common/InferenceTest.cs +++ b/csharp/test/Microsoft.ML.OnnxRuntime.Tests.Common/InferenceTest.cs @@ -55,6 +55,9 @@ public void TestSessionOptions() Assert.Equal(0, opt.InterOpNumThreads); Assert.Equal(GraphOptimizationLevel.ORT_ENABLE_ALL, opt.GraphOptimizationLevel); + // No get, so no verify + opt.DisablePerSessionThreads(); + // try setting options opt.ExecutionMode = ExecutionMode.ORT_PARALLEL; Assert.Equal(ExecutionMode.ORT_PARALLEL, opt.ExecutionMode); @@ -98,7 +101,7 @@ public void TestSessionOptions() Assert.Contains("[ErrorCode:InvalidArgument] Config key is empty", ex.Message); // SessionOptions.RegisterOrtExtensions can be manually tested by referencing the - // Microsoft.ML.OnnxRuntime.Extensions nuget package. After that is done, this should not throw. + // Microsoft.ML.OnnxRuntime.Extensions nuget package. After that is done, this should not throw. ex = Assert.Throws(() => { opt.RegisterOrtExtensions(); }); Assert.Contains("Microsoft.ML.OnnxRuntime.Extensions NuGet package must be referenced", ex.Message); diff --git a/csharp/test/Microsoft.ML.OnnxRuntime.Tests.NetCoreApp/InferenceTest.netcore.cs b/csharp/test/Microsoft.ML.OnnxRuntime.Tests.NetCoreApp/InferenceTest.netcore.cs index 715aed7e1d64f..7f3d5d6624b07 100644 --- a/csharp/test/Microsoft.ML.OnnxRuntime.Tests.NetCoreApp/InferenceTest.netcore.cs +++ b/csharp/test/Microsoft.ML.OnnxRuntime.Tests.NetCoreApp/InferenceTest.netcore.cs @@ -145,7 +145,7 @@ private void TestCUDAProviderOptions() private void CanRunInferenceOnAModelWithTensorRT() { string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx"); - + int deviceId = 0; string deviceIdStr = System.Environment.GetEnvironmentVariable("ONNXRUNTIME_TEST_GPU_DEVICE_ID"); if (!string.IsNullOrEmpty(deviceIdStr) && int.TryParse(deviceIdStr, out int parsedValue) && parsedValue >= 0) diff --git a/csharp/tools/MauiModelTester/MauiModelTester.csproj b/csharp/tools/MauiModelTester/MauiModelTester.csproj index a374c2933ce8f..39e688ce6c1b8 100644 --- a/csharp/tools/MauiModelTester/MauiModelTester.csproj +++ b/csharp/tools/MauiModelTester/MauiModelTester.csproj @@ -1,8 +1,8 @@  - net6.0-android;net6.0-ios - $(TargetFrameworks);net6.0-windows10.0.19041.0 + net8.0-ios;net8.0-android34.0 + $(TargetFrameworks);net8.0-windows10.0.19041.0 Exe MauiModelTester true @@ -21,7 +21,7 @@ 1 12.0 - 21.0 + 29.0 10.0.17763.0 10.0.17763.0 true diff --git a/csharp/tools/MauiModelTester/Platforms/Android/AndroidManifest.xml b/csharp/tools/MauiModelTester/Platforms/Android/AndroidManifest.xml index cc320dab474a0..2ef2296d7441f 100644 --- a/csharp/tools/MauiModelTester/Platforms/Android/AndroidManifest.xml +++ b/csharp/tools/MauiModelTester/Platforms/Android/AndroidManifest.xml @@ -4,5 +4,5 @@ - + \ No newline at end of file diff --git a/dockerfiles/Dockerfile.migraphx b/dockerfiles/Dockerfile.migraphx index bc513a8e8ba6d..c3541a8bd3425 100644 --- a/dockerfiles/Dockerfile.migraphx +++ b/dockerfiles/Dockerfile.migraphx @@ -5,57 +5,22 @@ # Dockerfile to run ONNXRuntime with MIGraphX integration #-------------------------------------------------------------------------- -FROM ubuntu:20.04 +FROM rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1 ARG ONNXRUNTIME_REPO=https://github.com/Microsoft/onnxruntime ARG ONNXRUNTIME_BRANCH=main -ARG ROCM_VERSION=5.4 -# MIGraphX version should be the same as ROCm version -ARG MIGRAPHX_VERSION=rocm-5.4.0 -ENV DEBIAN_FRONTEND noninteractive -ENV MIGRAPHX_DISABLE_FAST_GELU=1 -RUN apt-get clean && apt-get update && apt-get install -y locales -RUN locale-gen en_US.UTF-8 -RUN update-locale LANG=en_US.UTF-8 -ENV LC_ALL C.UTF-8 -ENV LANG C.UTF-8 +ENV PATH /code/cmake-3.27.3-linux-x86_64/bin:${PATH} -# Install rocm -RUN apt-get update && apt-get install -y gnupg2 --no-install-recommends curl && \ - curl -sL http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add - && \ - sh -c 'echo deb [arch=amd64] http://repo.radeon.com/rocm/apt/${ROCM_VERSION}/ ubuntu main > /etc/apt/sources.list.d/rocm.list' - -RUN apt-get update &&\ - apt-get install -y sudo git bash build-essential rocm-dev python3-dev python3-pip miopen-hip \ - rocblas half aria2 libnuma-dev pkg-config - -RUN aria2c -q -d /tmp -o cmake-3.27.3-linux-x86_64.tar.gz \ -https://github.com/Kitware/CMake/releases/download/v3.27.3/cmake-3.27.3-linux-x86_64.tar.gz &&\ -tar -zxf /tmp/cmake-3.27.3-linux-x86_64.tar.gz --strip=1 -C /usr - -# Install rbuild -RUN pip3 install https://github.com/RadeonOpenCompute/rbuild/archive/master.tar.gz numpy yapf==0.28.0 - -ENV PATH /opt/miniconda/bin:/code/cmake-3.27.3-linux-x86_64/bin:${PATH} - -# Install MIGraphX from source -RUN mkdir -p /migraphx -RUN cd /migraphx && git clone --depth=1 --branch ${MIGRAPHX_VERSION} https://github.com/ROCmSoftwarePlatform/AMDMIGraphX src -RUN cd /migraphx && rbuild package --cxx /opt/rocm/llvm/bin/clang++ -d /migraphx/deps -B /migraphx/build -S /migraphx/src/ -DPYTHON_EXECUTABLE=/usr/bin/python3 -RUN dpkg -i /migraphx/build/*.deb -RUN rm -rf /migraphx - -# Install rocm ep dependencies RUN apt-get update &&\ - apt-get install -y rocrand rccl hipsparse hipfft hipcub hipblas rocthrust + apt-get install -y migraphx WORKDIR /code # Prepare onnxruntime repository & build onnxruntime RUN git clone --single-branch --branch ${ONNXRUNTIME_BRANCH} --recursive ${ONNXRUNTIME_REPO} onnxruntime &&\ /bin/sh onnxruntime/dockerfiles/scripts/install_common_deps.sh &&\ - cd onnxruntime &&\ + cd onnxruntime && pip install --upgrade pip &&\ /bin/sh ./build.sh --allow_running_as_root --cmake_extra_defines ONNXRUNTIME_VERSION=`cat ./VERSION_NUMBER` --config Release --parallel \ --skip_tests --build_wheel --use_rocm --rocm_version=${ROCM_VERSION} --rocm_home /opt/rocm --use_migraphx &&\ pip install /code/onnxruntime/build/Linux/Release/dist/*.whl diff --git a/dockerfiles/Dockerfile.openvino b/dockerfiles/Dockerfile.openvino index 78d04a51ba162..049916fac92f1 100644 --- a/dockerfiles/Dockerfile.openvino +++ b/dockerfiles/Dockerfile.openvino @@ -1,9 +1,9 @@ #------------------------------------------------------------------------- -# Copyright(C) 2021-2023 Intel Corporation. +# Copyright(C) 2021-2024 Intel Corporation. # SPDX-License-Identifier: MIT #-------------------------------------------------------------------------- -ARG OPENVINO_VERSION=2023.0.0 +ARG OPENVINO_VERSION=2024.0.0 # Build stage @@ -17,7 +17,7 @@ ARG DEVICE=CPU_FP32 ARG ONNXRUNTIME_REPO=https://github.com/microsoft/onnxruntime.git ARG ONNXRUNTIME_BRANCH=main -ENV InferenceEngine_DIR=${INTEL_OPENVINO_DIR}/runtime/cmake +ENV OpenVINO_DIR=${INTEL_OPENVINO_DIR}/runtime/cmake USER root RUN apt update; apt install -y git protobuf-compiler libprotobuf-dev diff --git a/dockerfiles/Dockerfile.openvino-centos7 b/dockerfiles/Dockerfile.openvino-centos7 deleted file mode 100755 index 697db44801e3b..0000000000000 --- a/dockerfiles/Dockerfile.openvino-centos7 +++ /dev/null @@ -1,105 +0,0 @@ -#------------------------------------------------------------------------- -# Copyright(C) 2021 Intel Corporation. -# SPDX-License-Identifier: MIT -#-------------------------------------------------------------------------- - -FROM centos:7.8.2003 - -WORKDIR /code - -ARG MY_ROOT=/code -ARG YUM_OV_PACKAGE=intel-openvino-runtime-centos7-2021.4.752.x86_64 -ARG DEVICE=CPU_FP32 -ARG ONNXRUNTIME_REPO=https://github.com/microsoft/onnxruntime -ARG ONNXRUNTIME_BRANCH=main - -ENV INTEL_OPENVINO_DIR=/opt/intel/openvino_2021.4.752 -ENV InferenceEngine_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/share -ENV IE_PLUGINS_PATH=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/lib/intel64 -ENV ngraph_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/ngraph/cmake -ENV LD_LIBRARY_PATH=/opt/intel/opencl:${INTEL_OPENVINO_DIR}/inference_engine/external/gna/lib:${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/external/mkltiny_lnx/lib:$INTEL_OPENVINO_DIR/deployment_tools/ngraph/lib:${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/external/omp/lib:${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/external/tbb/lib:${IE_PLUGINS_PATH}:${LD_LIBRARY_PATH} -ENV OpenCV_DIR=${INTEL_OPENVINO_DIR}/opencv/share/OpenCV -ENV LD_LIBRARY_PATH=${INTEL_OPENVINO_DIR}/opencv/lib:${INTEL_OPENVINO_DIR}/opencv/share/OpenCV/3rdparty/lib:${LD_LIBRARY_PATH} -ENV HDDL_INSTALL_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/external/hddl -ENV LD_LIBRARY_PATH=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/external/hddl/lib:$LD_LIBRARY_PATH -ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/lib:/usr/local/lib64:/usr/lib64:/lib64:$LD_LIBRARY_PATH - -# Install packages -RUN yum update -y && \ - yum groupinstall "Development Tools" -y && \ - yum install -y yum-utils autoconf automake libtool unzip udev wget zlib-devel libffi-devel openssl-devel boost-devel-1.53.0 && \ - yum clean packages && yum clean all && rm -rf /var/cache/yum && \ -# Install cmake - cd $MY_ROOT && \ - wget https://github.com/Kitware/CMake/releases/download/v3.27.3/cmake-3.27.3.tar.gz && \ - tar -zxvf cmake-3.27.3.tar.gz && rm -rf cmake-3.27.3.tar.gz && \ - cd cmake-3.27.3 && \ - ./bootstrap && \ - make && \ - make install && \ - cd $MY_ROOT && \ -# libusb1.0.22 - cd /opt/ && wget https://github.com/libusb/libusb/archive/v1.0.22.zip && \ - unzip v1.0.22.zip && rm -rf v1.0.22.zip && cd /opt/libusb-1.0.22 && \ -# bootstrap steps - ./bootstrap.sh && \ - ./configure --disable-udev --enable-shared && \ - make -j4 && \ -# configure libusb1.0.22 - cd /opt/libusb-1.0.22/libusb && \ - /bin/mkdir -p '/usr/local/lib' && \ - /bin/bash ../libtool --mode=install /usr/bin/install -c libusb-1.0.la '/usr/local/lib' && \ - /bin/mkdir -p '/usr/local/include/libusb-1.0' && \ - /usr/bin/install -c -m 644 libusb.h '/usr/local/include/libusb-1.0' && \ - /bin/mkdir -p '/usr/local/lib/pkgconfig' && \ -# Install openvino - yum-config-manager --add-repo https://yum.repos.intel.com/openvino/2021/setup/intel-openvino-2021.repo && \ - rpm --import https://yum.repos.intel.com/openvino/2021/setup/RPM-GPG-KEY-INTEL-OPENVINO-2021 && \ - yum update -y && yum list intel-openvino* && \ - yum install -y $YUM_OV_PACKAGE && \ - cd ${INTEL_OPENVINO_DIR}/install_dependencies/ && ./install_openvino_dependencies.sh -y && \ - printf "\nexport LD_LIBRARY_PATH=\${LD_LIBRARY_PATH}:/usr/local/lib\n" >> /opt/intel/openvino_2021.4.752/bin/setupvars.sh && \ - cd /opt/libusb-1.0.22 && \ - /usr/bin/install -c -m 644 libusb-1.0.pc '/usr/local/lib/pkgconfig' && \ - cp /opt/intel/openvino_2021/deployment_tools/inference_engine/external/97-myriad-usbboot.rules /etc/udev/rules.d/ && \ - ldconfig && \ -# Install GPU runtime and drivers - cd ${MY_ROOT} && \ - mkdir /tmp/opencl && \ - cd /tmp/opencl && \ - yum install -y epel-release && \ - yum install -y ocl-icd ocl-icd-devel && \ - wget -O intel-igc-core-1.0.2597-1.el7.x86_64.rpm https://sourceforge.net/projects/intel-compute-runtime/files/19.41.14441/centos-7/intel-igc-core-1.0.2597-1.el7.x86_64.rpm/download && \ - wget -O intel-opencl-19.41.14441-1.el7.x86_64.rpm https://sourceforge.net/projects/intel-compute-runtime/files/19.41.14441/centos-7/intel-opencl-19.41.14441-1.el7.x86_64.rpm/download && \ - wget -O intel-igc-opencl-devel-1.0.2597-1.el7.x86_64.rpm https://sourceforge.net/projects/intel-compute-runtime/files/19.41.14441/centos-7/intel-igc-opencl-devel-1.0.2597-1.el7.x86_64.rpm/download && \ - wget -O intel-igc-opencl-1.0.2597-1.el7.x86_64.rpm https://sourceforge.net/projects/intel-compute-runtime/files/19.41.14441/centos-7/intel-igc-opencl-1.0.2597-1.el7.x86_64.rpm/download && \ - wget -O intel-gmmlib-19.3.2-1.el7.x86_64.rpm https://sourceforge.net/projects/intel-compute-runtime/files/19.41.14441/centos-7/intel-gmmlib-19.3.2-1.el7.x86_64.rpm/download && \ - wget -O intel-gmmlib-devel-19.3.2-1.el7.x86_64.rpm https://sourceforge.net/projects/intel-compute-runtime/files/19.41.14441/centos-7/intel-gmmlib-devel-19.3.2-1.el7.x86_64.rpm/download && \ - rpm -i /tmp/opencl/*.rpm && \ - ldconfig && \ - rm -rf /tmp/opencl && \ -# Installing gcc-10 - yum install -y centos-release-scl && \ - yum install -y devtoolset-10-gcc* && \ - echo 'source scl_source enable devtoolset-10' >> ~/.bashrc && \ -# python installation - source scl_source enable devtoolset-10 && \ - cd /code/ && \ - wget https://www.python.org/ftp/python/3.8.3/Python-3.8.3.tgz && tar xvf Python-3.8.3.tgz && \ - cd Python-3.8*/ && ./configure && make && make install && \ - cd ../ && mkdir -p /usr/bin/Python38 && ln -s Python-3.8.3/ /usr/bin/Python38 && \ -# installing dependancies - yum install -y python3-lxml python3-six libusb.x86_64 && \ - yum clean packages && yum clean all && rm -rf /var/cache/yum && \ -# Build onnxruntime - cd $MY_ROOT && \ - pip3 install numpy wheel setuptools cython && \ - git clone --recursive -b ${ONNXRUNTIME_BRANCH} ${ONNXRUNTIME_REPO} && \ - pip3 install onnx && \ - cd /code/onnxruntime && ./build.sh --allow_running_as_root --config Release --update --build --parallel --use_openvino ${DEVICE} --build_shared_lib --build_wheel && \ - pip3 install /code/onnxruntime/build/Linux/Release/dist/*-linux_x86_64.whl && \ -# Clean up - cd $MY_ROOT && rm -rf onnxruntime Python-3* && \ - cd ${MY_ROOT}/ && rm -rf cmake* && \ - cd /usr/share/ && rm -rf gcc* && cd /usr/lib/ && rm -rf gcc cd && rm -rf .cache && \ - cd ${INTEL_OPENVINO_DIR}/ && rm -rf documentation data_processing && cd deployment_tools/ && rm -rf tools diff --git a/dockerfiles/Dockerfile.openvino-csharp b/dockerfiles/Dockerfile.openvino-csharp deleted file mode 100644 index 2529ef4b73209..0000000000000 --- a/dockerfiles/Dockerfile.openvino-csharp +++ /dev/null @@ -1,90 +0,0 @@ -#------------------------------------------------------------------------- -# Copyright(C) 2021-2023 Intel Corporation. -# SPDX-License-Identifier: MIT -#-------------------------------------------------------------------------- - -ARG OPENVINO_VERSION=2023.0.0 - -# Build stage -FROM openvino/ubuntu20_runtime:${OPENVINO_VERSION} AS base - -ENV WORKDIR_PATH=/home/openvino -WORKDIR $WORKDIR_PATH -ENV DEBIAN_FRONTEND noninteractive - -USER root -RUN apt update; apt install -y --no-install-recommends wget gnupg && \ - rm -rf /var/lib/apt/lists/* - -# Install Mono -RUN wget http://download.mono-project.com/repo/xamarin.gpg && apt-key add xamarin.gpg && rm xamarin.gpg && \ - echo "deb https://download.mono-project.com/repo/ubuntu stable-bionic main" | tee /etc/apt/sources.list.d/mono-official-stable.list && \ - apt update -y && \ - apt install -y mono-devel - -# Install nuget.exe -RUN wget https://dist.nuget.org/win-x86-commandline/latest/nuget.exe && \ - mv nuget.exe /usr/local/bin/nuget.exe && \ - echo 'mono /usr/local/bin/nuget.exe $@' > /usr/local/bin/nuget && \ - chmod a+x /usr/local/bin/nuget - -# Install .NET core -RUN wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb -O packages-microsoft-prod.deb && \ - dpkg -i packages-microsoft-prod.deb && \ - apt-get update -y &&\ - apt-get install -y apt-transport-https && \ - apt-get update -y && \ - apt-get install -y dotnet-sdk-5.0 - -# Build stage -FROM base AS builder - -ENV WORKDIR_PATH=/home/openvino -WORKDIR $WORKDIR_PATH -ENV DEBIAN_FRONTEND noninteractive - -ARG DEVICE=CPU_FP32 -ARG ONNXRUNTIME_REPO=https://github.com/microsoft/onnxruntime.git -ARG ONNXRUNTIME_BRANCH=main - -ENV InferenceEngine_DIR=${INTEL_OPENVINO_DIR}/runtime/cmake -ENV LANG en_US.UTF-8 - -USER root -RUN apt update; apt install -y --no-install-recommends git protobuf-compiler libprotobuf-dev ca-certificates unattended-upgrades && \ - unattended-upgrade && \ - rm -rf /var/lib/apt/lists/* - -RUN git clone --recursive -b ${ONNXRUNTIME_BRANCH} ${ONNXRUNTIME_REPO} -RUN /bin/sh onnxruntime/dockerfiles/scripts/install_common_deps.sh -RUN ln -s cmake-* cmake-dir -RUN python3 -m pip install wheel -ENV PATH=${WORKDIR_PATH}/cmake-dir/bin:$PATH -RUN pip3 install onnx -RUN ln -s /usr/bin/python3 /usr/bin/python -RUN apt install locales && \ - locale-gen en_US en_US.UTF-8 && \ - dpkg-reconfigure locales -RUN cd onnxruntime && ./build.sh --allow_running_as_root --config Release --update --build --parallel --use_openvino ${DEVICE} --build_nuget --build_shared_lib -RUN cp /home/openvino/onnxruntime/build/Linux/Release/Microsoft.ML.OnnxRuntime.Managed* /home/openvino/onnxruntime/build/Linux/Release/nuget-artifacts - -# Deploy stage -FROM base - -ENV DEBIAN_FRONTEND noninteractive -USER root - -RUN apt update; apt install -y unattended-upgrades fonts-freefont-ttf && \ - unattended-upgrade -ARG BUILD_UID=1001 -ARG BUILD_USER=onnxruntimedev -RUN adduser --uid $BUILD_UID $BUILD_USER -RUN usermod -a -G video,users ${BUILD_USER} -ENV WORKDIR_PATH /home/${BUILD_USER} -WORKDIR ${WORKDIR_PATH} -COPY --from=builder /home/openvino/onnxruntime/build/Linux/Release/nuget-artifacts ${WORKDIR_PATH}/nuget-artifacts - -USER ${BUILD_USER} -ENV PATH=${WORKDIR_PATH}/miniconda/bin:${WORKDIR_PATH}/cmake-dir/bin:$PATH -ENV IE_PLUGINS_PATH=${INTEL_OPENVINO_DIR}/runtime/lib/intel64 -ENV LD_LIBRARY_PATH=/opt/intel/opencl:${INTEL_OPENVINO_DIR}/runtime/3rdparty/tbb/lib:${IE_PLUGINS_PATH}:${LD_LIBRARY_PATH} diff --git a/dockerfiles/Dockerfile.openvino-rhel8 b/dockerfiles/Dockerfile.openvino-rhel8 deleted file mode 100644 index 5c504cfa553a1..0000000000000 --- a/dockerfiles/Dockerfile.openvino-rhel8 +++ /dev/null @@ -1,87 +0,0 @@ -# Build stage -FROM registry.access.redhat.com/ubi8/ubi:8.4 - -WORKDIR /code - -ARG MY_ROOT=/code -ARG DEVICE=CPU_FP32 -ARG ONNXRUNTIME_REPO=https://github.com/microsoft/onnxruntime -ARG ONNXRUNTIME_BRANCH=main - -ENV INTEL_OPENVINO_DIR=/opt/intel/openvino_2022.3.0 - -ENV InferenceEngine_DIR=${INTEL_OPENVINO_DIR}/runtime/cmake -ENV IE_PLUGINS_PATH=${INTEL_OPENVINO_DIR}/runtime/lib/intel64/ -ENV ngraph_DIR=${INTEL_OPENVINO_DIR}/runtime/cmake -ENV LD_LIBRARY_PATH=${INTEL_OPENVINO_DIR}/runtime/3rdparty/tbb/lib/:${IE_PLUGINS_PATH}:${LD_LIBRARY_PATH} -ENV OpenCV_DIR=${INTEL_OPENVINO_DIR}/extras/opencv/cmake -ENV LD_LIBRARY_PATH=${INTEL_OPENVINO_DIR}/extras/opencv/lib:${LD_LIBRARY_PATH} -ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/lib:/usr/local/lib64:/usr/lib64:/lib64:${LD_LIBRARY_PATH} -ENV PATH=${MY_ROOT}/cmake-dir/bin:$PATH - -# Install packages -RUN yum install -y yum-utils autoconf automake libtool unzip udev wget zlib-devel libffi-devel openssl-devel git make gcc && \ - yum clean packages && yum clean all && rm -rf /var/cache/yum && \ -# Install python 3.8 - cd $MY_ROOT && \ - wget https://www.python.org/ftp/python/3.8.9/Python-3.8.9.tgz && tar xvf Python-3.8.9.tgz && rm -rf Python-3.8.9.tgz && \ - cd Python-3.8*/ && ./configure && make && make install && \ - cd ../ && mkdir -p /usr/bin/Python38 && ln -s Python-3.8.9/ /usr/bin/Python38 && ln -s /usr/bin/pip3 /usr/bin/pip && \ -# libusb1.0.22 - cd /opt/ && wget https://github.com/libusb/libusb/archive/v1.0.22.zip && \ - unzip v1.0.22.zip && rm -rf v1.0.22.zip && cd /opt/libusb-1.0.22 && \ -# bootstrap steps - ./bootstrap.sh && \ - ./configure --disable-udev --enable-shared && \ - make -j4 && \ -# configure libusb1.0.22 - cd /opt/libusb-1.0.22/libusb && \ - /bin/mkdir -p '/usr/local/lib' && \ - /bin/bash ../libtool --mode=install /usr/bin/install -c libusb-1.0.la '/usr/local/lib' && \ - /bin/mkdir -p '/usr/local/include/libusb-1.0' && \ - /usr/bin/install -c -m 644 libusb.h '/usr/local/include/libusb-1.0' && \ - /bin/mkdir -p '/usr/local/lib/pkgconfig' && \ -# Install openvino - cd /opt/ && mkdir intel/ && cd intel && \ - wget https://storage.openvinotoolkit.org/repositories/openvino/packages/2022.3/linux/l_openvino_toolkit_rhel8_2022.3.0.9052.9752fafe8eb_x86_64.tgz && \ - tar xvf l_openvino_toolkit_rhel8_2022.3.0.9052.9752fafe8eb_x86_64.tgz && \ - rm -rf l_openvino_toolkit_rhel8_2022.3.0.9052.9752fafe8eb_x86_64.tgz && \ - mv l_openvino_toolkit_rhel8_2022.3.0.9052.9752fafe8eb_x86_64 openvino_2022.3.0 && \ - cd ${INTEL_OPENVINO_DIR}/install_dependencies/ && ./install_openvino_dependencies.sh -y && ./install_NEO_OCL_driver.sh -y && \ - printf "\nexport LD_LIBRARY_PATH=\${LD_LIBRARY_PATH}:/usr/local/lib\n" >> /opt/intel/openvino_2022.3.0/setupvars.sh && \ - cd /opt/libusb-1.0.22 && \ - /usr/bin/install -c -m 644 libusb-1.0.pc '/usr/local/lib/pkgconfig' && \ - # MYRIAD plugins are not available for openvino 2022.3.0 release - #cp /opt/intel/openvino_2022.3.0/install_dependencies/97-myriad-usbboot.rules /etc/udev/rules.d/ && \ - ldconfig && \ -#Install protobuf - cd $MY_ROOT && \ - git clone https://github.com/protocolbuffers/protobuf.git && \ - cd protobuf && \ - git checkout v3.16.0 && \ - git submodule update --init --recursive && \ - mkdir build_source && cd build_source && \ - cmake ../cmake -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release && \ - make -j$(nproc) && \ - make install && \ -# Build onnxruntime - cd $MY_ROOT && \ - pip3 install numpy wheel setuptools cython onnx && \ - git clone --recursive -b ${ONNXRUNTIME_BRANCH} ${ONNXRUNTIME_REPO} && \ - bash onnxruntime/dockerfiles/scripts/install_common_deps.sh && \ - ln -s cmake-* cmake-dir && \ - source /opt/intel/openvino_2022.3.0/setupvars.sh && \ - cd /code/onnxruntime && ./build.sh --allow_running_as_root --config Release --update --build --parallel --use_openvino ${DEVICE} --build_shared_lib --build_wheel && \ - pip3 install /code/onnxruntime/build/Linux/Release/dist/*-linux_x86_64.whl && \ -# Clean up - cd ${MY_ROOT} && rm -rf onnxruntime && rm -rf Python-3.8.9 && rm -rf protobuf - -# Deploy stage -ARG BUILD_UID=1001 -ARG BUILD_USER=onnxruntimedev -RUN adduser --uid $BUILD_UID $BUILD_USER -RUN usermod -a -G video,users,render ${BUILD_USER} -ENV WORKDIR_PATH /home/${BUILD_USER} - -WORKDIR ${WORKDIR_PATH} -USER ${BUILD_USER} diff --git a/dockerfiles/Dockerfile.rocm b/dockerfiles/Dockerfile.rocm index 35a676383337b..c242933f677f0 100644 --- a/dockerfiles/Dockerfile.rocm +++ b/dockerfiles/Dockerfile.rocm @@ -5,14 +5,14 @@ # Dockerfile to run ONNXRuntime with ROCm integration #-------------------------------------------------------------------------- -FROM rocm/pytorch:rocm5.4_ubuntu20.04_py3.7_pytorch_1.12.1 +FROM rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1 ARG ONNXRUNTIME_REPO=https://github.com/Microsoft/onnxruntime ARG ONNXRUNTIME_BRANCH=main WORKDIR /code -ENV PATH /opt/miniconda/bin:/code/cmake-3.27.3-linux-x86_64/bin:${PATH} +ENV PATH /code/cmake-3.27.3-linux-x86_64/bin:${PATH} # Prepare onnxruntime repository & build onnxruntime RUN git clone --single-branch --branch ${ONNXRUNTIME_BRANCH} --recursive ${ONNXRUNTIME_REPO} onnxruntime &&\ diff --git a/dockerfiles/README.md b/dockerfiles/README.md index f226ebfe8b193..a2e99d66d4654 100644 --- a/dockerfiles/README.md +++ b/dockerfiles/README.md @@ -277,7 +277,7 @@ Nothing else from ONNX Runtime source tree will be copied/installed to the image Note: When running the container you built in Docker, please either use 'nvidia-docker' command instead of 'docker', or use Docker command-line options to make sure NVIDIA runtime will be used and appropiate files mounted from host. Otherwise, CUDA libraries won't be found. You can also [set NVIDIA runtime as default in Docker](https://github.com/dusty-nv/jetson-containers#docker-default-runtime). ## MIGraphX -**Ubuntu 20.04, ROCm5.4, AMDMIGraphX v1.2** +**Ubuntu 20.04, ROCm6.0, MIGraphX** 1. Build the docker image from the Dockerfile in this repository. ``` @@ -291,7 +291,7 @@ Note: When running the container you built in Docker, please either use 'nvidia- ``` ## ROCm -**Ubuntu 20.04, ROCm5.4** +**Ubuntu 20.04, ROCm6.0** 1. Build the docker image from the Dockerfile in this repository. ``` diff --git a/docs/ContribOperators.md b/docs/ContribOperators.md index e7b537d6894c8..9b45cc02708d6 100644 --- a/docs/ContribOperators.md +++ b/docs/ContribOperators.md @@ -78,6 +78,7 @@ Do not modify directly.* * com.microsoft.QLinearSigmoid * com.microsoft.QLinearSoftmax * com.microsoft.QLinearWhere + * com.microsoft.QMoE * com.microsoft.QOrderedAttention * com.microsoft.QOrderedGelu * com.microsoft.QOrderedLayerNormalization @@ -461,7 +462,7 @@ This version of the operator has been available since version 1 of the 'com.micr
repetition_penalty (optional) : T
The parameter for repetition penalty. Default value 1.0 means no penalty. Accepts value > 0.0. Shape is (1)
vocab_mask (optional) : M
-
Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vacab_size)
+
Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vocab_size)
prefix_vocab_mask (optional) : M
Mask of vocabulary for first step. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (batch_size, vocab_size)
attention_mask (optional) : I
@@ -2252,7 +2253,7 @@ This version of the operator has been available since version 1 of the 'com.micr
repetition_penalty (optional) : T
The parameter for repetition penalty. Default value 1.0 means no penalty. Accepts value > 0.0. Shape is (1)
vocab_mask (optional) : I
-
Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vacab_size)
+
Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vocab_size)
prefix_vocab_mask (optional) : I
Mask of vocabulary for first step. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (batch_size, vocab_size)
attention_mask (optional) : I
@@ -2795,7 +2796,7 @@ This version of the operator has been available since version 1 of the 'com.micr
Constrain input A data type to 8-bit integer tensor.
T2 : tensor(int8), tensor(uint8)
Constrain input B data type to 8-bit integer tensor.
-
T3 : tensor(float)
+
T3 : tensor(float), tensor(float16)
Constrain input a_scale, b_scale and output Y data type as float tensor.
@@ -2808,22 +2809,23 @@ This version of the operator has been available since version 1 of the 'com.micr And block_size is not an arbitrary number and must be a power of 2 and not smaller than 16, like 16, 32, 64, 128,.. 3. Input B's scale and zero point are specified by input scales and zero_points. - Input B is stored as uint8_t with shape: [N][n_blocks_per_col][blob_size] in which: - - n_blocks_per_col = (K + block_size - 1) / block_size - - blob_size = block_size / 8 * bits + Input is stored as uint8_t with shape: [N][n_blocks_per_col][blob_size] in which: + - n_blocks_per_col = (K + block_size - 1) / block_size + - blob_size = CeilDiv(block_size * bits, bitsof(uint8_t)<8>) + For all bits from 2-8, a row of data is stored squeezely and represented by uint8_t. + - for 2,4,8 bits, 4x2bit,2x4bit,1x8bit are stored in one uint8_t. + 4bit example: + |.|.|.|.| .|.|.|.| =uint8_t (2x4bit) + - for 3,5,6,7 bits, 32x3bit,32x5bit,16x6bit,32x7bit are stored in 12xuint8_t,20xuint8_t,12xuint8_t,28xuint8_t separately. no bits are wasted. + 3bit example: + |.|.|. |.|.|. |.|.|. = 9bit, which across 2 uint8_t, the highest bit for the second uint8_t is used. + The last uint_8 may have some bits unused. - For a block blob. It is stored in format: - struct Blob { - uint8 one_bits[(bits & 0x1) * 1 * block_size / 8]; // highest 1 bit for 3, 5, 7 bits quantization - uint8 two_bits[(bits & 0x2) * 2 * block_size / 8]; // high 2 bits for 2, 6, 7 bits quantization - uint8 four_bits[(bits & 0x4) * 4 * block_size / 8]; // low 4 bits for 4, 5, 6 bits quantization - } Input scales is stored in same type as original type of B(float32, float16) with shape like: [N * n_blocks_per_col] - Input zero_points is stored as uint8_t. If bits <= 4, two zero points are stored as one unit8_t. If bits > 4, one zero point is stored with one unit8_t. Thus, its shape is: - - [(N * n_blocks_per_col + 1) / 2] if bits <=4 - - [N * n_blocks_per_col] if bits > 4 - + Input zero_points is stored as uint8_t or same as type(A). It has the same packing method as input B. + - [CeilDiv((N * n_blocks_per_col + 1) *bits, 8)] + If zero_points has same type as A, it's not packed and has the same shape as Scales. #### Version @@ -2844,17 +2846,19 @@ This version of the operator has been available since version 1 of the 'com.micr
number of groupsize used for weight quantization,(default 128). It needs to be a power of 2 and not smaller than 16.
-#### Inputs (3 - 4) +#### Inputs (3 - 5)
A : T1
The input tensor, not quantized
B : T2
-
1-dimensional data blob
+
1 or 2 dimensional data blob
scales : T1
quantization scale
-
zero_points (optional) : T2
+
zero_points (optional) : T3
quantization zero points
+
g_idx (optional) : T4
+
group_idx
#### Outputs @@ -2869,8 +2873,12 @@ This version of the operator has been available since version 1 of the 'com.micr
T1 : tensor(float), tensor(float16)
Constrain input and output types to float/half_float tensors.
-
T2 : tensor(uint8)
-
Constrain quantized weight types to uint8.
+
T2 : tensor(uint8), tensor(int32)
+
Constrain quantized weight types to uint8/int32.
+
T3 : tensor(uint8), tensor(int32), tensor(float16), tensor(float)
+
Constrain quantized zero point types to uint8/int32/float16/float.
+
T4 : tensor(int32)
+
the index tensor.
@@ -2924,8 +2932,8 @@ This version of the operator has been available since version 1 of the 'com.micr ### **com.microsoft.MoE** Mixture of experts. Examples: Switch transformer(https://arxiv.org/pdf/2101.03961.pdf) use top 1, - GLaM(https://arxiv.org/abs/2112.06905) activates top 2 FFN, and Vision MOE(https://arxiv.org/pdf/2106.05974.pdf) - usually uses top 32 experts. + GLaM(https://arxiv.org/abs/2112.06905) activates top 2 FFN, Vision MOE(https://arxiv.org/pdf/2106.05974.pdf) + usually uses top 32 experts and Mixtral(https://huggingface.co/blog/mixtral). #### Version @@ -2939,9 +2947,11 @@ This version of the operator has been available since version 1 of the 'com.micr
Activation function to use. Choose from relu, gelu, silu and identity. Default is relu
k : int
Number of top experts to select from expert pool
+
normalize_routing_weights : int
+
Whether to normalize routing weights
-#### Inputs (4 - 6) +#### Inputs (5 - 8)
input : T
@@ -2950,12 +2960,16 @@ This version of the operator has been available since version 1 of the 'com.micr
2D input tensor with shape (num_rows, num_experts)
fc1_experts_weights : T
3D input tensor with shape (num_experts, hidden_size, inter_size)
-
fc2_experts_weights : T
-
3D input tensor with shape (num_experts, inter_size, hidden_size)
fc1_experts_bias (optional) : T
2D optional input tensor with shape (num_experts, inter_size)
+
fc2_experts_weights : T
+
3D input tensor with shape (num_experts, inter_size, hidden_size)
fc2_experts_bias (optional) : T
2D optional input tensor with shape (num_experts, hidden_size)
+
fc3_experts_weights (optional) : T
+
3D optional input tensor with shape (num_experts, hidden_size, inter_size)
+
fc3_experts_bias (optional) : T
+
2D optional input tensor with shape (num_experts, inter_size)
#### Outputs @@ -4248,6 +4262,69 @@ This version of the operator has been available since version 1 of the 'com.micr +### **com.microsoft.QMoE** + + Int4 MoE + +#### Version + +This version of the operator has been available since version 1 of the 'com.microsoft' operator set. + +#### Attributes + +
+
activation_type : string
+
Activation function to use. Choose from relu, gelu, silu and identity. Default is relu
+
k : int
+
Number of top experts to select from expert pool
+
normalize_routing_weights : int
+
Whether to normalize routing weights
+
+ +#### Inputs (7 - 11) + +
+
input : T
+
2D input tensor with shape (num_rows, hidden_size) or 3D input tensor with shape (batch_size, sequence_length, hidden_size)
+
router_probs : T
+
2D input tensor with shape (num_rows, num_experts)
+
fc1_experts_weights : T1
+
3D input tensor with shape (num_experts, hidden_size, inter_size / 2)
+
fc1_scales : T
+
2D input tensor with shape (num_experts, inter_size)
+
fc1_experts_bias (optional) : T
+
2D optional input tensor with shape (num_experts, inter_size)
+
fc2_experts_weights : T1
+
3D input tensor with shape (num_experts, inter_size, hidden_size / 2)
+
fc2_scales : T
+
2D input tensor with shape (num_experts, hidden_size)
+
fc2_experts_bias (optional) : T
+
2D optional input tensor with shape (num_experts, hidden_size)
+
fc3_experts_weights (optional) : T1
+
3D optional input tensor with shape (num_experts, hidden_size, inter_size / 2)
+
fc3_scales (optional) : T
+
2D optional input tensor with shape (num_experts, inter_size)
+
fc3_experts_bias (optional) : T
+
2D optional input tensor with shape (num_experts, inter_size)
+
+ +#### Outputs + +
+
output : T
+
2D input tensor with shape (num_rows, hidden_size) or 3D input tensor with shape (batch_size, sequence_length, hidden_size)
+
+ +#### Type Constraints + +
+
T : tensor(float16)
+
Constrain input and output types to float or float16 tensors.
+
T1 : tensor(uint8)
+
Constrain weights type to uint8 tensors.
+
+ + ### **com.microsoft.QOrderedAttention** Quantized version of simplified Multi-Head Self Attention(using int8 with specific matrix Layout). @@ -5154,7 +5231,7 @@ This version of the operator has been available since version 1 of the 'com.micr
repetition_penalty (optional) : T
The parameter for repetition penalty. Default value 1.0 means no penalty. Accepts value > 0.0. Shape is (1)
vocab_mask (optional) : I
-
Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vacab_size)
+
Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vocab_size)
prefix_vocab_mask (optional) : I
Mask of vocabulary for first step. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (batch_size, vocab_size)
attention_mask (optional) : I
@@ -5743,12 +5820,14 @@ This version of the operator has been available since version 1 of the 'com.micr #### Attributes
+
beginning_timestamp_token_id : int
+
The id of the first timestamp
decoder : graph (required)
Decoder subgraph to execute in a loop.
decoder_output_cross_qk : int
If nozero, decoder subgraph contains output Q*K from cross attentions. Default 0.
decoder_start_token_id : int
-
The id of the token that indicates decoding starts.
+
The id of the token that indicates decoding starts (i.e. the start of transcription token id)
early_stopping : int
early stop or not
encoder : graph
@@ -5761,10 +5840,18 @@ This version of the operator has been available since version 1 of the 'com.micr
Must be 2 for whisper
no_repeat_ngram_size : int
no repeat ngrams size
-
no_speech_token : int
+
no_speech_token_id : int
The token in whisper model that marks all sequence empty. With this model, whisper could output no_speech_prob after. Default -1.
+
no_timestamps_token_id : int
+
The id of the token that indicates no timestamps
pad_token_id : int (required)
The id of the padding token
+
start_of_lm_token_id : int
+
The id of the token that indicates LM starts
+
transcribe_token_id : int
+
The id of the transcribe task
+
translate_token_id : int
+
The id of the translate task
vocab_size : int
Size of the vocabulary. If not provided, it will be inferred from the decoder subgraph's output shape
@@ -5783,11 +5870,11 @@ This version of the operator has been available since version 1 of the 'com.micr
num_return_sequences : I
The number of returned sequences in the batch. Shape is (1)
length_penalty (optional) : T
-
Exponential penalty to the length. Default value 1.0 means no penalty.Value > 1.0 encourages longer sequences, while values < 1.0 produces shorter sequences.Shape is (1,)
+
Exponential penalty to the length. Default value 1.0 means no penalty. Value > 1.0 encourages longer sequences, while values < 1.0 produces shorter sequences. Shape is (1,)
repetition_penalty (optional) : T
The parameter for repetition penalty. Default value 1.0 means no penalty. Accepts value > 0.0. Shape is (1)
vocab_mask (optional) : M
-
Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vacab_size)
+
Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vocab_size)
prefix_vocab_mask (optional) : M
Mask of vocabulary for first step. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (batch_size, vocab_size)
attention_mask (optional) : I
@@ -5797,7 +5884,7 @@ This version of the operator has been available since version 1 of the 'com.micr
logits_processor (optional) : I
Specific logits processor for different types of beamsearch models. Default value 0 means no specific logit processor. Accepts value >= 0. Shape is (1)
cross_qk_layer_head (optional) : I
-
Only keep this list of (layer, head) of QK in the final cross_qk output when use_cross_qk is set. Default collect allits shape is (number of (layer, head) to keep, 2), i.e., [[layer_id1, head_id1], [layer_id2, head_id2]......]
+
Only keep this list of (layer, head) of QK in the final cross_qk output when use_cross_qk is set. Default collect all its shape is (number of (layer, head) to keep, 2), i.e., [[layer_id1, head_id1], [layer_id2, head_id2]......]
extra_decoding_ids (optional) : I
Part of the decoder_input_ids that we need cross qk for it. it is of shape (batch_size, extra_decoding_ids_len).In such case, we should remove this from the tail of the decoder_input_ids, and put it here. ids < 0 in it (for multiple batch) are treated as stop of the extra_decoding_ids for corresponding batch.
temperature (optional) : T
@@ -5812,11 +5899,11 @@ This version of the operator has been available since version 1 of the 'com.micr
sequences_scores (optional) : T
Final beam score of the generated sequences. Shape is (batch_size, num_return_sequences)
scores (optional) : T
-
Processed beam scores for each vocabulary token at each generation step.Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam.Shape is (max_length - sequence_length, batch_size, num_beams, vocab_size)
+
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. Shape is (max_length - sequence_length, batch_size, num_beams, vocab_size)
cross_qk (optional) : V
-
Output the accumulated stacked Q*K in cross attentions. Let H = number of Head of cross attention, F = the frames or kv-seq-len of the cross attention input, T = real decoded token length, L = number of layers,B = batch size, R = num_return_sequences. It then should return tensor of shape [B, R, L*H, T, F].If cross_qk_layer_head is given, shape is [B, R, cross_qk_layer_head.shape[0], T, F]
+
Output the accumulated stacked Q*K in cross attentions. Let H = number of Head of cross attention, F = the frames or kv-seq-len of the cross attention input, T = real decoded token length, L = number of layers, B = batch size, R = num_return_sequences. It then should return tensor of shape [B, R, L*H, T, F]. If cross_qk_layer_head is given, shape is [B, R, cross_qk_layer_head.shape[0], T, F]
non_speech_probs (optional) : T
-
For whisper model, output the probabilities from logits after encoder and context decoding for the no_speech_token.Currently we treat the last token's logits is what we need, in future extra graph logic may be add to the encoder/context-decoder subgraph.The prob is save before logits may be updated by extra-decoding-ids. The shape of non_speech_probs is [B]
+
For whisper model, output the probabilities from logits after encoder and context decoding for the no_speech_token_id. The shape of non_speech_probs is [B]
#### Type Constraints diff --git a/docs/Memory_Optimizer.md b/docs/Memory_Optimizer.md index 97f7e7ff2c14b..eaa48c9da0609 100644 --- a/docs/Memory_Optimizer.md +++ b/docs/Memory_Optimizer.md @@ -51,6 +51,7 @@ There are two modes to enable the memory optimizations: - Plan 8 : OFF : Cast+:2:-1 1 2,048 2.0*inputs_input_ids_dim0*inputs_input_ids_dim1 ``` 3. As shown above, `Config` is a string representative for a re-computable subgraph. All are enabled for recompute in this case. +4. By `export ORTMODULE_MEMORY_OPT_LEVEL=2`, all plans including compromised recomptable subgraphs will also be enabled. ### Mode 2 - Advanced Usage (User Selected Subgraph Recompute) diff --git a/docs/ORTModule_Convergence_Notes.md b/docs/ORTModule_Convergence_Notes.md index 791b6c32c9b48..2374e7b7c538a 100644 --- a/docs/ORTModule_Convergence_Notes.md +++ b/docs/ORTModule_Convergence_Notes.md @@ -89,7 +89,7 @@ The limitation of `GlobalSubscriberManager` is, only 'nn.Module's forward output dump the intermediate tensors in a `nn.Module`'s forward function, refer to the following example: ```diff -+ from onnxruntime.training.utils import inspect_activation ++ from onnxruntime.training.utils.hooks import inspect_activation class BloomForCausalLM(BloomPreTrainedModel): def __init__(self, config: BloomConfig): ... diff --git a/docs/ORTModule_Training_Guidelines.md b/docs/ORTModule_Training_Guidelines.md index 91057d3dfb120..54137937ad56d 100644 --- a/docs/ORTModule_Training_Guidelines.md +++ b/docs/ORTModule_Training_Guidelines.md @@ -246,7 +246,7 @@ to standard outputs. #### ORTMODULE_ENABLE_EMBEDDING_SPARSE_OPTIMIZER - **Feature Area**: *ORTMODULE/Optimizations* -- **Description**: By default, this is disabled. This env var can be used for enabling or disabling the embedding input +- **Description**: By default, this is enabled. This env var can be used for enabling or disabling the embedding input data sparsity based performance optimizations. ```bash @@ -287,13 +287,16 @@ A classical usage of disabling the deep copy: when the deep copy before module e #### ORTMODULE_MEMORY_OPT_LEVEL - **Feature Area**: *ORTMODULE/Optimizations* -- **Description**: By default, the level is 0. This env var can be used for enabling recomputation for reducing memory peak requirement. Setting the level to be 0 means all detected subgraphs with each transformer-based model layer generating stashed activations will be recomputed. This is conceptually equivalent to PyTorch's gradient checkpoint. When level is not 0, check Check [Memory Optimizer for ONNX Runtime Training](Memory_Optimizer.md) for more details. +- **Description**: By default, the level is 0. This env var can be used for enabling recomputation for reducing memory peak requirement. + - Setting the level to be 1 means all detected recomputable subgraphs (NOT including compromised recomputable graphs) with each transformer-based model layer generating stashed activations will be recomputed. This is conceptually equivalent to PyTorch's gradient checkpoint. + - Setting the level to be 2 means all detected recomputable subgraphs (including compromised recomputable graphs) with each transformer-based model layer generating stashed activations will be recomputed. This is conceptually equivalent to PyTorch's gradient checkpoint. + - When the level is 0, check Check [Memory Optimizer for ONNX Runtime Training](Memory_Optimizer.md) for more details. ```bash export ORTMODULE_MEMORY_OPT_LEVEL=0 ``` -### ORTMODULE_ENABLE_MEM_EFFICIENT_GRAD_MGMT +#### ORTMODULE_ENABLE_MEM_EFFICIENT_GRAD_MGMT - **Feature Area**: *ORTMODULE/Optimizations* - **Description**: By default, the memory-efficient gradient management is turned off. The gradient after it is computed in ONNX Runtime, will trigger the corresponding parameter's backward function through `PythonOpGrad` operator. This would help release the gradient buffer managed in ONNX Runtime, which originally is released once all backward computation finishes. diff --git a/docs/OperatorKernels.md b/docs/OperatorKernels.md index 8ff2135c6b1f6..c963781435465 100644 --- a/docs/OperatorKernels.md +++ b/docs/OperatorKernels.md @@ -127,6 +127,7 @@ Do not modify directly.* |GatherND|*in* data:**T**
*in* indices:**tensor(int64)**
*out* output:**T**|13+|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)
**indices** = tensor(int64)| |||12|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)
**indices** = tensor(int64)| |||11|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)
**indices** = tensor(int64)| +|Gelu|*in* X:**T**
*out* Y:**T**|20+|**T** = tensor(float)| |Gemm|*in* A:**T**
*in* B:**T**
*in* C:**T**
*out* Y:**T**|13+|**T** = tensor(double), tensor(float)| |||[11, 12]|**T** = tensor(double), tensor(float)| |||[9, 10]|**T** = tensor(double), tensor(float)| @@ -159,9 +160,9 @@ Do not modify directly.* |||[1, 10]|**B** = tensor(bool)
**V** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| |ImageScaler|*in* input:**T**
*out* output:**T**|1+|**T** = tensor(float)| |InstanceNormalization|*in* input:**T**
*in* scale:**T**
*in* B:**T**
*out* output:**T**|6+|**T** = tensor(float)| -|IsInf|*in* X:**T1**
*out* Y:**T2**|20+|**T1** = tensor(double), tensor(float), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz)
**T2** = tensor(bool)| +|IsInf|*in* X:**T1**
*out* Y:**T2**|20+|**T1** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz)
**T2** = tensor(bool)| |||[10, 19]|**T1** = tensor(double), tensor(float)
**T2** = tensor(bool)| -|IsNaN|*in* X:**T1**
*out* Y:**T2**|20+|**T1** = tensor(double), tensor(float), tensor(float16), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz)
**T2** = tensor(bool)| +|IsNaN|*in* X:**T1**
*out* Y:**T2**|20+|**T1** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz)
**T2** = tensor(bool)| |||[13, 19]|**T1** = tensor(double), tensor(float), tensor(float16)
**T2** = tensor(bool)| |||[9, 12]|**T1** = tensor(double), tensor(float), tensor(float16)
**T2** = tensor(bool)| |LRN|*in* X:**T**
*out* Y:**T**|13+|**T** = tensor(float)| @@ -469,7 +470,7 @@ Do not modify directly.* |MatMulFpQ4|*in* A:**T1**
*in* B:**T2**
*in* B_shape:**T3**
*out* Y:**T1**|1+|**T1** = tensor(float)
**T2** = tensor(uint8)
**T3** = tensor(int64)| |MatMulInteger16|*in* A:**T1**
*in* B:**T2**
*out* Y:**T3**|1+|**T1** = tensor(int16)
**T2** = tensor(int16)
**T3** = tensor(int32)| |MatMulIntegerToFloat|*in* A:**T1**
*in* B:**T2**
*in* a_scale:**T3**
*in* b_scale:**T3**
*in* a_zero_point:**T1**
*in* b_zero_point:**T2**
*in* bias:**T3**
*out* Y:**T3**|1+|**T1** = tensor(int8), tensor(uint8)
**T2** = tensor(int8), tensor(uint8)
**T3** = tensor(float)| -|MatMulNBits|*in* A:**T1**
*in* B:**T2**
*in* scales:**T1**
*in* zero_points:**T2**
*out* Y:**T1**|1+|**T1** = tensor(float)
**T2** = tensor(uint8)| +|MatMulNBits|*in* A:**T1**
*in* B:**T2**
*in* scales:**T1**
*in* zero_points:**T3**
*in* g_idx:**T4**
*out* Y:**T1**|1+|**T1** = tensor(float)
**T2** = tensor(uint8)
**T3** = tensor(float), tensor(uint8)
**T4** = tensor(int32)| |MaxpoolWithMask|*in* X:**T**
*in* M:**tensor(int32)**
*out* Y:**T**|1+|**T** = tensor(float)| |MultiHeadAttention|*in* query:**T**
*in* key:**T**
*in* value:**T**
*in* bias:**T**
*in* key_padding_mask:**M**
*in* relative_position_bias:**T**
*in* past_key:**T**
*in* past_value:**T**
*out* output:**T**
*out* present_key:**T**
*out* present_value:**T**|1+|**T** = tensor(float)| |MurmurHash3|*in* X:**T1**
*out* Y:**T2**|1+|**T1** = tensor(double), tensor(float), tensor(int32), tensor(int64), tensor(string), tensor(uint32), tensor(uint64)
**T2** = tensor(int32), tensor(uint32)| @@ -606,6 +607,7 @@ Do not modify directly.* |GatherND|*in* data:**T**
*in* indices:**tensor(int64)**
*out* output:**T**|13+|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int64)
**indices** = tensor(int64)| |||12|**T** = tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int64)
**indices** = tensor(int64)| |||11|**T** = tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int64)
**indices** = tensor(int64)| +|Gelu|*in* X:**T**
*out* Y:**T**|20+|**T** = tensor(double), tensor(float), tensor(float16)| |Gemm|*in* A:**T**
*in* B:**T**
*in* C:**T**
*out* Y:**T**|13+|**T** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16)| |||[11, 12]|**T** = tensor(double), tensor(float), tensor(float16)| |||[9, 10]|**T** = tensor(double), tensor(float), tensor(float16)| @@ -617,6 +619,7 @@ Do not modify directly.* |||[7, 8]|**T** = tensor(double), tensor(float), tensor(float16)| |GreaterOrEqual|*in* A:**T**
*in* B:**T**
*out* C:**T1**|16+|**T** = tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(int64), tensor(uint32), tensor(uint64)
**T1** = tensor(bool)| |||[12, 15]|**T** = tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(int64), tensor(uint32), tensor(uint64)
**T1** = tensor(bool)| +|GridSample|*in* X:**T1**
*in* grid:**T2**
*out* Y:**T1**|16+|**T1** = tensor(float)
**T2** = tensor(float)| |HardSigmoid|*in* X:**T**
*out* Y:**T**|6+|**T** = tensor(double), tensor(float), tensor(float16)| |Identity|*in* input:**T**
*out* output:**T**

or

*in* input:**V**
*out* output:**V**|19+|**V** = seq(tensor(bfloat16)), seq(tensor(bool)), seq(tensor(double)), seq(tensor(float)), seq(tensor(float16)), seq(tensor(float8e4m3fn)), seq(tensor(float8e4m3fnuz)), seq(tensor(float8e5m2)), seq(tensor(float8e5m2fnuz)), seq(tensor(int16)), seq(tensor(int32)), seq(tensor(int64)), seq(tensor(int8)), seq(tensor(uint16)), seq(tensor(uint32)), seq(tensor(uint64)), seq(tensor(uint8)), tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| |||[14, 18]|**V** = seq(tensor(bfloat16)), seq(tensor(bool)), seq(tensor(double)), seq(tensor(float)), seq(tensor(float16)), seq(tensor(int16)), seq(tensor(int32)), seq(tensor(int64)), seq(tensor(int8)), seq(tensor(uint16)), seq(tensor(uint32)), seq(tensor(uint64)), seq(tensor(uint8)), tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| @@ -628,6 +631,11 @@ Do not modify directly.* |||[1, 10]|**B** = tensor(bool)
**V** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| |ImageScaler|*in* input:**T**
*out* output:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)| |InstanceNormalization|*in* input:**T**
*in* scale:**T**
*in* B:**T**
*out* output:**T**|6+|**T** = tensor(double), tensor(float), tensor(float16)| +|IsInf|*in* X:**T1**
*out* Y:**T2**|20+|**T1** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz)
**T2** = tensor(bool)| +|||[10, 19]|**T1** = tensor(double), tensor(float)
**T2** = tensor(bool)| +|IsNaN|*in* X:**T1**
*out* Y:**T2**|20+|**T1** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz)
**T2** = tensor(bool)| +|||[13, 19]|**T1** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16)
**T2** = tensor(bool)| +|||[9, 12]|**T1** = tensor(double), tensor(float), tensor(float16)
**T2** = tensor(bool)| |LRN|*in* X:**T**
*out* Y:**T**|13+|**T** = tensor(double), tensor(float), tensor(float16)| |||[1, 12]|**T** = tensor(double), tensor(float), tensor(float16)| |LSTM|*in* X:**T**
*in* W:**T**
*in* R:**T**
*in* B:**T**
*in* sequence_lens:**T1**
*in* initial_h:**T**
*in* initial_c:**T**
*in* P:**T**
*out* Y:**T**
*out* Y_h:**T**
*out* Y_c:**T**|14+|**T** = tensor(double), tensor(float), tensor(float16)
**T1** = tensor(int32)| @@ -731,7 +739,8 @@ Do not modify directly.* |||13|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)
**shape** = tensor(int64)| |||[5, 12]|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)
**shape** = tensor(int64)| |||[1, 4]|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| -|Resize|*in* X:**T**
*in* scales:**tensor(float)**
*out* Y:**T**

or

*in* X:**T1**
*in* roi:**T2**
*in* scales:**tensor(float)**
*in* sizes:**tensor(int64)**
*out* Y:**T1**|13+|**T1** = tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(uint8)| +|Resize|*in* X:**T**
*in* scales:**tensor(float)**
*out* Y:**T**

or

*in* X:**T1**
*in* roi:**T2**
*in* scales:**tensor(float)**
*in* sizes:**tensor(int64)**
*out* Y:**T1**|18+|**T1** = tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(uint8)| +|||[13, 17]|**T1** = tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(uint8)| |||[11, 12]|**T1** = tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(uint8)| |||10|**T** = tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(uint8)| |ReverseSequence|*in* input:**T**
*in* sequence_lens:**tensor(int64)**
*out* Y:**T**|10+|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| @@ -851,14 +860,15 @@ Do not modify directly.* |Irfft|*in* X:**T**
*out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)| |LongformerAttention|*in* input:**T**
*in* weight:**T**
*in* bias:**T**
*in* mask:**T**
*in* global_weight:**T**
*in* global_bias:**T**
*in* global:**G**
*out* output:**T**|1+|**T** = tensor(float), tensor(float16)| |MatMulBnb4|*in* A:**T1**
*in* B:**T2**
*in* absmax:**T1**
*out* Y:**T1**|1+|**T1** = tensor(bfloat16), tensor(float), tensor(float16)
**T2** = tensor(uint8)| -|MatMulNBits|*in* A:**T1**
*in* B:**T2**
*in* scales:**T1**
*in* zero_points:**T2**
*out* Y:**T1**|1+|**T1** = tensor(float), tensor(float16)
**T2** = tensor(uint8)| -|MoE|*in* input:**T**
*in* router_probs:**T**
*in* fc1_experts_weights:**T**
*in* fc2_experts_weights:**T**
*in* fc1_experts_bias:**T**
*in* fc2_experts_bias:**T**
*out* output:**T**|1+|**T** = tensor(float), tensor(float16)| +|MatMulNBits|*in* A:**T1**
*in* B:**T2**
*in* scales:**T1**
*in* zero_points:**T3**
*in* g_idx:**T4**
*out* Y:**T1**|1+|**T1** = tensor(float), tensor(float16)
**T2** = tensor(uint8)| +|MoE|*in* input:**T**
*in* router_probs:**T**
*in* fc1_experts_weights:**T**
*in* fc1_experts_bias:**T**
*in* fc2_experts_weights:**T**
*in* fc2_experts_bias:**T**
*in* fc3_experts_weights:**T**
*in* fc3_experts_bias:**T**
*out* output:**T**|1+|**T** = tensor(float), tensor(float16)| |MultiHeadAttention|*in* query:**T**
*in* key:**T**
*in* value:**T**
*in* bias:**T**
*in* key_padding_mask:**M**
*in* relative_position_bias:**T**
*in* past_key:**T**
*in* past_value:**T**
*out* output:**T**
*out* present_key:**T**
*out* present_value:**T**|1+|**T** = tensor(float), tensor(float16)| |NGramRepeatBlock|*in* input_ids:**Tid**
*in* scores:**T**
*out* scores_out:**T**|1+|**T** = tensor(float)
**Tid** = tensor(int64)| |NhwcConv|*in* X:**T**
*in* W:**T**
*in* B:**T**
*out* Y:**T**|1+|**T** = tensor(float), tensor(float16)| |PackedAttention|*in* input:**T**
*in* weights:**T**
*in* bias:**T**
*in* token_offset:**M**
*in* cumulative_sequence_length:**M**
*in* relative_position_bias:**T**
*out* output:**T**|1+|**T** = tensor(float), tensor(float16)| |PackedMultiHeadAttention|*in* query:**T**
*in* key:**T**
*in* value:**T**
*in* bias:**T**
*in* token_offset:**M**
*in* cumulative_sequence_length:**M**
*in* relative_position_bias:**T**
*out* output:**T**|1+|**T** = tensor(float), tensor(float16)| |QAttention|*in* input:**T1**
*in* weight:**T2**
*in* bias:**T3**
*in* input_scale:**T3**
*in* weight_scale:**T3**
*in* mask_index:**T4**
*in* input_zero_point:**T1**
*in* weight_zero_point:**T2**
*in* past:**T3**
*out* output:**T3**
*out* present:**T3**|1+|**T1** = tensor(int8)
**T2** = tensor(int8)
**T3** = tensor(float), tensor(float16)
**T4** = tensor(int32)| +|QMoE|*in* input:**T**
*in* router_probs:**T**
*in* fc1_experts_weights:**T1**
*in* fc1_scales:**T**
*in* fc1_experts_bias:**T**
*in* fc2_experts_weights:**T1**
*in* fc2_scales:**T**
*in* fc2_experts_bias:**T**
*in* fc3_experts_weights:**T1**
*in* fc3_scales:**T**
*in* fc3_experts_bias:**T**
*out* output:**T**|1+|**T** = tensor(float16)
**T1** = tensor(uint8)| |QOrderedAttention|*in* input:**Q**
*in* scale_input:**S**
*in* scale_Q_gemm:**S**
*in* scale_K_gemm:**S**
*in* scale_V_gemm:**S**
*in* Q_weight:**Q**
*in* K_weight:**Q**
*in* V_weight:**Q**
*in* scale_Q_weight:**S**
*in* scale_K_weight:**S**
*in* scale_V_weight:**S**
*in* Q_bias:**S**
*in* K_bias:**S**
*in* V_bias:**S**
*in* scale_QKT_gemm:**S**
*in* scale_QKT_softmax:**S**
*in* scale_values_gemm:**S**
*in* mask_index:**G**
*in* past:**Q**
*in* relative_position_bias:**S**
*out* output:**Q**|1+|**G** = tensor(int32)
**Q** = tensor(int8)
**S** = tensor(float)| |QOrderedGelu|*in* X:**Q**
*in* scale_X:**S**
*in* scale_Y:**S**
*out* Y:**Q**|1+|**Q** = tensor(int8)
**S** = tensor(float)| |QOrderedLayerNormalization|*in* X:**Q**
*in* scale_X:**S**
*in* scale:**F**
*in* B:**F**
*in* scale_Y:**S**
*out* Y:**Q**|1+|**F** = tensor(float), tensor(float16)
**Q** = tensor(int8)
**S** = tensor(float)| @@ -1259,13 +1269,16 @@ Do not modify directly.* |BiasSplitGelu|*in* X:**T**
*in* bias:**T**
*out* Y:**T**|1+|**T** = tensor(float), tensor(float16)| |ConvTransposeWithDynamicPads|*in* X:**T**
*in* W:**T**
*in* Pads:**tensor(int64)**
*in* B:**T**
*out* Y:**T**|1+|**T** = tensor(float), tensor(float16)| |DequantizeLinear|*in* x:**T1**
*in* x_scale:**T2**
*in* x_zero_point:**T1**
*out* y:**T2**|1+|**T1** = tensor(int32), tensor(int8), tensor(uint8)
**T2** = tensor(float), tensor(float16)| +|DynamicQuantizeMatMul|*in* A:**T1**
*in* B:**T2**
*in* b_scale:**T1**
*in* b_zero_point:**T2**
*in* bias:**T1**
*out* Y:**T1**|1+|**T1** = tensor(float)
**T2** = tensor(int8), tensor(uint8)| |EmbedLayerNormalization|*in* input_ids:**T1**
*in* segment_ids:**T1**
*in* word_embedding:**T**
*in* position_embedding:**T**
*in* segment_embedding:**T**
*in* gamma:**T**
*in* beta:**T**
*in* mask:**T1**
*in* position_ids:**T1**
*out* output:**T**
*out* mask_index:**T1**
*out* embedding_sum:**T**|1+|**T** = tensor(float), tensor(float16)| |FusedMatMul|*in* A:**T**
*in* B:**T**
*out* Y:**T**|1+|**T** = tensor(float), tensor(float16)| |FusedMatMulActivation|*in* A:**T**
*in* B:**T**
*out* Y:**T**|1+|**T** = tensor(float), tensor(float16)| |Gelu|*in* X:**T**
*out* Y:**T**|1+|**T** = tensor(float), tensor(float16)| |GroupNorm|*in* X:**T**
*in* gamma:**M**
*in* beta:**M**
*out* Y:**T**|1+|**M** = tensor(float), tensor(float16)
**T** = tensor(float), tensor(float16)| +|MatMulIntegerToFloat|*in* A:**T1**
*in* B:**T2**
*in* a_scale:**T3**
*in* b_scale:**T3**
*in* a_zero_point:**T1**
*in* b_zero_point:**T2**
*in* bias:**T3**
*out* Y:**T3**|1+|**T1** = tensor(int8), tensor(uint8)
**T2** = tensor(int8), tensor(uint8)
**T3** = tensor(float), tensor(float16)| |MultiHeadAttention|*in* query:**T**
*in* key:**T**
*in* value:**T**
*in* bias:**T**
*in* key_padding_mask:**M**
*in* relative_position_bias:**T**
*in* past_key:**T**
*in* past_value:**T**
*out* output:**T**
*out* present_key:**T**
*out* present_value:**T**|1+|**M** = tensor(int32)
**T** = tensor(float), tensor(float16)| |NhwcConv|*in* X:**T**
*in* W:**T**
*in* B:**T**
*out* Y:**T**|1+|**T** = tensor(float), tensor(float16)| +|QAttention|*in* input:**T1**
*in* weight:**T2**
*in* bias:**T3**
*in* input_scale:**T3**
*in* weight_scale:**T3**
*in* mask_index:**T4**
*in* input_zero_point:**T1**
*in* weight_zero_point:**T2**
*in* past:**T3**
*out* output:**T3**
*out* present:**T3**|1+|**T1** = tensor(int8), tensor(uint8)
**T2** = tensor(int8), tensor(uint8)
**T3** = tensor(float), tensor(float16)
**T4** = tensor(int32)| |QLinearAdd|*in* A:**T**
*in* A_scale:**tensor(float)**
*in* A_zero_point:**T**
*in* B:**T**
*in* B_scale:**tensor(float)**
*in* B_zero_point:**T**
*in* C_scale:**tensor(float)**
*in* C_zero_point:**T**
*out* C:**T**|1+|**T** = tensor(int8), tensor(uint8)| |QLinearAveragePool|*in* X:**T**
*in* x_scale:**tensor(float)**
*in* x_zero_point:**T**
*in* y_scale:**tensor(float)**
*in* y_zero_point:**T**
*out* Y:**T**|1+|**T** = tensor(int8), tensor(uint8)| |QLinearConcat|*in* Y_scale:**TF**
*in* Y_zero_point:**T8**
*in* inputs:**TV**
*out* Y:**T8**|1+|**T8** = tensor(int8), tensor(uint8)
**TF** = tensor(float)
**TV** = tensor(float), tensor(int8), tensor(uint8)| diff --git a/docs/python/examples/plot_train_convert_predict.py b/docs/python/examples/plot_train_convert_predict.py index dcbc84b20767a..44b6bb74c29df 100644 --- a/docs/python/examples/plot_train_convert_predict.py +++ b/docs/python/examples/plot_train_convert_predict.py @@ -134,7 +134,7 @@ def loop(X_test, fct, n=None): nrow = X_test.shape[0] if n is None: n = nrow - for i in range(0, n): + for i in range(n): im = i % nrow fct(X_test[im : im + 1]) diff --git a/include/onnxruntime/core/framework/allocator.h b/include/onnxruntime/core/framework/allocator.h index 9015b23296e08..097873c5e3653 100644 --- a/include/onnxruntime/core/framework/allocator.h +++ b/include/onnxruntime/core/framework/allocator.h @@ -80,7 +80,6 @@ class IAllocator { virtual void Free(void* p) = 0; - // TODO: Find a better name than Reserve() and update in all places. // Reserve() is an interface exposed for an implementation of IAllocator // to optionally implement some allocation logic that by-passes any arena-based // logic that may be housed in the Alloc() implementation. diff --git a/include/onnxruntime/core/framework/data_types_internal.h b/include/onnxruntime/core/framework/data_types_internal.h index fbeee8a2aedc5..3a3b5cb6888f2 100644 --- a/include/onnxruntime/core/framework/data_types_internal.h +++ b/include/onnxruntime/core/framework/data_types_internal.h @@ -305,7 +305,7 @@ class CallableDispatchableHelper { return 0; } - void CheckCalledOnce() { + void CheckCalledOnce() const { ORT_ENFORCE(called_ == 1, "Unsupported data type: ", dt_type_); } }; diff --git a/include/onnxruntime/core/framework/execution_provider.h b/include/onnxruntime/core/framework/execution_provider.h index 31c988f500779..16ad943a5f47e 100644 --- a/include/onnxruntime/core/framework/execution_provider.h +++ b/include/onnxruntime/core/framework/execution_provider.h @@ -33,6 +33,8 @@ class Node; #include "core/framework/stream_handles.h" #include "core/framework/tuning_context.h" +struct OrtRunOptions; + namespace onnxruntime { /** @@ -51,6 +53,8 @@ struct NodeComputeInfo { DestroyFunctionStateFunc release_state_func; }; +using RunOptions = ::OrtRunOptions; + enum class DataLayout { NCHW, NHWC, @@ -184,7 +188,7 @@ class IExecutionProvider { Run may not be finished on device This function should be regarded as the point after which a new Run would start to submit commands from CPU */ - virtual common::Status OnRunStart() { return Status::OK(); } + virtual common::Status OnRunStart(const onnxruntime::RunOptions& /*run_options*/) { return Status::OK(); } /** Called when InferenceSession::Run ended @@ -192,25 +196,27 @@ class IExecutionProvider { may not be finished on device This function should be regarded as the point that all commands of current Run has been submmited by CPU */ - virtual common::Status OnRunEnd(bool /*sync_stream*/) { return Status::OK(); } + virtual common::Status OnRunEnd(bool /*sync_stream*/, const onnxruntime::RunOptions& /*run_options*/) { + return Status::OK(); + } /** Indicate whether the graph capturing mode (e.g., cuda graph) is enabled for - the provider. Currently only CUDA execution provider supports it. + the provider. */ virtual bool IsGraphCaptureEnabled() const { return false; } /** - Indicate whether the graph has been captured and instantiated. Currently - only CUDA execution provider supports it. + Indicate whether the graph has been captured and instantiated. */ - virtual bool IsGraphCaptured() const { return false; } + virtual bool IsGraphCaptured(int /*graph_annotation_id*/) const { return false; } /** - Run the instantiated graph. Currently only CUDA execution provider supports - it. + Run the instantiated graph. */ - virtual common::Status ReplayGraph() { return Status::OK(); } + virtual common::Status ReplayGraph(int /*graph_annotation_id*/) { + return Status::OK(); + } /** Called when session creation is complete diff --git a/include/onnxruntime/core/framework/run_options.h b/include/onnxruntime/core/framework/run_options.h index 5444c825d7991..789c3b13f2c3e 100644 --- a/include/onnxruntime/core/framework/run_options.h +++ b/include/onnxruntime/core/framework/run_options.h @@ -45,5 +45,5 @@ struct OrtRunOptions { }; namespace onnxruntime { -using RunOptions = OrtRunOptions; +using RunOptions = ::OrtRunOptions; } // namespace onnxruntime diff --git a/include/onnxruntime/core/framework/stream_handles.h b/include/onnxruntime/core/framework/stream_handles.h index c235ee904762e..26d78133b52fc 100644 --- a/include/onnxruntime/core/framework/stream_handles.h +++ b/include/onnxruntime/core/framework/stream_handles.h @@ -100,6 +100,8 @@ class Stream { return nullptr; } + virtual WaitNotificationFn GetWaitNotificationFn() const { return nullptr; } + private: StreamHandle handle_; const OrtDevice& device_; diff --git a/include/onnxruntime/core/graph/constants.h b/include/onnxruntime/core/graph/constants.h index 9b26ba914c7dd..8e04050d089a0 100644 --- a/include/onnxruntime/core/graph/constants.h +++ b/include/onnxruntime/core/graph/constants.h @@ -31,6 +31,7 @@ constexpr size_t kMaxExecutionProviderNameLen = 30; constexpr const char* kCpuExecutionProvider = "CPUExecutionProvider"; constexpr const char* kCudaExecutionProvider = "CUDAExecutionProvider"; +constexpr const char* kCudaNHWCExecutionProvider = "CUDANHWCExecutionProvider"; constexpr const char* kDnnlExecutionProvider = "DnnlExecutionProvider"; constexpr const char* kOpenVINOExecutionProvider = "OpenVINOExecutionProvider"; constexpr const char* kVitisAIExecutionProvider = "VitisAIExecutionProvider"; diff --git a/include/onnxruntime/core/graph/graph.h b/include/onnxruntime/core/graph/graph.h index b9b8a25286b7b..b16d52dbdab68 100644 --- a/include/onnxruntime/core/graph/graph.h +++ b/include/onnxruntime/core/graph/graph.h @@ -21,7 +21,7 @@ #pragma warning(pop) #endif -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/common/gsl.h" diff --git a/include/onnxruntime/core/providers/cuda/cuda_context.h b/include/onnxruntime/core/providers/cuda/cuda_context.h index 108173474db46..7104e70c3a8a9 100644 --- a/include/onnxruntime/core/providers/cuda/cuda_context.h +++ b/include/onnxruntime/core/providers/cuda/cuda_context.h @@ -58,7 +58,7 @@ struct CudaContext : public CustomOpContext { template T FetchResource(const OrtKernelContext& kernel_ctx, CudaResource resource_type) { - if (sizeof(T) > sizeof(void*)) { + if constexpr (sizeof(T) > sizeof(void*)) { ORT_CXX_API_THROW("void* is not large enough to hold resource type: " + std::to_string(resource_type), OrtErrorCode::ORT_INVALID_ARGUMENT); } const auto& ort_api = Ort::GetApi(); diff --git a/include/onnxruntime/core/providers/cuda/cuda_resource.h b/include/onnxruntime/core/providers/cuda/cuda_resource.h index 1fef077860be3..00e7dec5727d1 100644 --- a/include/onnxruntime/core/providers/cuda/cuda_resource.h +++ b/include/onnxruntime/core/providers/cuda/cuda_resource.h @@ -19,4 +19,4 @@ enum CudaResource : int { enable_skip_layer_norm_strict_mode_t, prefer_nhwc_t, use_tf32_t, -}; \ No newline at end of file +}; diff --git a/include/onnxruntime/core/session/onnxruntime_c_api.h b/include/onnxruntime/core/session/onnxruntime_c_api.h index 5577c840c5379..e40c375cab119 100644 --- a/include/onnxruntime/core/session/onnxruntime_c_api.h +++ b/include/onnxruntime/core/session/onnxruntime_c_api.h @@ -319,6 +319,12 @@ typedef struct OrtAllocator { void*(ORT_API_CALL* Alloc)(struct OrtAllocator* this_, size_t size); ///< Returns a pointer to an allocated block of `size` bytes void(ORT_API_CALL* Free)(struct OrtAllocator* this_, void* p); ///< Free a block of memory previously allocated with OrtAllocator::Alloc const struct OrtMemoryInfo*(ORT_API_CALL* Info)(const struct OrtAllocator* this_); ///< Return a pointer to an ::OrtMemoryInfo that describes this allocator + /** + * @brief Optional allocation function to use for memory allocations made during session initialization. + * Use this function if you want to separate allocations made by ORT during Run() calls from + * those made during session initialization. This allows for separate memory management strategies for these allocations. + */ + void*(ORT_API_CALL* Reserve)(struct OrtAllocator* this_, size_t size); ///< Returns a pointer to an allocated block of `size` bytes } OrtAllocator; typedef void(ORT_API_CALL* OrtLoggingFunction)( @@ -1837,14 +1843,28 @@ struct OrtApi { /** \brief Used for custom operators, get an input of a kernel * - * \see ::OrtCustomOp + * The function attempts fetches the input of the kernel. If the input is optional + * and not present, the function returns success and out is set to nullptr. + * + * \param[in] context ::OrtKernelContext instance + * \param[in] input index. See KernelContext_GetInputCount for boundaries check. + * \param[in, out] returns a ptr to OrtValue if the input is present + * + * \snippet{doc} snippets.dox OrtStatus Return Value */ ORT_API2_STATUS(KernelContext_GetInput, _In_ const OrtKernelContext* context, _In_ size_t index, _Out_ const OrtValue** out); /** \brief Used for custom operators, get an output of a kernel * - * \see ::OrtCustomOp + * The function attempts fetches the output of the kernel. If the output is optional + * and not present, the function returns success and out is set to nullptr. + * + * \param[in] context ::OrtKernelContext instance + * \param[in] output index. See KernelContext_GetOutputCount for boundaries check. + * \param[in, out] returns a ptr to OrtValue if the output is present + * + * \snippet{doc} snippets.dox OrtStatus Return Value */ ORT_API2_STATUS(KernelContext_GetOutput, _Inout_ OrtKernelContext* context, _In_ size_t index, _In_ const int64_t* dim_values, size_t dim_count, _Outptr_ OrtValue** out); @@ -3619,6 +3639,10 @@ struct OrtApi { * - "73" * - "75" * "device_id": The ID of the device to use when setting 'htp_arch'. Defaults to "0" (for single device). + "enable_htp_fp16_precision": Only used for float32 model. + Enable the float32 model to be inferenced with fp16 precision. Otherwise, it will be fp32 precision. + - "0": Default. With fp32 precision. + - "1": With fp16 precision. * * SNPE supported keys: * "runtime": SNPE runtime engine, options: "CPU", "CPU_FLOAT32", "GPU", "GPU_FLOAT32_16_HYBRID", "GPU_FLOAT16", @@ -4586,6 +4610,26 @@ struct OrtApi { _In_reads_(num_keys) const char* const* provider_options_keys, _In_reads_(num_keys) const char* const* provider_options_values, _In_ size_t num_keys); + + /** \brief Get scratch buffer from the corresponding allocator under the sepcific OrtMemoryInfo object. + * NOTE: callers are responsible to release this scratch buffer from the corresponding allocator + * \param[in] context OrtKernelContext instance + * \param[in] mem_info OrtMemoryInfo instance + * \param[in] count_or_bytes How many bytes is this scratch buffer + * \param[out] out A pointer to the scrach buffer + * \snippet{doc} snippets.dox OrtStatus Return Value + */ + ORT_API2_STATUS(KernelContext_GetScratchBuffer, _In_ const OrtKernelContext* context, _In_ const OrtMemoryInfo* mem_info, _In_ size_t count_or_bytes, _Outptr_ void** out); + + /** \brief Get allocator from KernelInfo for a specific memory type. Please use C API ReleaseAllocator to release out object + * + * \param[in] info OrtKernelInfo instance + * \param[in] mem_type OrtMemType object + * \param[out] out A pointer to OrtAllocator + * + * \snippet{doc} snippets.dox OrtStatus Return Value + */ + ORT_API2_STATUS(KernelInfoGetAllocator, _In_ const OrtKernelInfo* info, _In_ OrtMemType mem_type, _Outptr_ OrtAllocator** out); }; /* @@ -4683,6 +4727,21 @@ struct OrtCustomOp { // Get start range int(ORT_API_CALL* GetStartVersion)(_In_ const struct OrtCustomOp* op); int(ORT_API_CALL* GetEndVersion)(_In_ const struct OrtCustomOp* op); + + // Get the inplace_map that defines which output can reuse which input + // Callers will provide 2 raw int* and pass in their address, this function will fill these 2 arrays + // when return, output (*output_index)[i] may reuse the input (*input_index[i]). + // The return value is the size of these 2 arrays. + // Callers are responsible to delete these 2 arrays after use by calling OrtCustomOp::ReleaseMayInplace(). + size_t(ORT_API_CALL* GetMayInplace)(_Out_ int** input_index, _Out_ int** output_index); + + // Release the pointer input_index and output_index allocated from GetMayInplace() function. + // If GetMayInplace() is defined, this function MUST be defined as well. + void(ORT_API_CALL* ReleaseMayInplace)(_Frees_ptr_opt_ int* input_index, _Frees_ptr_opt_ int* output_index); + + // Same as GetMayInplace() and ReleaseMayInplace() + size_t(ORT_API_CALL* GetAliasMap)(_Out_ int** input_index, _Out_ int** output_index); + void(ORT_API_CALL* ReleaseAliasMap)(_Frees_ptr_opt_ int* input_index, _Frees_ptr_opt_ int* output_index); }; /* diff --git a/include/onnxruntime/core/session/onnxruntime_cxx_api.h b/include/onnxruntime/core/session/onnxruntime_cxx_api.h index ae4c4bef90c64..fd0e3490426a7 100644 --- a/include/onnxruntime/core/session/onnxruntime_cxx_api.h +++ b/include/onnxruntime/core/session/onnxruntime_cxx_api.h @@ -2055,7 +2055,11 @@ struct KernelContext { explicit KernelContext(OrtKernelContext* context); size_t GetInputCount() const; size_t GetOutputCount() const; + // If input is optional and is not present, the method returns en empty ConstValue + // which can be compared to nullptr. ConstValue GetInput(size_t index) const; + // If outout is optional and is not present, the method returns en empty UnownedValue + // which can be compared to nullptr. UnownedValue GetOutput(size_t index, const int64_t* dim_values, size_t dim_count) const; UnownedValue GetOutput(size_t index, const std::vector& dims) const; void* GetGPUComputeStream() const; @@ -2297,6 +2301,11 @@ struct CustomOpBase : OrtCustomOp { OrtCustomOp::GetEndVersion = [](const OrtCustomOp* this_) { return static_cast(this_)->end_ver_; }; + + OrtCustomOp::GetMayInplace = nullptr; + OrtCustomOp::ReleaseMayInplace = nullptr; + OrtCustomOp::GetAliasMap = nullptr; + OrtCustomOp::ReleaseAliasMap = nullptr; } // Default implementation of GetExecutionProviderType that returns nullptr to default to the CPU provider diff --git a/include/onnxruntime/core/session/onnxruntime_lite_custom_op.h b/include/onnxruntime/core/session/onnxruntime_lite_custom_op.h index 0c0af16d4e20c..ee60f25da115e 100644 --- a/include/onnxruntime/core/session/onnxruntime_lite_custom_op.h +++ b/include/onnxruntime/core/session/onnxruntime_lite_custom_op.h @@ -862,6 +862,11 @@ struct OrtLiteCustomOp : public OrtCustomOp { auto self = reinterpret_cast(op); return self->end_ver_; }; + + OrtCustomOp::GetMayInplace = {}; + OrtCustomOp::ReleaseMayInplace = {}; + OrtCustomOp::GetAliasMap = {}; + OrtCustomOp::ReleaseAliasMap = {}; } const std::string op_name_; @@ -1111,4 +1116,4 @@ OrtLiteCustomOp* CreateLiteCustomOp(const char* op_name, } } // namespace Custom -} // namespace Ort \ No newline at end of file +} // namespace Ort diff --git a/include/onnxruntime/core/session/onnxruntime_run_options_config_keys.h b/include/onnxruntime/core/session/onnxruntime_run_options_config_keys.h index 1f5fcd50e185c..c80b8c0c164b6 100644 --- a/include/onnxruntime/core/session/onnxruntime_run_options_config_keys.h +++ b/include/onnxruntime/core/session/onnxruntime_run_options_config_keys.h @@ -30,3 +30,22 @@ static const char* const kOrtRunOptionsConfigEnableMemoryArenaShrinkage = "memor // Per default it will be set to '0' // Taking CUDA EP as an example, it omit triggering cudaStreamSynchronize on the compute stream. static const char* const kOrtRunOptionsConfigDisableSynchronizeExecutionProviders = "disable_synchronize_execution_providers"; + +// Set HTP performance mode for QNN HTP backend before session run. +// options for HTP performance mode: "burst", "balanced", "default", "high_performance", +// "high_power_saver", "low_balanced", "extreme_power_saver", "low_power_saver", "power_saver", +// "sustained_high_performance". Default to "default". +static const char* const kOrtRunOptionsConfigQnnPerfMode = "qnn.htp_perf_mode"; + +// Set HTP performance mode for QNN HTP backend post session run. +static const char* const kOrtRunOptionsConfigQnnPerfModePostRun = "qnn.htp_perf_mode_post_run"; + +// Set RPC control latency for QNN HTP backend +static const char* const kOrtRunOptionsConfigQnnRpcControlLatency = "qnn.rpc_control_latency"; + +// Set graph annotation id for CUDA EP. Use with enable_cuda_graph=true. +// The value should be an integer. If the value is not set, the default value is 0 and +// ORT session only captures one cuda graph before another capture is requested. +// If the value is set to -1, cuda graph capture/replay is disabled in that run. +// User are not expected to set the value to 0 as it is reserved for internal use. +static const char* const kOrtRunOptionsConfigCudaGraphAnnotation = "gpu_graph_id"; diff --git a/java/README.md b/java/README.md index 2ce9a8bf62e4d..5c5baeb43a278 100644 --- a/java/README.md +++ b/java/README.md @@ -14,7 +14,7 @@ Use the main project's [build instructions](https://www.onnxruntime.ai/docs/how- #### Requirements -JDK version 8 or later is required. +Java 11 or later is required to build the library. The compiled jar file will run on Java 8 or later. The [Gradle](https://gradle.org/) build system is used here to manage the Java project's dependency management, compilation, testing, and assembly. In particular, the Gradle [wrapper](https://docs.gradle.org/current/userguide/gradle_wrapper.html) at `java/gradlew[.bat]` is used, locking the Gradle version to the one specified in the `java/gradle/wrapper/gradle-wrapper.properties` configuration. @@ -35,6 +35,7 @@ This allows the CMake system to ensure all of the C/C++ compilation is achieved The Java build depends on C/C++ onnxruntime shared library and a C JNI shared library (source located in the `src/main/native` directory). The JNI shared library is the glue that allows for Java to call functions in onnxruntime shared library. Given the fact that CMake injects native dependencies during CMake builds, some gradle tasks (primarily, `build`, `test`, and `check`) may fail. +To run the Java build independently of CMake supply `-DcmakeBuildDir=`, though this will only succeed after an initial build of the native libraries has completed. When running the build script, CMake will compile the `onnxruntime` target and the JNI glue `onnxruntime4j_jni` target and expose the resulting libraries in a place where Gradle can ingest them. Upon successful compilation of those targets, a special Gradle task to build will be executed. The results will be placed in the output directory stated above. @@ -61,4 +62,4 @@ Then the corresponding C files in `./src/main/native/ai_onnxruntime*.c` may be u ### Dependencies -The Java API does not have any runtime or compile dependencies currently. +The Java API does not have any runtime or compile dependencies. diff --git a/java/build.gradle b/java/build.gradle index c0a75f8165f7f..5a0c4a9e39377 100644 --- a/java/build.gradle +++ b/java/build.gradle @@ -3,7 +3,7 @@ plugins { id 'maven-publish' id 'signing' id 'jacoco' - id "com.diffplug.spotless" version "6.13.0" + id "com.diffplug.spotless" version "6.25.0" } allprojects { diff --git a/java/gradle/wrapper/gradle-wrapper.jar b/java/gradle/wrapper/gradle-wrapper.jar index ccebba7710dea..d64cd4917707c 100644 Binary files a/java/gradle/wrapper/gradle-wrapper.jar and b/java/gradle/wrapper/gradle-wrapper.jar differ diff --git a/java/gradle/wrapper/gradle-wrapper.properties b/java/gradle/wrapper/gradle-wrapper.properties index f396aaac2d317..4baf5a11d45a3 100644 --- a/java/gradle/wrapper/gradle-wrapper.properties +++ b/java/gradle/wrapper/gradle-wrapper.properties @@ -1,7 +1,8 @@ distributionBase=GRADLE_USER_HOME distributionPath=wrapper/dists -distributionSha256Sum=1b6b558be93f29438d3df94b7dfee02e794b94d9aca4611a92cdb79b6b88e909 -distributionUrl=https\://services.gradle.org/distributions/gradle-8.0.1-bin.zip +distributionSha256Sum=9631d53cf3e74bfa726893aee1f8994fee4e060c401335946dba2156f440f24c +distributionUrl=https\://services.gradle.org/distributions/gradle-8.6-bin.zip networkTimeout=10000 +validateDistributionUrl=true zipStoreBase=GRADLE_USER_HOME zipStorePath=wrapper/dists diff --git a/java/gradlew b/java/gradlew index 79a61d421cc4e..1aa94a4269074 100755 --- a/java/gradlew +++ b/java/gradlew @@ -83,10 +83,8 @@ done # This is normally unused # shellcheck disable=SC2034 APP_BASE_NAME=${0##*/} -APP_HOME=$( cd "${APP_HOME:-./}" && pwd -P ) || exit - -# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script. -DEFAULT_JVM_OPTS='"-Xmx64m" "-Xms64m"' +# Discard cd standard output in case $CDPATH is set (https://github.com/gradle/gradle/issues/25036) +APP_HOME=$( cd "${APP_HOME:-./}" > /dev/null && pwd -P ) || exit # Use the maximum available, or set MAX_FD != -1 to use that value. MAX_FD=maximum @@ -133,10 +131,13 @@ location of your Java installation." fi else JAVACMD=java - which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH. + if ! command -v java >/dev/null 2>&1 + then + die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH. Please set the JAVA_HOME variable in your environment to match the location of your Java installation." + fi fi # Increase the maximum file descriptors if we can. @@ -144,7 +145,7 @@ if ! "$cygwin" && ! "$darwin" && ! "$nonstop" ; then case $MAX_FD in #( max*) # In POSIX sh, ulimit -H is undefined. That's why the result is checked to see if it worked. - # shellcheck disable=SC3045 + # shellcheck disable=SC2039,SC3045 MAX_FD=$( ulimit -H -n ) || warn "Could not query maximum file descriptor limit" esac @@ -152,7 +153,7 @@ if ! "$cygwin" && ! "$darwin" && ! "$nonstop" ; then '' | soft) :;; #( *) # In POSIX sh, ulimit -n is undefined. That's why the result is checked to see if it worked. - # shellcheck disable=SC3045 + # shellcheck disable=SC2039,SC3045 ulimit -n "$MAX_FD" || warn "Could not set maximum file descriptor limit to $MAX_FD" esac @@ -197,11 +198,15 @@ if "$cygwin" || "$msys" ; then done fi -# Collect all arguments for the java command; -# * $DEFAULT_JVM_OPTS, $JAVA_OPTS, and $GRADLE_OPTS can contain fragments of -# shell script including quotes and variable substitutions, so put them in -# double quotes to make sure that they get re-expanded; and -# * put everything else in single quotes, so that it's not re-expanded. + +# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script. +DEFAULT_JVM_OPTS='"-Xmx64m" "-Xms64m"' + +# Collect all arguments for the java command: +# * DEFAULT_JVM_OPTS, JAVA_OPTS, JAVA_OPTS, and optsEnvironmentVar are not allowed to contain shell fragments, +# and any embedded shellness will be escaped. +# * For example: A user cannot expect ${Hostname} to be expanded, as it is an environment variable and will be +# treated as '${Hostname}' itself on the command line. set -- \ "-Dorg.gradle.appname=$APP_BASE_NAME" \ diff --git a/java/src/main/java/ai/onnxruntime/OnnxJavaType.java b/java/src/main/java/ai/onnxruntime/OnnxJavaType.java index 24bf6ad4b95fa..6f3ca13984f47 100644 --- a/java/src/main/java/ai/onnxruntime/OnnxJavaType.java +++ b/java/src/main/java/ai/onnxruntime/OnnxJavaType.java @@ -45,8 +45,10 @@ public enum OnnxJavaType { /** The native value of the enum. */ public final int value; + /** The Java side type used as the carrier. */ public final Class clazz; + /** The number of bytes used by a single value of this type. */ public final int size; diff --git a/java/src/main/java/ai/onnxruntime/OnnxMap.java b/java/src/main/java/ai/onnxruntime/OnnxMap.java index cde9f0de4ff0a..68d91d0d9e74a 100644 --- a/java/src/main/java/ai/onnxruntime/OnnxMap.java +++ b/java/src/main/java/ai/onnxruntime/OnnxMap.java @@ -39,6 +39,7 @@ public enum OnnxMapValueType { FLOAT(3), /** A 64-bit floating point value. */ DOUBLE(4); + /** The native enum value. */ final int value; diff --git a/java/src/main/java/ai/onnxruntime/OnnxRuntime.java b/java/src/main/java/ai/onnxruntime/OnnxRuntime.java index ed739dd9729d9..f552badd4f83e 100644 --- a/java/src/main/java/ai/onnxruntime/OnnxRuntime.java +++ b/java/src/main/java/ai/onnxruntime/OnnxRuntime.java @@ -54,19 +54,25 @@ final class OnnxRuntime { /** The short name of the ONNX runtime shared library */ static final String ONNXRUNTIME_LIBRARY_NAME = "onnxruntime"; + /** The short name of the ONNX runtime JNI shared library */ static final String ONNXRUNTIME_JNI_LIBRARY_NAME = "onnxruntime4j_jni"; /** The short name of the ONNX runtime shared provider library */ static final String ONNXRUNTIME_LIBRARY_SHARED_NAME = "onnxruntime_providers_shared"; + /** The short name of the ONNX runtime CUDA provider library */ static final String ONNXRUNTIME_LIBRARY_CUDA_NAME = "onnxruntime_providers_cuda"; + /** The short name of the ONNX runtime ROCM provider library */ static final String ONNXRUNTIME_LIBRARY_ROCM_NAME = "onnxruntime_providers_rocm"; + /** The short name of the ONNX runtime DNNL provider library */ static final String ONNXRUNTIME_LIBRARY_DNNL_NAME = "onnxruntime_providers_dnnl"; + /** The short name of the ONNX runtime OpenVINO provider library */ static final String ONNXRUNTIME_LIBRARY_OPENVINO_NAME = "onnxruntime_providers_openvino"; + /** The short name of the ONNX runtime TensorRT provider library */ static final String ONNXRUNTIME_LIBRARY_TENSORRT_NAME = "onnxruntime_providers_tensorrt"; diff --git a/java/src/main/java/ai/onnxruntime/OnnxSparseTensor.java b/java/src/main/java/ai/onnxruntime/OnnxSparseTensor.java index 804fe742ad624..8400ef53ff6d7 100644 --- a/java/src/main/java/ai/onnxruntime/OnnxSparseTensor.java +++ b/java/src/main/java/ai/onnxruntime/OnnxSparseTensor.java @@ -637,6 +637,7 @@ public abstract static class SparseTensor { /** The buffer holding the indices. */ final T indices; + /** The buffer holding the values. */ final Buffer values; diff --git a/java/src/main/java/ai/onnxruntime/providers/CoreMLFlags.java b/java/src/main/java/ai/onnxruntime/providers/CoreMLFlags.java index eb124decf75f3..cec3fadf446ca 100644 --- a/java/src/main/java/ai/onnxruntime/providers/CoreMLFlags.java +++ b/java/src/main/java/ai/onnxruntime/providers/CoreMLFlags.java @@ -1,5 +1,5 @@ /* - * Copyright (c) 2021, 2023, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 2021, 2024, Oracle and/or its affiliates. All rights reserved. * Licensed under the MIT License. */ package ai.onnxruntime.providers; @@ -14,7 +14,18 @@ public enum CoreMLFlags implements OrtFlags { /** Enables CoreML on subgraphs. */ ENABLE_ON_SUBGRAPH(2), // COREML_FLAG_ENABLE_ON_SUBGRAPH(0x002) /** Only enable usage of CoreML if the device has an Apple Neural Engine. */ - ONLY_ENABLE_DEVICE_WITH_ANE(4); // COREML_FLAG_ONLY_ENABLE_DEVICE_WITH_ANE(0x004), + ONLY_ENABLE_DEVICE_WITH_ANE(4), // COREML_FLAG_ONLY_ENABLE_DEVICE_WITH_ANE(0x004) + /** + * Only allow CoreML EP to take nodes with inputs with static shapes. By default it will also + * allow inputs with dynamic shapes. However, the performance may be negatively impacted if inputs + * have dynamic shapes. + */ + ONLY_ALLOW_STATIC_INPUT_SHAPES(8), // COREML_FLAG_ONLY_ALLOW_STATIC_INPUT_SHAPES(0x008) + /** + * Create an MLProgram. By default it will create a NeuralNetwork model. Requires Core ML 5 or + * later. + */ + CREATE_MLPROGRAM(16); // COREML_FLAG_CREATE_MLPROGRAM(0x010) /** The native value of the enum. */ public final int value; diff --git a/java/src/test/java/sample/ScoreMNIST.java b/java/src/test/java/sample/ScoreMNIST.java index 5587b58e17f52..6ecbc5cd56d10 100644 --- a/java/src/test/java/sample/ScoreMNIST.java +++ b/java/src/test/java/sample/ScoreMNIST.java @@ -30,6 +30,7 @@ public class ScoreMNIST { private static final Logger logger = Logger.getLogger(ScoreMNIST.class.getName()); + /** Pattern for splitting libsvm format files. */ private static final Pattern splitPattern = Pattern.compile("\\s+"); diff --git a/js/common/lib/backend-impl.ts b/js/common/lib/backend-impl.ts index 3e1e833addb91..e90efd7b97c29 100644 --- a/js/common/lib/backend-impl.ts +++ b/js/common/lib/backend-impl.ts @@ -2,6 +2,7 @@ // Licensed under the MIT License. import {Backend} from './backend.js'; +import {InferenceSession} from './inference-session.js'; interface BackendInfo { backend: Backend; @@ -10,6 +11,7 @@ interface BackendInfo { initPromise?: Promise; initialized?: boolean; aborted?: boolean; + error?: string; } const backends: Map = new Map(); @@ -60,43 +62,100 @@ export const registerBackend = (name: string, backend: Backend, priority: number }; /** - * Resolve backend by specified hints. + * Try to resolve and initialize a backend. * - * @param backendHints - a list of execution provider names to lookup. If omitted use registered backends as list. - * @returns a promise that resolves to the backend. + * @param backendName - the name of the backend. + * @returns the backend instance if resolved and initialized successfully, or an error message if failed. + */ +const tryResolveAndInitializeBackend = async(backendName: string): Promise => { + const backendInfo = backends.get(backendName); + if (!backendInfo) { + return 'backend not found.'; + } + + if (backendInfo.initialized) { + return backendInfo.backend; + } else if (backendInfo.aborted) { + return backendInfo.error!; + } else { + const isInitializing = !!backendInfo.initPromise; + try { + if (!isInitializing) { + backendInfo.initPromise = backendInfo.backend.init(backendName); + } + await backendInfo.initPromise; + backendInfo.initialized = true; + return backendInfo.backend; + } catch (e) { + if (!isInitializing) { + backendInfo.error = `${e}`; + backendInfo.aborted = true; + } + return backendInfo.error!; + } finally { + delete backendInfo.initPromise; + } + } +}; + +/** + * Resolve execution providers from the specific session options. + * + * @param options - the session options object. + * @returns a promise that resolves to a tuple of an initialized backend instance and a session options object with + * filtered EP list. * * @ignore */ -export const resolveBackend = async(backendHints: readonly string[]): Promise => { - const backendNames = backendHints.length === 0 ? backendsSortedByPriority : backendHints; - const errors = []; - for (const backendName of backendNames) { - const backendInfo = backends.get(backendName); - if (backendInfo) { - if (backendInfo.initialized) { - return backendInfo.backend; - } else if (backendInfo.aborted) { - continue; // current backend is unavailable; try next - } +export const resolveBackendAndExecutionProviders = async(options: InferenceSession.SessionOptions): + Promise<[backend: Backend, options: InferenceSession.SessionOptions]> => { + // extract backend hints from session options + const eps = options.executionProviders || []; + const backendHints = eps.map(i => typeof i === 'string' ? i : i.name); + const backendNames = backendHints.length === 0 ? backendsSortedByPriority : backendHints; - const isInitializing = !!backendInfo.initPromise; - try { - if (!isInitializing) { - backendInfo.initPromise = backendInfo.backend.init(backendName); + // try to resolve and initialize all requested backends + let backend: Backend|undefined; + const errors = []; + const availableBackendNames = new Set(); + for (const backendName of backendNames) { + const resolveResult = await tryResolveAndInitializeBackend(backendName); + if (typeof resolveResult === 'string') { + errors.push({name: backendName, err: resolveResult}); + } else { + if (!backend) { + backend = resolveResult; + } + if (backend === resolveResult) { + availableBackendNames.add(backendName); + } } - await backendInfo.initPromise; - backendInfo.initialized = true; - return backendInfo.backend; - } catch (e) { - if (!isInitializing) { - errors.push({name: backendName, err: e}); + } + + // if no backend is available, throw error. + if (!backend) { + throw new Error(`no available backend found. ERR: ${errors.map(e => `[${e.name}] ${e.err}`).join(', ')}`); + } + + // for each explicitly requested backend, if it's not available, output warning message. + for (const {name, err} of errors) { + if (backendHints.includes(name)) { + // eslint-disable-next-line no-console + console.warn(`removing requested execution provider "${ + name}" from session options because it is not available: ${err}`); } - backendInfo.aborted = true; - } finally { - delete backendInfo.initPromise; } - } - } - throw new Error(`no available backend found. ERR: ${errors.map(e => `[${e.name}] ${e.err}`).join(', ')}`); -}; + const filteredEps = eps.filter(i => availableBackendNames.has(typeof i === 'string' ? i : i.name)); + + return [ + backend, new Proxy(options, { + get: (target, prop) => { + if (prop === 'executionProviders') { + return filteredEps; + } + return Reflect.get(target, prop); + } + }) + ]; + }; diff --git a/js/common/lib/backend.ts b/js/common/lib/backend.ts index 9bfcb12206057..8c07bdd5c5c4a 100644 --- a/js/common/lib/backend.ts +++ b/js/common/lib/backend.ts @@ -58,7 +58,7 @@ export interface TrainingSessionHandler extends SessionHandler { options: InferenceSession.RunOptions): Promise; getParametersSize(trainableOnly: boolean): Promise; - loadParametersBuffer(array: Uint8Array, trainableOnly: boolean): Promise; + loadParametersBuffer(buffer: Uint8Array, trainableOnly: boolean): Promise; getContiguousParameters(trainableOnly: boolean): Promise; } @@ -77,8 +77,8 @@ export interface Backend { Promise; createTrainingSessionHandler? - (checkpointStateUriOrBuffer: TrainingSession.URIorBuffer, trainModelUriOrBuffer: TrainingSession.URIorBuffer, - evalModelUriOrBuffer: TrainingSession.URIorBuffer, optimizerModelUriOrBuffer: TrainingSession.URIorBuffer, + (checkpointStateUriOrBuffer: TrainingSession.UriOrBuffer, trainModelUriOrBuffer: TrainingSession.UriOrBuffer, + evalModelUriOrBuffer: TrainingSession.UriOrBuffer, optimizerModelUriOrBuffer: TrainingSession.UriOrBuffer, options: InferenceSession.SessionOptions): Promise; } diff --git a/js/common/lib/env.ts b/js/common/lib/env.ts index 6299c26159400..c8df1613b3268 100644 --- a/js/common/lib/env.ts +++ b/js/common/lib/env.ts @@ -36,6 +36,7 @@ export declare namespace Env { /** * set or get a boolean value indicating whether to enable trace. * + * @deprecated Use `env.trace` instead. If `env.trace` is set, this property will be ignored. * @defaultValue `false` */ trace?: boolean; @@ -142,13 +143,52 @@ export declare namespace Env { */ ondata?: (data: WebGpuProfilingData) => void; }; + /** + * Set or get the power preference. + * + * Setting this property only has effect before the first WebGPU inference session is created. The value will be + * used as options for `navigator.gpu.requestAdapter()`. + * + * See {@link https://gpuweb.github.io/gpuweb/#dictdef-gpurequestadapteroptions} for more details. + * + * @defaultValue `undefined` + */ + powerPreference?: 'low-power'|'high-performance'; + /** + * Set or get the force fallback adapter flag. + * + * Setting this property only has effect before the first WebGPU inference session is created. The value will be + * used as options for `navigator.gpu.requestAdapter()`. + * + * See {@link https://gpuweb.github.io/gpuweb/#dictdef-gpurequestadapteroptions} for more details. + * + * @defaultValue `undefined` + */ + forceFallbackAdapter?: boolean; + /** + * Set or get the adapter for WebGPU. + * + * Setting this property only has effect before the first WebGPU inference session is created. The value will be + * used as the GPU adapter for the underlying WebGPU backend to create GPU device. + * + * If this property is not set, it will be available to get after the first WebGPU inference session is created. The + * value will be the GPU adapter that created by the underlying WebGPU backend. + * + * When use with TypeScript, the type of this property is `GPUAdapter` defined in "@webgpu/types". + * Use `const adapter = env.webgpu.adapter as GPUAdapter;` in TypeScript to access this property with correct type. + * + * see comments on {@link Tensor.GpuBufferType} + */ + adapter: unknown; /** * Get the device for WebGPU. * + * This property is only available after the first WebGPU inference session is created. + * * When use with TypeScript, the type of this property is `GPUDevice` defined in "@webgpu/types". * Use `const device = env.webgpu.device as GPUDevice;` in TypeScript to access this property with correct type. * - * see comments on {@link GpuBufferType} for more details about why not use types defined in "@webgpu/types". + * see comments on {@link Tensor.GpuBufferType} for more details about why not use types defined in "@webgpu/types". */ readonly device: unknown; /** @@ -167,6 +207,7 @@ export interface Env { * @defaultValue `'warning'` */ logLevel?: 'verbose'|'info'|'warning'|'error'|'fatal'; + /** * Indicate whether run in debug mode. * @@ -174,6 +215,13 @@ export interface Env { */ debug?: boolean; + /** + * set or get a boolean value indicating whether to enable trace. + * + * @defaultValue `false` + */ + trace?: boolean; + /** * Get version of the current package. */ diff --git a/js/common/lib/index.ts b/js/common/lib/index.ts index d7c98380f3fa4..3ed56b3c2e812 100644 --- a/js/common/lib/index.ts +++ b/js/common/lib/index.ts @@ -11,7 +11,7 @@ * - [onnxruntime-react-native](https://www.npmjs.com/package/onnxruntime-react-native) * * See also: - * - [Get Started](https://onnxruntime.ai/docs/get-started/with-javascript.html) + * - [Get Started](https://onnxruntime.ai/docs/get-started/with-javascript/) * - [Inference examples](https://github.com/microsoft/onnxruntime-inference-examples/tree/main/js) * * @packageDocumentation @@ -21,6 +21,9 @@ export * from './backend.js'; export * from './env.js'; export * from './inference-session.js'; export * from './tensor.js'; +export * from './tensor-conversion.js'; +export * from './tensor-factory.js'; export * from './trace.js'; +export * from './onnx-model.js'; export * from './onnx-value.js'; export * from './training-session.js'; diff --git a/js/common/lib/inference-session-impl.ts b/js/common/lib/inference-session-impl.ts index 55f40c8907a89..ab4c6a3e0c46b 100644 --- a/js/common/lib/inference-session-impl.ts +++ b/js/common/lib/inference-session-impl.ts @@ -1,7 +1,7 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. -import {resolveBackend} from './backend-impl.js'; +import {resolveBackendAndExecutionProviders} from './backend-impl.js'; import {InferenceSessionHandler} from './backend.js'; import {InferenceSession as InferenceSessionInterface} from './inference-session.js'; import {OnnxValue} from './onnx-value.js'; @@ -195,11 +195,9 @@ export class InferenceSession implements InferenceSessionInterface { throw new TypeError('Unexpected argument[0]: must be \'path\' or \'buffer\'.'); } - // get backend hints - const eps = options.executionProviders || []; - const backendHints = eps.map(i => typeof i === 'string' ? i : i.name); - const backend = await resolveBackend(backendHints); - const handler = await backend.createInferenceSessionHandler(filePathOrUint8Array, options); + // resolve backend, update session options with validated EPs, and create session handler + const [backend, optionsWithValidatedEPs] = await resolveBackendAndExecutionProviders(options); + const handler = await backend.createInferenceSessionHandler(filePathOrUint8Array, optionsWithValidatedEPs); TRACE_FUNC_END(); return new InferenceSession(handler); } diff --git a/js/common/lib/inference-session.ts b/js/common/lib/inference-session.ts index 4f85c3b46e253..4f7fbdcdcf0ca 100644 --- a/js/common/lib/inference-session.ts +++ b/js/common/lib/inference-session.ts @@ -186,22 +186,22 @@ export declare namespace InferenceSession { // #region execution providers // Currently, we have the following backends to support execution providers: - // Backend Node.js binding: supports 'cpu' and 'cuda'. + // Backend Node.js binding: supports 'cpu', 'dml' (win32), 'coreml' (macOS) and 'cuda' (linux). // Backend WebAssembly: supports 'cpu', 'wasm', 'webgpu' and 'webnn'. // Backend ONNX.js: supports 'webgl'. // Backend React Native: supports 'cpu', 'xnnpack', 'coreml' (iOS), 'nnapi' (Android). interface ExecutionProviderOptionMap { + coreml: CoreMLExecutionProviderOption; cpu: CpuExecutionProviderOption; - coreml: CoreMlExecutionProviderOption; cuda: CudaExecutionProviderOption; dml: DmlExecutionProviderOption; + nnapi: NnapiExecutionProviderOption; tensorrt: TensorRtExecutionProviderOption; wasm: WebAssemblyExecutionProviderOption; webgl: WebGLExecutionProviderOption; - xnnpack: XnnpackExecutionProviderOption; webgpu: WebGpuExecutionProviderOption; webnn: WebNNExecutionProviderOption; - nnapi: NnapiExecutionProviderOption; + xnnpack: XnnpackExecutionProviderOption; } type ExecutionProviderName = keyof ExecutionProviderOptionMap; @@ -219,10 +219,6 @@ export declare namespace InferenceSession { readonly name: 'cuda'; deviceId?: number; } - export interface CoreMlExecutionProviderOption extends ExecutionProviderOption { - readonly name: 'coreml'; - coreMlFlags?: number; - } export interface DmlExecutionProviderOption extends ExecutionProviderOption { readonly name: 'dml'; deviceId?: number; @@ -253,8 +249,39 @@ export declare namespace InferenceSession { } export interface CoreMLExecutionProviderOption extends ExecutionProviderOption { readonly name: 'coreml'; + /** + * The bit flags for CoreML execution provider. + * + * ``` + * COREML_FLAG_USE_CPU_ONLY = 0x001 + * COREML_FLAG_ENABLE_ON_SUBGRAPH = 0x002 + * COREML_FLAG_ONLY_ENABLE_DEVICE_WITH_ANE = 0x004 + * COREML_FLAG_ONLY_ALLOW_STATIC_INPUT_SHAPES = 0x008 + * COREML_FLAG_CREATE_MLPROGRAM = 0x010 + * ``` + * + * See include/onnxruntime/core/providers/coreml/coreml_provider_factory.h for more details. + * + * This flag is available only in ONNXRuntime (Node.js binding). + */ + coreMlFlags?: number; + /** + * Specify whether to use CPU only in CoreML EP. + * + * This setting is available only in ONNXRuntime (react-native). + */ useCPUOnly?: boolean; + /** + * Specify whether to enable CoreML EP on subgraph. + * + * This setting is available only in ONNXRuntime (react-native). + */ enableOnSubgraph?: boolean; + /** + * Specify whether to only enable CoreML EP for Apple devices with ANE (Apple Neural Engine). + * + * This setting is available only in ONNXRuntime (react-native). + */ onlyEnableDeviceWithANE?: boolean; } export interface NnapiExecutionProviderOption extends ExecutionProviderOption { diff --git a/js/common/lib/onnx-value.ts b/js/common/lib/onnx-value.ts index a16a30d25d839..72369ce8b4209 100644 --- a/js/common/lib/onnx-value.ts +++ b/js/common/lib/onnx-value.ts @@ -3,7 +3,7 @@ import {Tensor} from './tensor.js'; -type NonTensorType = never; +export type NonTensorType = never; /** * Type OnnxValue Represents both tensors and non-tensors value for model's inputs/outputs. diff --git a/js/common/lib/tensor-factory.ts b/js/common/lib/tensor-factory.ts index 6e19d7fb898a3..431de4c3635c2 100644 --- a/js/common/lib/tensor-factory.ts +++ b/js/common/lib/tensor-factory.ts @@ -253,7 +253,7 @@ export interface TensorFactory { /** * create a tensor from an ImageBitmap object * - * @param bitMap - the ImageBitmap object to create tensor from + * @param bitmap - the ImageBitmap object to create tensor from * @param options - An optional object representing options for creating tensor from URL. * * The following default settings will be applied: diff --git a/js/common/lib/tensor-impl-type-mapping.ts b/js/common/lib/tensor-impl-type-mapping.ts index c4a43ea27fea1..b29cb8cbd6d35 100644 --- a/js/common/lib/tensor-impl-type-mapping.ts +++ b/js/common/lib/tensor-impl-type-mapping.ts @@ -14,7 +14,6 @@ export const NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP = new Map { - if (!isBigIntChecked) { - isBigIntChecked = true; - const isBigInt64ArrayAvailable = typeof BigInt64Array !== 'undefined' && typeof BigInt64Array.from === 'function'; - const isBigUint64ArrayAvailable = - typeof BigUint64Array !== 'undefined' && typeof BigUint64Array.from === 'function'; +// a dummy type declaration for Float16Array in case any polyfill is available. +declare global { + // eslint-disable-next-line @typescript-eslint/naming-convention, @typescript-eslint/no-explicit-any + const Float16Array: any; +} + +// the following code allows delaying execution of BigInt/Float16Array checking. This allows lazy initialization for +// NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP and NUMERIC_TENSOR_TYPEDARRAY_TO_TYPE_MAP, which allows BigInt/Float16Array +// polyfill if available. +let isTypedArrayChecked = false; +export const checkTypedArray = () => { + if (!isTypedArrayChecked) { + isTypedArrayChecked = true; + const isBigInt64ArrayAvailable = typeof BigInt64Array !== 'undefined' && BigInt64Array.from; + const isBigUint64ArrayAvailable = typeof BigUint64Array !== 'undefined' && BigUint64Array.from; + const isFloat16ArrayAvailable = typeof Float16Array !== 'undefined' && Float16Array.from; if (isBigInt64ArrayAvailable) { NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP.set('int64', BigInt64Array); @@ -53,5 +58,12 @@ export const checkBigInt = () => { NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP.set('uint64', BigUint64Array); NUMERIC_TENSOR_TYPEDARRAY_TO_TYPE_MAP.set(BigUint64Array, 'uint64'); } + if (isFloat16ArrayAvailable) { + NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP.set('float16', Float16Array); + NUMERIC_TENSOR_TYPEDARRAY_TO_TYPE_MAP.set(Float16Array, 'float16'); + } else { + // if Float16Array is not available, use 'Uint16Array' to store the data. + NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP.set('float16', Uint16Array); + } } }; diff --git a/js/common/lib/tensor-impl.ts b/js/common/lib/tensor-impl.ts index e3e2b9c728556..56682ef98e117 100644 --- a/js/common/lib/tensor-impl.ts +++ b/js/common/lib/tensor-impl.ts @@ -5,7 +5,7 @@ import {tensorToDataURL, tensorToImageData} from './tensor-conversion-impl.js'; import {TensorToDataUrlOptions, TensorToImageDataOptions} from './tensor-conversion.js'; import {tensorFromGpuBuffer, tensorFromImage, tensorFromPinnedBuffer, tensorFromTexture} from './tensor-factory-impl.js'; import {CpuPinnedConstructorParameters, GpuBufferConstructorParameters, TensorFromGpuBufferOptions, TensorFromImageBitmapOptions, TensorFromImageDataOptions, TensorFromImageElementOptions, TensorFromTextureOptions, TensorFromUrlOptions, TextureConstructorParameters} from './tensor-factory.js'; -import {checkBigInt, NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP, NUMERIC_TENSOR_TYPEDARRAY_TO_TYPE_MAP, SupportedTypedArray, SupportedTypedArrayConstructors} from './tensor-impl-type-mapping.js'; +import {checkTypedArray, NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP, NUMERIC_TENSOR_TYPEDARRAY_TO_TYPE_MAP, SupportedTypedArray, SupportedTypedArrayConstructors} from './tensor-impl-type-mapping.js'; import {calculateSize, tensorReshape} from './tensor-utils-impl.js'; import {Tensor as TensorInterface} from './tensor.js'; @@ -67,8 +67,8 @@ export class Tensor implements TensorInterface { arg0: TensorType|TensorDataType|readonly string[]|readonly boolean[]|CpuPinnedConstructorParameters| TextureConstructorParameters|GpuBufferConstructorParameters, arg1?: TensorDataType|readonly number[]|readonly string[]|readonly boolean[], arg2?: readonly number[]) { - // perform one-time check for BigInt support - checkBigInt(); + // perform one-time check for BigInt/Float16Array support + checkTypedArray(); let type: TensorType; let dims: readonly number[]; @@ -103,7 +103,7 @@ export class Tensor implements TensorInterface { } case 'gpu-buffer': { if ((type !== 'float32' && type !== 'float16' && type !== 'int32' && type !== 'int64' && type !== 'uint32' && - type !== 'bool')) { + type !== 'uint8' && type !== 'bool')) { throw new TypeError(`unsupported type "${type}" to create tensor from gpu buffer`); } this.gpuBufferData = arg0.gpuBuffer; @@ -142,7 +142,9 @@ export class Tensor implements TensorInterface { throw new TypeError(`Unsupported tensor type: ${arg0}.`); } if (Array.isArray(arg1)) { - if (arg0 === 'float16') { + if (arg0 === 'float16' && typedArrayConstructor === Uint16Array) { + // When no Float16Array polyfill is used, we cannot create 'float16' tensor from number array. + // // Throw error here because when user try to use number array as data, // e.g. new Tensor('float16', [1, 2, 3, 4], dims)), it will actually call // Uint16Array.from(arg1) which generates wrong data. diff --git a/js/common/lib/tensor.ts b/js/common/lib/tensor.ts index 6c08d1fe8e057..20319ebb800c2 100644 --- a/js/common/lib/tensor.ts +++ b/js/common/lib/tensor.ts @@ -135,7 +135,7 @@ export declare namespace Tensor { /** * supported data types for constructing a tensor from a WebGPU buffer */ - export type GpuBufferDataTypes = 'float32'|'float16'|'int32'|'int64'|'uint32'|'bool'; + export type GpuBufferDataTypes = 'float32'|'float16'|'int32'|'int64'|'uint32'|'uint8'|'bool'; /** * represent where the tensor data is stored @@ -160,7 +160,7 @@ export interface Tensor extends TypedTensorBase, TypedTensorUtils { - if (!env.wasm.trace) { + if (typeof env.trace === 'undefined' ? !env.wasm.trace : !env.trace) { return; } // eslint-disable-next-line no-console @@ -29,15 +32,21 @@ const TRACE_FUNC = (msg: string, extraMsg?: string) => { } }; +/** + * @ignore + */ export const TRACE_FUNC_BEGIN = (extraMsg?: string) => { - if (!env.wasm.trace) { + if (typeof env.trace === 'undefined' ? !env.wasm.trace : !env.trace) { return; } TRACE_FUNC('BEGIN', extraMsg); }; +/** + * @ignore + */ export const TRACE_FUNC_END = (extraMsg?: string) => { - if (!env.wasm.trace) { + if (typeof env.trace === 'undefined' ? !env.wasm.trace : !env.trace) { return; } TRACE_FUNC('END', extraMsg); diff --git a/js/common/lib/training-session-impl.ts b/js/common/lib/training-session-impl.ts index 23bd4421ae672..bae38b0dfda5a 100644 --- a/js/common/lib/training-session-impl.ts +++ b/js/common/lib/training-session-impl.ts @@ -1,7 +1,7 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. -import {resolveBackend} from './backend-impl.js'; +import {resolveBackendAndExecutionProviders} from './backend-impl.js'; import {SessionHandler, TrainingSessionHandler} from './backend.js'; import {InferenceSession as InferenceSession} from './inference-session.js'; import {OnnxValue} from './onnx-value.js'; @@ -55,13 +55,12 @@ export class TrainingSession implements TrainingSessionInterface { const optimizerModel: string|Uint8Array = trainingOptions.optimizerModel || ''; const options: SessionOptions = sessionOptions || {}; - // get backend hints - const eps = options.executionProviders || []; - const backendHints = eps.map(i => typeof i === 'string' ? i : i.name); - const backend = await resolveBackend(backendHints); + // resolve backend, update session options with validated EPs, and create session handler + const [backend, optionsWithValidatedEPs] = await resolveBackendAndExecutionProviders(options); if (backend.createTrainingSessionHandler) { const handler = await backend.createTrainingSessionHandler( - trainingOptions.checkpointState, trainingOptions.trainModel, evalModel, optimizerModel, options); + trainingOptions.checkpointState, trainingOptions.trainModel, evalModel, optimizerModel, + optionsWithValidatedEPs); return new TrainingSession(handler, !!trainingOptions.optimizerModel, !!trainingOptions.evalModel); } else { throw new Error(noBackendErrMsg); diff --git a/js/common/lib/training-session.ts b/js/common/lib/training-session.ts index e54aed90e702c..f9de77e3ac7d0 100644 --- a/js/common/lib/training-session.ts +++ b/js/common/lib/training-session.ts @@ -11,7 +11,7 @@ export declare namespace TrainingSession { /** * Either URI file path (string) or Uint8Array containing model or checkpoint information. */ - type URIorBuffer = string|Uint8Array; + type UriOrBuffer = string|Uint8Array; } /** @@ -98,13 +98,13 @@ export interface TrainingSession { getParametersSize(trainableOnly: boolean): Promise; /** - * Copies parameter values from the given array to the training state. Currently, only supporting models with + * Copies parameter values from the given buffer to the training state. Currently, only supporting models with * parameters of type Float32. * - * @param buffer - Float32 buffer containing parameters converted to a Uint8Array. + * @param buffer - A Uint8Array representation of Float32 parameters. * @param trainableOnly - True if trainable parameters only to be modified, false otherwise. Default value is true. */ - loadParametersBuffer(array: Uint8Array, trainableOnly: boolean): Promise; + loadParametersBuffer(buffer: Uint8Array, trainableOnly: boolean): Promise; /** * Copies the model parameters to a contiguous buffer. Usually used in the context of Federated Learning. @@ -157,19 +157,19 @@ export interface TrainingSessionCreateOptions { /** * URI or buffer for a .ckpt file that contains the checkpoint for the training model. */ - checkpointState: TrainingSession.URIorBuffer; + checkpointState: TrainingSession.UriOrBuffer; /** * URI or buffer for the .onnx training file. */ - trainModel: TrainingSession.URIorBuffer; + trainModel: TrainingSession.UriOrBuffer; /** * Optional. URI or buffer for the .onnx optimizer model file. */ - optimizerModel?: TrainingSession.URIorBuffer; + optimizerModel?: TrainingSession.UriOrBuffer; /** * Optional. URI or buffer for the .onnx eval model file. */ - evalModel?: TrainingSession.URIorBuffer; + evalModel?: TrainingSession.UriOrBuffer; } /** diff --git a/js/common/package-lock.json b/js/common/package-lock.json index a5ada877b916a..3988ac80707e0 100644 --- a/js/common/package-lock.json +++ b/js/common/package-lock.json @@ -9,13 +9,13 @@ "version": "1.18.0", "license": "MIT", "devDependencies": { - "typedoc": "^0.23.22" + "typedoc": "^0.25.7" } }, "node_modules/ansi-sequence-parser": { - "version": "1.1.0", - "resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.0.tgz", - "integrity": "sha512-lEm8mt52to2fT8GhciPCGeCXACSz2UwIN4X2e2LJSnZ5uAbn2/dsYdOmUXq0AtWS5cpAupysIneExOgH0Vd2TQ==", + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.1.tgz", + "integrity": "sha512-vJXt3yiaUL4UU546s3rPXlsry/RnM730G1+HkpKE012AN0sx1eOrxSu95oKDIonskeLTijMgqWZ3uDEe3NFvyg==", "dev": true }, "node_modules/balanced-match": { @@ -34,9 +34,9 @@ } }, "node_modules/jsonc-parser": { - "version": "3.2.0", - "resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.0.tgz", - "integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w==", + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.1.tgz", + "integrity": "sha512-AilxAyFOAcK5wA1+LeaySVBrHsGQvUFCDWXKpZjzaL0PqW+xfBOttn8GNtWKFWqneyMZj41MWF9Kl6iPWLwgOA==", "dev": true }, "node_modules/lunr": { @@ -46,9 +46,9 @@ "dev": true }, "node_modules/marked": { - "version": "4.2.12", - "resolved": "https://registry.npmjs.org/marked/-/marked-4.2.12.tgz", - "integrity": "sha512-yr8hSKa3Fv4D3jdZmtMMPghgVt6TWbk86WQaWhDloQjRSQhMMYCAro7jP7VDJrjjdV8pxVxMssXS8B8Y5DZ5aw==", + "version": "4.3.0", + "resolved": "https://registry.npmjs.org/marked/-/marked-4.3.0.tgz", + "integrity": "sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A==", "dev": true, "bin": { "marked": "bin/marked.js" @@ -58,24 +58,24 @@ } }, "node_modules/minimatch": { - "version": "7.4.2", - "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-7.4.2.tgz", - "integrity": "sha512-xy4q7wou3vUoC9k1xGTXc+awNdGaGVHtFUaey8tiX4H1QRc04DZ/rmDFwNm2EBsuYEhAZ6SgMmYf3InGY6OauA==", + "version": "9.0.3", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.3.tgz", + "integrity": "sha512-RHiac9mvaRw0x3AYRgDC1CxAP7HTcNrrECeA8YYJeWnpo+2Q5CegtZjaotWTWxDG3UeGA1coE05iH1mPjT/2mg==", "dev": true, "dependencies": { "brace-expansion": "^2.0.1" }, "engines": { - "node": ">=10" + "node": ">=16 || 14 >=14.17" }, "funding": { "url": "https://github.com/sponsors/isaacs" } }, "node_modules/shiki": { - "version": "0.14.1", - "resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.1.tgz", - "integrity": "sha512-+Jz4nBkCBe0mEDqo1eKRcCdjRtrCjozmcbTUjbPTX7OOJfEbTZzlUWlZtGe3Gb5oV1/jnojhG//YZc3rs9zSEw==", + "version": "0.14.7", + "resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.7.tgz", + "integrity": "sha512-dNPAPrxSc87ua2sKJ3H5dQ/6ZaY8RNnaAqK+t0eG7p0Soi2ydiqbGOTaZCqaYvA/uZYfS1LJnemt3Q+mSfcPCg==", "dev": true, "dependencies": { "ansi-sequence-parser": "^1.1.0", @@ -85,30 +85,30 @@ } }, "node_modules/typedoc": { - "version": "0.23.26", - "resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.23.26.tgz", - "integrity": "sha512-5m4KwR5tOLnk0OtMaRn9IdbeRM32uPemN9kur7YK9wFqx8U0CYrvO9aVq6ysdZSV1c824BTm+BuQl2Ze/k1HtA==", + "version": "0.25.7", + "resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.25.7.tgz", + "integrity": "sha512-m6A6JjQRg39p2ZVRIN3NKXgrN8vzlHhOS+r9ymUYtcUP/TIQPvWSq7YgE5ZjASfv5Vd5BW5xrir6Gm2XNNcOow==", "dev": true, "dependencies": { "lunr": "^2.3.9", - "marked": "^4.2.12", - "minimatch": "^7.1.3", - "shiki": "^0.14.1" + "marked": "^4.3.0", + "minimatch": "^9.0.3", + "shiki": "^0.14.7" }, "bin": { "typedoc": "bin/typedoc" }, "engines": { - "node": ">= 14.14" + "node": ">= 16" }, "peerDependencies": { - "typescript": "4.6.x || 4.7.x || 4.8.x || 4.9.x" + "typescript": "4.6.x || 4.7.x || 4.8.x || 4.9.x || 5.0.x || 5.1.x || 5.2.x || 5.3.x" } }, "node_modules/typescript": { - "version": "4.9.5", - "resolved": "https://registry.npmjs.org/typescript/-/typescript-4.9.5.tgz", - "integrity": "sha512-1FXk9E2Hm+QzZQ7z+McJiHL4NW1F2EzMu9Nq9i3zAaGqibafqYwCVU6WyWAuyQRRzOlxou8xZSyXLEN8oKj24g==", + "version": "5.2.2", + "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.2.2.tgz", + "integrity": "sha512-mI4WrpHsbCIcwT9cF4FZvr80QUeKvsUsUvKDoR+X/7XHQH98xYD8YHZg7ANtz2GtZt/CBq2QJ0thkGJMHfqc1w==", "dev": true, "peer": true, "bin": { @@ -116,7 +116,7 @@ "tsserver": "bin/tsserver" }, "engines": { - "node": ">=4.2.0" + "node": ">=14.17" } }, "node_modules/vscode-oniguruma": { @@ -134,9 +134,9 @@ }, "dependencies": { "ansi-sequence-parser": { - "version": "1.1.0", - "resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.0.tgz", - "integrity": "sha512-lEm8mt52to2fT8GhciPCGeCXACSz2UwIN4X2e2LJSnZ5uAbn2/dsYdOmUXq0AtWS5cpAupysIneExOgH0Vd2TQ==", + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.1.tgz", + "integrity": "sha512-vJXt3yiaUL4UU546s3rPXlsry/RnM730G1+HkpKE012AN0sx1eOrxSu95oKDIonskeLTijMgqWZ3uDEe3NFvyg==", "dev": true }, "balanced-match": { @@ -155,9 +155,9 @@ } }, "jsonc-parser": { - "version": "3.2.0", - "resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.0.tgz", - "integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w==", + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.1.tgz", + "integrity": "sha512-AilxAyFOAcK5wA1+LeaySVBrHsGQvUFCDWXKpZjzaL0PqW+xfBOttn8GNtWKFWqneyMZj41MWF9Kl6iPWLwgOA==", "dev": true }, "lunr": { @@ -167,24 +167,24 @@ "dev": true }, "marked": { - "version": "4.2.12", - "resolved": "https://registry.npmjs.org/marked/-/marked-4.2.12.tgz", - "integrity": "sha512-yr8hSKa3Fv4D3jdZmtMMPghgVt6TWbk86WQaWhDloQjRSQhMMYCAro7jP7VDJrjjdV8pxVxMssXS8B8Y5DZ5aw==", + "version": "4.3.0", + "resolved": "https://registry.npmjs.org/marked/-/marked-4.3.0.tgz", + "integrity": "sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A==", "dev": true }, "minimatch": { - "version": "7.4.2", - "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-7.4.2.tgz", - "integrity": "sha512-xy4q7wou3vUoC9k1xGTXc+awNdGaGVHtFUaey8tiX4H1QRc04DZ/rmDFwNm2EBsuYEhAZ6SgMmYf3InGY6OauA==", + "version": "9.0.3", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.3.tgz", + "integrity": "sha512-RHiac9mvaRw0x3AYRgDC1CxAP7HTcNrrECeA8YYJeWnpo+2Q5CegtZjaotWTWxDG3UeGA1coE05iH1mPjT/2mg==", "dev": true, "requires": { "brace-expansion": "^2.0.1" } }, "shiki": { - "version": "0.14.1", - "resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.1.tgz", - "integrity": "sha512-+Jz4nBkCBe0mEDqo1eKRcCdjRtrCjozmcbTUjbPTX7OOJfEbTZzlUWlZtGe3Gb5oV1/jnojhG//YZc3rs9zSEw==", + "version": "0.14.7", + "resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.7.tgz", + "integrity": "sha512-dNPAPrxSc87ua2sKJ3H5dQ/6ZaY8RNnaAqK+t0eG7p0Soi2ydiqbGOTaZCqaYvA/uZYfS1LJnemt3Q+mSfcPCg==", "dev": true, "requires": { "ansi-sequence-parser": "^1.1.0", @@ -194,21 +194,21 @@ } }, "typedoc": { - "version": "0.23.26", - "resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.23.26.tgz", - "integrity": "sha512-5m4KwR5tOLnk0OtMaRn9IdbeRM32uPemN9kur7YK9wFqx8U0CYrvO9aVq6ysdZSV1c824BTm+BuQl2Ze/k1HtA==", + "version": "0.25.7", + "resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.25.7.tgz", + "integrity": "sha512-m6A6JjQRg39p2ZVRIN3NKXgrN8vzlHhOS+r9ymUYtcUP/TIQPvWSq7YgE5ZjASfv5Vd5BW5xrir6Gm2XNNcOow==", "dev": true, "requires": { "lunr": "^2.3.9", - "marked": "^4.2.12", - "minimatch": "^7.1.3", - "shiki": "^0.14.1" + "marked": "^4.3.0", + "minimatch": "^9.0.3", + "shiki": "^0.14.7" } }, "typescript": { - "version": "4.9.5", - "resolved": "https://registry.npmjs.org/typescript/-/typescript-4.9.5.tgz", - "integrity": "sha512-1FXk9E2Hm+QzZQ7z+McJiHL4NW1F2EzMu9Nq9i3zAaGqibafqYwCVU6WyWAuyQRRzOlxou8xZSyXLEN8oKj24g==", + "version": "5.2.2", + "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.2.2.tgz", + "integrity": "sha512-mI4WrpHsbCIcwT9cF4FZvr80QUeKvsUsUvKDoR+X/7XHQH98xYD8YHZg7ANtz2GtZt/CBq2QJ0thkGJMHfqc1w==", "dev": true, "peer": true }, diff --git a/js/common/package.json b/js/common/package.json index 64ab2736adbe3..cd2612aab4984 100644 --- a/js/common/package.json +++ b/js/common/package.json @@ -9,7 +9,7 @@ }, "author": "fs-eire", "scripts": { - "build:cjs": "tsc --module commonjs --outDir ./dist/cjs", + "build:cjs": "tsc --module commonjs --moduleResolution node10 --outDir ./dist/cjs", "build:esm": "tsc", "build:bundles": "webpack", "build": "node ./build.js", @@ -18,7 +18,7 @@ "test": "mocha ./test/**/*.js --timeout 30000" }, "devDependencies": { - "typedoc": "^0.23.22" + "typedoc": "^0.25.7" }, "main": "dist/cjs/index.js", "exports": { diff --git a/js/common/test/tsconfig.json b/js/common/test/tsconfig.json index 2e4927ac3b325..e9068ad837a81 100644 --- a/js/common/test/tsconfig.json +++ b/js/common/test/tsconfig.json @@ -2,7 +2,7 @@ "extends": "../../tsconfig.tools.json", "exclude": ["type-tests/**/*.ts"], "compilerOptions": { - "module": "ES2022", + "module": "Node16", "sourceMap": true } } diff --git a/js/node/lib/backend.ts b/js/node/lib/backend.ts index e8eb0e9babf5a..927953b4f1dd6 100644 --- a/js/node/lib/backend.ts +++ b/js/node/lib/backend.ts @@ -36,7 +36,7 @@ class OnnxruntimeSessionHandler implements InferenceSessionHandler { async run(feeds: SessionHandler.FeedsType, fetches: SessionHandler.FetchesType, options: InferenceSession.RunOptions): Promise { return new Promise((resolve, reject) => { - process.nextTick(() => { + setImmediate(() => { try { resolve(this.#inferenceSession.run(feeds, fetches, options)); } catch (e) { @@ -56,7 +56,7 @@ class OnnxruntimeBackend implements Backend { async createInferenceSessionHandler(pathOrBuffer: string|Uint8Array, options?: InferenceSession.SessionOptions): Promise { return new Promise((resolve, reject) => { - process.nextTick(() => { + setImmediate(() => { try { resolve(new OnnxruntimeSessionHandler(pathOrBuffer, options || {})); } catch (e) { diff --git a/js/node/package-lock.json b/js/node/package-lock.json index 2d7c39c86097f..62b47698a1438 100644 --- a/js/node/package-lock.json +++ b/js/node/package-lock.json @@ -30,7 +30,7 @@ "version": "1.18.0", "license": "MIT", "devDependencies": { - "typedoc": "^0.23.22" + "typedoc": "^0.25.7" } }, "node_modules/@protobufjs/aspromise": { @@ -336,9 +336,9 @@ "dev": true }, "node_modules/follow-redirects": { - "version": "1.15.4", - "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.4.tgz", - "integrity": "sha512-Cr4D/5wlrb0z9dgERpUL3LrmPKVDsETIJhaCMeDfuFYcqa5bldGV6wBsAN6X/vxlXQtFBMrXdXxdL8CbDTGniw==", + "version": "1.15.6", + "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.6.tgz", + "integrity": "sha512-wWN62YITEaOpSK584EZXJafH1AGpO8RVgElfkuXbTOrPX4fIfOyEpW/CsiNd8JdYrAoOvafRTOEnvsO++qCqFA==", "dev": true, "funding": [ { @@ -1242,9 +1242,9 @@ "dev": true }, "follow-redirects": { - "version": "1.15.4", - "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.4.tgz", - "integrity": "sha512-Cr4D/5wlrb0z9dgERpUL3LrmPKVDsETIJhaCMeDfuFYcqa5bldGV6wBsAN6X/vxlXQtFBMrXdXxdL8CbDTGniw==", + "version": "1.15.6", + "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.6.tgz", + "integrity": "sha512-wWN62YITEaOpSK584EZXJafH1AGpO8RVgElfkuXbTOrPX4fIfOyEpW/CsiNd8JdYrAoOvafRTOEnvsO++qCqFA==", "dev": true }, "form-data": { @@ -1503,7 +1503,7 @@ "onnxruntime-common": { "version": "file:../common", "requires": { - "typedoc": "^0.23.22" + "typedoc": "^0.25.7" } }, "parse-json": { diff --git a/js/react_native/e2e/yarn.lock b/js/react_native/e2e/yarn.lock index 9e20a286c4e27..6f05faf046098 100644 --- a/js/react_native/e2e/yarn.lock +++ b/js/react_native/e2e/yarn.lock @@ -3351,9 +3351,9 @@ invariant@^2.2.4: loose-envify "^1.0.0" ip@^1.1.5: - version "1.1.8" - resolved "https://registry.yarnpkg.com/ip/-/ip-1.1.8.tgz#ae05948f6b075435ed3307acce04629da8cdbf48" - integrity sha512-PuExPYUiu6qMBQb4l06ecm6T6ujzhmh+MeJcW9wa89PoAz5pvd4zPgN5WJV104mb6S2T1AwNIAaB70JNrLQWhg== + version "1.1.9" + resolved "https://registry.yarnpkg.com/ip/-/ip-1.1.9.tgz#8dfbcc99a754d07f425310b86a99546b1151e396" + integrity sha512-cyRxvOEpNHNtchU3Ln9KC/auJgup87llfQpQ+t5ghoC/UhL16SWzbueiCsdTnWmqAWl7LadfuwhlqmtOaqMHdQ== is-accessor-descriptor@^0.1.6: version "0.1.6" diff --git a/js/react_native/yarn.lock b/js/react_native/yarn.lock index 4dca90d7415cf..bbb0c4f3d1e22 100644 --- a/js/react_native/yarn.lock +++ b/js/react_native/yarn.lock @@ -3701,9 +3701,9 @@ invariant@^2.2.4: loose-envify "^1.0.0" ip@^1.1.5: - version "1.1.8" - resolved "https://registry.yarnpkg.com/ip/-/ip-1.1.8.tgz#ae05948f6b075435ed3307acce04629da8cdbf48" - integrity sha512-PuExPYUiu6qMBQb4l06ecm6T6ujzhmh+MeJcW9wa89PoAz5pvd4zPgN5WJV104mb6S2T1AwNIAaB70JNrLQWhg== + version "1.1.9" + resolved "https://registry.yarnpkg.com/ip/-/ip-1.1.9.tgz#8dfbcc99a754d07f425310b86a99546b1151e396" + integrity sha512-cyRxvOEpNHNtchU3Ln9KC/auJgup87llfQpQ+t5ghoC/UhL16SWzbueiCsdTnWmqAWl7LadfuwhlqmtOaqMHdQ== is-absolute@^1.0.0: version "1.0.0" diff --git a/js/web/README.md b/js/web/README.md index c75a40ad6da28..906c78a1b7ec4 100644 --- a/js/web/README.md +++ b/js/web/README.md @@ -12,7 +12,7 @@ The [Open Neural Network Exchange](http://onnx.ai/) (ONNX) is an open standard f With ONNX Runtime Web, web developers can score models directly on browsers with various benefits including reducing server-client communication and protecting user privacy, as well as offering install-free and cross-platform in-browser ML experience. -ONNX Runtime Web can run on both CPU and GPU. On CPU side, [WebAssembly](https://developer.mozilla.org/en-US/docs/WebAssembly) is adopted to execute the model at near-native speed. ONNX Runtime Web complies the native ONNX Runtime CPU engine into WebAssembly backend by using Emscripten, so it supports most functionalities native ONNX Runtime offers, including full ONNX operator coverage, multi-threading, [ONNX Runtime Quantization](https://www.onnxruntime.ai/docs/how-to/quantization.html) as well as [ONNX Runtime Mobile](https://onnxruntime.ai/docs/tutorials/mobile/). For performance acceleration with GPUs, ONNX Runtime Web leverages WebGL, a popular standard for accessing GPU capabilities. We are keeping improving op coverage and optimizing performance in WebGL backend. +ONNX Runtime Web can run on both CPU and GPU. On CPU side, [WebAssembly](https://developer.mozilla.org/en-US/docs/WebAssembly) is adopted to execute the model at near-native speed. ONNX Runtime Web compiles the native ONNX Runtime CPU engine into WebAssembly backend by using Emscripten, so it supports most functionalities native ONNX Runtime offers, including full ONNX operator coverage, multi-threading, [ONNX Runtime Quantization](https://www.onnxruntime.ai/docs/how-to/quantization.html) as well as [ONNX Runtime Mobile](https://onnxruntime.ai/docs/tutorials/mobile/). For performance acceleration with GPUs, ONNX Runtime Web leverages WebGL, a popular standard for accessing GPU capabilities. We are keeping improving op coverage and optimizing performance in WebGL backend. See [Compatibility](#Compatibility) and [Operators Supported](#Operators) for a list of platforms and operators ONNX Runtime Web currently supports. @@ -22,7 +22,7 @@ Refer to [ONNX Runtime JavaScript examples](https://github.com/microsoft/onnxrun ## Documents -### Developement +### Development Refer to the following links for development information: diff --git a/js/web/docs/webgpu-operators.md b/js/web/docs/webgpu-operators.md index b21af8e715db3..4a8c92bb97bfd 100644 --- a/js/web/docs/webgpu-operators.md +++ b/js/web/docs/webgpu-operators.md @@ -62,6 +62,7 @@ Do not modify directly.* | LessOrEqual | ai.onnx(12-15,16+) | | | Log | ai.onnx(6-12,13+) | | | MatMul | ai.onnx(1-12,13+) | | +| MatMulNBits | com.microsoft(1+) | | | MaxPool | ai.onnx(1-7,8-9,10,11,12+); com.ms.internal.nhwc(1-7,8-9,10,11,12+) | need perf optimization; need implementing activation | | MemcpyFromHost | ai.onnx(1+) | | | MemcpyToHost | ai.onnx(1+) | | diff --git a/js/web/karma.conf.js b/js/web/karma.conf.js index 8fce79843f617..507da0de2b4ad 100644 --- a/js/web/karma.conf.js +++ b/js/web/karma.conf.js @@ -9,6 +9,8 @@ const karmaPlugins = args['karma-plugins'] || undefined; const timeoutMocha = args['timeout-mocha'] || 60000; const forceLocalHost = !!args['force-localhost']; +// user data directory; will be passed to the Edge/Chrome/ChromeCanary/Firefox launchers +const userDataDir = args['user-data-dir']; // parse chromium flags let chromiumFlags = args['chromium-flags']; if (!chromiumFlags) { @@ -86,11 +88,12 @@ module.exports = function(config) { hostname, listenAddress, customLaunchers: { - // the following flags are used to make sure Edge on CI agents to initialize WebGPU correctly. - EdgeTest: {base: 'Edge', flags: chromiumFlags}, - ChromeTest: {base: 'Chrome', flags: chromiumFlags}, - ChromeTestHeadless: {base: 'ChromeHeadless', flags: chromiumFlags}, - ChromeCanaryTest: {base: 'ChromeCanary', flags: chromiumFlags}, + // Chromium-based browsers + EdgeTest: {base: 'Edge', flags: chromiumFlags, edgeDataDir: userDataDir}, + ChromeTest: {base: 'Chrome', flags: chromiumFlags, chromeDataDir: userDataDir}, + ChromeCanaryTest: {base: 'ChromeCanary', flags: chromiumFlags, chromeDataDir: userDataDir}, + FirefoxTest: {base: 'Firefox', profile: userDataDir}, + // // ==== BrowserStack browsers ==== // diff --git a/js/web/lib/onnxjs/model.ts b/js/web/lib/onnxjs/model.ts index f9a1b6e76089d..8e689626011be 100644 --- a/js/web/lib/onnxjs/model.ts +++ b/js/web/lib/onnxjs/model.ts @@ -16,6 +16,7 @@ export class Model { constructor() {} load(buf: Uint8Array, graphInitializer?: Graph.Initializer, isOrtFormat?: boolean): void { + let onnxError: Error|undefined; if (!isOrtFormat) { // isOrtFormat === false || isOrtFormat === undefined try { @@ -25,10 +26,19 @@ export class Model { if (isOrtFormat !== undefined) { throw e; } + onnxError = e; } } - this.loadFromOrtFormat(buf, graphInitializer); + try { + this.loadFromOrtFormat(buf, graphInitializer); + } catch (e) { + if (isOrtFormat !== undefined) { + throw e; + } + // Tried both formats and failed (when isOrtFormat === undefined) + throw new Error(`Failed to load model as ONNX format: ${onnxError}\nas ORT format: ${e}`); + } } private loadFromOnnxFormat(buf: Uint8Array, graphInitializer?: Graph.Initializer): void { diff --git a/js/web/lib/wasm/binding/ort-wasm.d.ts b/js/web/lib/wasm/binding/ort-wasm.d.ts index 5dd715191c830..56925b728e9a3 100644 --- a/js/web/lib/wasm/binding/ort-wasm.d.ts +++ b/js/web/lib/wasm/binding/ort-wasm.d.ts @@ -16,20 +16,97 @@ export declare namespace JSEP { type CaptureBeginFunction = () => void; type CaptureEndFunction = () => void; type ReplayFunction = () => void; -} -export interface OrtWasmModule extends EmscriptenModule { - // #region emscripten functions - stackSave(): number; - stackRestore(stack: number): void; - stackAlloc(size: number): number; - - UTF8ToString(offset: number, maxBytesToRead?: number): string; - lengthBytesUTF8(str: string): number; - stringToUTF8(str: string, offset: number, maxBytes: number): void; - // #endregion + export interface Module extends WebGpuModule { + /** + * Mount the external data file to an internal map, which will be used during session initialization. + * + * @param externalDataFilePath - specify the relative path of the external data file. + * @param externalDataFileData - specify the content data. + */ + mountExternalData(externalDataFilePath: string, externalDataFileData: Uint8Array): void; + /** + * Unmount all external data files from the internal map. + */ + unmountExternalData(): void; + + /** + * This is the entry of JSEP initialization. This function is called once when initializing ONNX Runtime per + * backend. This function initializes Asyncify support. If name is 'webgpu', also initializes WebGPU backend and + * registers a few callbacks that will be called in C++ code. + */ + jsepInit(name: 'webgpu', initParams: [ + backend: BackendType, alloc: AllocFunction, free: FreeFunction, upload: UploadFunction, + download: DownloadFunction, createKernel: CreateKernelFunction, releaseKernel: ReleaseKernelFunction, + run: RunFunction, captureBegin: CaptureBeginFunction, captureEnd: CaptureEndFunction, replay: ReplayFunction + ]): void; + jsepInit(name: 'webnn', initParams?: never): void; + } + + export interface WebGpuModule { + /** + * [exported from wasm] Specify a kernel's output when running OpKernel::Compute(). + * + * @param context - specify the kernel context pointer. + * @param index - specify the index of the output. + * @param data - specify the pointer to encoded data of type and dims. + */ + _JsepOutput(context: number, index: number, data: number): number; + /** + * [exported from wasm] Get name of an operator node. + * + * @param kernel - specify the kernel pointer. + * @returns the pointer to a C-style UTF8 encoded string representing the node name. + */ + _JsepGetNodeName(kernel: number): number; + + /** + * [exported from js_internal_api.js] Register a user GPU buffer for usage of a session's input or output. + * + * @param sessionId - specify the session ID. + * @param index - specify an integer to represent which input/output it is registering for. For input, it is the + * input_index corresponding to the session's inputNames. For output, it is the inputCount + output_index + * corresponding to the session's ouputNames. + * @param buffer - specify the GPU buffer to register. + * @param size - specify the original data size in byte. + * @returns the GPU data ID for the registered GPU buffer. + */ + jsepRegisterBuffer: (sessionId: number, index: number, buffer: GPUBuffer, size: number) => number; + /** + * [exported from js_internal_api.js] Get the GPU buffer by GPU data ID. + * + * @param dataId - specify the GPU data ID + * @returns the GPU buffer. + */ + jsepGetBuffer: (dataId: number) => GPUBuffer; + /** + * [exported from js_internal_api.js] Create a function to be used to create a GPU Tensor. + * + * @param gpuBuffer - specify the GPU buffer + * @param size - specify the original data size in byte. + * @param type - specify the tensor type. + * @returns the generated downloader function. + */ + jsepCreateDownloader: + (gpuBuffer: GPUBuffer, size: number, + type: Tensor.GpuBufferDataTypes) => () => Promise; + /** + * [exported from js_internal_api.js] Called when InferenceSession.run started. This function will be called before + * _OrtRun[WithBinding]() is called. + * @param sessionId - specify the session ID. + */ + jsepOnRunStart: (sessionId: number) => void; + /** + * [exported from js_internal_api.js] Release a session. This function will be called before _OrtReleaseSession() is + * called. + * @param sessionId - specify the session ID. + * @returns + */ + jsepOnReleaseSession: (sessionId: number) => void; + } +} - // #region ORT APIs +export interface OrtInferenceAPIs { _OrtInit(numThreads: number, loggingLevel: number): number; _OrtGetLastError(errorCodeOffset: number, errorMessageOffset: number): void; @@ -74,126 +151,61 @@ export interface OrtWasmModule extends EmscriptenModule { _OrtReleaseRunOptions(runOptionsHandle: number): void; _OrtEndProfiling(sessionHandle: number): number; - // #endregion +} + +export interface OrtTrainingAPIs { + _OrtTrainingLoadCheckpoint(dataOffset: number, dataLength: number): number; - // #region ORT Training APIs - _OrtTrainingLoadCheckpoint?(dataOffset: number, dataLength: number): number; + _OrtTrainingReleaseCheckpoint(checkpointHandle: number): void; - _OrtTrainingReleaseCheckpoint?(checkpointHandle: number): void; + _OrtTrainingCreateSession( + sessionOptionsHandle: number, checkpointHandle: number, trainOffset: number, trainLength: number, + evalOffset: number, evalLength: number, optimizerOffset: number, optimizerLength: number): number; - _OrtTrainingCreateSession? - (sessionOptionsHandle: number, checkpointHandle: number, trainOffset: number, trainLength: number, - evalOffset: number, evalLength: number, optimizerOffset: number, optimizerLength: number): number; + _OrtTrainingLazyResetGrad(trainingHandle: number): number; - _OrtTrainingLazyResetGrad?(trainingHandle: number): number; + _OrtTrainingRunTrainStep( + trainingHandle: number, inputsOffset: number, inputCount: number, outputsOffset: number, outputCount: number, + runOptionsHandle: number): number; - _OrtTrainingRunTrainStep? - (trainingHandle: number, inputsOffset: number, inputCount: number, outputsOffset: number, outputCount: number, - runOptionsHandle: number): number; + _OrtTrainingOptimizerStep(trainingHandle: number, runOptionsHandle: number): number; - _OrtTrainingOptimizerStep?(trainingHandle: number, runOptionsHandle: number): number; + _OrtTrainingEvalStep( + trainingHandle: number, inputsOffset: number, inputCount: number, outputsOffset: number, outputCount: number, + runOptionsHandle: number): number; - _OrtTrainingEvalStep? - (trainingHandle: number, inputsOffset: number, inputCount: number, outputsOffset: number, outputCount: number, - runOptionsHandle: number): number; + _OrtTrainingGetParametersSize(trainingHandle: number, paramSizeT: number, trainableOnly: boolean): number; - _OrtTrainingGetParametersSize?(trainingHandle: number, paramSizeT: number, trainableOnly: boolean): number; + _OrtTrainingCopyParametersToBuffer( + trainingHandle: number, parametersBuffer: number, parameterCount: number, trainableOnly: boolean): number; - _OrtTrainingCopyParametersToBuffer? - (trainingHandle: number, parametersBuffer: number, parameterCount: number, trainableOnly: boolean): number; + _OrtTrainingCopyParametersFromBuffer( + trainingHandle: number, parametersBuffer: number, parameterCount: number, trainableOnly: boolean): number; - _OrtTrainingCopyParametersFromBuffer? - (trainingHandle: number, parametersBuffer: number, parameterCount: number, trainableOnly: boolean): number; + _OrtTrainingGetModelInputOutputCount( + trainingHandle: number, inputCount: number, outputCount: number, isEvalModel: boolean): number; + _OrtTrainingGetModelInputOutputName(trainingHandle: number, index: number, isInput: boolean, isEvalModel: boolean): + number; + + _OrtTrainingReleaseSession(trainingHandle: number): void; +} - _OrtTrainingGetModelInputOutputCount? - (trainingHandle: number, inputCount: number, outputCount: number, isEvalModel: boolean): number; - _OrtTrainingGetModelInputOutputName? - (trainingHandle: number, index: number, isInput: boolean, isEvalModel: boolean): number; +export interface OrtWasmModule extends EmscriptenModule, OrtInferenceAPIs, Partial, + Partial { + // #region emscripten functions + stackSave(): number; + stackRestore(stack: number): void; + stackAlloc(size: number): number; - _OrtTrainingReleaseSession?(trainingHandle: number): void; + UTF8ToString(offset: number, maxBytesToRead?: number): string; + lengthBytesUTF8(str: string): number; + stringToUTF8(str: string, offset: number, maxBytes: number): void; // #endregion // #region config numThreads?: number; mainScriptUrlOrBlob?: string|Blob; // #endregion - - // #region external data API - mountExternalData?(externalDataFilePath: string, externalDataFileData: Uint8Array): void; - unmountExternalData?(): void; - // #endregion - - // #region JSEP - /** - * This is the entry of JSEP initialization. This function is called once when initializing ONNX Runtime. - * This function initializes WebGPU backend and registers a few callbacks that will be called in C++ code. - */ - jsepInit? - (backend: JSEP.BackendType, alloc: JSEP.AllocFunction, free: JSEP.FreeFunction, upload: JSEP.UploadFunction, - download: JSEP.DownloadFunction, createKernel: JSEP.CreateKernelFunction, - releaseKernel: JSEP.ReleaseKernelFunction, run: JSEP.RunFunction, captureBegin: JSEP.CaptureBeginFunction, - captureEnd: JSEP.CaptureEndFunction, replay: JSEP.ReplayFunction): void; - - /** - * [exported from wasm] Specify a kernel's output when running OpKernel::Compute(). - * - * @param context - specify the kernel context pointer. - * @param index - specify the index of the output. - * @param data - specify the pointer to encoded data of type and dims. - */ - _JsepOutput(context: number, index: number, data: number): number; - /** - * [exported from wasm] Get name of an operator node. - * - * @param kernel - specify the kernel pointer. - * @returns the pointer to a C-style UTF8 encoded string representing the node name. - */ - _JsepGetNodeName(kernel: number): number; - - /** - * [exported from js_internal_api.js] Register a user GPU buffer for usage of a session's input or output. - * - * @param sessionId - specify the session ID. - * @param index - specify an integer to represent which input/output it is registering for. For input, it is the - * input_index corresponding to the session's inputNames. For output, it is the inputCount + output_index - * corresponding to the session's ouputNames. - * @param buffer - specify the GPU buffer to register. - * @param size - specify the original data size in byte. - * @returns the GPU data ID for the registered GPU buffer. - */ - jsepRegisterBuffer: (sessionId: number, index: number, buffer: GPUBuffer, size: number) => number; - /** - * [exported from js_internal_api.js] Get the GPU buffer by GPU data ID. - * - * @param dataId - specify the GPU data ID - * @returns the GPU buffer. - */ - jsepGetBuffer: (dataId: number) => GPUBuffer; - /** - * [exported from js_internal_api.js] Create a function to be used to create a GPU Tensor. - * - * @param gpuBuffer - specify the GPU buffer - * @param size - specify the original data size in byte. - * @param type - specify the tensor type. - * @returns the generated downloader function. - */ - jsepCreateDownloader: - (gpuBuffer: GPUBuffer, size: number, - type: Tensor.GpuBufferDataTypes) => () => Promise; - /** - * [exported from js_internal_api.js] Called when InferenceSession.run started. This function will be called before - * _OrtRun[WithBinding]() is called. - * @param sessionId - specify the session ID. - */ - jsepOnRunStart: (sessionId: number) => void; - /** - * [exported from js_internal_api.js] Release a session. This function will be called before _OrtReleaseSession() is - * called. - * @param sessionId - specify the session ID. - * @returns - */ - jsepOnReleaseSession: (sessionId: number) => void; - // #endregion } declare const moduleFactory: EmscriptenModuleFactory; diff --git a/js/web/lib/wasm/jsep/backend-webgpu.ts b/js/web/lib/wasm/jsep/backend-webgpu.ts index 98990a6fe477b..1b421029cc7ae 100644 --- a/js/web/lib/wasm/jsep/backend-webgpu.ts +++ b/js/web/lib/wasm/jsep/backend-webgpu.ts @@ -10,7 +10,7 @@ import {createView, TensorView} from './tensor-view'; import {createGpuDataManager, downloadGpuData, GpuDataManager} from './webgpu/gpu-data-manager'; import {RunFunction, WEBGPU_OP_RESOLVE_RULES} from './webgpu/op-resolve-rules'; import {ProgramManager} from './webgpu/program-manager'; -import {ComputeContext, GpuData, ProgramInfo, ProgramInputTensorInfoDependency, SessionState, TimestampQuery} from './webgpu/types'; +import {AdapterInfo, ComputeContext, GpuArchitecture, GpuData, GpuVendor, ProgramInfo, ProgramInputTensorInfoDependency, SessionState, TimestampQuery} from './webgpu/types'; interface CommandInfo { readonly kernelId: number; @@ -94,11 +94,32 @@ const getProgramInfoUniqueKey = return key; }; +class AdapterInfoImpl implements AdapterInfo { + readonly architecture?: string; + readonly vendor?: string; + + constructor(adapterInfo: GPUAdapterInfo) { + if (adapterInfo) { + this.architecture = adapterInfo.architecture; + this.vendor = adapterInfo.vendor; + } + } + + isArchitecture(architecture: GpuArchitecture): boolean { + return this.architecture === architecture; + } + + isVendor(vendor: GpuVendor): boolean { + return this.vendor === vendor; + } +} + /** * this class is designed to store status and being used as a singleton for JSEP. It will be passed to jsepInit() as * the first parameter so that it is stored for future use. */ export class WebGpuBackend { + adapterInfo: AdapterInfoImpl; device: GPUDevice; /** * an instance of GpuDataManager to manage a GpuDataId -> GpuBuffer mapping @@ -212,6 +233,7 @@ export class WebGpuBackend { } this.device = await adapter.requestDevice(deviceDescriptor); + this.adapterInfo = new AdapterInfoImpl(await adapter.requestAdapterInfo()); this.gpuDataManager = createGpuDataManager(this); this.programManager = new ProgramManager(this); this.kernels = new Map(); @@ -230,7 +252,10 @@ export class WebGpuBackend { } }; - Object.defineProperty(this.env.webgpu, 'device', {value: this.device}); + Object.defineProperty( + this.env.webgpu, 'device', {value: this.device, writable: false, enumerable: true, configurable: false}); + Object.defineProperty( + this.env.webgpu, 'adapter', {value: adapter, writable: false, enumerable: true, configurable: false}); // init queryType, which is necessary for InferenceSession.create this.setQueryType(); @@ -385,11 +410,16 @@ export class WebGpuBackend { // create info for inputs const inputDatas: GpuData[] = []; for (let i = 0; i < inputTensorViews.length; ++i) { - const gpuData = this.gpuDataManager.get(inputTensorViews[i].data); + const data = inputTensorViews[i].data; + // if tensor view data is 0, it means the output is zero-sized tensor, and there is no GPU data for it. + if (data === 0) { + continue; + } + const gpuData = this.gpuDataManager.get(data); if (!gpuData) { - throw new Error(`no GPU data for input: ${inputTensorViews[i].data}`); + throw new Error(`no GPU data for input: ${data}`); } - inputDatas[i] = gpuData; + inputDatas.push(gpuData); } const {outputs, dispatchGroup, programUniforms} = program.getRunData(inputTensorViews); @@ -419,6 +449,11 @@ export class WebGpuBackend { const tensorView = (isTemporary || isPersistent) ? createIntermediateOutput(outputs[i].dataType, outputs[i].dims) : createKernelOutput(validatedOutputIndices[i], outputs[i].dataType, outputs[i].dims); + outputTensorViews.push(tensorView); + // if tensor view data is 0, it means the output is zero-sized tensor, and there is no GPU data for it. + if (tensorView.data === 0) { + continue; + } const gpuData = this.gpuDataManager.get(tensorView.data); if (!gpuData) { throw new Error(`no GPU data for output: ${tensorView.data}`); @@ -434,10 +469,24 @@ export class WebGpuBackend { } persistentData.push(gpuData); } - outputTensorViews.push(tensorView); outputDatas.push(gpuData); } + // when there are any zero-sized tensor in the inputs or outputs, we should report error unless all outputs are + // zero-sized tensors. + if (inputDatas.length !== inputTensorViews.length || outputDatas.length !== outputTensorViews.length) { + // if all outputs are zero-sized tensors, there is no need to run the program. + if (outputDatas.length === 0) { + TRACE_FUNC_END(program.name); + return outputTensorViews; + } + // if some outputs are zero-sized tensors, report an error. + // + // TODO: so far we don't see any use case that outputs include both zero-sized tensors and non-zero-sized tensors. + // If we see such use case, we need to make a change here to support it. + throw new Error( + `Program ${program.name} has zero-sized tensor(s) in inputs or outputs. This is not supported now.`); + } // load uniforms // TODO: add cache for uniform (is it necessary?) @@ -516,6 +565,24 @@ export class WebGpuBackend { LOG_DEBUG('info', () => `[artifact] key: ${key}, programName: ${program.name}`); } + // validate uniform variables + if (programUniforms && artifact.uniformVariablesInfo) { + if (programUniforms.length !== artifact.uniformVariablesInfo.length) { + throw new Error(`Uniform variables count mismatch: expect ${artifact.uniformVariablesInfo.length}, got ${ + programUniforms.length} in program "${artifact.programInfo.name}".`); + } + for (let i = 0; i < programUniforms.length; i++) { + const uniform = programUniforms[i]; + const actualType = uniform.type; + const actualLength = typeof uniform.data === 'number' ? 1 : uniform.data.length; + const [type, length] = artifact.uniformVariablesInfo[i]; + if (actualType !== type || actualLength !== length) { + throw new Error(`Uniform variable ${i} mismatch: expect type ${type} with size ${length}, got type ${ + actualType} with size ${actualLength} in program "${artifact.programInfo.name}".`); + } + } + } + LOG_DEBUG( 'info', () => `[ProgramManager] run "${program.name}" (key=${key}) with ${normalizedDispatchGroup[0]}x${ @@ -686,7 +753,8 @@ export class WebGpuBackend { } setQueryType(): void { this.queryType = 'none'; - if (this.env.webgpu.profiling?.mode === 'default' || this.env.wasm.trace) { + if (this.env.webgpu.profiling?.mode === 'default' || + (typeof this.env.trace === 'undefined' ? this.env.wasm.trace : this.env.trace)) { if (this.device.features.has('chromium-experimental-timestamp-query-inside-passes')) { this.queryType = 'inside-passes'; } else if (this.device.features.has('timestamp-query')) { diff --git a/js/web/lib/wasm/jsep/init.ts b/js/web/lib/wasm/jsep/init.ts index 786ae41646554..adcaa145cdca8 100644 --- a/js/web/lib/wasm/jsep/init.ts +++ b/js/web/lib/wasm/jsep/init.ts @@ -10,7 +10,7 @@ import {WebGpuBackend} from './backend-webgpu'; import {LOG_DEBUG} from './log'; import {TensorView} from './tensor-view'; import {ShapeUtil} from './util'; -import {ComputeContext, ComputeContextInputsOutputsMapping, ProgramInfo} from './webgpu/types'; +import {AdapterInfo, ComputeContext, ComputeContextInputsOutputsMapping, ProgramInfo} from './webgpu/types'; /* eslint-disable no-bitwise */ @@ -54,6 +54,7 @@ class TensorViewImpl implements TensorView { } class ComputeContextImpl implements ComputeContext { + readonly adapterInfo: AdapterInfo; readonly opKernelContext: number; readonly inputs: readonly TensorView[]; readonly outputCount: number; @@ -66,6 +67,7 @@ class ComputeContextImpl implements ComputeContext { private customDataOffset = 0; private customDataSize = 0; constructor(private module: OrtWasmModule, private backend: WebGpuBackend, contextDataOffset: number) { + this.adapterInfo = backend.adapterInfo; const heapU32 = module.HEAPU32; // extract context data @@ -104,7 +106,8 @@ class ComputeContextImpl implements ComputeContext { throw new Error(`Unsupported data type: ${dataType}`); } const bufferSize = elementSize * ShapeUtil.size(dims); - return new TensorViewImpl(this.module, dataType, this.backend.gpuDataManager.create(bufferSize).id, dims); + const gpuDataId = bufferSize > 0 ? this.backend.gpuDataManager.create(bufferSize).id : 0; + return new TensorViewImpl(this.module, dataType, gpuDataId, dims); }; return this.backend.run(program, mappedInputs, outputIndices, createKernelOutput, createTemporaryOutput); } @@ -118,7 +121,7 @@ class ComputeContextImpl implements ComputeContext { for (let i = 0; i < dims.length; i++) { this.module.HEAPU32[offset++] = dims[i]; } - return this.module._JsepOutput(this.opKernelContext, index, data); + return this.module._JsepOutput!(this.opKernelContext, index, data); } catch (e) { throw new Error( `Failed to generate kernel's output[${index}] with dims [${dims}]. ` + @@ -133,27 +136,39 @@ class ComputeContextImpl implements ComputeContext { /** * Initialize JSEP with WebGPU backend. * - * This function will be called only once after the WebAssembly module is loaded and initialized ("_OrtInit" is called). - * This function expects: + * This function will be called after the WebAssembly module is loaded and initialized ("_OrtInit" is called), once for + * each of the following EPs if they are specified: + * - "webgpu" + * - "webnn" + * + * For WebGPU, this function expects: * - WebGPU is enabled in build (BUILD_DEFS.DISABLE_WEBGPU === false). * - WebGPU is available in current environment. (a valid GPUAdapter is passed in) + * + * For WebNN, this function expects: + * - WebNN is enabled in build (BUILD_DEFS.DISABLE_WEBGPU === false). + * - WebNN is available in current environment. (navigator.ml is not undefined) + * * If the WebAssembly module is not built with JSEP support, this function will throw an error. This will invalidate - * 'webgpu' backend. + * 'webgpu'/'webnn' backend. * + * @param name - the name of the EP, either "webgpu" or "webnn" * @param module - the ORT WebAssembly module * @param env - the ORT environment variable (ort.env) * @param gpuAdapter - the pre-created GPU adapter */ -export const init = async(module: OrtWasmModule, env: Env, gpuAdapter: GPUAdapter): Promise => { +export const init = + async(name: 'webgpu'|'webnn', module: OrtWasmModule, env: Env, gpuAdapter?: GPUAdapter): Promise => { const jsepInit = module.jsepInit; if (!jsepInit) { throw new Error('Failed to initialize JSEP. The WebAssembly module is not built with JSEP support.'); } - const backend = new WebGpuBackend(); - await backend.initialize(env, gpuAdapter); + if (name === 'webgpu') { + const backend = new WebGpuBackend(); + await backend.initialize(env, gpuAdapter!); - jsepInit( + jsepInit('webgpu', [ // backend backend, @@ -187,8 +202,8 @@ export const init = async(module: OrtWasmModule, env: Env, gpuAdapter: GPUAdapte }, // jsepCreateKernel - (kernelType: string, kernelId: number, attribute: unknown) => - backend.createKernel(kernelType, kernelId, attribute, module.UTF8ToString(module._JsepGetNodeName(kernelId))), + (kernelType: string, kernelId: number, attribute: unknown) => backend.createKernel( + kernelType, kernelId, attribute, module.UTF8ToString(module._JsepGetNodeName!(kernelId))), // jsepReleaseKernel (kernel: number) => backend.releaseKernel(kernel), @@ -207,5 +222,9 @@ export const init = async(module: OrtWasmModule, env: Env, gpuAdapter: GPUAdapte // jsepCaptureEnd () => backend.captureEnd(), // jsepReplay - () => backend.replay()); + () => backend.replay() + ]); + } else { + jsepInit('webnn'); + } }; diff --git a/js/web/lib/wasm/jsep/util.ts b/js/web/lib/wasm/jsep/util.ts index 6922d7ff5df6e..9a1d5463f7843 100644 --- a/js/web/lib/wasm/jsep/util.ts +++ b/js/web/lib/wasm/jsep/util.ts @@ -56,7 +56,16 @@ export class BroadcastUtil { if (aLen !== bLen && aLen > 1 && bLen > 1) { return undefined; } - cdims[crank - i] = Math.max(aLen, bLen); + const max = Math.max(aLen, bLen); + if (aLen && bLen) { + cdims[crank - i] = Math.max(aLen, bLen); + } else { + // when either aLen or bLen is 0, the other should be either 0 or 1, otherwise it is not broadcastable. + if (max > 1) { + return undefined; + } + cdims[crank - i] = 0; + } } return cdims; @@ -92,6 +101,34 @@ export class ShapeUtil { return ShapeUtil.getSizeFromDimensionRange(dims, 0, dims.length); } + /** + * convert dims corresponding to type change to pack. ex. uint8 data to uint32 + */ + static convertShape(dims: readonly number[], size = 4): readonly number[] { + const rank = dims.length; + if (rank === 0) { + return []; + } + const newDims = new Array(rank); + let i = rank - 1; + while (i >= 0) { + if (dims[i] % size === 0) { + newDims[i] = dims[i] / size; + break; + } + if (size % dims[i] !== 0) { + throw new Error('cannot convert shape'); + } + newDims[i] = 1; + size /= dims[i]; + i--; + } + for (i--; i >= 0; i--) { + newDims[i] = dims[i]; + } + return newDims; + } + /** * calculate the size (number of elements) from the given axis (inclusive) */ diff --git a/js/web/lib/wasm/jsep/webgpu/op-resolve-rules.ts b/js/web/lib/wasm/jsep/webgpu/op-resolve-rules.ts index ac08c5fb1f7ab..ba874c8dd0f80 100644 --- a/js/web/lib/wasm/jsep/webgpu/op-resolve-rules.ts +++ b/js/web/lib/wasm/jsep/webgpu/op-resolve-rules.ts @@ -20,6 +20,7 @@ import {gemm, parseGemmAttributes} from './ops/gemm'; import {instanceNorm} from './ops/instance-norm'; import {layerNorm} from './ops/layer-norm'; import {matMul} from './ops/matmul'; +import {matMulNBits, parseMatMulNBitsAttributes} from './ops/matmulnbits'; import {multiHeadAttention, parseMultiHeadAttentionAttributes} from './ops/multi-head-attentiion'; import {pad} from './ops/pad'; import * as pool from './ops/pool'; @@ -92,6 +93,7 @@ export const WEBGPU_OP_RESOLVE_RULES: Map = new ['LessOrEqual', [binaryOps.lessOrEqual]], ['Log', [unaryOps.log]], ['MatMul', [matMul]], + ['MatMulNBits', [matMulNBits, parseMatMulNBitsAttributes]], // TODO: support new attributes for MaxPool-8 and MaxPool-10 ['MaxPool', [pool.maxPool, pool.parseMaxPoolAttributes]], ['Mul', [binaryOps.mul]], diff --git a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts index b5b6a2a15cd8c..080b24a2432aa 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts @@ -23,17 +23,17 @@ import {DataType} from '../../../../wasm-common'; import {LOG_DEBUG} from '../../../log'; import {TensorView} from '../../../tensor-view'; import {ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform} from '../../types'; -import {createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper, UniformsArrayType} from '../common'; +import {createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper, tensorTypeToWsglStorageType, UniformsArrayType} from '../common'; import {ConvTransposeAttributes} from '../conv-transpose'; import {appendActivationUniforms, appendActivationUniformsData, getActivationSnippet} from '../fuse-utils'; -import {biasSnippet, typeSnippet} from './activation_util'; +import {biasSnippet} from './activation_util'; import {utilFunctions} from './conv_util'; import {makeMatMulPackedSource, makeMatMulPackedVec4Source} from './matmul_packed_webgpu'; const conv2dTransposeCommonSnippet = - (isChannelsLast: boolean, addBias = false, attributes: ConvTransposeAttributes, innerElementSize = 4): string => { - const type = typeSnippet(innerElementSize, 'f32'); + (isChannelsLast: boolean, addBias = false, attributes: ConvTransposeAttributes, type: string, + innerElementSize = 4): string => { const getWSnippet = (innerElementSize: number) => { switch (innerElementSize) { case 1: @@ -47,7 +47,7 @@ const conv2dTransposeCommonSnippet = let v1 = w[getIndexFromCoords4D(coord1, vec4(uniforms.w_shape))]; let v2 = w[getIndexFromCoords4D(coord2, vec4(uniforms.w_shape))]; let v3 = w[getIndexFromCoords4D(coord3, vec4(uniforms.w_shape))]; - return vec4(v0, v1, v2, v3); + return ${type}(v0, v1, v2, v3); `; default: throw new Error(`innerElementSize ${innerElementSize} is not supported.`); @@ -164,17 +164,14 @@ export const createConv2DTransposeMatMulProgramInfo = const outWidth = isChannelsLast ? outputShape[2] : outputShape[3]; const outHeight = isChannelsLast ? outputShape[1] : outputShape[2]; const outChannels = isChannelsLast ? outputShape[3] : outputShape[1]; - const isVec4 = - isChannelsLast ? inChannels % 4 === 0 && outChannels % 4 === 0 : outWidth % 4 === 0 && outChannels % 4 === 0; + // TODO: enable vec4 for NCHW + const isVec4 = isChannelsLast && (inChannels % 4 === 0 && inChannels % 3) && outChannels % 4 === 0; // TODO: fine tune size const dispatchX = isChannelsLast ? outChannels : outWidth * outHeight; const dispatchY = isChannelsLast ? outWidth * outHeight : outChannels; - const workGroupSize: [number, number, number] = isVec4 ? - [8, 8, 1] : - [(dispatchX <= 4 || dispatchY <= 4) ? 4 : 16, dispatchX > 4 && dispatchY <= 4 ? 4 : 16, 1]; - const elementsPerThread = - isVec4 ? [4, 4, 1] : [dispatchX <= 4 ? 1 : 4, dispatchX > 4 && dispatchY <= 4 ? 1 : 4, 1]; + const workGroupSize: [number, number, number] = [8, 8, 1]; + const elementsPerThread = dimAOuter <= 8 ? [4, 1, 1] : [4, 4, 1]; const dispatch = [ Math.ceil(dispatchX / workGroupSize[0] / elementsPerThread[0]), Math.ceil(dispatchY / workGroupSize[1] / elementsPerThread[1]), @@ -224,7 +221,7 @@ export const createConv2DTransposeMatMulProgramInfo = const bias = inputVariable('bias', inputs[2].dataType, inputs[2].dims.length, components); inputVariables.push(bias); declareFunctions += ` - fn getBiasByOutputCoords(coords : vec4) -> ${isVec4 ? 'vec4' : 'f32'} { + fn getBiasByOutputCoords(coords : vec4) -> ${bias.type.value} { return bias[coords.${isChannelsLast ? 'w' : 'y'}${isVec4 ? '/ 4' : ''}]; }`; } @@ -236,16 +233,20 @@ export const createConv2DTransposeMatMulProgramInfo = {name: 'pads', type: 'i32', length: pads.length} ]; appendActivationUniforms(attributes, uniforms); + const elemType = tensorTypeToWsglStorageType(inputs[0].dataType, 1); + if (elemType !== 'f16' && elemType !== 'f32') { + throw new Error(`elemType ${elemType} is not supported.`); + } return ` ${utilFunctions('uniforms.result_strides')} ${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVariables, output)}; ${declareFunctions} - ${conv2dTransposeCommonSnippet(isChannelsLast, hasBias, attributes, innerElementSize)} + ${conv2dTransposeCommonSnippet(isChannelsLast, hasBias, attributes, x.type.value, innerElementSize)} ${ isVec4 ? makeMatMulPackedVec4Source( - elementsPerThread, workGroupSize, 'f32', undefined, !isChannelsLast, tileInner) : + elementsPerThread, workGroupSize, elemType, undefined, !isChannelsLast, tileInner) : makeMatMulPackedSource( - elementsPerThread, workGroupSize, 'f32', undefined, !isChannelsLast, tileInner, false, + elementsPerThread, workGroupSize, elemType, undefined, !isChannelsLast, tileInner, false, undefined, sequentialAccessByThreads)}`; }; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_webgpu.ts b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_webgpu.ts index 846ad49c5222b..45c89406e1731 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_webgpu.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_webgpu.ts @@ -265,7 +265,7 @@ export const createConvTranspose2DProgramInfo = const outputChannelsPerGroup = wShape[1]; const programUniforms: ProgramUniform[] = [ - {type: DataType.int32, data: outputSize}, {type: DataType.uint32, data: strides}, + {type: DataType.uint32, data: outputSize}, {type: DataType.uint32, data: strides}, {type: DataType.uint32, data: filterDims}, {type: DataType.uint32, data: dilations}, {type: DataType.uint32, data: effectiveFilterDims}, {type: DataType.int32, data: pads}, {type: DataType.uint32, data: inputChannelsPerGroup}, {type: DataType.uint32, data: outputChannelsPerGroup}, diff --git a/js/web/lib/wasm/jsep/webgpu/ops/common.ts b/js/web/lib/wasm/jsep/webgpu/ops/common.ts index 516094d0ef87b..e151b6de44317 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/common.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/common.ts @@ -3,7 +3,7 @@ import {DataType} from '../../../wasm-common'; import {ShapeUtil} from '../../util'; -import {ProgramUniform} from '../types'; +import {ProgramUniform, ProgramUniformVariableInfo} from '../types'; /** * constant value for a workgroup size. @@ -903,6 +903,20 @@ class ShaderHelperImpl implements ShaderHelper { return this.uniformDeclaration() + this.variables.map(i => i.impl()).join('\n') + this.internalVariables.map(i => i.impl()).join('\n'); } + + /** + * Get the variable info of the shader program. + */ + get variablesInfo(): ProgramUniformVariableInfo[]|undefined { + if (this.uniforms.length === 0) { + return undefined; + } + + const uniformWgslTypeToDataType = (type: UniformDataElementType) => + ([DataType.uint32, DataType.float16, DataType.float, + DataType.int32][['u32', 'f16', 'f32', 'i32'].indexOf(type)]); + return this.uniforms.map(u => ([uniformWgslTypeToDataType(u.type), u.length ?? 1])); + } } export const createShaderHelper = (dispatchGroup: [number, number, number]) => new ShaderHelperImpl(dispatchGroup); diff --git a/js/web/lib/wasm/jsep/webgpu/ops/concat.ts b/js/web/lib/wasm/jsep/webgpu/ops/concat.ts index b06c9fb496d15..010ee589c44fa 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/concat.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/concat.ts @@ -13,25 +13,32 @@ export interface ConcatAttributes extends AttributeWithCacheKey { readonly axis: number; } -const validateInputs = (inputs: readonly TensorView[]): void => { +const validateInputs = (inputs: readonly TensorView[], axis: number): void => { if (!inputs || inputs.length < 1) { throw new Error('too few inputs'); } - - const inputType = inputs[0].dataType; - const inputDimensionality = inputs[0].dims.length; - - for (const input of inputs) { + const referenceIndex = 0; + const referenceInput = inputs[referenceIndex]; + const inputType = referenceInput.dataType; + const inputRank = referenceInput.dims.length; + inputs.forEach((input, i) => { + if (i === referenceIndex) { + return; + } // make sure types of all inputs match if (input.dataType !== inputType) { throw new Error('input tensors should be one type'); } - // make sure the dimensionality of all inputs are the same - if (input.dims.length !== inputDimensionality) { + if (input.dims.length !== inputRank) { throw new Error('input tensors should have the same shape'); } - } + input.dims.forEach((dim, i) => { + if (i !== axis && dim !== referenceInput.dims[i]) { + throw new Error('non concat dimensions must match'); + } + }); + }); }; const calculateInputIndexImpl = (numberOfTensors: number, sizeInConcatAxisStr: string): string => ` @@ -64,65 +71,43 @@ const assignOutputData = (inputs: readonly IndicesHelper[], output: IndicesHelpe return codeLines.join('\n'); }; -const createConcatProgramInfo = (inputs: readonly TensorView[], axis: number): ProgramInfo => { - const inputShape = inputs[0].dims.slice(); - if (axis >= inputShape.length || axis < (-1 * inputShape.length)) { - throw new Error('axis specified for concat doesn\'t match input dimensionality'); - } - const adjustedAxis = (axis < 0) ? inputShape.length + axis : axis; - // ensure all of the non-concatenated axes match each other - // calculate the shape of the output tensor while we do that - const outputShape = inputShape.slice(0); - for (let i = 1; i < inputs.length; i++) { - const dataNShape = inputs[i].dims.slice(); - for (let axisIndex = 0; axisIndex < inputShape.length; axisIndex++) { - // add to the placeholder for computing output shape - if (axisIndex === adjustedAxis) { - outputShape[adjustedAxis] += dataNShape[axisIndex]; +const createConcatProgramInfo = + (inputs: readonly TensorView[], adjustedAxis: number, outputShape: number[], dataType: DataType): ProgramInfo => { + const outputSize = ShapeUtil.size(outputShape); + + const sizeInConcatAxis = new Array(inputs.length); + const inputVars = new Array(inputs.length); + + let previousSum = 0; + const inputDependencies: ProgramInputTensorInfoDependency[] = []; + const inputRanks = []; + const programUniforms: ProgramUniform[] = [{type: DataType.uint32, data: outputSize}]; + for (let i = 0; i < inputs.length; ++i) { + previousSum += inputs[i].dims[adjustedAxis]; + sizeInConcatAxis[i] = previousSum; + inputRanks.push(inputs[i].dims.length); + inputVars[i] = inputVariable(`input${i}`, dataType, inputRanks[i]); + inputDependencies.push('rank'); + programUniforms.push({type: DataType.uint32, data: sizeInConcatAxis[i]}); } - // ensure all non-cancatenated axes match each other - else if (inputShape[axisIndex] !== dataNShape[axisIndex]) { - throw new Error('non concat dimensions must match'); + for (let i = 0; i < inputs.length; ++i) { + programUniforms.push(...createTensorShapeVariables(inputs[i].dims)); } - } - } - - const outputSize = ShapeUtil.size(outputShape); - - const sizeInConcatAxis = new Array(inputs.length); - const inputVars = new Array(inputs.length); - const dataType = inputs[0].dataType; - - let previousSum = 0; - const inputDependencies: ProgramInputTensorInfoDependency[] = []; - const inputRanks = []; - const programUniforms: ProgramUniform[] = [{type: DataType.uint32, data: outputSize}]; - for (let i = 0; i < inputs.length; ++i) { - previousSum += inputs[i].dims[adjustedAxis]; - sizeInConcatAxis[i] = previousSum; - inputRanks.push(inputs[i].dims.length); - inputVars[i] = inputVariable(`input${i}`, dataType, inputRanks[i]); - inputDependencies.push('rank'); - programUniforms.push({type: DataType.uint32, data: sizeInConcatAxis[i]}); - } - for (let i = 0; i < inputs.length; ++i) { - programUniforms.push(...createTensorShapeVariables(inputs[i].dims)); - } - programUniforms.push(...createTensorShapeVariables(outputShape)); + programUniforms.push(...createTensorShapeVariables(outputShape)); - const output = outputVariable('output', dataType, outputShape.length); - const indicesAxis = output.indicesGet('indices', adjustedAxis); - const sizeInConcatAxisStr = - Array.from(Array(sizeInConcatAxis.length).keys()).map(i => `uniforms.sizeInConcatAxis${i}`).join(','); - const getShaderSource = (shaderHelper: ShaderHelper) => ` + const output = outputVariable('output', dataType, outputShape.length); + const indicesAxis = output.indicesGet('indices', adjustedAxis); + const sizeInConcatAxisStr = + Array.from(Array(sizeInConcatAxis.length).keys()).map(i => `uniforms.sizeInConcatAxis${i}`).join(','); + const getShaderSource = (shaderHelper: ShaderHelper) => ` ${(() => { - shaderHelper.registerUniform('outputSize', 'u32'); - for (let i = 0; i < inputs.length; i++) { - shaderHelper.registerUniform(`sizeInConcatAxis${i}`, 'u32'); - } - return shaderHelper.declareVariables(...inputVars, output); - })()} + shaderHelper.registerUniform('outputSize', 'u32'); + for (let i = 0; i < inputs.length; i++) { + shaderHelper.registerUniform(`sizeInConcatAxis${i}`, 'u32'); + } + return shaderHelper.declareVariables(...inputVars, output); + })()} ${calculateInputIndexImpl(sizeInConcatAxis.length, sizeInConcatAxisStr)} @@ -140,21 +125,30 @@ const createConcatProgramInfo = (inputs: readonly TensorView[], axis: number): P ${assignOutputData(inputVars, output)} }`; - return { - name: 'Concat', - shaderCache: {hint: `${axis}`, inputDependencies}, - getRunData: () => ({ - outputs: [{dims: outputShape, dataType: inputs[0].dataType}], - dispatchGroup: {x: Math.ceil(outputSize / 64 /* workgroup size */)}, - programUniforms, - }), - getShaderSource, - }; -}; + return { + name: 'Concat', + shaderCache: {hint: `${adjustedAxis}`, inputDependencies}, + getRunData: () => ({ + outputs: [{dims: outputShape, dataType}], + dispatchGroup: {x: Math.ceil(outputSize / 64 /* workgroup size */)}, + programUniforms, + }), + getShaderSource, + }; + }; export const concat = (context: ComputeContext, attributes: ConcatAttributes): void => { - validateInputs(context.inputs); - context.compute(createConcatProgramInfo(context.inputs, attributes.axis)); + const inputs = context.inputs; + const inputShape = inputs[0].dims; + const adjustedAxis = ShapeUtil.normalizeAxis(attributes.axis, inputShape.length); + validateInputs(inputs, adjustedAxis); + const outputShape = inputShape.slice(); + outputShape[adjustedAxis] = + inputs.reduce((sum, input) => sum + (input.dims.length > adjustedAxis ? input.dims[adjustedAxis] : 0), 0); + // 0 length tensors are valid for concat, remove them + const nonEmptyInputs = inputs.filter(input => ShapeUtil.size(input.dims) > 0); + context.compute( + createConcatProgramInfo(nonEmptyInputs, adjustedAxis, outputShape, inputs[0].dataType), {inputs: nonEmptyInputs}); }; export const parseConcatAttributes = (attributes: Record): ConcatAttributes => diff --git a/js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts b/js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts index 7d424305c715f..924030125c420 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts @@ -35,7 +35,7 @@ export const createGroupedConvProgramInfo = {type: DataType.uint32, data: outputChannelsPerGroup} ]; appendActivationUniformsData(attributes, programUniforms); - programUniforms.push(...createTensorShapeVariables(xShape, wShape, outputShape)); + programUniforms.push(...createTensorShapeVariables(xShape, wShape)); const inputDependencies: ProgramInputTensorInfoDependency[] = ['rank', 'rank']; if (hasBias) { programUniforms.push(...createTensorShapeVariables(inputs[2].dims)); @@ -51,7 +51,7 @@ export const createGroupedConvProgramInfo = const w = inputVariable('w', inputs[1].dataType, wShape.length); const inputVars = [x, w]; if (hasBias) { - inputVars.push(inputVariable('b', inputs[2].dataType, inputs[2].dims)); + inputVars.push(inputVariable('b', inputs[2].dataType, inputs[2].dims.length)); } const uniforms: UniformsArrayType = [ diff --git a/js/web/lib/wasm/jsep/webgpu/ops/conv.ts b/js/web/lib/wasm/jsep/webgpu/ops/conv.ts index 5afec0389fac8..b68d4dcae4cb9 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/conv.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/conv.ts @@ -148,11 +148,12 @@ const conv2d = (context: ComputeContext, inputs: readonly TensorView[], attribut // const hasPreluActivationWeights = false; /* TODO: add support for prelu activation weights */ const isChannelsLast = attributes.format === 'NHWC'; if (attributes.group !== 1) { - // Temporarily disable createGroupedConvVectorizeProgramInfo path due to bots failures with below two cases: + // NVIDIA GPU with ampere architecture fails with below 2 cases, but we couldn't repro them with any other + // GPUs. So just disable vectorize on NVIDIA ampere to ensure always correct outputs. // [webgpu]Conv - conv - vectorize group - B // [webgpu]Conv - conv - vectorize group - D - const disableGroupedConvVectorize = true; - if (!disableGroupedConvVectorize && isChannelsLast && inputs[1].dims[0] === attributes.group && + const enableGroupedConvVectorize = !context.adapterInfo.isArchitecture('ampere'); + if (enableGroupedConvVectorize && isChannelsLast && inputs[1].dims[0] === attributes.group && inputs[1].dims[1] === 1 && attributes.dilations[0] === 1 && attributes.dilations[1] === 1) { const outputShape = calculateOutputShape( inputs[0].dims, inputs[1].dims, attributes.dilations, adjustedAttributes.pads, attributes.strides, diff --git a/js/web/lib/wasm/jsep/webgpu/ops/gather.ts b/js/web/lib/wasm/jsep/webgpu/ops/gather.ts index 5c31e6dd86c00..d48bb909f7f8f 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/gather.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/gather.ts @@ -55,7 +55,7 @@ const createGatherProgramInfo = (inputs: readonly TensorView[], attributes: Gath if (idx${x} < 0) { idx${x} = idx${x} + uniforms.axisDimLimit; } - var dataIndices${x} = ${data.type.indices}(0); + var dataIndices${x} : ${data.type.indices}; `; for (let i = 0, j = 0; i < inputRank; i++) { if (i === axis) { diff --git a/js/web/lib/wasm/jsep/webgpu/ops/instance-norm.ts b/js/web/lib/wasm/jsep/webgpu/ops/instance-norm.ts index 2f652dbd310ab..2c72def089144 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/instance-norm.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/instance-norm.ts @@ -207,7 +207,7 @@ const computeMean = let offset = currentImageNumber * uniforms.image_size; var sum = ${fillVector('f32', components)}; var squaredSum = ${fillVector('f32', components)}; - for (var i: u32 = 0; i < ${WG}; i++) { + for (var i: u32 = 0; i < min(${WG}, uniforms.H); i++) { let value = input[offset + i + currentChannelNumber * ${WG}]; sum += value[0]; squaredSum += value[1]; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/layer-norm.ts b/js/web/lib/wasm/jsep/webgpu/ops/layer-norm.ts index 3f73d9cb7c5bc..d5f97213e49ce 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/layer-norm.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/layer-norm.ts @@ -85,28 +85,28 @@ const createLayerNormProgramInfo = ${shaderHelper.mainStart()} ${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.norm_count')} let offset = global_idx * uniforms.norm_size_vectorized; - var meanVector = ${fillVector('f32', components)}; - var meanSquareVector = ${fillVector('f32', components)}; + var mean_vector = ${fillVector('f32', components)}; + var mean_square_vector = ${fillVector('f32', components)}; for (var h: u32 = 0u; h < uniforms.norm_size_vectorized; h++) { let value = ${castToF32(dataType, components, 'x[h + offset]')}; - meanVector += value; - meanSquareVector += value * value; + mean_vector += value; + mean_square_vector += value * value; } - let mean = ${sumVector('meanVector', components)} / uniforms.norm_size; - let invStdDev = - inverseSqrt(${sumVector('meanSquareVector', components)} / uniforms.norm_size - mean * mean + uniforms.epsilon); + let mean = ${sumVector('mean_vector', components)} / uniforms.norm_size; + let inv_std_dev = inverseSqrt(${ + sumVector('mean_square_vector', components)} / uniforms.norm_size - mean * mean + uniforms.epsilon); for (var j: u32 = 0; j < uniforms.norm_size_vectorized; j++) { let f32input = ${castToF32(dataType, components, 'x[j + offset]')}; let f32scale = ${castToF32(dataType, components, 'scale[j]')}; - output[j + offset] = ${variables[0].type.value}((f32input - mean) * invStdDev * f32scale + output[j + offset] = ${variables[0].type.value}((f32input - mean) * inv_std_dev * f32scale ${bias ? `+ ${castToF32(dataType, components, 'bias[j]')}` : ''} ); } ${hasMeanDataOutput ? 'mean_data_output[global_idx] = mean' : ''}; - ${hasInvStdOutput ? 'inv_std_output[global_idx] = invStdDev' : ''}; + ${hasInvStdOutput ? 'inv_std_output[global_idx] = inv_std_dev' : ''}; }`; }; const outputs = [{dims: outputShape, dataType: inputs[0].dataType}]; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/matmulnbits.ts b/js/web/lib/wasm/jsep/webgpu/ops/matmulnbits.ts new file mode 100644 index 0000000000000..9bf5e4066139d --- /dev/null +++ b/js/web/lib/wasm/jsep/webgpu/ops/matmulnbits.ts @@ -0,0 +1,250 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +import {DataType} from '../../../wasm-common'; +import {TensorView} from '../../tensor-view'; +import {ShapeUtil} from '../../util'; +import {AttributeWithCacheKey, createAttributeWithCacheKey} from '../attribute-with-cache-key'; +import {ComputeContext, ProgramInfo, ProgramUniform} from '../types'; + +import {createTensorShapeVariables, getMaxComponents, inputVariable, outputVariable, ShaderHelper, tensorTypeToWsglStorageType, UniformsArrayType} from './common'; + +// TODO support quantization bits not equal to 4 +export interface MatMulNBitsAttributes extends AttributeWithCacheKey { + k: number; + n: number; + accuracyLevel: number; + bits: number; + blockSize: number; +} + +const validateInputs = (inputs: readonly TensorView[], attributes: MatMulNBitsAttributes): void => { + if (inputs.length < 3 || inputs.length > 4) { + throw new Error('MatMulNBits requires 3 or 4 inputs'); + } + const a = inputs[0]; + const aRank = a.dims.length; + if (a.dims[aRank - 1] !== attributes.k) { + throw new Error('The last dim of input shape does not match the k value'); + } + const nBlocksPerCol = Math.floor((attributes.k + attributes.blockSize - 1) / attributes.blockSize); + const blobSize = attributes.blockSize / 8 * attributes.bits; + const b = inputs[1]; + if (!ShapeUtil.areEqual(b.dims, [attributes.n, nBlocksPerCol, blobSize])) { + throw new Error('The second inputs must be 3D tensor with shape N X nBlocksPerCol X blobSize'); + } + const scales = inputs[2]; + const scalesShape = scales.dims; + if (ShapeUtil.size(scalesShape) !== attributes.n * nBlocksPerCol) { + throw new Error('scales input size error.'); + } + if (inputs.length === 4) { + const zeroPoints = inputs[3]; + const zeroPointsShape = zeroPoints.dims; + const expectedZeroPointsSize = + attributes.bits > 4 ? (attributes.n * nBlocksPerCol) : attributes.n * Math.floor((nBlocksPerCol + 1) / 2); + if (ShapeUtil.size(zeroPointsShape) !== expectedZeroPointsSize) { + throw new Error('zeroPoints input size error.'); + } + } +}; + +export const createMatMulNBitsProgramInfo = + (inputs: readonly TensorView[], attributes: MatMulNBitsAttributes): ProgramInfo => { + const inputShape = inputs[0].dims; + const aRank = inputShape.length; + const outputShape = inputShape.slice(0, aRank - 1).concat(attributes.n); + const m = inputShape[aRank - 2]; + const blobSize = attributes.blockSize / 8 * attributes.bits; + const blobSizeInWords = blobSize / 4; + const outputNumber = getMaxComponents(m); + const components = getMaxComponents(attributes.n); + const aComponents = getMaxComponents(attributes.k); + const bComponents = getMaxComponents(blobSizeInWords); + const outputSize = ShapeUtil.size(outputShape) / components / outputNumber; + const programUniforms: ProgramUniform[] = [ + {type: DataType.uint32, data: outputSize}, {type: DataType.uint32, data: attributes.k}, + {type: DataType.uint32, data: attributes.n}, {type: DataType.uint32, data: attributes.accuracyLevel}, + {type: DataType.uint32, data: attributes.bits}, {type: DataType.uint32, data: attributes.blockSize} + ]; + const aShape = inputShape.slice(); + aShape.splice(-1, 1, attributes.k / aComponents); + const bShape = ShapeUtil.convertShape(inputs[1].dims).slice(); + bShape.splice(-1, 1, blobSizeInWords / bComponents); + programUniforms.push(...createTensorShapeVariables(aShape)); + programUniforms.push(...createTensorShapeVariables(bShape)); + programUniforms.push(...createTensorShapeVariables(inputs[2].dims)); + if (inputs.length === 4) { + programUniforms.push(...createTensorShapeVariables(ShapeUtil.convertShape(inputs[3].dims))); + } + const oShape = outputShape.slice(); + oShape.splice(-1, 1, attributes.n / components); + programUniforms.push(...createTensorShapeVariables(oShape)); + const getShaderSource = (shaderHelper: ShaderHelper) => { + const a = inputVariable('a', inputs[0].dataType, aShape.length, aComponents); + const b = inputVariable('b', DataType.uint32, bShape.length, bComponents); + const scales = inputVariable('scales', inputs[2].dataType, inputs[2].dims.length); + const inputVariables = [a, b, scales]; + const zeroPoints = + inputs.length === 4 ? inputVariable('zero_points', DataType.uint32, inputs[3].dims.length) : undefined; + if (zeroPoints) { + inputVariables.push(zeroPoints); + } + const output = outputVariable('output', inputs[0].dataType, outputShape.length, components); + const uniforms: UniformsArrayType = [ + {name: 'output_size', type: 'u32'}, {name: 'K', type: 'u32'}, {name: 'N', type: 'u32'}, + {name: 'accuracy_level', type: 'u32'}, {name: 'bits', type: 'u32'}, {name: 'block_size', type: 'u32'} + ]; + const nBlocksPerCol = Math.floor((attributes.k + attributes.blockSize - 1) / attributes.blockSize); + const dataType = tensorTypeToWsglStorageType(inputs[0].dataType); + + const qDqDataType = (() => { + switch (aComponents) { + case 1: + return `array<${dataType}, 8>`; + case 2: + return `mat4x2<${dataType}>`; + case 4: + return `mat2x4<${dataType}>`; + default: + throw new Error(`${aComponents}-component is not supported.`); + } + })(); + + const dequantizeImpl = ` + fn dequantize(quantized: ${qDqDataType}, zero_point: ${dataType}, scale: ${dataType}) -> ${qDqDataType} { + ${(() => { + if (aComponents === 1) { + return `var dequantized = ${qDqDataType}(${ + Array.from({length: 8}, (_, i) => `(quantized[${i}] - zero_point) * scale`).join(', ')}); + return dequantized;`; + } else { + return `var zero_points: ${qDqDataType} = ${qDqDataType}(${Array(8).fill('zero_point').join(',')}); + return (quantized - zero_points) * scale;`; + } + })()} + }`; + const ortUnpack8x4snormImpl = ` + fn ortUnpack8x4snorm(value: u32) -> ${qDqDataType} { + var quantized: ${qDqDataType}; + var offset: u32 = 0; + let count: u32 = 4; + for (var i: u32 = 0; i < 8u; i++) { + var result = ${dataType}(extractBits(value, offset, count)); + ${(() => { + switch (aComponents) { + case 1: + return 'quantized[i] = result;'; + case 2: + return 'quantized[i / 2][i % 2] = result;'; + case 4: + return 'quantized[i / 4][i % 4] = result;'; + default: + throw new Error(`${aComponents}-component is not supported.`); + } + })()} + offset += count; + } + return quantized; + }`; + + const updateZeroPointIndex = zeroPoints ? ` + zero_point_offset += 4; + if (zero_point_offset == 32) { + zero_point_offset = 0; + zero_point_index++; + zero_point_word = ${zeroPoints.getByOffset('zero_point_index')}; + }` : + ''; + + return ` + ${dequantizeImpl}; + ${ortUnpack8x4snormImpl}; + ${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVariables, output)} + ${shaderHelper.mainStart()} + ${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')} + var output_values: array<${output.type.value}, ${outputNumber}>; + var output_indices = ${output.offsetToIndices('global_idx')}; + var n = ${output.indicesGet('output_indices', aRank - 1)}; + var m = ${output.indicesGet('output_indices', aRank - 2)}; + var a_indices: ${a.type.indices} = output_indices; + // Two zero points are packed into one byte because uniforms.bits <= 4. + // zero_point_offset is either 0 or 4. It is bit offset within one byte. + // TODO support zero_point_offset for bits > 4 + ${ + zeroPoints ? ` + var zero_point_index: u32 = n * ${components} * ((${nBlocksPerCol} + 1) / 2) / 4; + var zero_point_word: u32 = ${zeroPoints.getByOffset('zero_point_index')}; + var zero_point_offset: u32 = 0;` : + ''} + var scale_index = n * ${nBlocksPerCol * components}; + var b_indices: ${b.type.indices}; + for (var c: u32 = 0; c < ${components}; c++) { + ${b.indicesSet('b_indices', '0', `n * ${components} + c`)}; + var block_offset: u32 = 0; + for (var block: u32 = 0; block < ${nBlocksPerCol}; block++) { + // The scale and zero points are computed per block. + let scale = ${scales.getByOffset('scale_index')}; + // The default zero point is 8 for unsigned 4-bit quantization. + let zero_point = ${dataType}(${zeroPoints ? 'extractBits(zero_point_word, zero_point_offset, 4)' : 8.0}); + ${b.indicesSet('b_indices', '1', 'block')}; + var word_offset: u32 = block_offset; + for (var word: u32 = 0; word < ${blobSizeInWords}; word += ${bComponents}) { + ${b.indicesSet('b_indices', '2', 'word')}; + let b_data = ${b.getByIndices('b_indices')}; + for (var i: u32 = 0; i < ${bComponents}; i++) { + let b_value = ${bComponents === 1 ? 'b_data' : 'b_data[word + i]'}; + let b_quantized_values: ${qDqDataType} = ortUnpack8x4snorm(b_value); + let b_dequantized_values = dequantize(b_quantized_values, zero_point, scale); + // Number of B elements per 32-bit word is 32/bits = 32/4 = 8 + var offset: u32 = word_offset; + for (var j: u32 = 0; j < 8/${aComponents}; j++) { + ${a.indicesSet('a_indices', aRank - 1, `offset/${aComponents}`)}; + for (var k: u32 = 0; k < ${outputNumber}u; k++) { + ${a.indicesSet('a_indices', aRank - 2, `m * ${outputNumber} + k`)}; + let a_data = ${a.getByIndices('a_indices')}; + output_values[k]${components > 1 ? '[c]' : ''} += ${ + aComponents === 1 ? 'a_data * b_dequantized_values[j]' : 'dot(a_data, b_dequantized_values[j])'}; + } + offset += ${aComponents}; + } + word_offset += 8; + } + } + scale_index++; + ${updateZeroPointIndex} + block_offset += uniforms.block_size; + } + // Drop the trailing 4 bits if the zero_poit_offset is not a byte boundary to align with the next byte. + ${ + zeroPoints ? `if (zero_point_offset % 8 > 0) { + ${updateZeroPointIndex} + }` : + ''} + } + for (var k: u32 = 0u; k < ${outputNumber}u; k++) { + ${output.indicesSet('output_indices', aRank - 2, `${outputNumber + ' * m + k'}`)}; + ${output.setByIndices('output_indices', 'output_values[k]')} + } + }`; + }; + return { + name: 'MatMulNBits', + shaderCache: + {hint: `${attributes.cacheKey};${inputs.length}`, inputDependencies: Array(inputs.length).fill('rank')}, + getRunData: () => ({ + outputs: [{dims: outputShape, dataType: inputs[0].dataType}], + dispatchGroup: {x: Math.ceil(outputSize / 64 /* workgroup size */)}, + programUniforms + }), + getShaderSource + }; + }; + +export const matMulNBits = (context: ComputeContext, attributes: MatMulNBitsAttributes): void => { + validateInputs(context.inputs, attributes); + context.compute(createMatMulNBitsProgramInfo(context.inputs, attributes)); +}; + +export const parseMatMulNBitsAttributes = (attributes: Record): MatMulNBitsAttributes => + createAttributeWithCacheKey(attributes as Omit); diff --git a/js/web/lib/wasm/jsep/webgpu/ops/pad.ts b/js/web/lib/wasm/jsep/webgpu/ops/pad.ts index 236fc29fdf1ab..d649d3d220ae1 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/pad.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/pad.ts @@ -153,7 +153,7 @@ const createPadProgramInfo = (inputs: readonly TensorView[], attributes: PadAttr const inputDims = inputs[0].dims; const outputSize = ShapeUtil.size(outputShape); const programUniforms: ProgramUniform[] = - [{type: DataType.uint32, data: outputSize}, {type: DataType.uint32, data: attributes.pads}]; + [{type: DataType.uint32, data: outputSize}, {type: DataType.int32, data: attributes.pads}]; if (attributes.mode === 0) { programUniforms.push({type: inputs[0].dataType, data: attributes.value}); } diff --git a/js/web/lib/wasm/jsep/webgpu/ops/pool.ts b/js/web/lib/wasm/jsep/webgpu/ops/pool.ts index 4e933573b9137..5521650e8ded4 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/pool.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/pool.ts @@ -381,8 +381,9 @@ const createMaxPoolProgramInfo = programUniforms }), getShaderSource: shaderHelper => generatePoolingCode( - shaderHelper, x, input.dims.length, outputShape.length, adjustedAttributes, op1, op2, -1e5, uniforms, - hasPads, pwStartEndNotZero, phStartEndNotZero), + shaderHelper, x, input.dims.length, outputShape.length, adjustedAttributes, op1, op2, + (input.dataType === DataType.float16) ? -65504 : -1e5, uniforms, hasPads, pwStartEndNotZero, + phStartEndNotZero), }; }; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/reduce-shared.ts b/js/web/lib/wasm/jsep/webgpu/ops/reduce-shared.ts index a9b28d7c034f3..210b3ee7e2fca 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/reduce-shared.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/reduce-shared.ts @@ -131,7 +131,7 @@ export const createReduceSharedProgramInfo = const workgroupSize = 32; const sharedMemorySnippet = ` - var aBestValues : array<${output.type.storage}, ${workgroupSize}>; + var aBestValues : array; `; const getShaderSource = (shaderHelper: ShaderHelper) => ` @@ -145,10 +145,10 @@ export const createReduceSharedProgramInfo = let outputIndex = global_idx / ${workgroupSize}; let offset = outputIndex * uniforms.reduceSize; - var bestValue = ${output.type.storage}(${reduceInitValues[reduceType]}); + var bestValue = f32(${reduceInitValues[reduceType]}); let Length = uniforms.reduceSize; for (var k = local_idx; k < Length; k = k + ${workgroupSize}) { - let candidate = ${output.type.storage}(${input.getByOffset('offset + k')}); + let candidate = f32(${input.getByOffset('offset + k')}); bestValue = ${reduceOps[reduceType]}; } aBestValues[local_idx] = bestValue; @@ -172,8 +172,8 @@ export const createReduceSharedProgramInfo = output.setByOffset( 'outputIndex', `${ - reduceType === 'mean' ? `bestValue / ${output.type.storage}(uniforms.reduceSize)` : - `${reduceOutputValues[reduceType]}`}`)}; + reduceType === 'mean' ? `${output.type.storage}(bestValue / f32(uniforms.reduceSize))` : + `${output.type.storage}(${reduceOutputValues[reduceType]})`}`)}; } }`; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/softmax.ts b/js/web/lib/wasm/jsep/webgpu/ops/softmax.ts index 6f8bfa08d7b62..b0e3ddd149656 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/softmax.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/softmax.ts @@ -137,7 +137,7 @@ const createSoftmaxProgramInfo = (input: TensorView, attributes: SoftmaxAttribut getRunData: () => ({ outputs: [{dims: shape, dataType: input.dataType}], dispatchGroup: {x: rows}, - programUniforms: [{type: DataType.uint32, data: packedCols}] + programUniforms: [{type: DataType.int32, data: packedCols}] }), getShaderSource, }; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/split.ts b/js/web/lib/wasm/jsep/webgpu/ops/split.ts index 14d6f37927590..a09ac78b17006 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/split.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/split.ts @@ -68,7 +68,7 @@ const createSplitProgramInfo = (inputs: readonly TensorView[], attributes: Split const dataType = inputs[0].dataType; const axis = ShapeUtil.normalizeAxis(attributes.axis, inputShape.length); const outputs = new Array(attributes.numOutputs); - const input = inputVariable('input', dataType, inputShape); + const input = inputVariable('input', dataType, inputShape.length); const sizeInSplitAxis = new Array(attributes.numOutputs); const outputsTensorInfo: TensorInfo[] = []; const outputShapes: number[][] = []; @@ -80,7 +80,7 @@ const createSplitProgramInfo = (inputs: readonly TensorView[], attributes: Split const outputShape = inputShape.slice(); outputShape[attributes.axis] = attributes.splitSizes[i]; outputShapes.push(outputShape); - outputs[i] = outputVariable(`output${i}`, dataType, outputShape); + outputs[i] = outputVariable(`output${i}`, dataType, outputShape.length); outputsTensorInfo.push({dims: outputShapes[i], dataType: inputs[0].dataType}); } programUniforms.push( diff --git a/js/web/lib/wasm/jsep/webgpu/ops/where.ts b/js/web/lib/wasm/jsep/webgpu/ops/where.ts index cfee07a9239d7..a6375847fc42f 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/where.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/where.ts @@ -27,7 +27,7 @@ const createWhereOpProgramShader = const expressionA = `a_data[index_a${x}][component_a${x}]`; const expressionB = `b_data[index_b${x}][component_b${x}]`; // eslint-disable-next-line no-bitwise - const expressionC = `bool(c_data[index_c${x}] & ${0xff000000 >>> ((3 - x) * 8)}u)`; + const expressionC = `bool(c_data[index_c${x}] & (0xffu << (component_c${x} * 8)))`; return ` let output_indices${x} = ${output.offsetToIndices(`global_idx * 4u + ${x}u`)}; let offset_a${x} = ${a.broadcastedIndicesToOffset(`output_indices${x}`, output)}; @@ -38,6 +38,7 @@ const createWhereOpProgramShader = let index_c${x} = offset_c${x} / 4u; let component_a${x} = offset_a${x} % 4u; let component_b${x} = offset_b${x} % 4u; + let component_c${x} = offset_c${x} % 4u; ${resStr}[${x}] = ${typeCast}(${expression(expressionA, expressionB, expressionC)}); `; }; diff --git a/js/web/lib/wasm/jsep/webgpu/program-manager.ts b/js/web/lib/wasm/jsep/webgpu/program-manager.ts index 9d05f607f817f..0064e53a9584b 100644 --- a/js/web/lib/wasm/jsep/webgpu/program-manager.ts +++ b/js/web/lib/wasm/jsep/webgpu/program-manager.ts @@ -97,7 +97,7 @@ export class ProgramManager { {compute: {module: shaderModule, entryPoint: 'main'}, layout: 'auto', label: programInfo.name}); TRACE_FUNC_END(programInfo.name); - return {programInfo, computePipeline}; + return {programInfo, computePipeline, uniformVariablesInfo: shaderHelper.variablesInfo}; } normalizeDispatchGroupSize(dispatchGroup: ReturnType['dispatchGroup']): diff --git a/js/web/lib/wasm/jsep/webgpu/types.ts b/js/web/lib/wasm/jsep/webgpu/types.ts index ba5b84fcfe067..a0c4b77d44a77 100644 --- a/js/web/lib/wasm/jsep/webgpu/types.ts +++ b/js/web/lib/wasm/jsep/webgpu/types.ts @@ -15,6 +15,13 @@ export enum GpuDataType { } export type GpuDataId = number; +export type GpuArchitecture = 'ampere'; +export type GpuVendor = 'amd'|'intel'|'nvidia'; +export interface AdapterInfo { + isArchitecture: (architecture: GpuArchitecture) => boolean; + isVendor: (vendor: GpuVendor) => boolean; +} + export interface GpuData { type: GpuDataType; id: GpuDataId; @@ -31,6 +38,8 @@ export interface ProgramUniform { data: number|readonly number[]; } +export type ProgramUniformVariableInfo = [type: DataType, length: number]; + /** * Represent the dependency of a program on a specific input tensor. * @@ -118,6 +127,7 @@ export interface ProgramInfo { export interface Artifact { programInfo: ProgramInfo; computePipeline: GPUComputePipeline; + uniformVariablesInfo: readonly ProgramUniformVariableInfo[]|undefined; } export interface ComputeContextInputsOutputsMapping { @@ -146,6 +156,11 @@ export interface ComputeContextInputsOutputsMapping { * A ComputeContext instance carries the states that representing the current running of a kernel. */ export interface ComputeContext { + /** + * gpu adapter info + */ + readonly adapterInfo: AdapterInfo; + /** * stores the pointer to OpKernelContext */ diff --git a/js/web/lib/wasm/proxy-worker/main.ts b/js/web/lib/wasm/proxy-worker/main.ts index 6cbd38c76ccc8..3ce37a2d6b652 100644 --- a/js/web/lib/wasm/proxy-worker/main.ts +++ b/js/web/lib/wasm/proxy-worker/main.ts @@ -103,7 +103,7 @@ self.onmessage = (ev: MessageEvent): void => { } else { postMessage( {type, out: outputs} as OrtWasmMessage, - extractTransferableBuffers(outputs as SerializableTensorMetadata[])); + extractTransferableBuffers([...inputs, ...outputs] as SerializableTensorMetadata[])); } }, err => { diff --git a/js/web/lib/wasm/proxy-wrapper.ts b/js/web/lib/wasm/proxy-wrapper.ts index 86017a4ec6904..6ff4e86b1235e 100644 --- a/js/web/lib/wasm/proxy-wrapper.ts +++ b/js/web/lib/wasm/proxy-wrapper.ts @@ -155,7 +155,7 @@ export const createSession = ensureWorker(); return new Promise((resolve, reject) => { enqueueCallbacks('create', [resolve, reject]); - const message: OrtWasmMessage = {type: 'create', in : {model, options}}; + const message: OrtWasmMessage = {type: 'create', in : {model, options: {...options}}}; const transferable: Transferable[] = []; if (model instanceof Uint8Array) { transferable.push(model.buffer); diff --git a/js/web/lib/wasm/wasm-common.ts b/js/web/lib/wasm/wasm-common.ts index b9eff45e890c4..54eaf5e0c43cc 100644 --- a/js/web/lib/wasm/wasm-common.ts +++ b/js/web/lib/wasm/wasm-common.ts @@ -3,6 +3,12 @@ import {Tensor} from 'onnxruntime-common'; +// a dummy type declaration for Float16Array in case any polyfill is available. +declare global { + // eslint-disable-next-line @typescript-eslint/naming-convention, @typescript-eslint/no-explicit-any + const Float16Array: any; +} + // This file includes common definitions. They do NOT have dependency on the WebAssembly instance. /** @@ -117,7 +123,8 @@ export const tensorTypeToTypedArrayConstructor = (type: Tensor.Type): Float32Arr Uint8ArrayConstructor|Float64ArrayConstructor|Uint32ArrayConstructor|BigUint64ArrayConstructor => { switch (type) { case 'float16': - return Uint16Array; + // allow Float16Array polyfill. + return typeof Float16Array !== 'undefined' && Float16Array.from ? Float16Array : Uint16Array; case 'float32': return Float32Array; case 'uint8': @@ -169,7 +176,8 @@ export const logLevelStringToEnum = (logLevel?: 'verbose'|'info'|'warning'|'erro * Check whether the given tensor type is supported by GPU buffer */ export const isGpuBufferSupportedType = (type: Tensor.Type): type is Tensor.GpuBufferDataTypes => type === 'float32' || - type === 'int32' || type === 'int64' || type === 'bool' || type === 'float16' || type === 'uint32'; + type === 'float16' || type === 'int32' || type === 'int64' || type === 'uint32' || type === 'uint8' || + type === 'bool'; /** * Map string data location to integer value diff --git a/js/web/lib/wasm/wasm-core-impl.ts b/js/web/lib/wasm/wasm-core-impl.ts index 37b9ed6a1002f..9b27051f1b9fe 100644 --- a/js/web/lib/wasm/wasm-core-impl.ts +++ b/js/web/lib/wasm/wasm-core-impl.ts @@ -84,27 +84,57 @@ export const initRuntime = async(env: Env): Promise => { * @param epName */ export const initEp = async(env: Env, epName: string): Promise => { - if (!BUILD_DEFS.DISABLE_WEBGPU && (epName === 'webgpu' || epName === 'webnn')) { - // perform WebGPU availability check - if (typeof navigator === 'undefined' || !navigator.gpu) { - throw new Error('WebGPU is not supported in current environment'); - } - const adapter = await navigator.gpu.requestAdapter(); - if (!adapter) { - throw new Error( - 'Failed to get GPU adapter. You may need to enable flag "--enable-unsafe-webgpu" if you are using Chrome.'); - } + if (!BUILD_DEFS.DISABLE_WEBGPU) { + // eslint-disable-next-line @typescript-eslint/no-require-imports, @typescript-eslint/no-var-requires + const initJsep = require('./jsep/init').init; - if (!env.wasm.simd) { - throw new Error( - 'Not supported for WebGPU=ON and SIMD=OFF. Please set `env.wasm.simd` to true when using `webgpu` EP'); - } + if (epName === 'webgpu') { + // perform WebGPU availability check + if (typeof navigator === 'undefined' || !navigator.gpu) { + throw new Error('WebGPU is not supported in current environment'); + } + + let adapter = env.webgpu.adapter as GPUAdapter | null; + if (!adapter) { + // if adapter is not set, request a new adapter. + const powerPreference = env.webgpu.powerPreference; + if (powerPreference !== undefined && powerPreference !== 'low-power' && + powerPreference !== 'high-performance') { + throw new Error(`Invalid powerPreference setting: "${powerPreference}"`); + } + const forceFallbackAdapter = env.webgpu.forceFallbackAdapter; + if (forceFallbackAdapter !== undefined && typeof forceFallbackAdapter !== 'boolean') { + throw new Error(`Invalid forceFallbackAdapter setting: "${forceFallbackAdapter}"`); + } + adapter = await navigator.gpu.requestAdapter({powerPreference, forceFallbackAdapter}); + if (!adapter) { + throw new Error( + 'Failed to get GPU adapter. ' + + 'You may need to enable flag "--enable-unsafe-webgpu" if you are using Chrome.'); + } + } else { + // if adapter is set, validate it. + if (typeof adapter.limits !== 'object' || typeof adapter.features !== 'object' || + typeof adapter.requestDevice !== 'function') { + throw new Error('Invalid GPU adapter set in `env.webgpu.adapter`. It must be a GPUAdapter object.'); + } + } - // init JSEP if available + if (!env.wasm.simd) { + throw new Error( + 'Not supported for WebGPU=ON and SIMD=OFF. Please set `env.wasm.simd` to true when using `webgpu` EP'); + } - // eslint-disable-next-line @typescript-eslint/no-require-imports, @typescript-eslint/no-var-requires - const initJsep = require('./jsep/init').init; - await initJsep(getInstance(), env, adapter); + await initJsep('webgpu', getInstance(), env, adapter); + } + if (epName === 'webnn') { + // perform WebNN availability check + if (typeof navigator === 'undefined' || !(navigator as unknown as {ml: unknown}).ml) { + throw new Error('WebNN is not supported in current environment'); + } + + await initJsep('webnn', getInstance(), env); + } } }; @@ -372,7 +402,12 @@ export const prepareInputOutputTensor = const gpuBuffer = tensor[2].gpuBuffer as GPUBuffer; const elementSizeInBytes = getTensorElementSize(tensorDataTypeStringToEnum(dataType))!; dataByteLength = dims.reduce((a, b) => a * b, 1) * elementSizeInBytes; - rawData = wasm.jsepRegisterBuffer(sessionId, index, gpuBuffer, dataByteLength); + + const registerBuffer = wasm.jsepRegisterBuffer; + if (!registerBuffer) { + throw new Error('Tensor location "gpu-buffer" is not supported without using WebGPU.'); + } + rawData = registerBuffer(sessionId, index, gpuBuffer, dataByteLength); } else { const data = tensor[2]; @@ -587,7 +622,11 @@ export const run = async( // If a certain output's preferred location is GPU but the tensor is empty, we still need to create a CPU // tensor for it. There is no mapping GPU buffer for an empty tensor. if (preferredLocation === 'gpu-buffer' && size > 0) { - const gpuBuffer = wasm.jsepGetBuffer(dataOffset); + const getBuffer = wasm.jsepGetBuffer; + if (!getBuffer) { + throw new Error('preferredLocation "gpu-buffer" is not supported without using WebGPU.'); + } + const gpuBuffer = getBuffer(dataOffset); const elementSize = getTensorElementSize(dataType); if (elementSize === undefined || !isGpuBufferSupportedType(type)) { throw new Error(`Unsupported data type: ${type}`); @@ -599,7 +638,7 @@ export const run = async( output.push([ type, dims, { gpuBuffer, - download: wasm.jsepCreateDownloader(gpuBuffer, size * elementSize, type), + download: wasm.jsepCreateDownloader!(gpuBuffer, size * elementSize, type), dispose: () => { wasm._OrtReleaseTensor(tensor); } diff --git a/js/web/package-lock.json b/js/web/package-lock.json index 41c44aaa2679b..5c9113459ff06 100644 --- a/js/web/package-lock.json +++ b/js/web/package-lock.json @@ -52,7 +52,7 @@ "version": "1.18.0", "license": "MIT", "devDependencies": { - "typedoc": "^0.23.22" + "typedoc": "^0.25.7" } }, "node_modules/@chiragrupani/karma-chromium-edge-launcher": { @@ -1351,9 +1351,9 @@ "dev": true }, "node_modules/follow-redirects": { - "version": "1.15.4", - "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.4.tgz", - "integrity": "sha512-Cr4D/5wlrb0z9dgERpUL3LrmPKVDsETIJhaCMeDfuFYcqa5bldGV6wBsAN6X/vxlXQtFBMrXdXxdL8CbDTGniw==", + "version": "1.15.6", + "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.6.tgz", + "integrity": "sha512-wWN62YITEaOpSK584EZXJafH1AGpO8RVgElfkuXbTOrPX4fIfOyEpW/CsiNd8JdYrAoOvafRTOEnvsO++qCqFA==", "dev": true, "funding": [ { @@ -4595,9 +4595,9 @@ "dev": true }, "follow-redirects": { - "version": "1.15.4", - "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.4.tgz", - "integrity": "sha512-Cr4D/5wlrb0z9dgERpUL3LrmPKVDsETIJhaCMeDfuFYcqa5bldGV6wBsAN6X/vxlXQtFBMrXdXxdL8CbDTGniw==", + "version": "1.15.6", + "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.6.tgz", + "integrity": "sha512-wWN62YITEaOpSK584EZXJafH1AGpO8RVgElfkuXbTOrPX4fIfOyEpW/CsiNd8JdYrAoOvafRTOEnvsO++qCqFA==", "dev": true }, "from": { @@ -5503,7 +5503,7 @@ "onnxruntime-common": { "version": "file:../common", "requires": { - "typedoc": "^0.23.22" + "typedoc": "^0.25.7" } }, "p-cancelable": { diff --git a/js/web/package.json b/js/web/package.json index 55c3a3238bafc..384565dc0da90 100644 --- a/js/web/package.json +++ b/js/web/package.json @@ -1,6 +1,5 @@ { "license": "MIT", - "browser": "dist/ort-web.min.js", "unpkg": "dist/ort.min.js", "name": "onnxruntime-web", "repository": { diff --git a/js/web/script/test-runner-cli-args.ts b/js/web/script/test-runner-cli-args.ts index ed4dd76a6e315..745f504b0494d 100644 --- a/js/web/script/test-runner-cli-args.ts +++ b/js/web/script/test-runner-cli-args.ts @@ -29,8 +29,10 @@ Options: *** General Options *** -h, --help Print this message. - -d, --debug Specify to run test runner in debug mode. - Debug mode outputs verbose log for test runner, sets up environment debug flag, and keeps karma not to exit after tests completed. + -d, --debug Specify to run test runner in debug mode. Debug mode does the following: + - outputs verbose log for test runner + - sets up environment debug flag (env.debug = true) + - opens Chromium debug port at 9333 and keeps karma not to exit after tests completed. -b=<...>, --backend=<...> Specify one or more backend(s) to run the test upon. Backends can be one or more of the following, splitted by comma: webgl @@ -47,43 +49,61 @@ Options: bs (for BrowserStack tests) -p, --profile Enable profiler. Profiler will generate extra logs which include the information of events time consumption + -t, --trace Enable trace. -P[=<...>], --perf[=<...>] Generate performance number. Cannot be used with flag --debug. This flag can be used with a number as value, specifying the total count of test cases to run. The test cases may be used multiple times. Default value is 10. -c, --file-cache Enable file cache. + +*** Session Options *** + -u=<...>, --optimized-model-file-path=<...> Specify whether to dump the optimized model. + -o=<...>, --graph-optimization-level=<...> Specify graph optimization level. + Default is 'all'. Valid values are 'disabled', 'basic', 'extended', 'all'. -i=<...>, --io-binding=<...> Specify the IO binding testing type. Should be one of the following: - none (default) + none (default) gpu-tensor use pre-allocated GPU tensors for inputs and outputs gpu-location use pre-allocated GPU tensors for inputs and set preferredOutputLocation to 'gpu-buffer' -*** Session Options *** - -u=<...>, --optimized-model-file-path=<...> Specify whether to dump the optimized model. - -o=<...>, --graph-optimization-level=<...> Specify graph optimization level. - Default is 'all'. Valid values are 'disabled', 'basic', 'extended', 'all'. *** Logging Options *** - --log-verbose=<...> Set log level to verbose - --log-info=<...> Set log level to info - --log-warning=<...> Set log level to warning - --log-error=<...> Set log level to error - The 4 flags above specify the logging configuration. Each flag allows to specify one or more category(s), splitted by comma. If use the flags without value, the log level will be applied to all category. + --log-verbose Set log level to verbose + --log-info Set log level to info + --log-warning Set log level to warning + --log-error Set log level to error + The 4 flags above specify the logging configuration. *** Backend Options *** + --wasm.<...>=<...> Set global environment flags for each backend. + --webgl.<...>=<...> These flags can be used multiple times to set multiple flags. For example: + --webgpu.<...>=<...> --webgpu.profiling.mode=default --wasm.numThreads=1 --wasm.simd=false + --webnn.<...>=<...> + + --webnn-device-type Set the WebNN device type (cpu/gpu) + -x, --wasm-number-threads Set the WebAssembly number of threads + ("--wasm-number-threads" is deprecated. use "--wasm.numThreads" or "-x" instead) --wasm-init-timeout Set the timeout for WebAssembly backend initialization, in milliseconds + (deprecated. use "--wasm.initTimeout" instead) --wasm-enable-simd Set whether to enable SIMD + (deprecated. use "--wasm.simd" instead) --wasm-enable-proxy Set whether to enable proxy worker + (deprecated. use "--wasm.proxy" instead) --webgl-context-id Set the WebGL context ID (webgl/webgl2) + (deprecated. use "--webgl.contextId" instead) --webgl-matmul-max-batch-size Set the WebGL matmulMaxBatchSize + (deprecated. use "--webgl.matmulMaxBatchSize" instead) --webgl-texture-cache-mode Set the WebGL texture cache mode (initializerOnly/full) + (deprecated. use "--webgl.textureCacheMode" instead) --webgl-texture-pack-mode Set the WebGL texture pack mode (true/false) + (deprecated. use "--webgl.pack" instead) --webgpu-profiling-mode Set the WebGPU profiling mode (off/default) - --webnn-device-type Set the WebNN device type (cpu/gpu) + (deprecated. use "--webgpu.profiling.mode" instead) *** Browser Options *** --no-sandbox This flag will be passed to Chrome. Sometimes Chrome need this flag to work together with Karma. + --user-data-dir=<...> This flag will be passed to browsers to specify the user data directory. --chromium-flags=<...> This flag will be passed to Chrome and Edge browsers. Can be used multiple times. Examples: @@ -171,12 +191,12 @@ export interface TestRunnerCliArgs { cpuOptions?: InferenceSession.CpuExecutionProviderOption; cudaOptions?: InferenceSession.CudaExecutionProviderOption; - cudaFlags?: Record; wasmOptions?: InferenceSession.WebAssemblyExecutionProviderOption; webglOptions?: InferenceSession.WebGLExecutionProviderOption; webnnOptions?: InferenceSession.WebNNExecutionProviderOption; globalEnvFlags?: Test.Options['globalEnvFlags']; noSandbox?: boolean; + userDataDir?: string; chromiumFlags: string[]; } @@ -260,40 +280,29 @@ function parseCpuOptions(_args: minimist.ParsedArgs): InferenceSession.CpuExecut return {name: 'cpu'}; } -function parseCpuFlags(_args: minimist.ParsedArgs): Record { - return {}; -} - function parseWasmOptions(_args: minimist.ParsedArgs): InferenceSession.WebAssemblyExecutionProviderOption { return {name: 'wasm'}; } function parseWasmFlags(args: minimist.ParsedArgs): Env.WebAssemblyFlags { - const numThreads = args.x || args['wasm-number-threads']; + const wasm = args.wasm || {}; + const numThreads = wasm.numThreads = wasm.numThreads ?? (args.x ?? args['wasm-number-threads']); if (typeof numThreads !== 'undefined' && typeof numThreads !== 'number') { - throw new Error('Flag "x"/"wasm-number-threads" must be a number value'); + throw new Error('Flag "wasm.numThreads"/"x"/"wasm-number-threads" must be a number value'); } - const initTimeout = args['wasm-init-timeout']; + const initTimeout = wasm.initTimeout = wasm.initTimeout ?? args['wasm-init-timeout']; if (typeof initTimeout !== 'undefined' && typeof initTimeout !== 'number') { - throw new Error('Flag "wasm-init-timeout" must be a number value'); - } - let simd = args['wasm-enable-simd']; - if (simd === 'true') { - simd = true; - } else if (simd === 'false') { - simd = false; - } else if (typeof simd !== 'undefined' && typeof simd !== 'boolean') { - throw new Error('Flag "wasm-enable-simd" must be a boolean value'); - } - let proxy = args['wasm-enable-proxy']; - if (proxy === 'true') { - proxy = true; - } else if (proxy === 'false') { - proxy = false; - } else if (typeof proxy !== 'undefined' && typeof proxy !== 'boolean') { - throw new Error('Flag "wasm-enable-proxy" must be a boolean value'); - } - return {numThreads, initTimeout, simd, proxy}; + throw new Error('Flag "wasm.initTimeout"/"wasm-init-timeout" must be a number value'); + } + const simd = wasm.simd = parseBooleanArg(wasm.simd ?? args['wasm-enable-simd']); + if (typeof simd !== 'undefined' && typeof simd !== 'boolean') { + throw new Error('Flag "wasm.simd"/"wasm-enable-simd" must be a boolean value'); + } + const proxy = wasm.proxy = parseBooleanArg(wasm.proxy ?? args['wasm-enable-proxy']); + if (typeof proxy !== 'undefined' && typeof proxy !== 'boolean') { + throw new Error('Flag "wasm.proxy"/"wasm-enable-proxy" must be a boolean value'); + } + return wasm; } function parseWebglOptions(_args: minimist.ParsedArgs): InferenceSession.WebGLExecutionProviderOption { @@ -301,39 +310,43 @@ function parseWebglOptions(_args: minimist.ParsedArgs): InferenceSession.WebGLEx } function parseWebglFlags(args: minimist.ParsedArgs): Partial { - const contextId = args['webgl-context-id']; + const webgl = args.webgl || {}; + const contextId = webgl.contextId = webgl.contextId ?? args['webgl-context-id']; if (contextId !== undefined && contextId !== 'webgl' && contextId !== 'webgl2') { - throw new Error('Flag "webgl-context-id" is invalid'); + throw new Error('Flag "webgl.contextId"/"webgl-context-id" is invalid'); } - const matmulMaxBatchSize = args['webgl-matmul-max-batch-size']; + const matmulMaxBatchSize = webgl.matmulMaxBatchSize = webgl.matmulMaxBatchSize ?? args['webgl-matmul-max-batch-size']; if (matmulMaxBatchSize !== undefined && typeof matmulMaxBatchSize !== 'number') { - throw new Error('Flag "webgl-matmul-max-batch-size" must be a number value'); + throw new Error('Flag "webgl.matmulMaxBatchSize"/"webgl-matmul-max-batch-size" must be a number value'); } - const textureCacheMode = args['webgl-texture-cache-mode']; + const textureCacheMode = webgl.textureCacheMode = webgl.textureCacheMode ?? args['webgl-texture-cache-mode']; if (textureCacheMode !== undefined && textureCacheMode !== 'initializerOnly' && textureCacheMode !== 'full') { - throw new Error('Flag "webgl-texture-cache-mode" is invalid'); + throw new Error('Flag "webgl.textureCacheMode"/"webgl-texture-cache-mode" is invalid'); } - const pack = args['webgl-texture-pack-mode']; + const pack = webgl.pack = parseBooleanArg(webgl.pack ?? args['webgl-texture-pack-mode']); if (pack !== undefined && typeof pack !== 'boolean') { - throw new Error('Flag "webgl-texture-pack-mode" is invalid'); + throw new Error('Flag "webgl.pack"/"webgl-texture-pack-mode" is invalid'); } - const async = args['webgl-async']; + const async = webgl.async = parseBooleanArg(webgl.async ?? args['webgl-async']); if (async !== undefined && typeof async !== 'boolean') { - throw new Error('Flag "webgl-async" is invalid'); + throw new Error('Flag "webgl.async"/"webgl-async" is invalid'); } - return {contextId, matmulMaxBatchSize, textureCacheMode, pack}; + return webgl; } function parseWebgpuFlags(args: minimist.ParsedArgs): Partial { - const profilingMode = args['webgpu-profiling-mode']; + const webgpu = args.webgpu || {}; + const profilingMode = (webgpu.profiling = webgpu.profiling ?? {}).mode = + webgpu?.profiling?.mode ?? webgpu.profilingMode ?? args['webgpu-profiling-mode']; if (profilingMode !== undefined && profilingMode !== 'off' && profilingMode !== 'default') { throw new Error('Flag "webgpu-profiling-mode" is invalid'); } - const validateInputContent = args['webgpu-validate-input-content']; + const validateInputContent = webgpu.validateInputContent = + parseBooleanArg(webgpu.validateInputContent ?? args['webgpu-validate-input-content']); if (validateInputContent !== undefined && typeof validateInputContent !== 'boolean') { throw new Error('Flag "webgpu-validate-input-content" is invalid'); } - return {profilingMode, validateInputContent}; + return webgpu; } function parseWebNNOptions(args: minimist.ParsedArgs): InferenceSession.WebNNExecutionProviderOption { @@ -344,12 +357,11 @@ function parseWebNNOptions(args: minimist.ParsedArgs): InferenceSession.WebNNExe return {name: 'webnn', deviceType}; } -function parseGlobalEnvFlags(args: minimist.ParsedArgs): NonNullable { +function parseGlobalEnvFlags(args: minimist.ParsedArgs) { const wasm = parseWasmFlags(args); const webgl = parseWebglFlags(args); const webgpu = parseWebgpuFlags(args); - const cpuFlags = parseCpuFlags(args); - return {webgl, wasm, webgpu, ...cpuFlags}; + return {webgl, wasm, webgpu}; } export function parseTestRunnerCliArgs(cmdlineArgs: string[]): TestRunnerCliArgs { @@ -394,15 +406,14 @@ export function parseTestRunnerCliArgs(cmdlineArgs: string[]): TestRunnerCliArgs } } - const globalEnvFlags = parseGlobalEnvFlags(args); - // Options: // --log-verbose=<...> // --log-info=<...> // --log-warning=<...> // --log-error=<...> const logConfig = parseLogConfig(args); - globalEnvFlags.logLevel = logConfig[0]?.config.minimalSeverity; + let logLevel = logConfig[0]?.config.minimalSeverity; + // Option: -p, --profile const profile = (args.profile || args.p) ? true : false; if (profile) { @@ -410,9 +421,18 @@ export function parseTestRunnerCliArgs(cmdlineArgs: string[]): TestRunnerCliArgs logConfig.push({category: 'Profiler.node', config: {minimalSeverity: 'verbose'}}); logConfig.push({category: 'Profiler.op', config: {minimalSeverity: 'verbose'}}); logConfig.push({category: 'Profiler.backend', config: {minimalSeverity: 'verbose'}}); - globalEnvFlags.logLevel = 'verbose'; + logLevel = 'verbose'; } + // Option: -t, --trace + const trace = parseBooleanArg(args.trace || args.t, false); + + // Options: + // --wasm.<...>=<...> + // --webgl.<...>=<...> + // --webgpu.<...>=<...> + const globalEnvFlags = {...parseGlobalEnvFlags(args), debug, trace, logLevel}; + // Option: -P[=<...>], --perf[=<...>] const perfArg = (args.perf || args.P); const perf = perfArg ? true : false; @@ -459,6 +479,9 @@ export function parseTestRunnerCliArgs(cmdlineArgs: string[]): TestRunnerCliArgs // Option: --no-sandbox const noSandbox = !!args['no-sandbox']; + // Option: --user-data-dir + const userDataDir = args['user-data-dir']; + // parse chromium flags let chromiumFlags = args['chromium-flags']; if (!chromiumFlags) { @@ -497,6 +520,7 @@ export function parseTestRunnerCliArgs(cmdlineArgs: string[]): TestRunnerCliArgs wasmOptions, globalEnvFlags, noSandbox, + userDataDir, chromiumFlags }; } diff --git a/js/web/script/test-runner-cli.ts b/js/web/script/test-runner-cli.ts index 9105c02412e34..03d637b35bc7c 100644 --- a/js/web/script/test-runner-cli.ts +++ b/js/web/script/test-runner-cli.ts @@ -542,14 +542,13 @@ async function main() { npmlog.info('TestRunnerCli.Run', '(4/4) Running karma to start test runner...'); const webgpu = args.backends.indexOf('webgpu') > -1; const webnn = args.backends.indexOf('webnn') > -1; - const browser = getBrowserNameFromEnv( - args.env, - args.bundleMode === 'perf' ? 'perf' : - args.debug ? 'debug' : - 'test', - webgpu); + const browser = getBrowserNameFromEnv(args.env); const karmaArgs = ['karma', 'start', `--browsers ${browser}`]; const chromiumFlags = ['--enable-features=SharedArrayBuffer', ...args.chromiumFlags]; + if (args.bundleMode === 'dev' && !args.debug) { + // use headless for 'test' mode (when 'perf' and 'debug' are OFF) + chromiumFlags.push('--headless=new'); + } if (args.debug) { karmaArgs.push('--log-level info --timeout-mocha 9999999'); chromiumFlags.push('--remote-debugging-port=9333'); @@ -570,7 +569,13 @@ async function main() { if (webnn) { chromiumFlags.push('--enable-experimental-web-platform-features'); } + if (process.argv.includes('--karma-debug')) { + karmaArgs.push('--log-level debug'); + } karmaArgs.push(`--bundle-mode=${args.bundleMode}`); + if (args.userDataDir) { + karmaArgs.push(`--user-data-dir="${args.userDataDir}"`); + } karmaArgs.push(...chromiumFlags.map(flag => `--chromium-flags=${flag}`)); if (browser.startsWith('Edge')) { // There are currently 2 Edge browser launchers: @@ -662,14 +667,14 @@ async function main() { fs.writeJSONSync(path.join(TEST_ROOT, './testdata-config.json'), config); } - function getBrowserNameFromEnv(env: TestRunnerCliArgs['env'], mode: 'debug'|'perf'|'test', webgpu: boolean) { + function getBrowserNameFromEnv(env: TestRunnerCliArgs['env']) { switch (env) { case 'chrome': - return selectChromeBrowser(mode, webgpu); + return 'ChromeTest'; case 'edge': return 'EdgeTest'; case 'firefox': - return 'Firefox'; + return 'FirefoxTest'; case 'electron': return 'Electron'; case 'safari': @@ -680,20 +685,6 @@ async function main() { throw new Error(`env "${env}" not supported.`); } } - - function selectChromeBrowser(mode: 'debug'|'perf'|'test', webgpu: boolean) { - if (webgpu) { - return 'ChromeTest'; - } else { - switch (mode) { - case 'debug': - case 'perf': - return 'ChromeTest'; - default: - return 'ChromeTestHeadless'; - } - } - } } void main(); diff --git a/js/web/test/data/ops/add_zero-sized.jsonc b/js/web/test/data/ops/add_zero-sized.jsonc new file mode 100644 index 0000000000000..37e08cd7f20ac --- /dev/null +++ b/js/web/test/data/ops/add_zero-sized.jsonc @@ -0,0 +1,31 @@ +[ + { + "name": "Add with no attributes", + "operator": "Add", + "attributes": [], + "cases": [ + { + "name": "T[2,0] T[2,1]", + "inputs": [ + { + "data": [], + "dims": [2, 0], + "type": "float32" + }, + { + "data": [1, 2], + "dims": [2, 1], + "type": "float32" + } + ], + "outputs": [ + { + "data": [], + "dims": [2, 0], + "type": "float32" + } + ] + } + ] + } +] diff --git a/js/web/test/data/ops/concat_zero-sized.jsonc b/js/web/test/data/ops/concat_zero-sized.jsonc new file mode 100644 index 0000000000000..be9625145d157 --- /dev/null +++ b/js/web/test/data/ops/concat_zero-sized.jsonc @@ -0,0 +1,641 @@ +[ + { + "name": "Concat 2D axis=0", + "operator": "Concat", + "attributes": [{ "name": "axis", "data": -2, "type": "int" }], + "cases": [ + { + "name": "X", + "inputs": [ + { + "data": [], + "dims": [1, 4, 0, 64], + "type": "float32" + }, + { + "data": [ + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 + ], + "dims": [1, 4, 36, 64], + "type": "float32" + } + ], + "outputs": [ + { + "data": [ + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 + ], + "dims": [1, 4, 36, 64], + "type": "float32" + } + ] + } + ] + }, + { + "name": "Concat 2D axis=1; Preserve dims", + "operator": "Concat", + "attributes": [ + { + "name": "axis", + "data": 0, + "type": "int" + } + ], + "cases": [ + { + "name": "Some but not all input tensors are zero-sized", + "inputs": [ + { + "data": [], + "dims": [0, 1], + "type": "float32" + }, + { + "data": [1], + "dims": [1, 1], + "type": "float32" + } + ], + "outputs": [ + { + "data": [1], + "dims": [1, 1], + "type": "float32" + } + ] + } + ] + }, + { + "name": "Concat 2D axis=1; Preserve dims", + "operator": "Concat", + "attributes": [ + { + "name": "axis", + "data": 1, + "type": "int" + } + ], + "cases": [ + { + "name": "All input tensors are zero-sized", + "inputs": [ + { + "data": [], + "dims": [0, 0], + "type": "float32" + }, + { + "data": [], + "dims": [0, 1], + "type": "float32" + }, + { + "data": [], + "dims": [0, 2], + "type": "float32" + }, + { + "data": [], + "dims": [0, 3], + "type": "float32" + } + ], + "outputs": [ + { + "data": [], + "dims": [0, 6], + "type": "float32" + } + ] + } + ] + } +] diff --git a/js/web/test/data/ops/conv-transpose.jsonc b/js/web/test/data/ops/conv-transpose.jsonc index 7038e2a4f8766..8ed48dd07e6f1 100644 --- a/js/web/test/data/ops/conv-transpose.jsonc +++ b/js/web/test/data/ops/conv-transpose.jsonc @@ -392,5 +392,267 @@ ] } ] + }, + { + "name": "ConvTranspose without bias addition C", + "operator": "ConvTranspose", + "attributes": [ + { "name": "kernel_shape", "data": [2, 2], "type": "ints" }, + { "name": "strides", "data": [2, 2], "type": "ints" } + ], + "cases": [ + { + "name": "T[0]", + "inputs": [ + { + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, + 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, + 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, + 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, + 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, + 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, + 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, + 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, + 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, + 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, + 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, + 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, + 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, + 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, + 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, + 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, + 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, + 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, + 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 + ], + "dims": [1, 4, 16, 16], + "type": "float32" + }, + { + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, + 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, + 14, 15 + ], + "dims": [4, 4, 2, 2], + "type": "float32" + } + ], + "outputs": [ + { + "data": [ + 0, 0, 0, 4, 0, 8, 0, 12, 0, 16, 0, 20, 0, 24, 0, 28, 0, 32, 0, 36, 0, 40, 0, 44, 0, 48, 0, 52, 0, 56, 0, + 60, 0, 0, 8, 12, 16, 24, 24, 36, 32, 48, 40, 60, 48, 72, 56, 84, 64, 96, 72, 108, 80, 120, 88, 132, 96, + 144, 104, 156, 112, 168, 120, 180, 0, 64, 0, 68, 0, 72, 0, 76, 0, 80, 0, 84, 0, 88, 0, 92, 0, 96, 0, 100, + 0, 104, 0, 108, 0, 112, 0, 116, 0, 120, 0, 124, 128, 192, 136, 204, 144, 216, 152, 228, 160, 240, 168, + 252, 176, 264, 184, 276, 192, 288, 200, 300, 208, 312, 216, 324, 224, 336, 232, 348, 240, 360, 248, 372, + 0, 0, 0, 4, 0, 8, 0, 12, 0, 16, 0, 20, 0, 24, 0, 28, 0, 32, 0, 36, 0, 40, 0, 44, 0, 48, 0, 52, 0, 56, 0, + 60, 0, 0, 8, 12, 16, 24, 24, 36, 32, 48, 40, 60, 48, 72, 56, 84, 64, 96, 72, 108, 80, 120, 88, 132, 96, + 144, 104, 156, 112, 168, 120, 180, 0, 64, 0, 68, 0, 72, 0, 76, 0, 80, 0, 84, 0, 88, 0, 92, 0, 96, 0, 100, + 0, 104, 0, 108, 0, 112, 0, 116, 0, 120, 0, 124, 128, 192, 136, 204, 144, 216, 152, 228, 160, 240, 168, + 252, 176, 264, 184, 276, 192, 288, 200, 300, 208, 312, 216, 324, 224, 336, 232, 348, 240, 360, 248, 372, + 0, 0, 0, 4, 0, 8, 0, 12, 0, 16, 0, 20, 0, 24, 0, 28, 0, 32, 0, 36, 0, 40, 0, 44, 0, 48, 0, 52, 0, 56, 0, + 60, 0, 0, 8, 12, 16, 24, 24, 36, 32, 48, 40, 60, 48, 72, 56, 84, 64, 96, 72, 108, 80, 120, 88, 132, 96, + 144, 104, 156, 112, 168, 120, 180, 0, 64, 0, 68, 0, 72, 0, 76, 0, 80, 0, 84, 0, 88, 0, 92, 0, 96, 0, 100, + 0, 104, 0, 108, 0, 112, 0, 116, 0, 120, 0, 124, 128, 192, 136, 204, 144, 216, 152, 228, 160, 240, 168, + 252, 176, 264, 184, 276, 192, 288, 200, 300, 208, 312, 216, 324, 224, 336, 232, 348, 240, 360, 248, 372, + 0, 0, 0, 4, 0, 8, 0, 12, 0, 16, 0, 20, 0, 24, 0, 28, 0, 32, 0, 36, 0, 40, 0, 44, 0, 48, 0, 52, 0, 56, 0, + 60, 0, 0, 8, 12, 16, 24, 24, 36, 32, 48, 40, 60, 48, 72, 56, 84, 64, 96, 72, 108, 80, 120, 88, 132, 96, + 144, 104, 156, 112, 168, 120, 180, 0, 64, 0, 68, 0, 72, 0, 76, 0, 80, 0, 84, 0, 88, 0, 92, 0, 96, 0, 100, + 0, 104, 0, 108, 0, 112, 0, 116, 0, 120, 0, 124, 128, 192, 136, 204, 144, 216, 152, 228, 160, 240, 168, + 252, 176, 264, 184, 276, 192, 288, 200, 300, 208, 312, 216, 324, 224, 336, 232, 348, 240, 360, 248, 372, + 0, 0, 0, 4, 0, 8, 0, 12, 0, 16, 0, 20, 0, 24, 0, 28, 0, 32, 0, 36, 0, 40, 0, 44, 0, 48, 0, 52, 0, 56, 0, + 60, 0, 0, 8, 12, 16, 24, 24, 36, 32, 48, 40, 60, 48, 72, 56, 84, 64, 96, 72, 108, 80, 120, 88, 132, 96, + 144, 104, 156, 112, 168, 120, 180, 0, 64, 0, 68, 0, 72, 0, 76, 0, 80, 0, 84, 0, 88, 0, 92, 0, 96, 0, 100, + 0, 104, 0, 108, 0, 112, 0, 116, 0, 120, 0, 124, 128, 192, 136, 204, 144, 216, 152, 228, 160, 240, 168, + 252, 176, 264, 184, 276, 192, 288, 200, 300, 208, 312, 216, 324, 224, 336, 232, 348, 240, 360, 248, 372, + 0, 0, 0, 4, 0, 8, 0, 12, 0, 16, 0, 20, 0, 24, 0, 28, 0, 32, 0, 36, 0, 40, 0, 44, 0, 48, 0, 52, 0, 56, 0, + 60, 0, 0, 8, 12, 16, 24, 24, 36, 32, 48, 40, 60, 48, 72, 56, 84, 64, 96, 72, 108, 80, 120, 88, 132, 96, + 144, 104, 156, 112, 168, 120, 180, 0, 64, 0, 68, 0, 72, 0, 76, 0, 80, 0, 84, 0, 88, 0, 92, 0, 96, 0, 100, + 0, 104, 0, 108, 0, 112, 0, 116, 0, 120, 0, 124, 128, 192, 136, 204, 144, 216, 152, 228, 160, 240, 168, + 252, 176, 264, 184, 276, 192, 288, 200, 300, 208, 312, 216, 324, 224, 336, 232, 348, 240, 360, 248, 372, + 0, 0, 0, 4, 0, 8, 0, 12, 0, 16, 0, 20, 0, 24, 0, 28, 0, 32, 0, 36, 0, 40, 0, 44, 0, 48, 0, 52, 0, 56, 0, + 60, 0, 0, 8, 12, 16, 24, 24, 36, 32, 48, 40, 60, 48, 72, 56, 84, 64, 96, 72, 108, 80, 120, 88, 132, 96, + 144, 104, 156, 112, 168, 120, 180, 0, 64, 0, 68, 0, 72, 0, 76, 0, 80, 0, 84, 0, 88, 0, 92, 0, 96, 0, 100, + 0, 104, 0, 108, 0, 112, 0, 116, 0, 120, 0, 124, 128, 192, 136, 204, 144, 216, 152, 228, 160, 240, 168, + 252, 176, 264, 184, 276, 192, 288, 200, 300, 208, 312, 216, 324, 224, 336, 232, 348, 240, 360, 248, 372, + 0, 0, 0, 4, 0, 8, 0, 12, 0, 16, 0, 20, 0, 24, 0, 28, 0, 32, 0, 36, 0, 40, 0, 44, 0, 48, 0, 52, 0, 56, 0, + 60, 0, 0, 8, 12, 16, 24, 24, 36, 32, 48, 40, 60, 48, 72, 56, 84, 64, 96, 72, 108, 80, 120, 88, 132, 96, + 144, 104, 156, 112, 168, 120, 180, 0, 64, 0, 68, 0, 72, 0, 76, 0, 80, 0, 84, 0, 88, 0, 92, 0, 96, 0, 100, + 0, 104, 0, 108, 0, 112, 0, 116, 0, 120, 0, 124, 128, 192, 136, 204, 144, 216, 152, 228, 160, 240, 168, + 252, 176, 264, 184, 276, 192, 288, 200, 300, 208, 312, 216, 324, 224, 336, 232, 348, 240, 360, 248, 372, + 0, 0, 16, 20, 32, 40, 48, 60, 64, 80, 80, 100, 96, 120, 112, 140, 128, 160, 144, 180, 160, 200, 176, 220, + 192, 240, 208, 260, 224, 280, 240, 300, 0, 0, 24, 28, 48, 56, 72, 84, 96, 112, 120, 140, 144, 168, 168, + 196, 192, 224, 216, 252, 240, 280, 264, 308, 288, 336, 312, 364, 336, 392, 360, 420, 256, 320, 272, 340, + 288, 360, 304, 380, 320, 400, 336, 420, 352, 440, 368, 460, 384, 480, 400, 500, 416, 520, 432, 540, 448, + 560, 464, 580, 480, 600, 496, 620, 384, 448, 408, 476, 432, 504, 456, 532, 480, 560, 504, 588, 528, 616, + 552, 644, 576, 672, 600, 700, 624, 728, 648, 756, 672, 784, 696, 812, 720, 840, 744, 868, 0, 0, 16, 20, + 32, 40, 48, 60, 64, 80, 80, 100, 96, 120, 112, 140, 128, 160, 144, 180, 160, 200, 176, 220, 192, 240, 208, + 260, 224, 280, 240, 300, 0, 0, 24, 28, 48, 56, 72, 84, 96, 112, 120, 140, 144, 168, 168, 196, 192, 224, + 216, 252, 240, 280, 264, 308, 288, 336, 312, 364, 336, 392, 360, 420, 256, 320, 272, 340, 288, 360, 304, + 380, 320, 400, 336, 420, 352, 440, 368, 460, 384, 480, 400, 500, 416, 520, 432, 540, 448, 560, 464, 580, + 480, 600, 496, 620, 384, 448, 408, 476, 432, 504, 456, 532, 480, 560, 504, 588, 528, 616, 552, 644, 576, + 672, 600, 700, 624, 728, 648, 756, 672, 784, 696, 812, 720, 840, 744, 868, 0, 0, 16, 20, 32, 40, 48, 60, + 64, 80, 80, 100, 96, 120, 112, 140, 128, 160, 144, 180, 160, 200, 176, 220, 192, 240, 208, 260, 224, 280, + 240, 300, 0, 0, 24, 28, 48, 56, 72, 84, 96, 112, 120, 140, 144, 168, 168, 196, 192, 224, 216, 252, 240, + 280, 264, 308, 288, 336, 312, 364, 336, 392, 360, 420, 256, 320, 272, 340, 288, 360, 304, 380, 320, 400, + 336, 420, 352, 440, 368, 460, 384, 480, 400, 500, 416, 520, 432, 540, 448, 560, 464, 580, 480, 600, 496, + 620, 384, 448, 408, 476, 432, 504, 456, 532, 480, 560, 504, 588, 528, 616, 552, 644, 576, 672, 600, 700, + 624, 728, 648, 756, 672, 784, 696, 812, 720, 840, 744, 868, 0, 0, 16, 20, 32, 40, 48, 60, 64, 80, 80, 100, + 96, 120, 112, 140, 128, 160, 144, 180, 160, 200, 176, 220, 192, 240, 208, 260, 224, 280, 240, 300, 0, 0, + 24, 28, 48, 56, 72, 84, 96, 112, 120, 140, 144, 168, 168, 196, 192, 224, 216, 252, 240, 280, 264, 308, + 288, 336, 312, 364, 336, 392, 360, 420, 256, 320, 272, 340, 288, 360, 304, 380, 320, 400, 336, 420, 352, + 440, 368, 460, 384, 480, 400, 500, 416, 520, 432, 540, 448, 560, 464, 580, 480, 600, 496, 620, 384, 448, + 408, 476, 432, 504, 456, 532, 480, 560, 504, 588, 528, 616, 552, 644, 576, 672, 600, 700, 624, 728, 648, + 756, 672, 784, 696, 812, 720, 840, 744, 868, 0, 0, 16, 20, 32, 40, 48, 60, 64, 80, 80, 100, 96, 120, 112, + 140, 128, 160, 144, 180, 160, 200, 176, 220, 192, 240, 208, 260, 224, 280, 240, 300, 0, 0, 24, 28, 48, 56, + 72, 84, 96, 112, 120, 140, 144, 168, 168, 196, 192, 224, 216, 252, 240, 280, 264, 308, 288, 336, 312, 364, + 336, 392, 360, 420, 256, 320, 272, 340, 288, 360, 304, 380, 320, 400, 336, 420, 352, 440, 368, 460, 384, + 480, 400, 500, 416, 520, 432, 540, 448, 560, 464, 580, 480, 600, 496, 620, 384, 448, 408, 476, 432, 504, + 456, 532, 480, 560, 504, 588, 528, 616, 552, 644, 576, 672, 600, 700, 624, 728, 648, 756, 672, 784, 696, + 812, 720, 840, 744, 868, 0, 0, 16, 20, 32, 40, 48, 60, 64, 80, 80, 100, 96, 120, 112, 140, 128, 160, 144, + 180, 160, 200, 176, 220, 192, 240, 208, 260, 224, 280, 240, 300, 0, 0, 24, 28, 48, 56, 72, 84, 96, 112, + 120, 140, 144, 168, 168, 196, 192, 224, 216, 252, 240, 280, 264, 308, 288, 336, 312, 364, 336, 392, 360, + 420, 256, 320, 272, 340, 288, 360, 304, 380, 320, 400, 336, 420, 352, 440, 368, 460, 384, 480, 400, 500, + 416, 520, 432, 540, 448, 560, 464, 580, 480, 600, 496, 620, 384, 448, 408, 476, 432, 504, 456, 532, 480, + 560, 504, 588, 528, 616, 552, 644, 576, 672, 600, 700, 624, 728, 648, 756, 672, 784, 696, 812, 720, 840, + 744, 868, 0, 0, 16, 20, 32, 40, 48, 60, 64, 80, 80, 100, 96, 120, 112, 140, 128, 160, 144, 180, 160, 200, + 176, 220, 192, 240, 208, 260, 224, 280, 240, 300, 0, 0, 24, 28, 48, 56, 72, 84, 96, 112, 120, 140, 144, + 168, 168, 196, 192, 224, 216, 252, 240, 280, 264, 308, 288, 336, 312, 364, 336, 392, 360, 420, 256, 320, + 272, 340, 288, 360, 304, 380, 320, 400, 336, 420, 352, 440, 368, 460, 384, 480, 400, 500, 416, 520, 432, + 540, 448, 560, 464, 580, 480, 600, 496, 620, 384, 448, 408, 476, 432, 504, 456, 532, 480, 560, 504, 588, + 528, 616, 552, 644, 576, 672, 600, 700, 624, 728, 648, 756, 672, 784, 696, 812, 720, 840, 744, 868, 0, 0, + 16, 20, 32, 40, 48, 60, 64, 80, 80, 100, 96, 120, 112, 140, 128, 160, 144, 180, 160, 200, 176, 220, 192, + 240, 208, 260, 224, 280, 240, 300, 0, 0, 24, 28, 48, 56, 72, 84, 96, 112, 120, 140, 144, 168, 168, 196, + 192, 224, 216, 252, 240, 280, 264, 308, 288, 336, 312, 364, 336, 392, 360, 420, 256, 320, 272, 340, 288, + 360, 304, 380, 320, 400, 336, 420, 352, 440, 368, 460, 384, 480, 400, 500, 416, 520, 432, 540, 448, 560, + 464, 580, 480, 600, 496, 620, 384, 448, 408, 476, 432, 504, 456, 532, 480, 560, 504, 588, 528, 616, 552, + 644, 576, 672, 600, 700, 624, 728, 648, 756, 672, 784, 696, 812, 720, 840, 744, 868, 0, 0, 32, 36, 64, 72, + 96, 108, 128, 144, 160, 180, 192, 216, 224, 252, 256, 288, 288, 324, 320, 360, 352, 396, 384, 432, 416, + 468, 448, 504, 480, 540, 0, 0, 40, 44, 80, 88, 120, 132, 160, 176, 200, 220, 240, 264, 280, 308, 320, 352, + 360, 396, 400, 440, 440, 484, 480, 528, 520, 572, 560, 616, 600, 660, 512, 576, 544, 612, 576, 648, 608, + 684, 640, 720, 672, 756, 704, 792, 736, 828, 768, 864, 800, 900, 832, 936, 864, 972, 896, 1008, 928, 1044, + 960, 1080, 992, 1116, 640, 704, 680, 748, 720, 792, 760, 836, 800, 880, 840, 924, 880, 968, 920, 1012, + 960, 1056, 1000, 1100, 1040, 1144, 1080, 1188, 1120, 1232, 1160, 1276, 1200, 1320, 1240, 1364, 0, 0, 32, + 36, 64, 72, 96, 108, 128, 144, 160, 180, 192, 216, 224, 252, 256, 288, 288, 324, 320, 360, 352, 396, 384, + 432, 416, 468, 448, 504, 480, 540, 0, 0, 40, 44, 80, 88, 120, 132, 160, 176, 200, 220, 240, 264, 280, 308, + 320, 352, 360, 396, 400, 440, 440, 484, 480, 528, 520, 572, 560, 616, 600, 660, 512, 576, 544, 612, 576, + 648, 608, 684, 640, 720, 672, 756, 704, 792, 736, 828, 768, 864, 800, 900, 832, 936, 864, 972, 896, 1008, + 928, 1044, 960, 1080, 992, 1116, 640, 704, 680, 748, 720, 792, 760, 836, 800, 880, 840, 924, 880, 968, + 920, 1012, 960, 1056, 1000, 1100, 1040, 1144, 1080, 1188, 1120, 1232, 1160, 1276, 1200, 1320, 1240, 1364, + 0, 0, 32, 36, 64, 72, 96, 108, 128, 144, 160, 180, 192, 216, 224, 252, 256, 288, 288, 324, 320, 360, 352, + 396, 384, 432, 416, 468, 448, 504, 480, 540, 0, 0, 40, 44, 80, 88, 120, 132, 160, 176, 200, 220, 240, 264, + 280, 308, 320, 352, 360, 396, 400, 440, 440, 484, 480, 528, 520, 572, 560, 616, 600, 660, 512, 576, 544, + 612, 576, 648, 608, 684, 640, 720, 672, 756, 704, 792, 736, 828, 768, 864, 800, 900, 832, 936, 864, 972, + 896, 1008, 928, 1044, 960, 1080, 992, 1116, 640, 704, 680, 748, 720, 792, 760, 836, 800, 880, 840, 924, + 880, 968, 920, 1012, 960, 1056, 1000, 1100, 1040, 1144, 1080, 1188, 1120, 1232, 1160, 1276, 1200, 1320, + 1240, 1364, 0, 0, 32, 36, 64, 72, 96, 108, 128, 144, 160, 180, 192, 216, 224, 252, 256, 288, 288, 324, + 320, 360, 352, 396, 384, 432, 416, 468, 448, 504, 480, 540, 0, 0, 40, 44, 80, 88, 120, 132, 160, 176, 200, + 220, 240, 264, 280, 308, 320, 352, 360, 396, 400, 440, 440, 484, 480, 528, 520, 572, 560, 616, 600, 660, + 512, 576, 544, 612, 576, 648, 608, 684, 640, 720, 672, 756, 704, 792, 736, 828, 768, 864, 800, 900, 832, + 936, 864, 972, 896, 1008, 928, 1044, 960, 1080, 992, 1116, 640, 704, 680, 748, 720, 792, 760, 836, 800, + 880, 840, 924, 880, 968, 920, 1012, 960, 1056, 1000, 1100, 1040, 1144, 1080, 1188, 1120, 1232, 1160, 1276, + 1200, 1320, 1240, 1364, 0, 0, 32, 36, 64, 72, 96, 108, 128, 144, 160, 180, 192, 216, 224, 252, 256, 288, + 288, 324, 320, 360, 352, 396, 384, 432, 416, 468, 448, 504, 480, 540, 0, 0, 40, 44, 80, 88, 120, 132, 160, + 176, 200, 220, 240, 264, 280, 308, 320, 352, 360, 396, 400, 440, 440, 484, 480, 528, 520, 572, 560, 616, + 600, 660, 512, 576, 544, 612, 576, 648, 608, 684, 640, 720, 672, 756, 704, 792, 736, 828, 768, 864, 800, + 900, 832, 936, 864, 972, 896, 1008, 928, 1044, 960, 1080, 992, 1116, 640, 704, 680, 748, 720, 792, 760, + 836, 800, 880, 840, 924, 880, 968, 920, 1012, 960, 1056, 1000, 1100, 1040, 1144, 1080, 1188, 1120, 1232, + 1160, 1276, 1200, 1320, 1240, 1364, 0, 0, 32, 36, 64, 72, 96, 108, 128, 144, 160, 180, 192, 216, 224, 252, + 256, 288, 288, 324, 320, 360, 352, 396, 384, 432, 416, 468, 448, 504, 480, 540, 0, 0, 40, 44, 80, 88, 120, + 132, 160, 176, 200, 220, 240, 264, 280, 308, 320, 352, 360, 396, 400, 440, 440, 484, 480, 528, 520, 572, + 560, 616, 600, 660, 512, 576, 544, 612, 576, 648, 608, 684, 640, 720, 672, 756, 704, 792, 736, 828, 768, + 864, 800, 900, 832, 936, 864, 972, 896, 1008, 928, 1044, 960, 1080, 992, 1116, 640, 704, 680, 748, 720, + 792, 760, 836, 800, 880, 840, 924, 880, 968, 920, 1012, 960, 1056, 1000, 1100, 1040, 1144, 1080, 1188, + 1120, 1232, 1160, 1276, 1200, 1320, 1240, 1364, 0, 0, 32, 36, 64, 72, 96, 108, 128, 144, 160, 180, 192, + 216, 224, 252, 256, 288, 288, 324, 320, 360, 352, 396, 384, 432, 416, 468, 448, 504, 480, 540, 0, 0, 40, + 44, 80, 88, 120, 132, 160, 176, 200, 220, 240, 264, 280, 308, 320, 352, 360, 396, 400, 440, 440, 484, 480, + 528, 520, 572, 560, 616, 600, 660, 512, 576, 544, 612, 576, 648, 608, 684, 640, 720, 672, 756, 704, 792, + 736, 828, 768, 864, 800, 900, 832, 936, 864, 972, 896, 1008, 928, 1044, 960, 1080, 992, 1116, 640, 704, + 680, 748, 720, 792, 760, 836, 800, 880, 840, 924, 880, 968, 920, 1012, 960, 1056, 1000, 1100, 1040, 1144, + 1080, 1188, 1120, 1232, 1160, 1276, 1200, 1320, 1240, 1364, 0, 0, 32, 36, 64, 72, 96, 108, 128, 144, 160, + 180, 192, 216, 224, 252, 256, 288, 288, 324, 320, 360, 352, 396, 384, 432, 416, 468, 448, 504, 480, 540, + 0, 0, 40, 44, 80, 88, 120, 132, 160, 176, 200, 220, 240, 264, 280, 308, 320, 352, 360, 396, 400, 440, 440, + 484, 480, 528, 520, 572, 560, 616, 600, 660, 512, 576, 544, 612, 576, 648, 608, 684, 640, 720, 672, 756, + 704, 792, 736, 828, 768, 864, 800, 900, 832, 936, 864, 972, 896, 1008, 928, 1044, 960, 1080, 992, 1116, + 640, 704, 680, 748, 720, 792, 760, 836, 800, 880, 840, 924, 880, 968, 920, 1012, 960, 1056, 1000, 1100, + 1040, 1144, 1080, 1188, 1120, 1232, 1160, 1276, 1200, 1320, 1240, 1364, 0, 0, 48, 52, 96, 104, 144, 156, + 192, 208, 240, 260, 288, 312, 336, 364, 384, 416, 432, 468, 480, 520, 528, 572, 576, 624, 624, 676, 672, + 728, 720, 780, 0, 0, 56, 60, 112, 120, 168, 180, 224, 240, 280, 300, 336, 360, 392, 420, 448, 480, 504, + 540, 560, 600, 616, 660, 672, 720, 728, 780, 784, 840, 840, 900, 768, 832, 816, 884, 864, 936, 912, 988, + 960, 1040, 1008, 1092, 1056, 1144, 1104, 1196, 1152, 1248, 1200, 1300, 1248, 1352, 1296, 1404, 1344, 1456, + 1392, 1508, 1440, 1560, 1488, 1612, 896, 960, 952, 1020, 1008, 1080, 1064, 1140, 1120, 1200, 1176, 1260, + 1232, 1320, 1288, 1380, 1344, 1440, 1400, 1500, 1456, 1560, 1512, 1620, 1568, 1680, 1624, 1740, 1680, + 1800, 1736, 1860, 0, 0, 48, 52, 96, 104, 144, 156, 192, 208, 240, 260, 288, 312, 336, 364, 384, 416, 432, + 468, 480, 520, 528, 572, 576, 624, 624, 676, 672, 728, 720, 780, 0, 0, 56, 60, 112, 120, 168, 180, 224, + 240, 280, 300, 336, 360, 392, 420, 448, 480, 504, 540, 560, 600, 616, 660, 672, 720, 728, 780, 784, 840, + 840, 900, 768, 832, 816, 884, 864, 936, 912, 988, 960, 1040, 1008, 1092, 1056, 1144, 1104, 1196, 1152, + 1248, 1200, 1300, 1248, 1352, 1296, 1404, 1344, 1456, 1392, 1508, 1440, 1560, 1488, 1612, 896, 960, 952, + 1020, 1008, 1080, 1064, 1140, 1120, 1200, 1176, 1260, 1232, 1320, 1288, 1380, 1344, 1440, 1400, 1500, + 1456, 1560, 1512, 1620, 1568, 1680, 1624, 1740, 1680, 1800, 1736, 1860, 0, 0, 48, 52, 96, 104, 144, 156, + 192, 208, 240, 260, 288, 312, 336, 364, 384, 416, 432, 468, 480, 520, 528, 572, 576, 624, 624, 676, 672, + 728, 720, 780, 0, 0, 56, 60, 112, 120, 168, 180, 224, 240, 280, 300, 336, 360, 392, 420, 448, 480, 504, + 540, 560, 600, 616, 660, 672, 720, 728, 780, 784, 840, 840, 900, 768, 832, 816, 884, 864, 936, 912, 988, + 960, 1040, 1008, 1092, 1056, 1144, 1104, 1196, 1152, 1248, 1200, 1300, 1248, 1352, 1296, 1404, 1344, 1456, + 1392, 1508, 1440, 1560, 1488, 1612, 896, 960, 952, 1020, 1008, 1080, 1064, 1140, 1120, 1200, 1176, 1260, + 1232, 1320, 1288, 1380, 1344, 1440, 1400, 1500, 1456, 1560, 1512, 1620, 1568, 1680, 1624, 1740, 1680, + 1800, 1736, 1860, 0, 0, 48, 52, 96, 104, 144, 156, 192, 208, 240, 260, 288, 312, 336, 364, 384, 416, 432, + 468, 480, 520, 528, 572, 576, 624, 624, 676, 672, 728, 720, 780, 0, 0, 56, 60, 112, 120, 168, 180, 224, + 240, 280, 300, 336, 360, 392, 420, 448, 480, 504, 540, 560, 600, 616, 660, 672, 720, 728, 780, 784, 840, + 840, 900, 768, 832, 816, 884, 864, 936, 912, 988, 960, 1040, 1008, 1092, 1056, 1144, 1104, 1196, 1152, + 1248, 1200, 1300, 1248, 1352, 1296, 1404, 1344, 1456, 1392, 1508, 1440, 1560, 1488, 1612, 896, 960, 952, + 1020, 1008, 1080, 1064, 1140, 1120, 1200, 1176, 1260, 1232, 1320, 1288, 1380, 1344, 1440, 1400, 1500, + 1456, 1560, 1512, 1620, 1568, 1680, 1624, 1740, 1680, 1800, 1736, 1860, 0, 0, 48, 52, 96, 104, 144, 156, + 192, 208, 240, 260, 288, 312, 336, 364, 384, 416, 432, 468, 480, 520, 528, 572, 576, 624, 624, 676, 672, + 728, 720, 780, 0, 0, 56, 60, 112, 120, 168, 180, 224, 240, 280, 300, 336, 360, 392, 420, 448, 480, 504, + 540, 560, 600, 616, 660, 672, 720, 728, 780, 784, 840, 840, 900, 768, 832, 816, 884, 864, 936, 912, 988, + 960, 1040, 1008, 1092, 1056, 1144, 1104, 1196, 1152, 1248, 1200, 1300, 1248, 1352, 1296, 1404, 1344, 1456, + 1392, 1508, 1440, 1560, 1488, 1612, 896, 960, 952, 1020, 1008, 1080, 1064, 1140, 1120, 1200, 1176, 1260, + 1232, 1320, 1288, 1380, 1344, 1440, 1400, 1500, 1456, 1560, 1512, 1620, 1568, 1680, 1624, 1740, 1680, + 1800, 1736, 1860, 0, 0, 48, 52, 96, 104, 144, 156, 192, 208, 240, 260, 288, 312, 336, 364, 384, 416, 432, + 468, 480, 520, 528, 572, 576, 624, 624, 676, 672, 728, 720, 780, 0, 0, 56, 60, 112, 120, 168, 180, 224, + 240, 280, 300, 336, 360, 392, 420, 448, 480, 504, 540, 560, 600, 616, 660, 672, 720, 728, 780, 784, 840, + 840, 900, 768, 832, 816, 884, 864, 936, 912, 988, 960, 1040, 1008, 1092, 1056, 1144, 1104, 1196, 1152, + 1248, 1200, 1300, 1248, 1352, 1296, 1404, 1344, 1456, 1392, 1508, 1440, 1560, 1488, 1612, 896, 960, 952, + 1020, 1008, 1080, 1064, 1140, 1120, 1200, 1176, 1260, 1232, 1320, 1288, 1380, 1344, 1440, 1400, 1500, + 1456, 1560, 1512, 1620, 1568, 1680, 1624, 1740, 1680, 1800, 1736, 1860, 0, 0, 48, 52, 96, 104, 144, 156, + 192, 208, 240, 260, 288, 312, 336, 364, 384, 416, 432, 468, 480, 520, 528, 572, 576, 624, 624, 676, 672, + 728, 720, 780, 0, 0, 56, 60, 112, 120, 168, 180, 224, 240, 280, 300, 336, 360, 392, 420, 448, 480, 504, + 540, 560, 600, 616, 660, 672, 720, 728, 780, 784, 840, 840, 900, 768, 832, 816, 884, 864, 936, 912, 988, + 960, 1040, 1008, 1092, 1056, 1144, 1104, 1196, 1152, 1248, 1200, 1300, 1248, 1352, 1296, 1404, 1344, 1456, + 1392, 1508, 1440, 1560, 1488, 1612, 896, 960, 952, 1020, 1008, 1080, 1064, 1140, 1120, 1200, 1176, 1260, + 1232, 1320, 1288, 1380, 1344, 1440, 1400, 1500, 1456, 1560, 1512, 1620, 1568, 1680, 1624, 1740, 1680, + 1800, 1736, 1860, 0, 0, 48, 52, 96, 104, 144, 156, 192, 208, 240, 260, 288, 312, 336, 364, 384, 416, 432, + 468, 480, 520, 528, 572, 576, 624, 624, 676, 672, 728, 720, 780, 0, 0, 56, 60, 112, 120, 168, 180, 224, + 240, 280, 300, 336, 360, 392, 420, 448, 480, 504, 540, 560, 600, 616, 660, 672, 720, 728, 780, 784, 840, + 840, 900, 768, 832, 816, 884, 864, 936, 912, 988, 960, 1040, 1008, 1092, 1056, 1144, 1104, 1196, 1152, + 1248, 1200, 1300, 1248, 1352, 1296, 1404, 1344, 1456, 1392, 1508, 1440, 1560, 1488, 1612, 896, 960, 952, + 1020, 1008, 1080, 1064, 1140, 1120, 1200, 1176, 1260, 1232, 1320, 1288, 1380, 1344, 1440, 1400, 1500, + 1456, 1560, 1512, 1620, 1568, 1680, 1624, 1740, 1680, 1800, 1736, 1860 + ], + "dims": [1, 4, 32, 32], + "type": "float32" + } + ] + } + ] } ] diff --git a/js/web/test/data/ops/instance-norm.jsonc b/js/web/test/data/ops/instance-norm.jsonc index e89ac2da3795f..f28b016d47ab9 100644 --- a/js/web/test/data/ops/instance-norm.jsonc +++ b/js/web/test/data/ops/instance-norm.jsonc @@ -224,5 +224,85 @@ ] } ] + }, + { + "name": "Simple test with NHWC, components 1, buffer reuse", + "operator": "InstanceNormalization", + "inputShapeDefinitions": "rankOnly", + "opset": { + "domain": "", + "version": 17 + }, + "cases": [ + { + "name": "Simple test", + "inputs": [ + { + "data": [1, 2, 3, 4, 5, 6], + "dims": [2, 3, 1, 1], + "type": "float32" + }, + { + "data": [1, 2, 3], + "dims": [3], + "type": "float32" + }, + { + "data": [4, 5, 6], + "dims": [3], + "type": "float32" + } + ], + "outputs": [ + { + "data": [4, 5, 6, 4, 5, 6], + "dims": [2, 3, 1, 1], + "type": "float32" + } + ] + } + ] + }, + { + "name": "Simple test with NHWC, components 2, buffer reuse", + "operator": "InstanceNormalization", + "inputShapeDefinitions": "rankOnly", + "opset": { + "domain": "", + "version": 17 + }, + "cases": [ + { + "name": "Simple test", + "inputs": [ + { + "data": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2], + "dims": [1, 6, 1, 3], + "type": "float32" + }, + { + "data": [1, 2, 3, 4, 5, 6], + "dims": [6], + "type": "float32" + }, + { + "data": [4, 5, 6, 7, 8, 9], + "dims": [6], + "type": "float32" + } + ], + "outputs": [ + { + "data": [ + 2.775264263153076, 4, 5.224735260009766, 2.5505285263061523, 5, 7.449470520019531, 2.325794219970703, 6, + 9.674205780029297, 11.898944854736328, 7, 2.1010589599609375, 14.123676300048828, 8, 1.876321792602539, + 16.348413467407227, 9, 1.6515865325927734 + ], + "dims": [1, 6, 1, 3], + "type": "float32" + } + ] + } + ] } ] diff --git a/js/web/test/data/ops/matmulnbits.jsonc b/js/web/test/data/ops/matmulnbits.jsonc new file mode 100644 index 0000000000000..175be78cc0818 --- /dev/null +++ b/js/web/test/data/ops/matmulnbits.jsonc @@ -0,0 +1,1584 @@ +[ + { + "name": "MatMulNBits; K=16, N=16, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 16, "type": "int" }, + { "name": "N", "data": 8, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=16, N=16, block_size=16, bits=4; symmetric", + "inputs": [ + { + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, + 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, + 127 + ], + "dims": [8, 16], + "type": "float32" + }, + { + "dims": [8, 1, 8], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64 + ] + }, + { + "dims": [8], + "type": "float32", + "data": [0, 1, 2, 3, 4, 5, 6, 7] + } + ], + "outputs": [ + { + "dims": [8, 8], + "type": "float32", + "data": [ + 0, -385, -1120, -963, -1984, -1285, -2592, -1351, 0, -1073, -3808, -2643, -6848, -3445, -9120, -3479, 0, + -1761, -6496, -4323, -11712, -5605, -15648, -5607, 0, -2449, -9184, -6003, -16576, -7765, -22176, -7735, + 0, -3137, -11872, -7683, -21440, -9925, -28704, -9863, 0, -3825, -14560, -9363, -26304, -12085, -35232, + -11991, 0, -4513, -17248, -11043, -31168, -14245, -41760, -14119, 0, -5201, -19936, -12723, -36032, + -16405, -48288, -16247 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=16, N=16, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 16, "type": "int" }, + { "name": "N", "data": 16, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=16, N=16, block_size=16, bits=4; symmetric", + "inputs": [ + { + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, + 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, + 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, + 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, + 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, + 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, + 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, + 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, + 253, 254, 255 + ], + "dims": [16, 16], + "type": "float32" + }, + { + "dims": [16, 1, 8], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128 + ] + }, + { + "dims": [16], + "type": "float32", + "data": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] + } + ], + "outputs": [ + { + "dims": [16, 16], + "type": "float32", + "data": [ + 0, -385, -1120, -963, -1984, -1285, -2592, -1351, -2944, -1161, -3040, -715, -2880, -13, -2464, 945, 0, + -1073, -3808, -2643, -6848, -3445, -9120, -3479, -10624, -2745, -11360, -1243, -11328, 1027, -10528, 4065, + 0, -1761, -6496, -4323, -11712, -5605, -15648, -5607, -18304, -4329, -19680, -1771, -19776, 2067, -18592, + 7185, 0, -2449, -9184, -6003, -16576, -7765, -22176, -7735, -25984, -5913, -28000, -2299, -28224, 3107, + -26656, 10305, 0, -3137, -11872, -7683, -21440, -9925, -28704, -9863, -33664, -7497, -36320, -2827, + -36672, 4147, -34720, 13425, 0, -3825, -14560, -9363, -26304, -12085, -35232, -11991, -41344, -9081, + -44640, -3355, -45120, 5187, -42784, 16545, 0, -4513, -17248, -11043, -31168, -14245, -41760, -14119, + -49024, -10665, -52960, -3883, -53568, 6227, -50848, 19665, 0, -5201, -19936, -12723, -36032, -16405, + -48288, -16247, -56704, -12249, -61280, -4411, -62016, 7267, -58912, 22785, 0, -5889, -22624, -14403, + -40896, -18565, -54816, -18375, -64384, -13833, -69600, -4939, -70464, 8307, -66976, 25905, 0, -6577, + -25312, -16083, -45760, -20725, -61344, -20503, -72064, -15417, -77920, -5467, -78912, 9347, -75040, + 29025, 0, -7265, -28000, -17763, -50624, -22885, -67872, -22631, -79744, -17001, -86240, -5995, -87360, + 10387, -83104, 32145, 0, -7953, -30688, -19443, -55488, -25045, -74400, -24759, -87424, -18585, -94560, + -6523, -95808, 11427, -91168, 35265, 0, -8641, -33376, -21123, -60352, -27205, -80928, -26887, -95104, + -20169, -102880, -7051, -104256, 12467, -99232, 38385, 0, -9329, -36064, -22803, -65216, -29365, -87456, + -29015, -102784, -21753, -111200, -7579, -112704, 13507, -107296, 41505, 0, -10017, -38752, -24483, + -70080, -31525, -93984, -31143, -110464, -23337, -119520, -8107, -121152, 14547, -115360, 44625, 0, + -10705, -41440, -26163, -74944, -33685, -100512, -33271, -118144, -24921, -127840, -8635, -129600, 15587, + -123424, 47745 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=16, N=16, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 16, "type": "int" }, + { "name": "N", "data": 16, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=16, N=16, block_size=16, bits=4; asymmetric", + "inputs": [ + { + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, + 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, + 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, + 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, + 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, + 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, + 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, + 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, + 253, 254, 255 + ], + "dims": [16, 16], + "type": "float32" + }, + { + "dims": [16, 1, 8], + "type": "uint8", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, + 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, + 127 + ] + }, + { + "dims": [16], + "type": "float32", + "data": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] + }, + { + "dims": [16], + "type": "uint8", + "data": [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128] + } + ], + "outputs": [ + { + "dims": [16, 16], + "type": "float32", + "data": [ + 0, 728, 688, 2376, 1632, 4280, 2832, 6440, 4288, 8856, 6000, 11528, 7968, 14456, 10192, 17640, 0, 2200, + 1840, 7176, 4448, 12920, 7824, 19432, 11968, 26712, 16880, 34760, 22560, 43576, 29008, 53160, 0, 3672, + 2992, 11976, 7264, 21560, 12816, 32424, 19648, 44568, 27760, 57992, 37152, 72696, 47824, 88680, 0, 5144, + 4144, 16776, 10080, 30200, 17808, 45416, 27328, 62424, 38640, 81224, 51744, 101816, 66640, 124200, 0, + 6616, 5296, 21576, 12896, 38840, 22800, 58408, 35008, 80280, 49520, 104456, 66336, 130936, 85456, 159720, + 0, 8088, 6448, 26376, 15712, 47480, 27792, 71400, 42688, 98136, 60400, 127688, 80928, 160056, 104272, + 195240, 0, 9560, 7600, 31176, 18528, 56120, 32784, 84392, 50368, 115992, 71280, 150920, 95520, 189176, + 123088, 230760, 0, 11032, 8752, 35976, 21344, 64760, 37776, 97384, 58048, 133848, 82160, 174152, 110112, + 218296, 141904, 266280, 0, 12504, 9904, 40776, 24160, 73400, 42768, 110376, 65728, 151704, 93040, 197384, + 124704, 247416, 160720, 301800, 0, 13976, 11056, 45576, 26976, 82040, 47760, 123368, 73408, 169560, + 103920, 220616, 139296, 276536, 179536, 337320, 0, 15448, 12208, 50376, 29792, 90680, 52752, 136360, + 81088, 187416, 114800, 243848, 153888, 305656, 198352, 372840, 0, 16920, 13360, 55176, 32608, 99320, + 57744, 149352, 88768, 205272, 125680, 267080, 168480, 334776, 217168, 408360, 0, 18392, 14512, 59976, + 35424, 107960, 62736, 162344, 96448, 223128, 136560, 290312, 183072, 363896, 235984, 443880, 0, 19864, + 15664, 64776, 38240, 116600, 67728, 175336, 104128, 240984, 147440, 313544, 197664, 393016, 254800, + 479400, 0, 21336, 16816, 69576, 41056, 125240, 72720, 188328, 111808, 258840, 158320, 336776, 212256, + 422136, 273616, 514920, 0, 22808, 17968, 74376, 43872, 133880, 77712, 201320, 119488, 276696, 169200, + 360008, 226848, 451256, 292432, 550440 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=16, N=32, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 16, "type": "int" }, + { "name": "N", "data": 32, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=16, N=32, block_size=16, bits=4; symmetric", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512 + ], + "dims": [32, 16], + "type": "float32" + }, + { + "dims": [32, 1, 8], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 29, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256 + ] + }, + { + "dims": [32], + "type": "float32", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31 + ] + } + ], + "outputs": [ + { + "dims": [32, 32], + "type": "float32", + "data": [ + 0, -428, -1288, -1068, -2288, -1420, -3000, -1484, -3424, -1260, -3560, -748, -3408, 52, -2968, 1140, + -2272, 2516, -1224, 4180, 80, 6132, 1672, 8372, 3552, 10900, 5720, 13716, 8176, 16820, 10920, 12276, 0, + -1116, -3976, -2748, -7152, -3580, -9528, -3612, -11104, -2844, -11880, -1276, -11856, 1092, -11032, 4260, + -8160, 8228, -6984, 12996, -3760, 18564, 264, 24932, 5088, 32100, 10712, 40068, 17136, 48836, 24360, + 42532, 0, -1804, -6664, -4428, -12016, -5740, -16056, -5740, -18784, -4428, -20200, -1804, -20304, 2132, + -19096, 7380, -14048, 13940, -12744, 21812, -7600, 30996, -1144, 41492, 6624, 53300, 15704, 66420, 26096, + 80852, 37800, 72788, 0, -2492, -9352, -6108, -16880, -7900, -22584, -7868, -26464, -6012, -28520, -2332, + -28752, 3172, -27160, 10500, -19936, 19652, -18504, 30628, -11440, 43428, -2552, 58052, 8160, 74500, + 20696, 92772, 35056, 112868, 51240, 103044, 0, -3180, -12040, -7788, -21744, -10060, -29112, -9996, + -34144, -7596, -36840, -2860, -37200, 4212, -35224, 13620, -25824, 25364, -24264, 39444, -15280, 55860, + -3960, 74612, 9696, 95700, 25688, 119124, 44016, 144884, 64680, 133300, 0, -3868, -14728, -9468, -26608, + -12220, -35640, -12124, -41824, -9180, -45160, -3388, -45648, 5252, -43288, 16740, -31712, 31076, -30024, + 48260, -19120, 68292, -5368, 91172, 11232, 116900, 30680, 145476, 52976, 176900, 78120, 163556, 0, -4556, + -17416, -11148, -31472, -14380, -42168, -14252, -49504, -10764, -53480, -3916, -54096, 6292, -51352, + 19860, -37600, 36788, -35784, 57076, -22960, 80724, -6776, 107732, 12768, 138100, 35672, 171828, 61936, + 208916, 91560, 193812, 0, -5244, -20104, -12828, -36336, -16540, -48696, -16380, -57184, -12348, -61800, + -4444, -62544, 7332, -59416, 22980, -43488, 42500, -41544, 65892, -26800, 93156, -8184, 124292, 14304, + 159300, 40664, 198180, 70896, 240932, 105000, 224068, 0, -5932, -22792, -14508, -41200, -18700, -55224, + -18508, -64864, -13932, -70120, -4972, -70992, 8372, -67480, 26100, -49376, 48212, -47304, 74708, -30640, + 105588, -9592, 140852, 15840, 180500, 45656, 224532, 79856, 272948, 118440, 254324, 0, -6620, -25480, + -16188, -46064, -20860, -61752, -20636, -72544, -15516, -78440, -5500, -79440, 9412, -75544, 29220, + -55264, 53924, -53064, 83524, -34480, 118020, -11000, 157412, 17376, 201700, 50648, 250884, 88816, 304964, + 131880, 284580, 0, -7308, -28168, -17868, -50928, -23020, -68280, -22764, -80224, -17100, -86760, -6028, + -87888, 10452, -83608, 32340, -61152, 59636, -58824, 92340, -38320, 130452, -12408, 173972, 18912, 222900, + 55640, 277236, 97776, 336980, 145320, 314836, 0, -7996, -30856, -19548, -55792, -25180, -74808, -24892, + -87904, -18684, -95080, -6556, -96336, 11492, -91672, 35460, -67040, 65348, -64584, 101156, -42160, + 142884, -13816, 190532, 20448, 244100, 60632, 303588, 106736, 368996, 158760, 345092, 0, -8684, -33544, + -21228, -60656, -27340, -81336, -27020, -95584, -20268, -103400, -7084, -104784, 12532, -99736, 38580, + -72928, 71060, -70344, 109972, -46000, 155316, -15224, 207092, 21984, 265300, 65624, 329940, 115696, + 401012, 172200, 375348, 0, -9372, -36232, -22908, -65520, -29500, -87864, -29148, -103264, -21852, + -111720, -7612, -113232, 13572, -107800, 41700, -78816, 76772, -76104, 118788, -49840, 167748, -16632, + 223652, 23520, 286500, 70616, 356292, 124656, 433028, 185640, 405604, 0, -10060, -38920, -24588, -70384, + -31660, -94392, -31276, -110944, -23436, -120040, -8140, -121680, 14612, -115864, 44820, -84704, 82484, + -81864, 127604, -53680, 180180, -18040, 240212, 25056, 307700, 75608, 382644, 133616, 465044, 199080, + 435860, 0, -10748, -41608, -26268, -75248, -33820, -100920, -33404, -118624, -25020, -128360, -8668, + -130128, 15652, -123928, 47940, -90592, 88196, -87624, 136420, -57520, 192612, -19448, 256772, 26592, + 328900, 80600, 408996, 142576, 497060, 212520, 466116, 0, -11436, -44296, -27948, -80112, -35980, -107448, + -35532, -126304, -26604, -136680, -9196, -138576, 16692, -131992, 51060, -96480, 93908, -93384, 145236, + -61360, 205044, -20856, 273332, 28128, 350100, 85592, 435348, 151536, 529076, 225960, 496372, 0, -12124, + -46984, -29628, -84976, -38140, -113976, -37660, -133984, -28188, -145000, -9724, -147024, 17732, -140056, + 54180, -102368, 99620, -99144, 154052, -65200, 217476, -22264, 289892, 29664, 371300, 90584, 461700, + 160496, 561092, 239400, 526628, 0, -12812, -49672, -31308, -89840, -40300, -120504, -39788, -141664, + -29772, -153320, -10252, -155472, 18772, -148120, 57300, -108256, 105332, -104904, 162868, -69040, 229908, + -23672, 306452, 31200, 392500, 95576, 488052, 169456, 593108, 252840, 556884, 0, -13500, -52360, -32988, + -94704, -42460, -127032, -41916, -149344, -31356, -161640, -10780, -163920, 19812, -156184, 60420, + -114144, 111044, -110664, 171684, -72880, 242340, -25080, 323012, 32736, 413700, 100568, 514404, 178416, + 625124, 266280, 587140, 0, -14188, -55048, -34668, -99568, -44620, -133560, -44044, -157024, -32940, + -169960, -11308, -172368, 20852, -164248, 63540, -120032, 116756, -116424, 180500, -76720, 254772, -26488, + 339572, 34272, 434900, 105560, 540756, 187376, 657140, 279720, 617396, 0, -14876, -57736, -36348, -104432, + -46780, -140088, -46172, -164704, -34524, -178280, -11836, -180816, 21892, -172312, 66660, -125920, + 122468, -122184, 189316, -80560, 267204, -27896, 356132, 35808, 456100, 110552, 567108, 196336, 689156, + 293160, 647652, 0, -15564, -60424, -38028, -109296, -48940, -146616, -48300, -172384, -36108, -186600, + -12364, -189264, 22932, -180376, 69780, -131808, 128180, -127944, 198132, -84400, 279636, -29304, 372692, + 37344, 477300, 115544, 593460, 205296, 721172, 306600, 677908, 0, -16252, -63112, -39708, -114160, -51100, + -153144, -50428, -180064, -37692, -194920, -12892, -197712, 23972, -188440, 72900, -137696, 133892, + -133704, 206948, -88240, 292068, -30712, 389252, 38880, 498500, 120536, 619812, 214256, 753188, 320040, + 708164, 0, -16940, -65800, -41388, -119024, -53260, -159672, -52556, -187744, -39276, -203240, -13420, + -206160, 25012, -196504, 76020, -143584, 139604, -139464, 215764, -92080, 304500, -32120, 405812, 40416, + 519700, 125528, 646164, 223216, 785204, 333480, 738420, 0, -17628, -68488, -43068, -123888, -55420, + -166200, -54684, -195424, -40860, -211560, -13948, -214608, 26052, -204568, 79140, -149472, 145316, + -145224, 224580, -95920, 316932, -33528, 422372, 41952, 540900, 130520, 672516, 232176, 817220, 346920, + 768676, 0, -18316, -71176, -44748, -128752, -57580, -172728, -56812, -203104, -42444, -219880, -14476, + -223056, 27092, -212632, 82260, -155360, 151028, -150984, 233396, -99760, 329364, -34936, 438932, 43488, + 562100, 135512, 698868, 241136, 849236, 360360, 798932, 0, -19004, -73864, -46428, -133616, -59740, + -179256, -58940, -210784, -44028, -228200, -15004, -231504, 28132, -220696, 85380, -161248, 156740, + -156744, 242212, -103600, 341796, -36344, 455492, 45024, 583300, 140504, 725220, 250096, 881252, 373800, + 829188, 0, -19692, -76552, -48108, -138480, -61900, -185784, -61068, -218464, -45612, -236520, -15532, + -239952, 29172, -228760, 88500, -167136, 162452, -162504, 251028, -107440, 354228, -37752, 472052, 46560, + 604500, 145496, 751572, 259056, 913268, 387240, 859444, 0, -20380, -79240, -49788, -143344, -64060, + -192312, -63196, -226144, -47196, -244840, -16060, -248400, 30212, -236824, 91620, -173024, 168164, + -168264, 259844, -111280, 366660, -39160, 488612, 48096, 625700, 150488, 777924, 268016, 945284, 400680, + 889700, 0, -21068, -81928, -51468, -148208, -66220, -198840, -65324, -233824, -48780, -253160, -16588, + -256848, 31252, -244888, 94740, -178912, 173876, -174024, 268660, -115120, 379092, -40568, 505172, 49632, + 646900, 155480, 804276, 276976, 977300, 414120, 919956, 0, -21756, -84616, -53148, -153072, -68380, + -205368, -67452, -241504, -50364, -261480, -17116, -265296, 32292, -252952, 97860, -184800, 179588, + -179784, 277476, -118960, 391524, -41976, 521732, 51168, 668100, 160472, 830628, 285936, 1009316, 427560, + 950212 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=16, N=32, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 16, "type": "int" }, + { "name": "N", "data": 32, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=16, N=32, block_size=16, bits=4; asymmetric", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512 + ], + "dims": [32, 16], + "type": "float32" + }, + { + "dims": [32, 1, 8], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 29, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256 + ] + }, + { + "dims": [32], + "type": "float32", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31 + ] + }, + { + "dims": [32], + "type": "uint8", + "data": [ + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 + ] + } + ], + "outputs": [ + { + "dims": [32, 32], + "type": "float32", + "data": [ + 0, 660, 888, 2196, 2064, 4020, 3528, 6132, 5280, 8532, 7320, 11220, 9648, 14196, 12264, 17460, 15136, + 21012, 18360, 24852, 21840, 28980, 25608, 33396, 29664, 38100, 34008, 43092, 38640, 48372, 43560, 46004, + 0, 2020, 2296, 6660, 5392, 12100, 9288, 18340, 13984, 25380, 19480, 33220, 25776, 41860, 32872, 51300, + 42016, 61540, 49464, 72580, 58960, 84420, 69256, 97060, 80352, 110500, 92248, 124740, 104944, 139780, + 118440, 139748, 0, 3380, 3704, 11124, 8720, 20180, 15048, 30548, 22688, 42228, 31640, 55220, 41904, 69524, + 53480, 85140, 68896, 102068, 80568, 120308, 96080, 139860, 112904, 160724, 131040, 182900, 150488, 206388, + 171248, 231188, 193320, 233492, 0, 4740, 5112, 15588, 12048, 28260, 20808, 42756, 31392, 59076, 43800, + 77220, 58032, 97188, 74088, 118980, 95776, 142596, 111672, 168036, 133200, 195300, 156552, 224388, 181728, + 255300, 208728, 288036, 237552, 322596, 268200, 327236, 0, 6100, 6520, 20052, 15376, 36340, 26568, 54964, + 40096, 75924, 55960, 99220, 74160, 124852, 94696, 152820, 122656, 183124, 142776, 215764, 170320, 250740, + 200200, 288052, 232416, 327700, 266968, 369684, 303856, 414004, 343080, 420980, 0, 7460, 7928, 24516, + 18704, 44420, 32328, 67172, 48800, 92772, 68120, 121220, 90288, 152516, 115304, 186660, 149536, 223652, + 173880, 263492, 207440, 306180, 243848, 351716, 283104, 400100, 325208, 451332, 370160, 505412, 417960, + 514724, 0, 8820, 9336, 28980, 22032, 52500, 38088, 79380, 57504, 109620, 80280, 143220, 106416, 180180, + 135912, 220500, 176416, 264180, 204984, 311220, 244560, 361620, 287496, 415380, 333792, 472500, 383448, + 532980, 436464, 596820, 492840, 608468, 0, 10180, 10744, 33444, 25360, 60580, 43848, 91588, 66208, 126468, + 92440, 165220, 122544, 207844, 156520, 254340, 203296, 304708, 236088, 358948, 281680, 417060, 331144, + 479044, 384480, 544900, 441688, 614628, 502768, 688228, 567720, 702212, 0, 11540, 12152, 37908, 28688, + 68660, 49608, 103796, 74912, 143316, 104600, 187220, 138672, 235508, 177128, 288180, 230176, 345236, + 267192, 406676, 318800, 472500, 374792, 542708, 435168, 617300, 499928, 696276, 569072, 779636, 642600, + 795956, 0, 12900, 13560, 42372, 32016, 76740, 55368, 116004, 83616, 160164, 116760, 209220, 154800, + 263172, 197736, 322020, 257056, 385764, 298296, 454404, 355920, 527940, 418440, 606372, 485856, 689700, + 558168, 777924, 635376, 871044, 717480, 889700, 0, 14260, 14968, 46836, 35344, 84820, 61128, 128212, + 92320, 177012, 128920, 231220, 170928, 290836, 218344, 355860, 283936, 426292, 329400, 502132, 393040, + 583380, 462088, 670036, 536544, 762100, 616408, 859572, 701680, 962452, 792360, 983444, 0, 15620, 16376, + 51300, 38672, 92900, 66888, 140420, 101024, 193860, 141080, 253220, 187056, 318500, 238952, 389700, + 310816, 466820, 360504, 549860, 430160, 638820, 505736, 733700, 587232, 834500, 674648, 941220, 767984, + 1053860, 867240, 1077188, 0, 16980, 17784, 55764, 42000, 100980, 72648, 152628, 109728, 210708, 153240, + 275220, 203184, 346164, 259560, 423540, 337696, 507348, 391608, 597588, 467280, 694260, 549384, 797364, + 637920, 906900, 732888, 1022868, 834288, 1145268, 942120, 1170932, 0, 18340, 19192, 60228, 45328, 109060, + 78408, 164836, 118432, 227556, 165400, 297220, 219312, 373828, 280168, 457380, 364576, 547876, 422712, + 645316, 504400, 749700, 593032, 861028, 688608, 979300, 791128, 1104516, 900592, 1236676, 1017000, + 1264676, 0, 19700, 20600, 64692, 48656, 117140, 84168, 177044, 127136, 244404, 177560, 319220, 235440, + 401492, 300776, 491220, 391456, 588404, 453816, 693044, 541520, 805140, 636680, 924692, 739296, 1051700, + 849368, 1186164, 966896, 1328084, 1091880, 1358420, 0, 21060, 22008, 69156, 51984, 125220, 89928, 189252, + 135840, 261252, 189720, 341220, 251568, 429156, 321384, 525060, 418336, 628932, 484920, 740772, 578640, + 860580, 680328, 988356, 789984, 1124100, 907608, 1267812, 1033200, 1419492, 1166760, 1452164, 0, 22420, + 23416, 73620, 55312, 133300, 95688, 201460, 144544, 278100, 201880, 363220, 267696, 456820, 341992, + 558900, 445216, 669460, 516024, 788500, 615760, 916020, 723976, 1052020, 840672, 1196500, 965848, 1349460, + 1099504, 1510900, 1241640, 1545908, 0, 23780, 24824, 78084, 58640, 141380, 101448, 213668, 153248, 294948, + 214040, 385220, 283824, 484484, 362600, 592740, 472096, 709988, 547128, 836228, 652880, 971460, 767624, + 1115684, 891360, 1268900, 1024088, 1431108, 1165808, 1602308, 1316520, 1639652, 0, 25140, 26232, 82548, + 61968, 149460, 107208, 225876, 161952, 311796, 226200, 407220, 299952, 512148, 383208, 626580, 498976, + 750516, 578232, 883956, 690000, 1026900, 811272, 1179348, 942048, 1341300, 1082328, 1512756, 1232112, + 1693716, 1391400, 1733396, 0, 26500, 27640, 87012, 65296, 157540, 112968, 238084, 170656, 328644, 238360, + 429220, 316080, 539812, 403816, 660420, 525856, 791044, 609336, 931684, 727120, 1082340, 854920, 1243012, + 992736, 1413700, 1140568, 1594404, 1298416, 1785124, 1466280, 1827140, 0, 27860, 29048, 91476, 68624, + 165620, 118728, 250292, 179360, 345492, 250520, 451220, 332208, 567476, 424424, 694260, 552736, 831572, + 640440, 979412, 764240, 1137780, 898568, 1306676, 1043424, 1486100, 1198808, 1676052, 1364720, 1876532, + 1541160, 1920884, 0, 29220, 30456, 95940, 71952, 173700, 124488, 262500, 188064, 362340, 262680, 473220, + 348336, 595140, 445032, 728100, 579616, 872100, 671544, 1027140, 801360, 1193220, 942216, 1370340, + 1094112, 1558500, 1257048, 1757700, 1431024, 1967940, 1616040, 2014628, 0, 30580, 31864, 100404, 75280, + 181780, 130248, 274708, 196768, 379188, 274840, 495220, 364464, 622804, 465640, 761940, 606496, 912628, + 702648, 1074868, 838480, 1248660, 985864, 1434004, 1144800, 1630900, 1315288, 1839348, 1497328, 2059348, + 1690920, 2108372, 0, 31940, 33272, 104868, 78608, 189860, 136008, 286916, 205472, 396036, 287000, 517220, + 380592, 650468, 486248, 795780, 633376, 953156, 733752, 1122596, 875600, 1304100, 1029512, 1497668, + 1195488, 1703300, 1373528, 1920996, 1563632, 2150756, 1765800, 2202116, 0, 33300, 34680, 109332, 81936, + 197940, 141768, 299124, 214176, 412884, 299160, 539220, 396720, 678132, 506856, 829620, 660256, 993684, + 764856, 1170324, 912720, 1359540, 1073160, 1561332, 1246176, 1775700, 1431768, 2002644, 1629936, 2242164, + 1840680, 2295860, 0, 34660, 36088, 113796, 85264, 206020, 147528, 311332, 222880, 429732, 311320, 561220, + 412848, 705796, 527464, 863460, 687136, 1034212, 795960, 1218052, 949840, 1414980, 1116808, 1624996, + 1296864, 1848100, 1490008, 2084292, 1696240, 2333572, 1915560, 2389604, 0, 36020, 37496, 118260, 88592, + 214100, 153288, 323540, 231584, 446580, 323480, 583220, 428976, 733460, 548072, 897300, 714016, 1074740, + 827064, 1265780, 986960, 1470420, 1160456, 1688660, 1347552, 1920500, 1548248, 2165940, 1762544, 2424980, + 1990440, 2483348, 0, 37380, 38904, 122724, 91920, 222180, 159048, 335748, 240288, 463428, 335640, 605220, + 445104, 761124, 568680, 931140, 740896, 1115268, 858168, 1313508, 1024080, 1525860, 1204104, 1752324, + 1398240, 1992900, 1606488, 2247588, 1828848, 2516388, 2065320, 2577092, 0, 38740, 40312, 127188, 95248, + 230260, 164808, 347956, 248992, 480276, 347800, 627220, 461232, 788788, 589288, 964980, 767776, 1155796, + 889272, 1361236, 1061200, 1581300, 1247752, 1815988, 1448928, 2065300, 1664728, 2329236, 1895152, 2607796, + 2140200, 2670836, 0, 40100, 41720, 131652, 98576, 238340, 170568, 360164, 257696, 497124, 359960, 649220, + 477360, 816452, 609896, 998820, 794656, 1196324, 920376, 1408964, 1098320, 1636740, 1291400, 1879652, + 1499616, 2137700, 1722968, 2410884, 1961456, 2699204, 2215080, 2764580, 0, 41460, 43128, 136116, 101904, + 246420, 176328, 372372, 266400, 513972, 372120, 671220, 493488, 844116, 630504, 1032660, 821536, 1236852, + 951480, 1456692, 1135440, 1692180, 1335048, 1943316, 1550304, 2210100, 1781208, 2492532, 2027760, 2790612, + 2289960, 2858324, 0, 42820, 44536, 140580, 105232, 254500, 182088, 384580, 275104, 530820, 384280, 693220, + 509616, 871780, 651112, 1066500, 848416, 1277380, 982584, 1504420, 1172560, 1747620, 1378696, 2006980, + 1600992, 2282500, 1839448, 2574180, 2094064, 2882020, 2364840, 2952068 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=32, N=16, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 32, "type": "int" }, + { "name": "N", "data": 16, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=32, N=16, block_size=16, bits=4; symmetric", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512 + ], + "dims": [16, 32], + "type": "float32" + }, + { + "dims": [16, 2, 8], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 29, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256 + ] + }, + { + "dims": [32], + "type": "float32", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31 + ] + } + ], + "outputs": [ + { + "dims": [16, 16], + "type": "float32", + "data": [ + -1116, -4036, -5868, -6612, -6268, -4836, -2316, 1292, 5956, 11772, 18644, 26604, 35652, 45788, 57012, + 53452, -2492, -12772, -19916, -23924, -24796, -22532, -17132, -8596, 5604, 17884, 35828, 56908, 81124, + 108476, 138964, 140844, -3868, -21508, -33964, -41236, -43324, -40228, -31948, -18484, 5252, 23996, 53012, + 87212, 126596, 171164, 220916, 228236, -5244, -30244, -48012, -58548, -61852, -57924, -46764, -28372, + 4900, 30108, 70196, 117516, 172068, 233852, 302868, 315628, -6620, -38980, -62060, -75860, -80380, -75620, + -61580, -38260, 4548, 36220, 87380, 147820, 217540, 296540, 384820, 403020, -7996, -47716, -76108, -93172, + -98908, -93316, -76396, -48148, 4196, 42332, 104564, 178124, 263012, 359228, 466772, 490412, -9372, + -56452, -90156, -110484, -117436, -111012, -91212, -58036, 3844, 48444, 121748, 208428, 308484, 421916, + 548724, 577804, -10748, -65188, -104204, -127796, -135964, -128708, -106028, -67924, 3492, 54556, 138932, + 238732, 353956, 484604, 630676, 665196, -12124, -73924, -118252, -145108, -154492, -146404, -120844, + -77812, 3140, 60668, 156116, 269036, 399428, 547292, 712628, 752588, -13500, -82660, -132300, -162420, + -173020, -164100, -135660, -87700, 2788, 66780, 173300, 299340, 444900, 609980, 794580, 839980, -14876, + -91396, -146348, -179732, -191548, -181796, -150476, -97588, 2436, 72892, 190484, 329644, 490372, 672668, + 876532, 927372, -16252, -100132, -160396, -197044, -210076, -199492, -165292, -107476, 2084, 79004, + 207668, 359948, 535844, 735356, 958484, 1014764, -17628, -108868, -174444, -214356, -228604, -217188, + -180108, -117364, 1732, 85116, 224852, 390252, 581316, 798044, 1040436, 1102156, -19004, -117604, -188492, + -231668, -247132, -234884, -194924, -127252, 1380, 91228, 242036, 420556, 626788, 860732, 1122388, + 1189548, -20380, -126340, -202540, -248980, -265660, -252580, -209740, -137140, 1028, 97340, 259220, + 450860, 672260, 923420, 1204340, 1276940, -21756, -135076, -216588, -266292, -284188, -270276, -224556, + -147028, 676, 103452, 276404, 481164, 717732, 986108, 1286292, 1364332 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=32, N=16, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 32, "type": "int" }, + { "name": "N", "data": 16, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=32, N=16, block_size=16, bits=4; asymmetric", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512 + ], + "dims": [16, 32], + "type": "float32" + }, + { + "dims": [16, 2, 8], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 29, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256 + ] + }, + { + "dims": [32], + "type": "float32", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31 + ] + }, + { + "dims": [16], + "type": "uint8", + "data": [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128] + } + ], + "outputs": [ + { + "dims": [16, 16], + "type": "float32", + "data": [ + -1116, -1860, -1516, -84, 2436, 6044, 10740, 16524, 23364, 31356, 40404, 50540, 61764, 74076, 87476, + 86092, -2492, -2404, 820, 7180, 16676, 29308, 45076, 63980, 88548, 111196, 139508, 170956, 205540, 243260, + 284116, 296364, -3868, -2948, 3156, 14444, 30916, 52572, 79412, 111436, 153732, 191036, 238612, 291372, + 349316, 412444, 480756, 506636, -5244, -3492, 5492, 21708, 45156, 75836, 113748, 158892, 218916, 270876, + 337716, 411788, 493092, 581628, 677396, 716908, -6620, -4036, 7828, 28972, 59396, 99100, 148084, 206348, + 284100, 350716, 436820, 532204, 636868, 750812, 874036, 927180, -7996, -4580, 10164, 36236, 73636, 122364, + 182420, 253804, 349284, 430556, 535924, 652620, 780644, 919996, 1070676, 1137452, -9372, -5124, 12500, + 43500, 87876, 145628, 216756, 301260, 414468, 510396, 635028, 773036, 924420, 1089180, 1267316, 1347724, + -10748, -5668, 14836, 50764, 102116, 168892, 251092, 348716, 479652, 590236, 734132, 893452, 1068196, + 1258364, 1463956, 1557996, -12124, -6212, 17172, 58028, 116356, 192156, 285428, 396172, 544836, 670076, + 833236, 1013868, 1211972, 1427548, 1660596, 1768268, -13500, -6756, 19508, 65292, 130596, 215420, 319764, + 443628, 610020, 749916, 932340, 1134284, 1355748, 1596732, 1857236, 1978540, -14876, -7300, 21844, 72556, + 144836, 238684, 354100, 491084, 675204, 829756, 1031444, 1254700, 1499524, 1765916, 2053876, 2188812, + -16252, -7844, 24180, 79820, 159076, 261948, 388436, 538540, 740388, 909596, 1130548, 1375116, 1643300, + 1935100, 2250516, 2399084, -17628, -8388, 26516, 87084, 173316, 285212, 422772, 585996, 805572, 989436, + 1229652, 1495532, 1787076, 2104284, 2447156, 2609356, -19004, -8932, 28852, 94348, 187556, 308476, 457108, + 633452, 870756, 1069276, 1328756, 1615948, 1930852, 2273468, 2643796, 2819628, -20380, -9476, 31188, + 101612, 201796, 331740, 491444, 680908, 935940, 1149116, 1427860, 1736364, 2074628, 2442652, 2840436, + 3029900, -21756, -10020, 33524, 108876, 216036, 355004, 525780, 728364, 1001124, 1228956, 1526964, + 1856780, 2218404, 2611836, 3037076, 3240172 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=32, N=32, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 32, "type": "int" }, + { "name": "N", "data": 32, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=32, N=32, block_size=16, bits=4; symmetric", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, + 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, + 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, + 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, + 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, + 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, + 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, + 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, + 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, + 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, + 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, + 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, + 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, + 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, + 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, + 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, + 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, + 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, + 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, + 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, + 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, + 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, + 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, + 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, + 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024 + ], + "dims": [32, 32], + "type": "float32" + }, + { + "dims": [32, 2, 8], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 29, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512 + ] + }, + { + "dims": [64], + "type": "float32", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, 63 + ] + } + ], + "outputs": [ + { + "dims": [32, 32], + "type": "float32", + "data": [ + -1116, -4036, -5868, -6612, -6268, -4836, -2316, 1292, 5956, 11772, 18644, 26604, 35652, 45788, 57012, + 53452, -59740, -53956, -47084, -39124, -30076, -19940, -8716, 3596, 16996, 31484, 47060, 63724, 81476, + 100316, 120244, 109004, -2492, -12772, -19916, -23924, -24796, -22532, -17132, -8596, 5604, 17884, 35828, + 56908, 81124, 108476, 138964, 140844, -199356, -184548, -166604, -145524, -121308, -93956, -63468, -29844, + 6916, 46812, 89844, 136012, 185316, 237756, 293332, 287532, -3868, -21508, -33964, -41236, -43324, -40228, + -31948, -18484, 5252, 23996, 53012, 87212, 126596, 171164, 220916, 228236, -338972, -315140, -286124, + -251924, -212540, -167972, -118220, -63284, -3164, 62140, 132628, 208300, 289156, 375196, 466420, 466060, + -5244, -30244, -48012, -58548, -61852, -57924, -46764, -28372, 4900, 30108, 70196, 117516, 172068, 233852, + 302868, 315628, -478588, -445732, -405644, -358324, -303772, -241988, -172972, -96724, -13244, 77468, + 175412, 280588, 392996, 512636, 639508, 644588, -6620, -38980, -62060, -75860, -80380, -75620, -61580, + -38260, 4548, 36220, 87380, 147820, 217540, 296540, 384820, 403020, -618204, -576324, -525164, -464724, + -395004, -316004, -227724, -130164, -23324, 92796, 218196, 352876, 496836, 650076, 812596, 823116, -7996, + -47716, -76108, -93172, -98908, -93316, -76396, -48148, 4196, 42332, 104564, 178124, 263012, 359228, + 466772, 490412, -757820, -706916, -644684, -571124, -486236, -390020, -282476, -163604, -33404, 108124, + 260980, 425164, 600676, 787516, 985684, 1001644, -9372, -56452, -90156, -110484, -117436, -111012, -91212, + -58036, 3844, 48444, 121748, 208428, 308484, 421916, 548724, 577804, -897436, -837508, -764204, -677524, + -577468, -464036, -337228, -197044, -43484, 123452, 303764, 497452, 704516, 924956, 1158772, 1180172, + -10748, -65188, -104204, -127796, -135964, -128708, -106028, -67924, 3492, 54556, 138932, 238732, 353956, + 484604, 630676, 665196, -1037052, -968100, -883724, -783924, -668700, -538052, -391980, -230484, -53564, + 138780, 346548, 569740, 808356, 1062396, 1331860, 1358700, -12124, -73924, -118252, -145108, -154492, + -146404, -120844, -77812, 3140, 60668, 156116, 269036, 399428, 547292, 712628, 752588, -1176668, -1098692, + -1003244, -890324, -759932, -612068, -446732, -263924, -63644, 154108, 389332, 642028, 912196, 1199836, + 1504948, 1537228, -13500, -82660, -132300, -162420, -173020, -164100, -135660, -87700, 2788, 66780, + 173300, 299340, 444900, 609980, 794580, 839980, -1316284, -1229284, -1122764, -996724, -851164, -686084, + -501484, -297364, -73724, 169436, 432116, 714316, 1016036, 1337276, 1678036, 1715756, -14876, -91396, + -146348, -179732, -191548, -181796, -150476, -97588, 2436, 72892, 190484, 329644, 490372, 672668, 876532, + 927372, -1455900, -1359876, -1242284, -1103124, -942396, -760100, -556236, -330804, -83804, 184764, + 474900, 786604, 1119876, 1474716, 1851124, 1894284, -16252, -100132, -160396, -197044, -210076, -199492, + -165292, -107476, 2084, 79004, 207668, 359948, 535844, 735356, 958484, 1014764, -1595516, -1490468, + -1361804, -1209524, -1033628, -834116, -610988, -364244, -93884, 200092, 517684, 858892, 1223716, 1612156, + 2024212, 2072812, -17628, -108868, -174444, -214356, -228604, -217188, -180108, -117364, 1732, 85116, + 224852, 390252, 581316, 798044, 1040436, 1102156, -1735132, -1621060, -1481324, -1315924, -1124860, + -908132, -665740, -397684, -103964, 215420, 560468, 931180, 1327556, 1749596, 2197300, 2251340, -19004, + -117604, -188492, -231668, -247132, -234884, -194924, -127252, 1380, 91228, 242036, 420556, 626788, + 860732, 1122388, 1189548, -1874748, -1751652, -1600844, -1422324, -1216092, -982148, -720492, -431124, + -114044, 230748, 603252, 1003468, 1431396, 1887036, 2370388, 2429868, -20380, -126340, -202540, -248980, + -265660, -252580, -209740, -137140, 1028, 97340, 259220, 450860, 672260, 923420, 1204340, 1276940, + -2014364, -1882244, -1720364, -1528724, -1307324, -1056164, -775244, -464564, -124124, 246076, 646036, + 1075756, 1535236, 2024476, 2543476, 2608396, -21756, -135076, -216588, -266292, -284188, -270276, -224556, + -147028, 676, 103452, 276404, 481164, 717732, 986108, 1286292, 1364332, -2153980, -2012836, -1839884, + -1635124, -1398556, -1130180, -829996, -498004, -134204, 261404, 688820, 1148044, 1639076, 2161916, + 2716564, 2786924, -23132, -143812, -230636, -283604, -302716, -287972, -239372, -156916, 324, 109564, + 293588, 511468, 763204, 1048796, 1368244, 1451724, -2293596, -2143428, -1959404, -1741524, -1489788, + -1204196, -884748, -531444, -144284, 276732, 731604, 1220332, 1742916, 2299356, 2889652, 2965452, -24508, + -152548, -244684, -300916, -321244, -305668, -254188, -166804, -28, 115676, 310772, 541772, 808676, + 1111484, 1450196, 1539116, -2433212, -2274020, -2078924, -1847924, -1581020, -1278212, -939500, -564884, + -154364, 292060, 774388, 1292620, 1846756, 2436796, 3062740, 3143980, -25884, -161284, -258732, -318228, + -339772, -323364, -269004, -176692, -380, 121788, 327956, 572076, 854148, 1174172, 1532148, 1626508, + -2572828, -2404612, -2198444, -1954324, -1672252, -1352228, -994252, -598324, -164444, 307388, 817172, + 1364908, 1950596, 2574236, 3235828, 3322508, -27260, -170020, -272780, -335540, -358300, -341060, -283820, + -186580, -732, 127900, 345140, 602380, 899620, 1236860, 1614100, 1713900, -2712444, -2535204, -2317964, + -2060724, -1763484, -1426244, -1049004, -631764, -174524, 322716, 859956, 1437196, 2054436, 2711676, + 3408916, 3501036, -28636, -178756, -286828, -352852, -376828, -358756, -298636, -196468, -1084, 134012, + 362324, 632684, 945092, 1299548, 1696052, 1801292, -2852060, -2665796, -2437484, -2167124, -1854716, + -1500260, -1103756, -665204, -184604, 338044, 902740, 1509484, 2158276, 2849116, 3582004, 3679564, -30012, + -187492, -300876, -370164, -395356, -376452, -313452, -206356, -1436, 140124, 379508, 662988, 990564, + 1362236, 1778004, 1888684, -2991676, -2796388, -2557004, -2273524, -1945948, -1574276, -1158508, -698644, + -194684, 353372, 945524, 1581772, 2262116, 2986556, 3755092, 3858092, -31388, -196228, -314924, -387476, + -413884, -394148, -328268, -216244, -1788, 146236, 396692, 693292, 1036036, 1424924, 1859956, 1976076, + -3131292, -2926980, -2676524, -2379924, -2037180, -1648292, -1213260, -732084, -204764, 368700, 988308, + 1654060, 2365956, 3123996, 3928180, 4036620, -32764, -204964, -328972, -404788, -432412, -411844, -343084, + -226132, -2140, 152348, 413876, 723596, 1081508, 1487612, 1941908, 2063468, -3270908, -3057572, -2796044, + -2486324, -2128412, -1722308, -1268012, -765524, -214844, 384028, 1031092, 1726348, 2469796, 3261436, + 4101268, 4215148, -34140, -213700, -343020, -422100, -450940, -429540, -357900, -236020, -2492, 158460, + 431060, 753900, 1126980, 1550300, 2023860, 2150860, -3410524, -3188164, -2915564, -2592724, -2219644, + -1796324, -1322764, -798964, -224924, 399356, 1073876, 1798636, 2573636, 3398876, 4274356, 4393676, + -35516, -222436, -357068, -439412, -469468, -447236, -372716, -245908, -2844, 164572, 448244, 784204, + 1172452, 1612988, 2105812, 2238252, -3550140, -3318756, -3035084, -2699124, -2310876, -1870340, -1377516, + -832404, -235004, 414684, 1116660, 1870924, 2677476, 3536316, 4447444, 4572204, -36892, -231172, -371116, + -456724, -487996, -464932, -387532, -255796, -3196, 170684, 465428, 814508, 1217924, 1675676, 2187764, + 2325644, -3689756, -3449348, -3154604, -2805524, -2402108, -1944356, -1432268, -865844, -245084, 430012, + 1159444, 1943212, 2781316, 3673756, 4620532, 4750732, -38268, -239908, -385164, -474036, -506524, -482628, + -402348, -265684, -3548, 176796, 482612, 844812, 1263396, 1738364, 2269716, 2413036, -3829372, -3579940, + -3274124, -2911924, -2493340, -2018372, -1487020, -899284, -255164, 445340, 1202228, 2015500, 2885156, + 3811196, 4793620, 4929260, -39644, -248644, -399212, -491348, -525052, -500324, -417164, -275572, -3900, + 182908, 499796, 875116, 1308868, 1801052, 2351668, 2500428, -3968988, -3710532, -3393644, -3018324, + -2584572, -2092388, -1541772, -932724, -265244, 460668, 1245012, 2087788, 2988996, 3948636, 4966708, + 5107788, -41020, -257380, -413260, -508660, -543580, -518020, -431980, -285460, -4252, 189020, 516980, + 905420, 1354340, 1863740, 2433620, 2587820, -4108604, -3841124, -3513164, -3124724, -2675804, -2166404, + -1596524, -966164, -275324, 475996, 1287796, 2160076, 3092836, 4086076, 5139796, 5286316, -42396, -266116, + -427308, -525972, -562108, -535716, -446796, -295348, -4604, 195132, 534164, 935724, 1399812, 1926428, + 2515572, 2675212, -4248220, -3971716, -3632684, -3231124, -2767036, -2240420, -1651276, -999604, -285404, + 491324, 1330580, 2232364, 3196676, 4223516, 5312884, 5464844, -43772, -274852, -441356, -543284, -580636, + -553412, -461612, -305236, -4956, 201244, 551348, 966028, 1445284, 1989116, 2597524, 2762604, -4387836, + -4102308, -3752204, -3337524, -2858268, -2314436, -1706028, -1033044, -295484, 506652, 1373364, 2304652, + 3300516, 4360956, 5485972, 5643372 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=32, N=32, block_size=16, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 32, "type": "int" }, + { "name": "N", "data": 32, "type": "int" }, + { "name": "block_size", "data": 16, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=32, N=32, block_size=16, bits=4; asymmetric", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, + 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, + 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, + 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, + 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, + 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, + 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, + 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, + 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, + 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, + 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, + 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, + 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, + 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, + 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, + 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, + 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, + 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, + 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, + 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, + 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, + 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, + 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, + 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, + 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024 + ], + "dims": [32, 32], + "type": "float32" + }, + { + "dims": [32, 2, 8], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 29, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512 + ] + }, + { + "dims": [64], + "type": "float32", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, 63 + ] + }, + { + "dims": [32], + "type": "uint8", + "data": [ + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 + ] + } + ], + "outputs": [ + { + "dims": [32, 32], + "type": "float32", + "data": [ + -1116, -1860, -1516, -84, 2436, 6044, 10740, 16524, 23364, 31356, 40404, 50540, 61764, 74076, 87476, + 86092, -24924, -16964, -7916, 2220, 13444, 25756, 39156, 53644, 69220, 85884, 103636, 122476, 142404, + 163420, 185524, 176460, -2492, -2404, 820, 7180, 16676, 29308, 45076, 63980, 88548, 111196, 139508, + 170956, 205540, 243260, 284116, 296364, -33468, -8292, 20020, 51468, 86052, 123772, 164628, 208620, + 255748, 306012, 359412, 415948, 475620, 538428, 604372, 608940, -3868, -2948, 3156, 14444, 30916, 52572, + 79412, 111436, 153732, 191036, 238612, 291372, 349316, 412444, 480756, 506636, -42012, 380, 47956, 100716, + 158660, 221788, 290100, 363596, 442276, 526140, 615188, 709420, 808836, 913436, 1023220, 1041420, -5244, + -3492, 5492, 21708, 45156, 75836, 113748, 158892, 218916, 270876, 337716, 411788, 493092, 581628, 677396, + 716908, -50556, 9052, 75892, 149964, 231268, 319804, 415572, 518572, 628804, 746268, 870964, 1002892, + 1142052, 1288444, 1442068, 1473900, -6620, -4036, 7828, 28972, 59396, 99100, 148084, 206348, 284100, + 350716, 436820, 532204, 636868, 750812, 874036, 927180, -59100, 17724, 103828, 199212, 303876, 417820, + 541044, 673548, 815332, 966396, 1126740, 1296364, 1475268, 1663452, 1860916, 1906380, -7996, -4580, 10164, + 36236, 73636, 122364, 182420, 253804, 349284, 430556, 535924, 652620, 780644, 919996, 1070676, 1137452, + -67644, 26396, 131764, 248460, 376484, 515836, 666516, 828524, 1001860, 1186524, 1382516, 1589836, + 1808484, 2038460, 2279764, 2338860, -9372, -5124, 12500, 43500, 87876, 145628, 216756, 301260, 414468, + 510396, 635028, 773036, 924420, 1089180, 1267316, 1347724, -76188, 35068, 159700, 297708, 449092, 613852, + 791988, 983500, 1188388, 1406652, 1638292, 1883308, 2141700, 2413468, 2698612, 2771340, -10748, -5668, + 14836, 50764, 102116, 168892, 251092, 348716, 479652, 590236, 734132, 893452, 1068196, 1258364, 1463956, + 1557996, -84732, 43740, 187636, 346956, 521700, 711868, 917460, 1138476, 1374916, 1626780, 1894068, + 2176780, 2474916, 2788476, 3117460, 3203820, -12124, -6212, 17172, 58028, 116356, 192156, 285428, 396172, + 544836, 670076, 833236, 1013868, 1211972, 1427548, 1660596, 1768268, -93276, 52412, 215572, 396204, + 594308, 809884, 1042932, 1293452, 1561444, 1846908, 2149844, 2470252, 2808132, 3163484, 3536308, 3636300, + -13500, -6756, 19508, 65292, 130596, 215420, 319764, 443628, 610020, 749916, 932340, 1134284, 1355748, + 1596732, 1857236, 1978540, -101820, 61084, 243508, 445452, 666916, 907900, 1168404, 1448428, 1747972, + 2067036, 2405620, 2763724, 3141348, 3538492, 3955156, 4068780, -14876, -7300, 21844, 72556, 144836, + 238684, 354100, 491084, 675204, 829756, 1031444, 1254700, 1499524, 1765916, 2053876, 2188812, -110364, + 69756, 271444, 494700, 739524, 1005916, 1293876, 1603404, 1934500, 2287164, 2661396, 3057196, 3474564, + 3913500, 4374004, 4501260, -16252, -7844, 24180, 79820, 159076, 261948, 388436, 538540, 740388, 909596, + 1130548, 1375116, 1643300, 1935100, 2250516, 2399084, -118908, 78428, 299380, 543948, 812132, 1103932, + 1419348, 1758380, 2121028, 2507292, 2917172, 3350668, 3807780, 4288508, 4792852, 4933740, -17628, -8388, + 26516, 87084, 173316, 285212, 422772, 585996, 805572, 989436, 1229652, 1495532, 1787076, 2104284, 2447156, + 2609356, -127452, 87100, 327316, 593196, 884740, 1201948, 1544820, 1913356, 2307556, 2727420, 3172948, + 3644140, 4140996, 4663516, 5211700, 5366220, -19004, -8932, 28852, 94348, 187556, 308476, 457108, 633452, + 870756, 1069276, 1328756, 1615948, 1930852, 2273468, 2643796, 2819628, -135996, 95772, 355252, 642444, + 957348, 1299964, 1670292, 2068332, 2494084, 2947548, 3428724, 3937612, 4474212, 5038524, 5630548, 5798700, + -20380, -9476, 31188, 101612, 201796, 331740, 491444, 680908, 935940, 1149116, 1427860, 1736364, 2074628, + 2442652, 2840436, 3029900, -144540, 104444, 383188, 691692, 1029956, 1397980, 1795764, 2223308, 2680612, + 3167676, 3684500, 4231084, 4807428, 5413532, 6049396, 6231180, -21756, -10020, 33524, 108876, 216036, + 355004, 525780, 728364, 1001124, 1228956, 1526964, 1856780, 2218404, 2611836, 3037076, 3240172, -153084, + 113116, 411124, 740940, 1102564, 1495996, 1921236, 2378284, 2867140, 3387804, 3940276, 4524556, 5140644, + 5788540, 6468244, 6663660, -23132, -10564, 35860, 116140, 230276, 378268, 560116, 775820, 1066308, + 1308796, 1626068, 1977196, 2362180, 2781020, 3233716, 3450444, -161628, 121788, 439060, 790188, 1175172, + 1594012, 2046708, 2533260, 3053668, 3607932, 4196052, 4818028, 5473860, 6163548, 6887092, 7096140, -24508, + -11108, 38196, 123404, 244516, 401532, 594452, 823276, 1131492, 1388636, 1725172, 2097612, 2505956, + 2950204, 3430356, 3660716, -170172, 130460, 466996, 839436, 1247780, 1692028, 2172180, 2688236, 3240196, + 3828060, 4451828, 5111500, 5807076, 6538556, 7305940, 7528620, -25884, -11652, 40532, 130668, 258756, + 424796, 628788, 870732, 1196676, 1468476, 1824276, 2218028, 2649732, 3119388, 3626996, 3870988, -178716, + 139132, 494932, 888684, 1320388, 1790044, 2297652, 2843212, 3426724, 4048188, 4707604, 5404972, 6140292, + 6913564, 7724788, 7961100, -27260, -12196, 42868, 137932, 272996, 448060, 663124, 918188, 1261860, + 1548316, 1923380, 2338444, 2793508, 3288572, 3823636, 4081260, -187260, 147804, 522868, 937932, 1392996, + 1888060, 2423124, 2998188, 3613252, 4268316, 4963380, 5698444, 6473508, 7288572, 8143636, 8393580, -28636, + -12740, 45204, 145196, 287236, 471324, 697460, 965644, 1327044, 1628156, 2022484, 2458860, 2937284, + 3457756, 4020276, 4291532, -195804, 156476, 550804, 987180, 1465604, 1986076, 2548596, 3153164, 3799780, + 4488444, 5219156, 5991916, 6806724, 7663580, 8562484, 8826060, -30012, -13284, 47540, 152460, 301476, + 494588, 731796, 1013100, 1392228, 1707996, 2121588, 2579276, 3081060, 3626940, 4216916, 4501804, -204348, + 165148, 578740, 1036428, 1538212, 2084092, 2674068, 3308140, 3986308, 4708572, 5474932, 6285388, 7139940, + 8038588, 8981332, 9258540, -31388, -13828, 49876, 159724, 315716, 517852, 766132, 1060556, 1457412, + 1787836, 2220692, 2699692, 3224836, 3796124, 4413556, 4712076, -212892, 173820, 606676, 1085676, 1610820, + 2182108, 2799540, 3463116, 4172836, 4928700, 5730708, 6578860, 7473156, 8413596, 9400180, 9691020, -32764, + -14372, 52212, 166988, 329956, 541116, 800468, 1108012, 1522596, 1867676, 2319796, 2820108, 3368612, + 3965308, 4610196, 4922348, -221436, 182492, 634612, 1134924, 1683428, 2280124, 2925012, 3618092, 4359364, + 5148828, 5986484, 6872332, 7806372, 8788604, 9819028, 10123500, -34140, -14916, 54548, 174252, 344196, + 564380, 834804, 1155468, 1587780, 1947516, 2418900, 2940524, 3512388, 4134492, 4806836, 5132620, -229980, + 191164, 662548, 1184172, 1756036, 2378140, 3050484, 3773068, 4545892, 5368956, 6242260, 7165804, 8139588, + 9163612, 10237876, 10555980, -35516, -15460, 56884, 181516, 358436, 587644, 869140, 1202924, 1652964, + 2027356, 2518004, 3060940, 3656164, 4303676, 5003476, 5342892, -238524, 199836, 690484, 1233420, 1828644, + 2476156, 3175956, 3928044, 4732420, 5589084, 6498036, 7459276, 8472804, 9538620, 10656724, 10988460, + -36892, -16004, 59220, 188780, 372676, 610908, 903476, 1250380, 1718148, 2107196, 2617108, 3181356, + 3799940, 4472860, 5200116, 5553164, -247068, 208508, 718420, 1282668, 1901252, 2574172, 3301428, 4083020, + 4918948, 5809212, 6753812, 7752748, 8806020, 9913628, 11075572, 11420940, -38268, -16548, 61556, 196044, + 386916, 634172, 937812, 1297836, 1783332, 2187036, 2716212, 3301772, 3943716, 4642044, 5396756, 5763436, + -255612, 217180, 746356, 1331916, 1973860, 2672188, 3426900, 4237996, 5105476, 6029340, 7009588, 8046220, + 9139236, 10288636, 11494420, 11853420, -39644, -17092, 63892, 203308, 401156, 657436, 972148, 1345292, + 1848516, 2266876, 2815316, 3422188, 4087492, 4811228, 5593396, 5973708, -264156, 225852, 774292, 1381164, + 2046468, 2770204, 3552372, 4392972, 5292004, 6249468, 7265364, 8339692, 9472452, 10663644, 11913268, + 12285900, -41020, -17636, 66228, 210572, 415396, 680700, 1006484, 1392748, 1913700, 2346716, 2914420, + 3542604, 4231268, 4980412, 5790036, 6183980, -272700, 234524, 802228, 1430412, 2119076, 2868220, 3677844, + 4547948, 5478532, 6469596, 7521140, 8633164, 9805668, 11038652, 12332116, 12718380, -42396, -18180, 68564, + 217836, 429636, 703964, 1040820, 1440204, 1978884, 2426556, 3013524, 3663020, 4375044, 5149596, 5986676, + 6394252, -281244, 243196, 830164, 1479660, 2191684, 2966236, 3803316, 4702924, 5665060, 6689724, 7776916, + 8926636, 10138884, 11413660, 12750964, 13150860, -43772, -18724, 70900, 225100, 443876, 727228, 1075156, + 1487660, 2044068, 2506396, 3112628, 3783436, 4518820, 5318780, 6183316, 6604524, -289788, 251868, 858100, + 1528908, 2264292, 3064252, 3928788, 4857900, 5851588, 6909852, 8032692, 9220108, 10472100, 11788668, + 13169812, 13583340 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=32, N=32, block_size=32, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 32, "type": "int" }, + { "name": "N", "data": 32, "type": "int" }, + { "name": "block_size", "data": 32, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=32, N=32, block_size=32, bits=4; symmetric", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, + 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, + 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, + 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, + 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, + 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, + 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, + 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, + 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, + 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, + 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, + 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, + 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, + 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, + 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, + 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, + 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, + 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, + 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, + 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, + 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, + 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, + 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, + 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, + 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024 + ], + "dims": [32, 32], + "type": "float32" + }, + { + "dims": [32, 1, 16], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 29, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512 + ] + }, + { + "dims": [32], + "type": "float32", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31 + ] + } + ], + "outputs": [ + { + "dims": [32, 32], + "type": "float32", + "data": [ + 0, -1560, -2576, -3048, -2976, -2360, -1200, 504, 2736, 5544, 8880, 12760, 17184, 22152, 27664, 26040, + -29312, -26520, -23184, -19304, -14880, -9912, -4400, 1656, 8256, 15400, 23088, 31320, 40096, 49416, + 59280, 53816, 0, -5368, -9168, -11400, -12064, -11160, -8688, -4648, 2224, 8136, 16880, 27192, 39072, + 52520, 67536, 68760, -98432, -91256, -82512, -72200, -60320, -46872, -31856, -15272, 2880, 22600, 43888, + 66744, 91168, 117160, 144720, 142104, 0, -9176, -15760, -19752, -21152, -19960, -16176, -9800, 1712, + 10728, 24880, 41624, 60960, 82888, 107408, 111480, -167552, -155992, -141840, -125096, -105760, -83832, + -59312, -32200, -2496, 29800, 64688, 102168, 142240, 184904, 230160, 230392, 0, -12984, -22352, -28104, + -30240, -28760, -23664, -14952, 1200, 13320, 32880, 56056, 82848, 113256, 147280, 154200, -236672, + -220728, -201168, -177992, -151200, -120792, -86768, -49128, -7872, 37000, 85488, 137592, 193312, 252648, + 315600, 318680, 0, -16792, -28944, -36456, -39328, -37560, -31152, -20104, 688, 15912, 40880, 70488, + 104736, 143624, 187152, 196920, -305792, -285464, -260496, -230888, -196640, -157752, -114224, -66056, + -13248, 44200, 106288, 173016, 244384, 320392, 401040, 406968, 0, -20600, -35536, -44808, -48416, -46360, + -38640, -25256, 176, 18504, 48880, 84920, 126624, 173992, 227024, 239640, -374912, -350200, -319824, + -283784, -242080, -194712, -141680, -82984, -18624, 51400, 127088, 208440, 295456, 388136, 486480, 495256, + 0, -24408, -42128, -53160, -57504, -55160, -46128, -30408, -336, 21096, 56880, 99352, 148512, 204360, + 266896, 282360, -444032, -414936, -379152, -336680, -287520, -231672, -169136, -99912, -24000, 58600, + 147888, 243864, 346528, 455880, 571920, 583544, 0, -28216, -48720, -61512, -66592, -63960, -53616, -35560, + -848, 23688, 64880, 113784, 170400, 234728, 306768, 325080, -513152, -479672, -438480, -389576, -332960, + -268632, -196592, -116840, -29376, 65800, 168688, 279288, 397600, 523624, 657360, 671832, 0, -32024, + -55312, -69864, -75680, -72760, -61104, -40712, -1360, 26280, 72880, 128216, 192288, 265096, 346640, + 367800, -582272, -544408, -497808, -442472, -378400, -305592, -224048, -133768, -34752, 73000, 189488, + 314712, 448672, 591368, 742800, 760120, 0, -35832, -61904, -78216, -84768, -81560, -68592, -45864, -1872, + 28872, 80880, 142648, 214176, 295464, 386512, 410520, -651392, -609144, -557136, -495368, -423840, + -342552, -251504, -150696, -40128, 80200, 210288, 350136, 499744, 659112, 828240, 848408, 0, -39640, + -68496, -86568, -93856, -90360, -76080, -51016, -2384, 31464, 88880, 157080, 236064, 325832, 426384, + 453240, -720512, -673880, -616464, -548264, -469280, -379512, -278960, -167624, -45504, 87400, 231088, + 385560, 550816, 726856, 913680, 936696, 0, -43448, -75088, -94920, -102944, -99160, -83568, -56168, -2896, + 34056, 96880, 171512, 257952, 356200, 466256, 495960, -789632, -738616, -675792, -601160, -514720, + -416472, -306416, -184552, -50880, 94600, 251888, 420984, 601888, 794600, 999120, 1024984, 0, -47256, + -81680, -103272, -112032, -107960, -91056, -61320, -3408, 36648, 104880, 185944, 279840, 386568, 506128, + 538680, -858752, -803352, -735120, -654056, -560160, -453432, -333872, -201480, -56256, 101800, 272688, + 456408, 652960, 862344, 1084560, 1113272, 0, -51064, -88272, -111624, -121120, -116760, -98544, -66472, + -3920, 39240, 112880, 200376, 301728, 416936, 546000, 581400, -927872, -868088, -794448, -706952, -605600, + -490392, -361328, -218408, -61632, 109000, 293488, 491832, 704032, 930088, 1170000, 1201560, 0, -54872, + -94864, -119976, -130208, -125560, -106032, -71624, -4432, 41832, 120880, 214808, 323616, 447304, 585872, + 624120, -996992, -932824, -853776, -759848, -651040, -527352, -388784, -235336, -67008, 116200, 314288, + 527256, 755104, 997832, 1255440, 1289848, 0, -58680, -101456, -128328, -139296, -134360, -113520, -76776, + -4944, 44424, 128880, 229240, 345504, 477672, 625744, 666840, -1066112, -997560, -913104, -812744, + -696480, -564312, -416240, -252264, -72384, 123400, 335088, 562680, 806176, 1065576, 1340880, 1378136, 0, + -62488, -108048, -136680, -148384, -143160, -121008, -81928, -5456, 47016, 136880, 243672, 367392, 508040, + 665616, 709560, -1135232, -1062296, -972432, -865640, -741920, -601272, -443696, -269192, -77760, 130600, + 355888, 598104, 857248, 1133320, 1426320, 1466424, 0, -66296, -114640, -145032, -157472, -151960, -128496, + -87080, -5968, 49608, 144880, 258104, 389280, 538408, 705488, 752280, -1204352, -1127032, -1031760, + -918536, -787360, -638232, -471152, -286120, -83136, 137800, 376688, 633528, 908320, 1201064, 1511760, + 1554712, 0, -70104, -121232, -153384, -166560, -160760, -135984, -92232, -6480, 52200, 152880, 272536, + 411168, 568776, 745360, 795000, -1273472, -1191768, -1091088, -971432, -832800, -675192, -498608, -303048, + -88512, 145000, 397488, 668952, 959392, 1268808, 1597200, 1643000, 0, -73912, -127824, -161736, -175648, + -169560, -143472, -97384, -6992, 54792, 160880, 286968, 433056, 599144, 785232, 837720, -1342592, + -1256504, -1150416, -1024328, -878240, -712152, -526064, -319976, -93888, 152200, 418288, 704376, 1010464, + 1336552, 1682640, 1731288, 0, -77720, -134416, -170088, -184736, -178360, -150960, -102536, -7504, 57384, + 168880, 301400, 454944, 629512, 825104, 880440, -1411712, -1321240, -1209744, -1077224, -923680, -749112, + -553520, -336904, -99264, 159400, 439088, 739800, 1061536, 1404296, 1768080, 1819576, 0, -81528, -141008, + -178440, -193824, -187160, -158448, -107688, -8016, 59976, 176880, 315832, 476832, 659880, 864976, 923160, + -1480832, -1385976, -1269072, -1130120, -969120, -786072, -580976, -353832, -104640, 166600, 459888, + 775224, 1112608, 1472040, 1853520, 1907864, 0, -85336, -147600, -186792, -202912, -195960, -165936, + -112840, -8528, 62568, 184880, 330264, 498720, 690248, 904848, 965880, -1549952, -1450712, -1328400, + -1183016, -1014560, -823032, -608432, -370760, -110016, 173800, 480688, 810648, 1163680, 1539784, 1938960, + 1996152, 0, -89144, -154192, -195144, -212000, -204760, -173424, -117992, -9040, 65160, 192880, 344696, + 520608, 720616, 944720, 1008600, -1619072, -1515448, -1387728, -1235912, -1060000, -859992, -635888, + -387688, -115392, 181000, 501488, 846072, 1214752, 1607528, 2024400, 2084440, 0, -92952, -160784, -203496, + -221088, -213560, -180912, -123144, -9552, 67752, 200880, 359128, 542496, 750984, 984592, 1051320, + -1688192, -1580184, -1447056, -1288808, -1105440, -896952, -663344, -404616, -120768, 188200, 522288, + 881496, 1265824, 1675272, 2109840, 2172728, 0, -96760, -167376, -211848, -230176, -222360, -188400, + -128296, -10064, 70344, 208880, 373560, 564384, 781352, 1024464, 1094040, -1757312, -1644920, -1506384, + -1341704, -1150880, -933912, -690800, -421544, -126144, 195400, 543088, 916920, 1316896, 1743016, 2195280, + 2261016, 0, -100568, -173968, -220200, -239264, -231160, -195888, -133448, -10576, 72936, 216880, 387992, + 586272, 811720, 1064336, 1136760, -1826432, -1709656, -1565712, -1394600, -1196320, -970872, -718256, + -438472, -131520, 202600, 563888, 952344, 1367968, 1810760, 2280720, 2349304, 0, -104376, -180560, + -228552, -248352, -239960, -203376, -138600, -11088, 75528, 224880, 402424, 608160, 842088, 1104208, + 1179480, -1895552, -1774392, -1625040, -1447496, -1241760, -1007832, -745712, -455400, -136896, 209800, + 584688, 987768, 1419040, 1878504, 2366160, 2437592, 0, -108184, -187152, -236904, -257440, -248760, + -210864, -143752, -11600, 78120, 232880, 416856, 630048, 872456, 1144080, 1222200, -1964672, -1839128, + -1684368, -1500392, -1287200, -1044792, -773168, -472328, -142272, 217000, 605488, 1023192, 1470112, + 1946248, 2451600, 2525880, 0, -111992, -193744, -245256, -266528, -257560, -218352, -148904, -12112, + 80712, 240880, 431288, 651936, 902824, 1183952, 1264920, -2033792, -1903864, -1743696, -1553288, -1332640, + -1081752, -800624, -489256, -147648, 224200, 626288, 1058616, 1521184, 2013992, 2537040, 2614168, 0, + -115800, -200336, -253608, -275616, -266360, -225840, -154056, -12624, 83304, 248880, 445720, 673824, + 933192, 1223824, 1307640, -2102912, -1968600, -1803024, -1606184, -1378080, -1118712, -828080, -506184, + -153024, 231400, 647088, 1094040, 1572256, 2081736, 2622480, 2702456, 0, -119608, -206928, -261960, + -284704, -275160, -233328, -159208, -13136, 85896, 256880, 460152, 695712, 963560, 1263696, 1350360, + -2172032, -2033336, -1862352, -1659080, -1423520, -1155672, -855536, -523112, -158400, 238600, 667888, + 1129464, 1623328, 2149480, 2707920, 2790744 + ] + } + ] + } + ] + }, + { + "name": "MatMulNBits; K=32, N=32, block_size=32, bits=4", + "operator": "MatMulNBits", + "opset": { "domain": "com.microsoft", "version": 1 }, + "attributes": [ + { "name": "K", "data": 32, "type": "int" }, + { "name": "N", "data": 32, "type": "int" }, + { "name": "block_size", "data": 32, "type": "int" }, + { "name": "bits", "data": 4, "type": "int" } + ], + "cases": [ + { + "name": "MatMulNBits; K=32, N=32, block_size=32, bits=4; asymmetric", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, + 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, + 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, + 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, + 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, + 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, + 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, + 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, + 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, + 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, + 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, + 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, + 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, + 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, + 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, + 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, + 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, + 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, + 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, + 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, + 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, + 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, + 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, + 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, + 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024 + ], + "dims": [32, 32], + "type": "float32" + }, + { + "dims": [32, 1, 16], + "type": "uint8", + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 29, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, + 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, + 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, + 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, + 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, + 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, + 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, + 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, + 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, + 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, + 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, + 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, + 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, + 506, 507, 508, 509, 510, 511, 512 + ] + }, + { + "dims": [32], + "type": "float32", + "data": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, + 29, 30, 31 + ] + }, + { + "dims": [32], + "type": "uint8", + "data": [ + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 + ] + } + ], + "outputs": [ + { + "dims": [32, 32], + "type": "float32", + "data": [ + 0, 2664, 5872, 9624, 13920, 18760, 24144, 30072, 36528, 43560, 51120, 59224, 67872, 77064, 86800, 89400, + 38272, 45288, 52848, 60952, 69600, 78792, 88528, 98808, 109632, 121000, 132912, 145368, 158368, 171912, + 186000, 184760, 0, 7048, 15664, 25848, 37600, 50920, 65808, 82264, 101552, 119880, 141040, 163768, 188064, + 213928, 241360, 255000, 100224, 119816, 140976, 163704, 188000, 213864, 241296, 270296, 300864, 333000, + 366704, 401976, 438816, 477224, 517200, 527000, 0, 11432, 25456, 42072, 61280, 83080, 107472, 134456, + 166576, 196200, 230960, 268312, 308256, 350792, 395920, 420600, 162176, 194344, 229104, 266456, 306400, + 348936, 394064, 441784, 492096, 545000, 600496, 658584, 719264, 782536, 848400, 869240, 0, 15816, 35248, + 58296, 84960, 115240, 149136, 186648, 231600, 272520, 320880, 372856, 428448, 487656, 550480, 586200, + 224128, 268872, 317232, 369208, 424800, 484008, 546832, 613272, 683328, 757000, 834288, 915192, 999712, + 1087848, 1179600, 1211480, 0, 20200, 45040, 74520, 108640, 147400, 190800, 238840, 296624, 348840, 410800, + 477400, 548640, 624520, 705040, 751800, 286080, 343400, 405360, 471960, 543200, 619080, 699600, 784760, + 874560, 969000, 1068080, 1171800, 1280160, 1393160, 1510800, 1553720, 0, 24584, 54832, 90744, 132320, + 179560, 232464, 291032, 361648, 425160, 500720, 581944, 668832, 761384, 859600, 917400, 348032, 417928, + 493488, 574712, 661600, 754152, 852368, 956248, 1065792, 1181000, 1301872, 1428408, 1560608, 1698472, + 1842000, 1895960, 0, 28968, 64624, 106968, 156000, 211720, 274128, 343224, 426672, 501480, 590640, 686488, + 789024, 898248, 1014160, 1083000, 409984, 492456, 581616, 677464, 780000, 889224, 1005136, 1127736, + 1257024, 1393000, 1535664, 1685016, 1841056, 2003784, 2173200, 2238200, 0, 33352, 74416, 123192, 179680, + 243880, 315792, 395416, 491696, 577800, 680560, 791032, 909216, 1035112, 1168720, 1248600, 471936, 566984, + 669744, 780216, 898400, 1024296, 1157904, 1299224, 1448256, 1605000, 1769456, 1941624, 2121504, 2309096, + 2504400, 2580440, 0, 37736, 84208, 139416, 203360, 276040, 357456, 447608, 556720, 654120, 770480, 895576, + 1029408, 1171976, 1323280, 1414200, 533888, 641512, 757872, 882968, 1016800, 1159368, 1310672, 1470712, + 1639488, 1817000, 2003248, 2198232, 2401952, 2614408, 2835600, 2922680, 0, 42120, 94000, 155640, 227040, + 308200, 399120, 499800, 621744, 730440, 860400, 1000120, 1149600, 1308840, 1477840, 1579800, 595840, + 716040, 846000, 985720, 1135200, 1294440, 1463440, 1642200, 1830720, 2029000, 2237040, 2454840, 2682400, + 2919720, 3166800, 3264920, 0, 46504, 103792, 171864, 250720, 340360, 440784, 551992, 686768, 806760, + 950320, 1104664, 1269792, 1445704, 1632400, 1745400, 657792, 790568, 934128, 1088472, 1253600, 1429512, + 1616208, 1813688, 2021952, 2241000, 2470832, 2711448, 2962848, 3225032, 3498000, 3607160, 0, 50888, + 113584, 188088, 274400, 372520, 482448, 604184, 751792, 883080, 1040240, 1209208, 1389984, 1582568, + 1786960, 1911000, 719744, 865096, 1022256, 1191224, 1372000, 1564584, 1768976, 1985176, 2213184, 2453000, + 2704624, 2968056, 3243296, 3530344, 3829200, 3949400, 0, 55272, 123376, 204312, 298080, 404680, 524112, + 656376, 816816, 959400, 1130160, 1313752, 1510176, 1719432, 1941520, 2076600, 781696, 939624, 1110384, + 1293976, 1490400, 1699656, 1921744, 2156664, 2404416, 2665000, 2938416, 3224664, 3523744, 3835656, + 4160400, 4291640, 0, 59656, 133168, 220536, 321760, 436840, 565776, 708568, 881840, 1035720, 1220080, + 1418296, 1630368, 1856296, 2096080, 2242200, 843648, 1014152, 1198512, 1396728, 1608800, 1834728, 2074512, + 2328152, 2595648, 2877000, 3172208, 3481272, 3804192, 4140968, 4491600, 4633880, 0, 64040, 142960, 236760, + 345440, 469000, 607440, 760760, 946864, 1112040, 1310000, 1522840, 1750560, 1993160, 2250640, 2407800, + 905600, 1088680, 1286640, 1499480, 1727200, 1969800, 2227280, 2499640, 2786880, 3089000, 3406000, 3737880, + 4084640, 4446280, 4822800, 4976120, 0, 68424, 152752, 252984, 369120, 501160, 649104, 812952, 1011888, + 1188360, 1399920, 1627384, 1870752, 2130024, 2405200, 2573400, 967552, 1163208, 1374768, 1602232, 1845600, + 2104872, 2380048, 2671128, 2978112, 3301000, 3639792, 3994488, 4365088, 4751592, 5154000, 5318360, 0, + 72808, 162544, 269208, 392800, 533320, 690768, 865144, 1076912, 1264680, 1489840, 1731928, 1990944, + 2266888, 2559760, 2739000, 1029504, 1237736, 1462896, 1704984, 1964000, 2239944, 2532816, 2842616, + 3169344, 3513000, 3873584, 4251096, 4645536, 5056904, 5485200, 5660600, 0, 77192, 172336, 285432, 416480, + 565480, 732432, 917336, 1141936, 1341000, 1579760, 1836472, 2111136, 2403752, 2714320, 2904600, 1091456, + 1312264, 1551024, 1807736, 2082400, 2375016, 2685584, 3014104, 3360576, 3725000, 4107376, 4507704, + 4925984, 5362216, 5816400, 6002840, 0, 81576, 182128, 301656, 440160, 597640, 774096, 969528, 1206960, + 1417320, 1669680, 1941016, 2231328, 2540616, 2868880, 3070200, 1153408, 1386792, 1639152, 1910488, + 2200800, 2510088, 2838352, 3185592, 3551808, 3937000, 4341168, 4764312, 5206432, 5667528, 6147600, + 6345080, 0, 85960, 191920, 317880, 463840, 629800, 815760, 1021720, 1271984, 1493640, 1759600, 2045560, + 2351520, 2677480, 3023440, 3235800, 1215360, 1461320, 1727280, 2013240, 2319200, 2645160, 2991120, + 3357080, 3743040, 4149000, 4574960, 5020920, 5486880, 5972840, 6478800, 6687320, 0, 90344, 201712, 334104, + 487520, 661960, 857424, 1073912, 1337008, 1569960, 1849520, 2150104, 2471712, 2814344, 3178000, 3401400, + 1277312, 1535848, 1815408, 2115992, 2437600, 2780232, 3143888, 3528568, 3934272, 4361000, 4808752, + 5277528, 5767328, 6278152, 6810000, 7029560, 0, 94728, 211504, 350328, 511200, 694120, 899088, 1126104, + 1402032, 1646280, 1939440, 2254648, 2591904, 2951208, 3332560, 3567000, 1339264, 1610376, 1903536, + 2218744, 2556000, 2915304, 3296656, 3700056, 4125504, 4573000, 5042544, 5534136, 6047776, 6583464, + 7141200, 7371800, 0, 99112, 221296, 366552, 534880, 726280, 940752, 1178296, 1467056, 1722600, 2029360, + 2359192, 2712096, 3088072, 3487120, 3732600, 1401216, 1684904, 1991664, 2321496, 2674400, 3050376, + 3449424, 3871544, 4316736, 4785000, 5276336, 5790744, 6328224, 6888776, 7472400, 7714040, 0, 103496, + 231088, 382776, 558560, 758440, 982416, 1230488, 1532080, 1798920, 2119280, 2463736, 2832288, 3224936, + 3641680, 3898200, 1463168, 1759432, 2079792, 2424248, 2792800, 3185448, 3602192, 4043032, 4507968, + 4997000, 5510128, 6047352, 6608672, 7194088, 7803600, 8056280, 0, 107880, 240880, 399000, 582240, 790600, + 1024080, 1282680, 1597104, 1875240, 2209200, 2568280, 2952480, 3361800, 3796240, 4063800, 1525120, + 1833960, 2167920, 2527000, 2911200, 3320520, 3754960, 4214520, 4699200, 5209000, 5743920, 6303960, + 6889120, 7499400, 8134800, 8398520, 0, 112264, 250672, 415224, 605920, 822760, 1065744, 1334872, 1662128, + 1951560, 2299120, 2672824, 3072672, 3498664, 3950800, 4229400, 1587072, 1908488, 2256048, 2629752, + 3029600, 3455592, 3907728, 4386008, 4890432, 5421000, 5977712, 6560568, 7169568, 7804712, 8466000, + 8740760, 0, 116648, 260464, 431448, 629600, 854920, 1107408, 1387064, 1727152, 2027880, 2389040, 2777368, + 3192864, 3635528, 4105360, 4395000, 1649024, 1983016, 2344176, 2732504, 3148000, 3590664, 4060496, + 4557496, 5081664, 5633000, 6211504, 6817176, 7450016, 8110024, 8797200, 9083000, 0, 121032, 270256, + 447672, 653280, 887080, 1149072, 1439256, 1792176, 2104200, 2478960, 2881912, 3313056, 3772392, 4259920, + 4560600, 1710976, 2057544, 2432304, 2835256, 3266400, 3725736, 4213264, 4728984, 5272896, 5845000, + 6445296, 7073784, 7730464, 8415336, 9128400, 9425240, 0, 125416, 280048, 463896, 676960, 919240, 1190736, + 1491448, 1857200, 2180520, 2568880, 2986456, 3433248, 3909256, 4414480, 4726200, 1772928, 2132072, + 2520432, 2938008, 3384800, 3860808, 4366032, 4900472, 5464128, 6057000, 6679088, 7330392, 8010912, + 8720648, 9459600, 9767480, 0, 129800, 289840, 480120, 700640, 951400, 1232400, 1543640, 1922224, 2256840, + 2658800, 3091000, 3553440, 4046120, 4569040, 4891800, 1834880, 2206600, 2608560, 3040760, 3503200, + 3995880, 4518800, 5071960, 5655360, 6269000, 6912880, 7587000, 8291360, 9025960, 9790800, 10109720, 0, + 134184, 299632, 496344, 724320, 983560, 1274064, 1595832, 1987248, 2333160, 2748720, 3195544, 3673632, + 4182984, 4723600, 5057400, 1896832, 2281128, 2696688, 3143512, 3621600, 4130952, 4671568, 5243448, + 5846592, 6481000, 7146672, 7843608, 8571808, 9331272, 10122000, 10451960, 0, 138568, 309424, 512568, + 748000, 1015720, 1315728, 1648024, 2052272, 2409480, 2838640, 3300088, 3793824, 4319848, 4878160, 5223000, + 1958784, 2355656, 2784816, 3246264, 3740000, 4266024, 4824336, 5414936, 6037824, 6693000, 7380464, + 8100216, 8852256, 9636584, 10453200, 10794200 + ] + } + ] + } + ] + } +] diff --git a/js/web/test/data/ops/where.jsonc b/js/web/test/data/ops/where.jsonc index 047fd6fd7511b..990120dd3708e 100644 --- a/js/web/test/data/ops/where.jsonc +++ b/js/web/test/data/ops/where.jsonc @@ -168,5 +168,39 @@ ] } ] + }, + { + "name": "Where with no attributes", + "operator": "Where", + "attributes": [], + "cases": [ + { + "name": "T[1 1 2 1] T[1 4] T[1 1 2 4] float32 broadcast 1", + "inputs": [ + { + "data": [true, false], + "dims": [1, 1, 2, 1], + "type": "bool" + }, + { + "data": [1, 2, 3, 4], + "dims": [1, 4], + "type": "float32" + }, + { + "data": [5, 6, 7, 8, 9, 10, 11, 12], + "dims": [1, 1, 2, 4], + "type": "float32" + } + ], + "outputs": [ + { + "data": [1, 2, 3, 4, 9, 10, 11, 12], + "dims": [1, 1, 2, 4], + "type": "float32" + } + ] + } + ] } ] diff --git a/js/web/test/e2e/browser-test-webgl.js b/js/web/test/e2e/browser-test-webgl.js index e503f38ae5735..974c81d064c89 100644 --- a/js/web/test/e2e/browser-test-webgl.js +++ b/js/web/test/e2e/browser-test-webgl.js @@ -6,3 +6,16 @@ it('Browser E2E testing - WebGL backend', async function() { await testFunction(ort, {executionProviders: ['webgl']}); }); + +it('Browser E2E testing - invalid buffer', async () => { + try { + await ort.InferenceSession.create( + new Uint8Array(Array.from({length: 100}, () => 42)), {executionProviders: ['webgl']}); + + // Should not reach here. + assert(false); + } catch (e) { + assert(e.message.includes('as ONNX format')); + assert(e.message.includes('as ORT format')); + } +}); diff --git a/js/web/test/suite-test-list.jsonc b/js/web/test/suite-test-list.jsonc index 55b21283025c2..e96a0aa045bc8 100644 --- a/js/web/test/suite-test-list.jsonc +++ b/js/web/test/suite-test-list.jsonc @@ -1231,7 +1231,7 @@ "test_split_variable_parts_1d", "test_split_variable_parts_2d", "test_split_variable_parts_default_axis", - // // "test_split_zero_size_splits", + "test_split_zero_size_splits", "test_sqrt_example", "test_sqrt", "test_squeeze_negative_axes", @@ -1334,6 +1334,7 @@ "acos.jsonc", "add.jsonc", "add_int32.jsonc", + "add_zero-sized.jsonc", //"and.jsonc", "asin.jsonc", "attention.jsonc", @@ -1343,6 +1344,7 @@ "ceil.jsonc", "concat.jsonc", "concat_int32.jsonc", + "concat_zero-sized.jsonc", "cast.jsonc", "conv.jsonc", "cos.jsonc", @@ -1354,6 +1356,7 @@ "expand.jsonc", "fast-gelu.jsonc", "floor.jsonc", + "fused-conv.jsonc", "gather-elements.jsonc", "gemm.jsonc", "global-average-pool.jsonc", @@ -1362,6 +1365,7 @@ "less.jsonc", "log.jsonc", "matmul.jsonc", + "matmulnbits.jsonc", "matmul-broadcast.jsonc", "mul.jsonc", "mul_int32.jsonc", diff --git a/js/web/test/test-main.ts b/js/web/test/test-main.ts index 2d83ce1e095ce..96e374f87aed1 100644 --- a/js/web/test/test-main.ts +++ b/js/web/test/test-main.ts @@ -19,49 +19,7 @@ if (ORT_WEB_TEST_CONFIG.model.some(testGroup => testGroup.tests.some(test => tes } // set flags -const options = ORT_WEB_TEST_CONFIG.options; -if (options.debug !== undefined) { - ort.env.debug = options.debug; -} -if (options.globalEnvFlags) { - const flags = options.globalEnvFlags; - if (flags.logLevel !== undefined) { - ort.env.logLevel = flags.logLevel; - } - if (flags.webgl?.contextId !== undefined) { - ort.env.webgl.contextId = flags.webgl.contextId; - } - if (flags.webgl?.matmulMaxBatchSize !== undefined) { - ort.env.webgl.matmulMaxBatchSize = flags.webgl.matmulMaxBatchSize; - } - if (flags.webgl?.textureCacheMode !== undefined) { - ort.env.webgl.textureCacheMode = flags.webgl.textureCacheMode; - } - if (flags.webgl?.pack !== undefined) { - ort.env.webgl.pack = flags.webgl.pack; - } - if (flags.webgl?.async !== undefined) { - ort.env.webgl.async = flags.webgl.async; - } - if (flags.wasm?.numThreads !== undefined) { - ort.env.wasm.numThreads = flags.wasm.numThreads; - } - if (flags.wasm?.simd !== undefined) { - ort.env.wasm.simd = flags.wasm.simd; - } - if (flags.wasm?.proxy !== undefined) { - ort.env.wasm.proxy = flags.wasm.proxy; - } - if (flags.wasm?.initTimeout !== undefined) { - ort.env.wasm.initTimeout = flags.wasm.initTimeout; - } - if (flags.webgpu?.profilingMode !== undefined) { - ort.env.webgpu.profiling = {mode: flags.webgpu.profilingMode}; - } - if (flags.webgpu?.validateInputContent !== undefined) { - ort.env.webgpu.validateInputContent = flags.webgpu.validateInputContent; - } -} +Object.assign(ort.env, ORT_WEB_TEST_CONFIG.options.globalEnvFlags); // Set logging configuration for (const logConfig of ORT_WEB_TEST_CONFIG.log) { diff --git a/js/web/test/test-runner.ts b/js/web/test/test-runner.ts index b01d474788f25..d8ee5ef953209 100644 --- a/js/web/test/test-runner.ts +++ b/js/web/test/test-runner.ts @@ -39,10 +39,6 @@ const ONNXRUNTIME_THRESHOLD_RELATIVE_ERROR = 1.00001; */ const now = (typeof performance !== 'undefined' && performance.now) ? () => performance.now() : Date.now; -function toInternalTensor(tensor: ort.Tensor): Tensor { - return new Tensor( - tensor.dims, tensor.type as Tensor.DataType, undefined, undefined, tensor.data as Tensor.NumberType); -} function fromInternalTensor(tensor: Tensor): ort.Tensor { return new ort.Tensor(tensor.type, tensor.data as ort.Tensor.DataType, tensor.dims); } @@ -163,7 +159,8 @@ async function initializeSession( if (preloadModelData) { session = await ort.InferenceSession.create(preloadModelData, sessionConfig); } else { - session = await ort.InferenceSession.create(modelFilePath, sessionConfig); + const modelData = await readFile(modelFilePath); + session = await ort.InferenceSession.create(modelData, sessionConfig); } } catch (e) { Logger.error( @@ -330,6 +327,10 @@ export class TensorResultValidator { } checkTensorResult(actual: Tensor[], expected: Tensor[]): void { + this.checkApiTensorResult(actual.map(fromInternalTensor), expected.map(fromInternalTensor)); + } + + checkApiTensorResult(actual: ort.Tensor[], expected: ort.Tensor[]): void { // check output size expect(actual.length, 'size of output tensors').to.equal(expected.length); @@ -347,10 +348,6 @@ export class TensorResultValidator { } } - checkApiTensorResult(actual: ort.Tensor[], expected: ort.Tensor[]): void { - this.checkTensorResult(actual.map(toInternalTensor), expected.map(toInternalTensor)); - } - checkNamedTensorResult(actual: Record, expected: Test.NamedTensor[]): void { // check output size expect(Object.getOwnPropertyNames(actual).length, 'size of output tensors').to.equal(expected.length); @@ -364,7 +361,7 @@ export class TensorResultValidator { } // This function check whether 2 tensors should be considered as 'match' or not - areEqual(actual: Tensor, expected: Tensor): boolean { + areEqual(actual: ort.Tensor, expected: ort.Tensor): boolean { if (!actual || !expected) { return false; } @@ -392,13 +389,13 @@ export class TensorResultValidator { switch (actualType) { case 'string': - return this.strictEqual(actual.stringData, expected.stringData); + return this.strictEqual(actual.data, expected.data); case 'float32': case 'float64': return this.floatEqual( - actual.numberData as number[] | Float32Array | Float64Array, - expected.numberData as number[] | Float32Array | Float64Array); + actual.data as number[] | Float32Array | Float64Array, + expected.data as number[] | Float32Array | Float64Array); case 'uint8': case 'int8': @@ -409,10 +406,8 @@ export class TensorResultValidator { case 'int64': case 'bool': return TensorResultValidator.integerEqual( - actual.numberData as number[] | Uint8Array | Int8Array | Uint16Array | Int16Array | Uint32Array | - Int32Array, - expected.numberData as number[] | Uint8Array | Int8Array | Uint16Array | Int16Array | Uint32Array | - Int32Array); + actual.data as number[] | Uint8Array | Int8Array | Uint16Array | Int16Array | Uint32Array | Int32Array, + expected.data as number[] | Uint8Array | Int8Array | Uint16Array | Int16Array | Uint32Array | Int32Array); default: throw new Error('type not implemented or not supported'); @@ -579,7 +574,9 @@ export async function sessionRun(options: { // replace the CPU tensors in feeds into GPU tensors for (const name in feeds) { if (Object.hasOwnProperty.call(feeds, name)) { - feeds[name] = createGpuTensorForInput(feeds[name]); + if (feeds[name].size > 0) { + feeds[name] = createGpuTensorForInput(feeds[name]); + } } } } @@ -588,7 +585,11 @@ export async function sessionRun(options: { for (const name in options.outputsMetaInfo) { if (Object.hasOwnProperty.call(options.outputsMetaInfo, name)) { const {type, dims} = options.outputsMetaInfo[name]; - fetches[name] = createGpuTensorForOutput(type, dims); + if (dims.some(d => d === 0)) { + fetches[name] = new ort.Tensor(type, [], dims); + } else { + fetches[name] = createGpuTensorForOutput(type, dims); + } } } } @@ -633,8 +634,8 @@ export async function runModelTestSet( try { const feeds: Record = {}; const outputsMetaInfo: Record = {}; - testCase.inputs!.forEach((tensor, i) => feeds[context.session.inputNames[i]] = tensor); - testCase.outputs!.forEach((tensor, i) => outputsMetaInfo[context.session.outputNames[i]] = tensor); + testCase.inputs!.forEach((tensor) => feeds[tensor.name] = tensor); + testCase.outputs!.forEach((tensor) => outputsMetaInfo[tensor.name] = tensor); const [start, end, outputs] = await sessionRun({session: context.session, feeds, outputsMetaInfo, ioBinding: context.ioBinding}); if (context.perfData.count === 0) { diff --git a/js/web/test/test-shared.ts b/js/web/test/test-shared.ts index 7c327e7c97ac4..55beb66e37e6e 100644 --- a/js/web/test/test-shared.ts +++ b/js/web/test/test-shared.ts @@ -15,14 +15,33 @@ export function bufferToBase64(buffer: Uint8Array): string { return base64.fromByteArray(buffer); } +async function retry(fn: () => Promise, maxRetries = 3, delay = 100): Promise { + let retries = maxRetries; + do { + try { + return await fn(); + } catch (err) { + if (retries-- === 0) { + throw err; + } + await new Promise(resolve => setTimeout(resolve, delay)); + } + // eslint-disable-next-line no-constant-condition + } while (true); +} + export async function readFile(file: string) { if (typeof process !== 'undefined' && process.versions && process.versions.node) { // node return fs.readFile(file); } else { // browser - const response = await fetch(file); - return new Uint8Array(await response.arrayBuffer()); + // + // use "retry" to workaround the error "TypeError: Failed to fetch" in some test environments + return retry(async () => { + const response = await fetch(file); + return new Uint8Array(await response.arrayBuffer()); + }); } } diff --git a/js/web/test/unittests/backends/webgl/test-conv-new.ts b/js/web/test/unittests/backends/webgl/test-conv-new.ts index 8c186b9b36451..014fc57f21558 100644 --- a/js/web/test/unittests/backends/webgl/test-conv-new.ts +++ b/js/web/test/unittests/backends/webgl/test-conv-new.ts @@ -893,7 +893,9 @@ describe('New Conv tests', () => { const expected = cpuConv( inputTensor, kernelTensor, biasTensor, testData.autoPad, testData.dilations, testData.pads, testData.strides); - if (!validator.areEqual(actual, expected)) { + try { + validator.checkTensorResult([actual], [expected]); + } catch { console.log(actual.dims, `[${actual.numberData.slice(0, 20).join(',')},...]`); console.log(expected.dims, `[${expected.numberData.slice(0, 20).join(',')},...]`); throw new Error('Expected and Actual did not match'); diff --git a/objectivec/ort_value.mm b/objectivec/ort_value.mm index b9dc1a9885c61..c61a7ea809237 100644 --- a/objectivec/ort_value.mm +++ b/objectivec/ort_value.mm @@ -148,6 +148,9 @@ - (nullable ORTValueTypeInfo*)typeInfoWithError:(NSError**)error { - (nullable ORTTensorTypeAndShapeInfo*)tensorTypeAndShapeInfoWithError:(NSError**)error { try { const auto tensorTypeAndShapeInfo = _typeInfo->GetTensorTypeAndShapeInfo(); + if (!tensorTypeAndShapeInfo) { + ORT_CXX_API_THROW("ORTValue is not a tensor.", ORT_RUNTIME_EXCEPTION); + } return CXXAPIToPublicTensorTypeAndShapeInfo(tensorTypeAndShapeInfo); } ORT_OBJC_API_IMPL_CATCH_RETURNING_NULLABLE(error) @@ -156,6 +159,9 @@ - (nullable ORTTensorTypeAndShapeInfo*)tensorTypeAndShapeInfoWithError:(NSError* - (nullable NSMutableData*)tensorDataWithError:(NSError**)error { try { const auto tensorTypeAndShapeInfo = _typeInfo->GetTensorTypeAndShapeInfo(); + if (!tensorTypeAndShapeInfo) { + ORT_CXX_API_THROW("ORTValue is not a tensor.", ORT_RUNTIME_EXCEPTION); + } if (tensorTypeAndShapeInfo.GetElementType() == ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING) { ORT_CXX_API_THROW( "This ORTValue holds string data. Please call tensorStringDataWithError: " @@ -182,6 +188,9 @@ - (nullable NSMutableData*)tensorDataWithError:(NSError**)error { - (nullable NSArray*)tensorStringDataWithError:(NSError**)error { try { const auto tensorTypeAndShapeInfo = _typeInfo->GetTensorTypeAndShapeInfo(); + if (!tensorTypeAndShapeInfo) { + ORT_CXX_API_THROW("ORTValue is not a tensor.", ORT_RUNTIME_EXCEPTION); + } const size_t elementCount = tensorTypeAndShapeInfo.GetElementCount(); const size_t tensorStringDataLength = _value->GetStringTensorDataLength(); std::vector tensorStringData(tensorStringDataLength, '\0'); diff --git a/onnxruntime/contrib_ops/cpu/activations.cc b/onnxruntime/contrib_ops/cpu/activations.cc index 556699192d2eb..3e0533dd8b9e5 100644 --- a/onnxruntime/contrib_ops/cpu/activations.cc +++ b/onnxruntime/contrib_ops/cpu/activations.cc @@ -2,7 +2,7 @@ // Licensed under the MIT License. #include "core/providers/cpu/activation/activations.h" -#include "activations.h" +#include "contrib_ops/cpu/activations.h" namespace onnxruntime { namespace contrib { @@ -26,14 +26,6 @@ ONNX_CPU_OPERATOR_VERSIONED_KERNEL( KernelDefBuilder().MayInplace(0, 0).TypeConstraint("T", DataTypeImpl::GetTensorType()), ThresholdedRelu); -ONNX_OPERATOR_KERNEL_EX( - Gelu, - kMSDomain, - 1, - kCpuExecutionProvider, - KernelDefBuilder().TypeConstraint("T", DataTypeImpl::GetTensorType()), - Gelu); - ONNX_OPERATOR_KERNEL_EX( QuickGelu, kMSDomain, diff --git a/onnxruntime/contrib_ops/cpu/activations.h b/onnxruntime/contrib_ops/cpu/activations.h index aed4c2229215d..7e64235d3fc3d 100644 --- a/onnxruntime/contrib_ops/cpu/activations.h +++ b/onnxruntime/contrib_ops/cpu/activations.h @@ -54,47 +54,6 @@ namespace contrib { DEFINE_ELE_KERNEL(ScaledTanh); DEFINE_ELE_KERNEL(ParametricSoftplus); -template -class Gelu : public OpKernel { - public: - Gelu(const OpKernelInfo& info) : OpKernel(info) { - } - - Status Compute(OpKernelContext* context) const override { - const Tensor* input = context->Input(0); - const T* input_data = input->Data(); - - Tensor* output = context->Output(0, input->Shape()); - T* output_data = output->MutableData(); - - concurrency::ThreadPool* tp = context->GetOperatorThreadPool(); - int64_t elem_count = input->Shape().Size(); - constexpr int64_t length_per_task = 4096; // this number comes from FastGelu. - int64_t task_count = (elem_count + length_per_task - 1) / length_per_task; - concurrency::ThreadPool::TryBatchParallelFor( - tp, static_cast(task_count), - [&](ptrdiff_t task_idx) { - const auto start = task_idx * length_per_task; - const T* p_input = input_data + start; - T* p_output = output_data + start; - int64_t count = std::min(length_per_task, elem_count - start); - - for (int64_t i = 0; i < count; i++) { - T value = p_input[i]; - p_output[i] = value * static_cast(M_SQRT1_2); - } - - MlasComputeErf(p_output, p_output, narrow(count)); - - for (int64_t i = 0; i < count; i++) { - p_output[i] = 0.5f * p_input[i] * (p_output[i] + 1.0f); - } - }, - 0); - return Status::OK(); - } -}; - // Implement a new one instead of inheriting from ElementWiseRangedTransform so that we can call // MlasComputeLogistic instead of using Eigen for better perf. template diff --git a/onnxruntime/contrib_ops/cpu/aten_ops/aten_op_executor.h b/onnxruntime/contrib_ops/cpu/aten_ops/aten_op_executor.h index d72868cd8fa9f..56c8e2911e280 100644 --- a/onnxruntime/contrib_ops/cpu/aten_ops/aten_op_executor.h +++ b/onnxruntime/contrib_ops/cpu/aten_ops/aten_op_executor.h @@ -10,7 +10,7 @@ namespace onnxruntime { namespace contrib { namespace aten_ops { -typedef bool (*IsCpuArgumentFunc)(const char* op_name, const char* overload_name, size_t index, bool is_input); +typedef bool (*IsTensorArgumentFunc)(const char* op_name, const char* overload_name, size_t index, bool is_input); typedef void (*ExecuteATenOperatorFunc)(const char* op_name, const char* overload_name, size_t input_size, DLManagedTensor** dlpack_inputs, size_t output_size, DLManagedTensor** dlpack_outputs); @@ -22,17 +22,17 @@ class ATenOperatorExecutor { return instance; } - void Initialize(void* p_is_cpu_argument_func_raw, void* p_execute_aten_op_func_raw) { - ORT_ENFORCE(p_is_cpu_argument_func_raw && p_execute_aten_op_func_raw); - p_is_cpu_argument_func_ = reinterpret_cast(p_is_cpu_argument_func_raw); + void Initialize(void* p_is_tensor_argument_func_raw, void* p_execute_aten_op_func_raw) { + ORT_ENFORCE(p_is_tensor_argument_func_raw && p_execute_aten_op_func_raw); + p_is_tensor_argument_func_ = reinterpret_cast(p_is_tensor_argument_func_raw); p_execute_aten_op_func_ = reinterpret_cast(p_execute_aten_op_func_raw); } bool IsInitialized() { return p_execute_aten_op_func_ != nullptr; } - bool IsCpuArgument(const std::string& op_name, const std::string& overload_name, size_t index, bool is_input) { - ORT_ENFORCE(p_is_cpu_argument_func_, "ATenOperatorExecutor is not initialized."); - return p_is_cpu_argument_func_(op_name.c_str(), overload_name.c_str(), index, is_input); + bool IsTensorArgument(const std::string& op_name, const std::string& overload_name, size_t index, bool is_input) { + ORT_ENFORCE(p_is_tensor_argument_func_, "ATenOperatorExecutor is not initialized."); + return p_is_tensor_argument_func_(op_name.c_str(), overload_name.c_str(), index, is_input); } void operator()(const std::string& op_name, const std::string& overload_name, size_t input_size, @@ -43,7 +43,7 @@ class ATenOperatorExecutor { } private: - IsCpuArgumentFunc p_is_cpu_argument_func_ = nullptr; + IsTensorArgumentFunc p_is_tensor_argument_func_ = nullptr; ExecuteATenOperatorFunc p_execute_aten_op_func_ = nullptr; }; diff --git a/onnxruntime/contrib_ops/cpu/bert/attention_common.h b/onnxruntime/contrib_ops/cpu/bert/attention_common.h index a34f41d2938c6..5a0c3af05c9da 100644 --- a/onnxruntime/contrib_ops/cpu/bert/attention_common.h +++ b/onnxruntime/contrib_ops/cpu/bert/attention_common.h @@ -98,6 +98,7 @@ struct GroupQueryAttentionParameters { int kv_hidden_size; int kv_num_heads; int num_splits; // number of splits for splitkv + int rotary_dim; // rotary embedding dimension bool is_unidirectional; // causal int local_window_size; bool kv_share_buffer; diff --git a/onnxruntime/contrib_ops/cpu/bert/attention_cpu_base.h b/onnxruntime/contrib_ops/cpu/bert/attention_cpu_base.h index b761b1afd8529..c617533319a18 100644 --- a/onnxruntime/contrib_ops/cpu/bert/attention_cpu_base.h +++ b/onnxruntime/contrib_ops/cpu/bert/attention_cpu_base.h @@ -140,17 +140,6 @@ class AttentionCPUBase : public AttentionBase { if (mask_data != nullptr) { PrepareMask(mask_index, mask_index_dims, mask_data, causal, batch_size, sequence_length, past_sequence_length, mask_filter_value_); - } else { // no any mask - const int memset_loop_len = batch_size * num_heads_; - const double memset_cost = static_cast(sequence_length) * total_sequence_length; - - ThreadPool::TryParallelFor(tp, memset_loop_len, memset_cost, [&](std::ptrdiff_t begin, std::ptrdiff_t end) { - for (std::ptrdiff_t i = begin; i != end; ++i) { - const int output_offset = static_cast(i) * sequence_length * total_sequence_length; - T* output = attention_probs + output_offset; - memset(output, 0, static_cast(sequence_length) * total_sequence_length * sizeof(T)); - } - }); } const int loop_len = batch_size * num_heads_; @@ -188,7 +177,7 @@ class AttentionCPUBase : public AttentionBase { // B: K' (B x N x) T x H (B x N x) H x T H x T // C: attention_probs (B x N x) S x T (B x N x) S x T S x T math::Gemm(CblasNoTrans, CblasTrans, sequence_length, total_sequence_length, head_size, alpha, - Q + q_input_chunk_length * i, k, 1.0, + Q + q_input_chunk_length * i, k, mask_data != nullptr ? 1.0f : 0.0f, output, nullptr); if (relative_position_bias_data != nullptr) { diff --git a/onnxruntime/contrib_ops/cpu/bert/multihead_attention.cc b/onnxruntime/contrib_ops/cpu/bert/multihead_attention.cc index eb25d0fd7cc1e..c4e4b4ec707fb 100644 --- a/onnxruntime/contrib_ops/cpu/bert/multihead_attention.cc +++ b/onnxruntime/contrib_ops/cpu/bert/multihead_attention.cc @@ -58,11 +58,12 @@ Status Reshape_BSD_to_BSNH(Tensor* qkv, // Transpose Q/K/V from BxSxNxH to BxNxSxH Status Transpose_BSNH_to_BNSH(const Tensor* qkv, - OrtValue& qkv_transposed) { + OrtValue& qkv_transposed, + concurrency::ThreadPool* tp = nullptr) { std::vector permutations({0, 2, 1, 3}); gsl::span permutations_span{permutations}; size_t from = 2, to = 1; - SingleAxisTranspose(permutations_span, *qkv, *qkv_transposed.GetMutable(), from, to); + SingleAxisTranspose(permutations_span, *qkv, *qkv_transposed.GetMutable(), from, to, nullptr, tp); return Status::OK(); } @@ -143,7 +144,8 @@ Status AddBiasTranspose(const Tensor* qkv, // Input: Q/K/V dat ORT_RETURN_IF_ERROR(Reshape_BSD_to_BSNH(qkv_with_bias.GetMutable(), batch_size, sequence_length, num_heads, head_size)); // Transpose Q from BxSxNxH to BxNxSxH - ORT_RETURN_IF_ERROR(Transpose_BSNH_to_BNSH(qkv_with_bias.GetMutable(), qkv_with_bias_transposed)); + auto tp = context->GetOperatorThreadPool(); + ORT_RETURN_IF_ERROR(Transpose_BSNH_to_BNSH(qkv_with_bias.GetMutable(), qkv_with_bias_transposed, tp)); return Status::OK(); } diff --git a/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits.cc b/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits.cc index 166f5c8f52f54..602dd98d8c0d6 100644 --- a/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits.cc +++ b/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits.cc @@ -1,6 +1,12 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. +#include "contrib_ops/cpu/quantization/matmul_nbits_impl.h" + +#include +#include + +#include "core/common/common.h" #include "core/common/narrow.h" #include "core/common/safeint.h" #include "core/framework/op_kernel.h" @@ -50,6 +56,17 @@ int64_t GetAccuracyLevel(size_t nbits, size_t block_size, int64_t accuracy_level } } // namespace +bool GetType(const NodeArg& node_arg, int32_t& type) { + type = ONNX_NAMESPACE::TensorProto_DataType_UNDEFINED; + const auto* type_proto = node_arg.TypeAsProto(); + if (!type_proto || !type_proto->has_tensor_type() || !type_proto->tensor_type().has_elem_type()) { + return false; + } + + type = type_proto->tensor_type().elem_type(); + return true; +} + class MatMulNBits final : public OpKernel { public: MatMulNBits(const OpKernelInfo& info) @@ -59,6 +76,17 @@ class MatMulNBits final : public OpKernel { block_size_{narrow(info.GetAttr("block_size"))}, nbits_{narrow(info.GetAttr("bits"))}, accuracy_level_{GetAccuracyLevel(nbits_, block_size_, info.GetAttr("accuracy_level"))} { + const auto& node = info.node(); + auto input_defs = node.InputDefs(); + // g_idx + if (input_defs.size() > 4) { + act_order_ = true; + } + int32_t type; + if (input_defs.size() > 3 && GetType(*input_defs[3], type)) { + zero_point_is_not_quant_ = type != ONNX_NAMESPACE::TensorProto_DataType_UINT8; + } + ORT_ENFORCE(nbits_ == 4, "Only 4b quantization is supported for MatMulNBits op, additional bits support is planned."); #ifdef ORT_NEURAL_SPEED @@ -88,6 +116,8 @@ class MatMulNBits final : public OpKernel { const size_t N_; const size_t block_size_; const size_t nbits_; + bool act_order_{false}; + bool zero_point_is_not_quant_{false}; const int64_t accuracy_level_; const bool column_wise_quant_{true}; IAllocatorUniquePtr packed_b_; @@ -105,7 +135,9 @@ Status MatMulNBits::PrePack(const Tensor& tensor, int input_idx, /*out*/ Allocat /*out*/ bool& is_packed, /*out*/ PrePackedWeights* prepacked_weights) { is_packed = false; - + if (act_order_ || zero_point_is_not_quant_) { + return Status::OK(); + } #if defined(ORT_NEURAL_SPEED) if (!all_constant_) { @@ -212,7 +244,6 @@ Status MatMulNBits::UseSharedPrePackedBuffers(std::vector& prep Status MatMulNBits::Compute(OpKernelContext* ctx) const { concurrency::ThreadPool* thread_pool = ctx->GetOperatorThreadPool(); - const Tensor* a = ctx->Input(0); const auto* a_data = a->Data(); @@ -257,11 +288,14 @@ Status MatMulNBits::Compute(OpKernelContext* ctx) const { #endif // defined(ORT_NEURAL_SPEED) const Tensor* scales = ctx->Input(2); - const Tensor* zero_points = ctx->Input(3); + const Tensor* zero_points = ctx->InputCount() > 3 ? ctx->Input(3) : nullptr; + const Tensor* reorder_idx = ctx->InputCount() > 4 ? ctx->Input(4) : nullptr; + const auto* scales_data = scales->Data(); - const auto* zero_points_data = zero_points == nullptr ? nullptr : zero_points->Data(); + const auto* zero_points_data = zero_points == nullptr ? nullptr : zero_points->DataRaw(); TensorShape b_shape({static_cast(N_), static_cast(K_)}); + const auto* reorder_idx_data = reorder_idx == nullptr ? nullptr : reorder_idx->Data(); MatMulComputeHelper helper; ORT_RETURN_IF_ERROR(helper.Compute(a->Shape(), b_shape, false, true)); @@ -281,8 +315,9 @@ Status MatMulNBits::Compute(OpKernelContext* ctx) const { const size_t K = static_cast(helper.K()); const size_t lda = helper.Lda(false); - const bool has_single_b_matrix = std::all_of(helper.RightOffsets().begin(), helper.RightOffsets().end(), - [](size_t offset) { return offset == 0; }); + const bool has_single_b_matrix = + (!act_order_) && (!zero_point_is_not_quant_) && + std::all_of(helper.RightOffsets().begin(), helper.RightOffsets().end(), [](size_t offset) { return offset == 0; }); if (has_single_b_matrix) { const auto compute_type = static_cast(accuracy_level_); @@ -328,22 +363,50 @@ Status MatMulNBits::Compute(OpKernelContext* ctx) const { const uint8_t* b_data = b->Data(); const size_t ldb = helper.Ldb(true); - AllocatorPtr allocator; ORT_RETURN_IF_ERROR(ctx->GetTempSpaceAllocator(&allocator)); auto tmp_b_data_ptr = IAllocator::MakeUniquePtr(allocator, SafeInt(K_) * N_); - // dequantize b, only 4b quantization is supported for now - MlasDequantizeBlockwise( - tmp_b_data_ptr.get(), // dequantized output - b_data, // quantized input - scales_data, // quantization scales - zero_points_data, // quantization zero points - static_cast(block_size_), // quantization block size - column_wise_quant_, // columnwise quantization or row-wise - static_cast(K_), // number of rows in quantized input - static_cast(N_), // number of columns in quantized input - thread_pool); - + if ((reorder_idx_data == nullptr) && (!zero_points || !zero_points->IsDataType())) { + // dequantize b, only 4b quantization is supported for now + MlasDequantizeBlockwise( + tmp_b_data_ptr.get(), // dequantized output + b_data, // quantized input + scales_data, // quantization scales + static_cast(zero_points_data), // quantization zero points + static_cast(block_size_), // quantization block size + column_wise_quant_, // columnwise quantization or row-wise + static_cast(K_), // number of rows in quantized input + static_cast(N_), // number of columns in quantized input + thread_pool); + } else { + ORT_ENFORCE(column_wise_quant_, "Row-wise quantization is not supported for now"); + // !!!!!!!!!!!!!! naive implementation, need to be optimized !!!!!!!!!!!!!! + if ((zero_points && zero_points->IsDataType())) { + DequantizeBlockwise( + tmp_b_data_ptr.get(), // dequantized output + b_data, // quantized input + scales_data, // quantization scales + static_cast(zero_points_data), // quantization zero points + reorder_idx_data, + static_cast(block_size_), // quantization block size + column_wise_quant_, // columnwise quantization or row-wise + static_cast(K_), // number of rows in quantized input + static_cast(N_), // number of columns in quantized input + thread_pool); + } else { + DequantizeBlockwise( + tmp_b_data_ptr.get(), // dequantized output + b_data, // quantized input + scales_data, // quantization scales + static_cast(zero_points_data), // quantization zero points + reorder_idx_data, + static_cast(block_size_), // quantization block size + column_wise_quant_, // columnwise quantization or row-wise + static_cast(K_), // number of rows in quantized input + static_cast(N_), // number of columns in quantized input + thread_pool); + } + } #if 0 // for debug auto tm_b_data_ptr_trans = IAllocator::MakeUniquePtr(allocator, SafeInt(K_) * N_); MlasTranspose(tmp_b_data_ptr.get(), tm_b_data_ptr_trans.get(), N_, K_); @@ -374,7 +437,9 @@ ONNX_OPERATOR_KERNEL_EX( kCpuExecutionProvider, KernelDefBuilder() .TypeConstraint("T1", DataTypeImpl::GetTensorType()) - .TypeConstraint("T2", DataTypeImpl::GetTensorType()), + .TypeConstraint("T2", DataTypeImpl::GetTensorType()) + .TypeConstraint("T3", {DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType()}) + .TypeConstraint("T4", DataTypeImpl::GetTensorType()), MatMulNBits); } // namespace contrib diff --git a/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits_impl.cc b/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits_impl.cc new file mode 100644 index 0000000000000..7e343d85f4048 --- /dev/null +++ b/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits_impl.cc @@ -0,0 +1,109 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. +#include "contrib_ops/cpu/quantization/matmul_nbits_impl.h" + +#include +#include +#include +#include +#include + +#include "core/common/common.h" +#include "core/framework/float16.h" +#include "core/providers/common.h" +#include "core/platform/threadpool.h" + +namespace onnxruntime { +namespace contrib { + +template +void Dequantize4BitsKernelReOrder( + T* output, const uint8_t* quant_data, const T* scale_data, + const zeroT* zero_points, const int32_t* reorder_idx, int block_size, + int groups_per_threadblock, int total_groups, int out_rows, int out_cols, + int blockIdx_x, int threadIdx_x) { + const int group_id = blockIdx_x * groups_per_threadblock + ((threadIdx_x * 8) / block_size); + if (group_id >= total_groups) { + return; + } + const int scales_shape_x = (out_cols + block_size - 1) / block_size; + const int zero_point_shape_x = (scales_shape_x + 1) / 2; + + int n_idx = group_id / scales_shape_x; + int kb_idx = group_id % scales_shape_x; + int element_offset = group_id * block_size + ((threadIdx_x * 8) & (block_size - 1)); + + const int out_x = element_offset % (scales_shape_x * block_size); + const int out_y = element_offset / (scales_shape_x * block_size); + if (out_y >= out_rows || out_x >= out_cols) { + return; + } + T* output_i = output + out_y * out_cols + out_x; + uint32_t quant_value = *(reinterpret_cast(quant_data + element_offset / 2)); + const int remain_x = std::min(8, out_cols - out_x); + const int32_t* reorder_idx_with_off = reorder_idx + kb_idx * block_size + ((threadIdx_x * 8) & (block_size - 1)); + for (int i = 0; i < remain_x; i++) { + int32_t rid = reorder_idx ? reorder_idx_with_off[i] : kb_idx; + T scale = *(scale_data + n_idx * scales_shape_x + rid); + float zp_f = 8; + if (zero_points) { + if constexpr (std::is_same_v) { + zp_f = *(zero_points + n_idx * scales_shape_x + rid); + } else { + uint8_t zp = 8; + zp = zero_points[n_idx * zero_point_shape_x + rid / 2]; + zp = (rid & 0x01) ? (zp >> 4) : (zp & 0x0f); + } + } + + if constexpr (std::is_same_v) { + T zp_adjust = -scale * MLFloat16(zp_f); + output_i[i] = static_cast((quant_value >> (4 * i)) & 0xF) * scale + zp_adjust; + } else { + T zp_adjust = -scale * zp_f; + output_i[i] = T((quant_value >> (4 * i)) & 0xF) * scale + zp_adjust; + } + } +} + +template +void DequantizeBlockwise( + inputT* output, // dequantized output + const uint8_t* quant_data, // quantized input + const inputT* scales_data, // quantization scales + const zeroT* zero_points, // quantization zero points + const int32_t* reorder_idx, // reorder_idx for groupwise quantization + int32_t block_size, // quantization block size + bool, // columnwise quantization or row-wise + int32_t K, // number of rows in quantized input + int32_t N, // number of columns in quantized input + onnxruntime::concurrency::ThreadPool* pool) { + auto ceildiv = [](int a, int b) { return (a + b - 1) / b; }; + constexpr int element_per_thread = 8; + int groups_per_threadblock = 256 * element_per_thread / block_size; + int groups_per_K = ceildiv(K, block_size); + int total_groups = N * groups_per_K; // total elemenets in quant_data + int blocks_per_grid = static_cast(ceildiv(total_groups, groups_per_threadblock)); + concurrency::ThreadPool::TrySimpleParallelFor( + pool, static_cast(blocks_per_grid), + [&](std::ptrdiff_t block_id) { + for (int j = 0; j < 256; j++) { + Dequantize4BitsKernelReOrder(output, quant_data, scales_data, zero_points, + reorder_idx, block_size, groups_per_threadblock, + total_groups, N, K, static_cast(block_id), j); + } + }); +} + +template void DequantizeBlockwise( + float* output, const uint8_t* quant_data, const float* scales_data, + const uint8_t* zero_points, const int32_t* reorder_idx, int32_t block_size, + bool columnwise, int32_t K, int32_t N, onnxruntime::concurrency::ThreadPool* thread_pool); + +template void DequantizeBlockwise( + float* output, const uint8_t* quant_data, const float* scales_data, + const float* zero_points, const int32_t* reorder_idx, int32_t block_size, + bool columnwise, int32_t K, int32_t N, onnxruntime::concurrency::ThreadPool* thread_pool); + +} // namespace contrib +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits_impl.h b/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits_impl.h new file mode 100644 index 0000000000000..5061ac5c800a6 --- /dev/null +++ b/onnxruntime/contrib_ops/cpu/quantization/matmul_nbits_impl.h @@ -0,0 +1,23 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. +#include "core/providers/common.h" +#include "core/platform/threadpool.h" + +namespace onnxruntime { +namespace contrib { + +template +void DequantizeBlockwise( + inputT* output, // dequantized output + const uint8_t* quant_data, // quantized input + const inputT* scales_data, // quantization scales + const zeroT* zero_points, // quantization zero points + const int32_t* reorder_idx, // quantization zero points + int32_t block_size, // quantization block size + bool, // columnwise quantization or row-wise + int32_t K, // number of rows in quantized input + int32_t N, // number of columns in quantized input + onnxruntime::concurrency::ThreadPool* thread_pool); + +} // namespace contrib +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/cpu/quantization/neural_speed_wrapper.h b/onnxruntime/contrib_ops/cpu/quantization/neural_speed_wrapper.h index d3902f9bd68c7..e7df50408ef09 100644 --- a/onnxruntime/contrib_ops/cpu/quantization/neural_speed_wrapper.h +++ b/onnxruntime/contrib_ops/cpu/quantization/neural_speed_wrapper.h @@ -27,6 +27,7 @@ #pragma warning(disable : 4244) #pragma warning(disable : 4267) #pragma warning(disable : 4702) +#pragma warning(disable : 4127) #endif #include "bestla/bestla_prologue_a.h" diff --git a/onnxruntime/contrib_ops/cpu/transformers/beam_search_impl_whisper.h b/onnxruntime/contrib_ops/cpu/transformers/beam_search_impl_whisper.h index 72e6d3930a548..af0904b7d6e4b 100644 --- a/onnxruntime/contrib_ops/cpu/transformers/beam_search_impl_whisper.h +++ b/onnxruntime/contrib_ops/cpu/transformers/beam_search_impl_whisper.h @@ -134,8 +134,8 @@ Status BeamSearchWhisper::Execute(const FeedsFetchesManager& encoder_feeds_fe TensorShape no_speech_probs_shape{parameters->batch_size}; Tensor* no_speech_probs = this->context_.Output(parameters->no_speech_probs_output_id, no_speech_probs_shape); if (no_speech_probs && no_speech_probs->MutableData()) { - ORT_ENFORCE(parameters->no_speech_token >= 0 && parameters->no_speech_token < parameters->vocab_size, - "no_speech_token id out of range, it is ", parameters->no_speech_token, + ORT_ENFORCE(parameters->no_speech_token_id >= 0 && parameters->no_speech_token_id < parameters->vocab_size, + "no_speech_token_id is out of range, it is ", parameters->no_speech_token_id, ", vocab_size is ", parameters->vocab_size); this->parameters_->no_speech_probs = (void*)no_speech_probs->MutableData(); } diff --git a/onnxruntime/contrib_ops/cpu/transformers/beam_search_parameters.cc b/onnxruntime/contrib_ops/cpu/transformers/beam_search_parameters.cc index bb6885c3216bc..93837e785b4a4 100644 --- a/onnxruntime/contrib_ops/cpu/transformers/beam_search_parameters.cc +++ b/onnxruntime/contrib_ops/cpu/transformers/beam_search_parameters.cc @@ -153,7 +153,13 @@ void WhisperBeamSearchParameters::ParseFromAttributes(const OpKernelInfo& info) model_type = static_cast(info.GetAttrOrDefault("model_type", IGenerationParameters::kModelTypeWhisper)); ORT_ENFORCE(model_type == IGenerationParameters::kModelTypeWhisper); - no_speech_token = static_cast(info.GetAttrOrDefault("no_speech_token", -1LL)); + // Token ids are defined below in the order that they appear in the tokenizer + translate_token_id = static_cast(info.GetAttrOrDefault("translate_token_id", -1LL)); + transcribe_token_id = static_cast(info.GetAttrOrDefault("transcribe_token_id", -1LL)); + start_of_lm_token_id = static_cast(info.GetAttrOrDefault("start_of_lm_token_id", -1LL)); + no_speech_token_id = static_cast(info.GetAttrOrDefault("no_speech_token_id", -1LL)); + no_timestamps_token_id = static_cast(info.GetAttrOrDefault("no_timestamps_token_id", -1LL)); + beginning_timestamp_token_id = static_cast(info.GetAttrOrDefault("beginning_timestamp_token_id", -1LL)); cross_qk_layer_head_input_id = 12; extra_decoding_ids_input_id = 13; cross_qk_output_id = 3; diff --git a/onnxruntime/contrib_ops/cpu/transformers/generation_shared.h b/onnxruntime/contrib_ops/cpu/transformers/generation_shared.h index cb62e2f7bf4da..b1dd55eb20f34 100644 --- a/onnxruntime/contrib_ops/cpu/transformers/generation_shared.h +++ b/onnxruntime/contrib_ops/cpu/transformers/generation_shared.h @@ -183,7 +183,14 @@ struct IGenerationParameters { // Parameters for whisper model bool decoder_output_cross_qk = false; gsl::span extra_decoding_ids; - int32_t no_speech_token = -1; + + // Token ids are defined below in the order that they appear in the tokenizer + int32_t translate_token_id = -1; + int32_t transcribe_token_id = -1; + int32_t start_of_lm_token_id = -1; + int32_t no_speech_token_id = -1; + int32_t no_timestamps_token_id = -1; + int32_t beginning_timestamp_token_id = -1; void* no_speech_probs = nullptr; int cross_qk_layer_head_input_id = -1; diff --git a/onnxruntime/contrib_ops/cpu/transformers/logits_processor.h b/onnxruntime/contrib_ops/cpu/transformers/logits_processor.h index 03d4e89ac20fe..231eb17d1a947 100644 --- a/onnxruntime/contrib_ops/cpu/transformers/logits_processor.h +++ b/onnxruntime/contrib_ops/cpu/transformers/logits_processor.h @@ -10,6 +10,7 @@ #include "contrib_ops/cpu/transformers/greedy_search_parameters.h" #include "contrib_ops/cpu/transformers/sampling_parameters.h" #include "contrib_ops/cpu/transformers/generation_shared.h" +#include namespace onnxruntime { namespace contrib { @@ -34,6 +35,14 @@ struct NextTokenScores { } }; +#ifdef DEBUG_GENERATION +template +void DumpScores(const char* name, const NextTokenScores& next_token_scores) { + std::cout << name << std::endl; + ORT_UNUSED_PARAMETER(next_token_scores); +} +#endif + // Interface for all scorers for beam search or beam sample. template class ILogitsProcessor { @@ -150,19 +159,25 @@ class PresencePenaltyLogitsProcessor : public ILogitsProcessor { template class TimestampLogitsProcessor : public ILogitsProcessor { public: - TimestampLogitsProcessor(int eos_token_id, int max_initial_timestamp_index) - : eos_token_id_(eos_token_id), max_initial_timestamp_index_(max_initial_timestamp_index) {} + TimestampLogitsProcessor(int end_of_text_token_id, // <|endoftext|> + int start_of_transcript_token_id, // <|startoftranscript|> + int translate_token_id, // <|translate|> + int transcribe_token_id, // <|transcribe|> + int start_of_lm_token_id, // <|startoflm|> + int no_timestamps_token_id, // <|notimestamps|> + int beginning_timestamp_token_id, // <|0.00|> + int max_initial_timestamp_index) + : end_of_text_token_id_(end_of_text_token_id), + start_of_transcript_token_id_(start_of_transcript_token_id), + translate_token_id_(translate_token_id), + transcribe_token_id_(transcribe_token_id), + start_of_lm_token_id_(start_of_lm_token_id), + no_timestamps_token_id_(no_timestamps_token_id), + beginning_timestamp_token_id_(beginning_timestamp_token_id), + max_initial_timestamp_index_(max_initial_timestamp_index) {} void Process(const ISequences* sequences, NextTokenScores& next_token_scores) override { - // TODO: translate_token_id_ and transcribe_token_id_ need to support both multilingual and English-only models. - const int beg_token_id_ = eos_token_id_ + 107; - const int not_token_id_ = eos_token_id_ + 106; - const int solm_token_id_ = eos_token_id_ + 105; - const int sot_token_id_ = eos_token_id_ + 1; - constexpr int translate_token_id_ = 50358; - constexpr int transcribe_token_id_ = 50359; - const int batch_beam_size = next_token_scores.batch_beam_size; const int vocab_size = next_token_scores.vocab_size; for (int i = 0; i < batch_beam_size; i++) { @@ -174,7 +189,7 @@ class TimestampLogitsProcessor : public ILogitsProcessor { size_t sample_begin = 0; for (size_t j = 0; j < seq_length; j++) { sample_begin++; - if (sequence[j] >= beg_token_id_) { + if (sequence[j] >= beginning_timestamp_token_id_) { break; } } @@ -182,30 +197,30 @@ class TimestampLogitsProcessor : public ILogitsProcessor { // Suppress tokens for (int j = 0; j < vocab_size; j++) { // Suppress notimestamps and solm tokens - if (j == not_token_id_ || j == solm_token_id_) { + if (j == no_timestamps_token_id_ || j == start_of_lm_token_id_) { beam_token_scores[j] = std::numeric_limits::lowest(); } // Suppress sot, translate and transcribe tokens if (seq_length > sample_begin) { - if (j == sot_token_id_ || j == translate_token_id_ || j == transcribe_token_id_) { + if (j == start_of_transcript_token_id_ || j == translate_token_id_ || j == transcribe_token_id_) { beam_token_scores[j] = std::numeric_limits::lowest(); } } } // Timestamps should be in pair except the first one - const bool last_was_timestamp = seq_length > 0 && sequence.back() >= beg_token_id_; - const bool penultimate_was_timestamp = seq_length <= sample_begin || sequence[seq_length - 2] >= beg_token_id_; + const bool last_was_timestamp = seq_length > 0 && sequence.back() >= beginning_timestamp_token_id_; + const bool penultimate_was_timestamp = seq_length <= sample_begin || sequence[seq_length - 2] >= beginning_timestamp_token_id_; if (last_was_timestamp) { if (penultimate_was_timestamp) { // If timestamps show up in pair, or it's the first timestamp, no more timestamp is generated - for (int j = beg_token_id_; j < vocab_size; j++) { + for (int j = beginning_timestamp_token_id_; j < vocab_size; j++) { beam_token_scores[j] = std::numeric_limits::lowest(); } } else { // If timestamp doesn't show up in pair, generate timestamp - for (int j = 0; j < eos_token_id_; j++) { + for (int j = 0; j < end_of_text_token_id_; j++) { beam_token_scores[j] = std::numeric_limits::lowest(); } } @@ -214,7 +229,7 @@ class TimestampLogitsProcessor : public ILogitsProcessor { // Find timestamp tokens std::vector timestamps; for (const auto& word_id : sequence) { - if (word_id >= beg_token_id_) { + if (word_id >= beginning_timestamp_token_id_) { timestamps.push_back(word_id); } } @@ -231,13 +246,13 @@ class TimestampLogitsProcessor : public ILogitsProcessor { timestamp_last = timestamps.back() + 1; } - for (int j = beg_token_id_; j < timestamp_last; j++) { + for (int j = beginning_timestamp_token_id_; j < timestamp_last; j++) { beam_token_scores[j] = std::numeric_limits::lowest(); } } if (seq_length == sample_begin) { - const int last_allowed = beg_token_id_ + max_initial_timestamp_index_; + const int last_allowed = beginning_timestamp_token_id_ + max_initial_timestamp_index_; for (int j = last_allowed + 1; j < vocab_size; j++) { beam_token_scores[j] = std::numeric_limits::lowest(); } @@ -247,8 +262,8 @@ class TimestampLogitsProcessor : public ILogitsProcessor { float timestamp_logprob = std::numeric_limits::lowest(); { float logsumexp = 0.0f; - const float logprob_max = *std::max_element(beam_token_scores.begin() + beg_token_id_, beam_token_scores.end()); - for (int j = beg_token_id_; j < vocab_size; ++j) { + const float logprob_max = *std::max_element(beam_token_scores.begin() + beginning_timestamp_token_id_, beam_token_scores.end()); + for (int j = beginning_timestamp_token_id_; j < vocab_size; ++j) { if (beam_token_scores[j] > std::numeric_limits::lowest()) { logsumexp += expf(beam_token_scores[j] - logprob_max); } @@ -258,9 +273,9 @@ class TimestampLogitsProcessor : public ILogitsProcessor { } } - const float max_text_token_logprob = *std::max_element(beam_token_scores.begin(), beam_token_scores.begin() + beg_token_id_); + const float max_text_token_logprob = *std::max_element(beam_token_scores.begin(), beam_token_scores.begin() + beginning_timestamp_token_id_); if (timestamp_logprob > max_text_token_logprob) { - for (int j = 0; j < beg_token_id_; ++j) { + for (int j = 0; j < beginning_timestamp_token_id_; ++j) { beam_token_scores[j] = std::numeric_limits::lowest(); } } @@ -268,7 +283,13 @@ class TimestampLogitsProcessor : public ILogitsProcessor { } private: - int eos_token_id_; + int end_of_text_token_id_; + int start_of_transcript_token_id_; + int translate_token_id_; + int transcribe_token_id_; + int start_of_lm_token_id_; + int no_timestamps_token_id_; + int beginning_timestamp_token_id_; int max_initial_timestamp_index_; }; @@ -330,7 +351,15 @@ class LogitsProcessorList : public ILogitsProcessorList { // Add timestamp processor for whisper model if (parameters.model_type == IGenerationParameters::kModelTypeWhisper && parameters.logits_processor == IGenerationParameters::kLogitsProcessorTypeWhisper) { constexpr int max_initial_timestamp_index = 50; - timestamp_processor_ = std::make_unique>(parameters.eos_token_id, max_initial_timestamp_index); + // Token ids are passed below in the order that they appear in the tokenizer + timestamp_processor_ = std::make_unique>(parameters.eos_token_id, + parameters.decoder_start_token_id, + parameters.translate_token_id, + parameters.transcribe_token_id, + parameters.start_of_lm_token_id, + parameters.no_timestamps_token_id, + parameters.beginning_timestamp_token_id, + max_initial_timestamp_index); processor_list_.push_back(timestamp_processor_.get()); } diff --git a/onnxruntime/contrib_ops/cuda/activation/activations.cc b/onnxruntime/contrib_ops/cuda/activation/activations.cc index 1a86c5dbece5a..6303858b9bd48 100644 --- a/onnxruntime/contrib_ops/cuda/activation/activations.cc +++ b/onnxruntime/contrib_ops/cuda/activation/activations.cc @@ -49,7 +49,6 @@ namespace cuda { UNARY_ACTIVATION_OP_HFD(Affine, 1, kOnnxDomain); UNARY_ACTIVATION_OP_HFD(ParametricSoftplus, 1, kOnnxDomain); UNARY_ACTIVATION_OP_HFD(ScaledTanh, 1, kOnnxDomain); -UNARY_ACTIVATION_OP_HFD(Gelu, 1, kMSDomain); UNARY_ACTIVATION_OP_HFD(QuickGelu, 1, kMSDomain); REGISTER_ACTIVATION_KERNEL(ThresholdedRelu, 1, kOnnxDomain, MLFloat16) diff --git a/onnxruntime/contrib_ops/cuda/activation/activations.h b/onnxruntime/contrib_ops/cuda/activation/activations.h index ab339f276c2bd..fc9a71b0b7fa1 100644 --- a/onnxruntime/contrib_ops/cuda/activation/activations.h +++ b/onnxruntime/contrib_ops/cuda/activation/activations.h @@ -66,17 +66,6 @@ class ScaledTanh final : public UnaryElementwise { float beta_; }; -template -class Gelu final : public UnaryElementwise { - public: - Gelu(const OpKernelInfo& info) : UnaryElementwise(info) {} - - Status ComputeInternal(OpKernelContext* context) const override; - - private: - MAKE_FUNC_CTX_NULL() -}; - template class QuickGelu final : public UnaryElementwise { public: diff --git a/onnxruntime/contrib_ops/cuda/activation/activations_impl.cu b/onnxruntime/contrib_ops/cuda/activation/activations_impl.cu index 0c856815fd437..36f33fbb24c18 100644 --- a/onnxruntime/contrib_ops/cuda/activation/activations_impl.cu +++ b/onnxruntime/contrib_ops/cuda/activation/activations_impl.cu @@ -36,20 +36,6 @@ struct OP_ScaledTanh : public CtxScaledTanh { } }; -template -struct OP_Gelu : public CtxGelu { - __device__ __inline__ T operator()(const T& a) const { - return _Gelu(a); - } -}; - -template <> -struct OP_Gelu : public CtxGelu { - __device__ __inline__ half operator()(const half& a) const { - return static_cast(_Gelu(static_cast(a))); - } -}; - template struct OP_QuickGelu : public CtxQuickGelu { __device__ __inline__ T operator()(const T& a) const { diff --git a/onnxruntime/contrib_ops/cuda/activation/activations_impl.h b/onnxruntime/contrib_ops/cuda/activation/activations_impl.h index 5d18283a395e3..782d4bf59a5ad 100644 --- a/onnxruntime/contrib_ops/cuda/activation/activations_impl.h +++ b/onnxruntime/contrib_ops/cuda/activation/activations_impl.h @@ -11,14 +11,12 @@ namespace cuda { typedef onnxruntime::cuda::CtxAlphaBeta CtxAffine; typedef onnxruntime::cuda::CtxAlphaBeta CtxParametricSoftplus; typedef onnxruntime::cuda::CtxAlphaBeta CtxScaledTanh; -typedef onnxruntime::cuda::CtxNull CtxGelu; typedef onnxruntime::cuda::CtxAlpha CtxQuickGelu; #define UNARY_CONTRIB_ACTIVATION_OPS() \ UNARY_ACTIVATION_OP_NAME(ScaledTanh) \ UNARY_ACTIVATION_OP_NAME(Affine) \ UNARY_ACTIVATION_OP_NAME(ParametricSoftplus) \ - UNARY_ACTIVATION_OP_NAME(Gelu) \ UNARY_ACTIVATION_OP_NAME(QuickGelu) #define UNARY_ACTIVATION_OP_NAME(name) UNARY_ACTIVATION_IMPL_DECLARATION(name); diff --git a/onnxruntime/contrib_ops/cuda/bert/add_bias_transpose.cu b/onnxruntime/contrib_ops/cuda/bert/add_bias_transpose.cu index 1ea2540db486f..9e6752b451868 100644 --- a/onnxruntime/contrib_ops/cuda/bert/add_bias_transpose.cu +++ b/onnxruntime/contrib_ops/cuda/bert/add_bias_transpose.cu @@ -843,11 +843,11 @@ void InvokeAddBiasTransposeTrt( template <> void LaunchAddBiasTransposeTrt( - cudaStream_t stream, const int max_threads_per_block, - const int batch_size, const int sequence_length, - const int num_heads, const int head_size, - const float* biases, const float* query, const float* key, const float* value, float* output, - bool is_cross_attention, int kv_sequence_length) { + cudaStream_t /*stream*/, const int /*max_threads_per_block*/, + const int /*batch_size*/, const int /*sequence_length*/, + const int /*num_heads*/, const int /*head_size*/, + const float* /*biases*/, const float* /*query*/, const float* /*key*/, const float* /*value*/, float* /*output*/, + bool /*is_cross_attention*/, int /*kv_sequence_length*/) { ORT_ENFORCE(false, "Shall not call this since fused kernel does not support float input."); } diff --git a/onnxruntime/contrib_ops/cuda/bert/attention_impl.cu b/onnxruntime/contrib_ops/cuda/bert/attention_impl.cu index c20f42c4d06bc..a93fdf74dc28c 100644 --- a/onnxruntime/contrib_ops/cuda/bert/attention_impl.cu +++ b/onnxruntime/contrib_ops/cuda/bert/attention_impl.cu @@ -58,12 +58,12 @@ size_t AlignSize(size_t bytes) { return bytesAligned; } -void CumulatedSequenceLengthCache::Initialize(int32_t sequence_length, cudaStream_t stream) { - if (this->sequence_length != sequence_length) { +void CumulatedSequenceLengthCache::Initialize(int32_t seq_length, cudaStream_t stream) { + if (this->sequence_length != seq_length) { ORT_ENFORCE(buffer.get() != nullptr && this->max_batch_size > 0); LaunchTrtSequenceOffset(reinterpret_cast(buffer.get()), nullptr, - this->max_batch_size, sequence_length, stream); - this->sequence_length = sequence_length; + this->max_batch_size, seq_length, stream); + this->sequence_length = seq_length; } } @@ -213,9 +213,9 @@ Status FusedTrtCrossAttention( template <> Status FusedTrtCrossAttention( - cudaStream_t stream, - contrib::AttentionParameters& parameters, - AttentionData& data) { + cudaStream_t /*stream*/, + contrib::AttentionParameters& /*parameters*/, + AttentionData& /*data*/) { return ORT_MAKE_STATUS(ONNXRUNTIME, StatusCode::NOT_IMPLEMENTED, "Trt fused cross attention does not support float tensor"); } @@ -276,9 +276,9 @@ Status FusedTrtSelfAttention( // Template Specialization for float type template <> Status FusedTrtSelfAttention( - cudaStream_t stream, - contrib::AttentionParameters& parameters, - AttentionData& data) { + cudaStream_t /*stream*/, + contrib::AttentionParameters& /*parameters*/, + AttentionData& /*data*/) { return ORT_MAKE_STATUS(ONNXRUNTIME, StatusCode::NOT_IMPLEMENTED, "Trt fused attention does not support float tensor"); } diff --git a/onnxruntime/contrib_ops/cuda/bert/attention_prepare_qkv.cu b/onnxruntime/contrib_ops/cuda/bert/attention_prepare_qkv.cu index a513d9e8d2211..b843966d88e85 100644 --- a/onnxruntime/contrib_ops/cuda/bert/attention_prepare_qkv.cu +++ b/onnxruntime/contrib_ops/cuda/bert/attention_prepare_qkv.cu @@ -231,7 +231,7 @@ Status PrepareQkv_MHA_PackedQKV(contrib::AttentionParameters& parameters, AttentionData& data, cudaStream_t stream, int max_threads_per_block, - T* q, T* k, T* v, AttentionQkvFormat& qkv_format) { + T* /*q*/, T* /*k*/, T* /*v*/, AttentionQkvFormat& qkv_format) { const int batch_size = parameters.batch_size; const int sequence_length = parameters.sequence_length; const int num_heads = parameters.num_heads; @@ -279,7 +279,7 @@ Status PrepareQkv_MHA_PackedKV(contrib::AttentionParameters& parameters, AttentionData& data, cudaStream_t stream, int max_threads_per_block, - T* q, T* k, T* v, AttentionQkvFormat& qkv_format) { + T* /*q*/, T* k, T* /*v*/, AttentionQkvFormat& qkv_format) { const int batch_size = parameters.batch_size; const int kv_sequence_length = parameters.kv_sequence_length; const int num_heads = parameters.num_heads; diff --git a/onnxruntime/contrib_ops/cuda/bert/cutlass_fmha/fmha_launch_template.h b/onnxruntime/contrib_ops/cuda/bert/cutlass_fmha/fmha_launch_template.h index db78722cc0e4c..c12cb374d9adf 100644 --- a/onnxruntime/contrib_ops/cuda/bert/cutlass_fmha/fmha_launch_template.h +++ b/onnxruntime/contrib_ops/cuda/bert/cutlass_fmha/fmha_launch_template.h @@ -242,18 +242,18 @@ void DispatchIsAligned(const MemoryEfficientAttentionParams& params) { using AlignedAK = AttentionKernel; #if defined(_MSC_VER) && !defined(__clang__) #pragma warning(push) -#pragma warning(disable : 6287) +#pragma warning(disable : 6287 4189) // kAligned is used via capture so 4189 warning seems incorrect #endif // Run a more efficient kernel with `isAligned=True` when memory is correctly aligned. bool is_aligned = params.qk_head_size % AlignedAK::kAlignmentQ == 0 && params.qk_head_size % AlignedAK::kAlignmentK == 0 && params.v_head_size % AlignedAK::kAlignmentV == 0; -#if defined(_MSC_VER) && !defined(__clang__) -#pragma warning(pop) -#endif DISPATCH_BOOL(is_aligned, kIsAligned, ([&]() { LaunchCutlassFmha(params); })); +#if defined(_MSC_VER) && !defined(__clang__) +#pragma warning(pop) +#endif } template diff --git a/onnxruntime/contrib_ops/cuda/bert/decoder_attention_impl.cu b/onnxruntime/contrib_ops/cuda/bert/decoder_attention_impl.cu index e24d9da94c964..c0b1996789183 100644 --- a/onnxruntime/contrib_ops/cuda/bert/decoder_attention_impl.cu +++ b/onnxruntime/contrib_ops/cuda/bert/decoder_attention_impl.cu @@ -17,7 +17,7 @@ Status DecoderQkvToContext( const cudaDeviceProp& device_prop, Stream* ort_stream, cublasHandle_t& cublas, - const size_t element_size, + const size_t /*element_size*/, const int batch_size, const int sequence_length, const int kv_sequence_length, diff --git a/onnxruntime/contrib_ops/cuda/bert/fast_gelu.cc b/onnxruntime/contrib_ops/cuda/bert/fast_gelu.cc index 892f5c181a607..8b8e4e267f895 100644 --- a/onnxruntime/contrib_ops/cuda/bert/fast_gelu.cc +++ b/onnxruntime/contrib_ops/cuda/bert/fast_gelu.cc @@ -4,9 +4,13 @@ #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/cudnn_common.h" #include "fast_gelu.h" -#include "fast_gelu_impl.h" +#include "core/providers/cuda/tensor/gelu_impl.h" #include "contrib_ops/cpu/bert/bias_gelu_helper.h" -#include "transformer_common.h" +#ifdef USE_ROCM +#include "contrib_ops/rocm/bert/elementwise.h" +#else +#include "contrib_ops/cuda/bert/transformer_common.h" +#endif namespace onnxruntime { namespace contrib { @@ -31,8 +35,10 @@ using namespace ONNX_NAMESPACE; template FastGelu::FastGelu(const OpKernelInfo& op_kernel_info) : CudaKernel(op_kernel_info) { +#ifndef USE_ROCM const TransformerOptions* options = TransformerOptions::GetInstance(); use_half2_ = !options->DisableHalf2(); +#endif } template @@ -50,6 +56,13 @@ Status FastGelu::ComputeInternal(OpKernelContext* context) const { int64_t bias_length = (nullptr == bias) ? 0 : bias->Shape().Size(); typedef typename ToCudaType::MappedType CudaT; +#ifdef USE_ROCM + return LaunchElementwiseKernel( + GetTuningContext(), context->GetComputeStream(), + reinterpret_cast(input->Data()), static_cast(input_length), + (nullptr != bias) ? reinterpret_cast(bias->Data()) : nullptr, static_cast(bias_length), + reinterpret_cast(output->MutableData())); +#else return LaunchFastGeluKernel(GetDeviceProp(), Stream(context), static_cast(input_length), @@ -58,6 +71,7 @@ Status FastGelu::ComputeInternal(OpKernelContext* context) const { (nullptr != bias) ? reinterpret_cast(bias->Data()) : nullptr, reinterpret_cast(output->MutableData()), use_half2_); +#endif } } // namespace cuda diff --git a/onnxruntime/contrib_ops/cuda/bert/fast_gelu.h b/onnxruntime/contrib_ops/cuda/bert/fast_gelu.h index 3e642a70afef5..26f3bd5a03928 100644 --- a/onnxruntime/contrib_ops/cuda/bert/fast_gelu.h +++ b/onnxruntime/contrib_ops/cuda/bert/fast_gelu.h @@ -18,7 +18,9 @@ class FastGelu final : public CudaKernel { Status ComputeInternal(OpKernelContext* ctx) const override; private: +#ifndef USE_ROCM bool use_half2_; +#endif }; } // namespace cuda diff --git a/onnxruntime/contrib_ops/cuda/bert/flash_attention/flash_api.cc b/onnxruntime/contrib_ops/cuda/bert/flash_attention/flash_api.cc index 2c296bf4f8483..0f58a74c4d2fd 100644 --- a/onnxruntime/contrib_ops/cuda/bert/flash_attention/flash_api.cc +++ b/onnxruntime/contrib_ops/cuda/bert/flash_attention/flash_api.cc @@ -371,6 +371,7 @@ Status mha_fwd_kvcache(const cudaDeviceProp& dprops, int seqlen_q, int seqlen_k, int seqlen_k_new, + int rotary_dim, const float softmax_scale, bool is_causal, bool is_bf16, @@ -448,7 +449,7 @@ Status mha_fwd_kvcache(const cudaDeviceProp& dprops, params.rotary_cos_ptr = rotary_cos; params.rotary_sin_ptr = rotary_sin; params.is_rotary_interleaved = is_rotary_interleaved; - params.rotary_dim = (head_size / 16) * 16; + params.rotary_dim = rotary_dim; } params.num_splits = num_splits; diff --git a/onnxruntime/contrib_ops/cuda/bert/flash_attention/flash_api.h b/onnxruntime/contrib_ops/cuda/bert/flash_attention/flash_api.h index 387d1cf9d84fe..24891bcc4d499 100644 --- a/onnxruntime/contrib_ops/cuda/bert/flash_attention/flash_api.h +++ b/onnxruntime/contrib_ops/cuda/bert/flash_attention/flash_api.h @@ -96,6 +96,7 @@ Status mha_fwd_kvcache(const cudaDeviceProp& dprops, int seqlen_q, int seqlen_k, int seqlen_k_new, + int rotary_dim, const float softmax_scale, bool is_causal, bool is_bf16, diff --git a/onnxruntime/contrib_ops/cuda/bert/group_query_attention.cc b/onnxruntime/contrib_ops/cuda/bert/group_query_attention.cc index fe56f84f0a886..112f609d46598 100644 --- a/onnxruntime/contrib_ops/cuda/bert/group_query_attention.cc +++ b/onnxruntime/contrib_ops/cuda/bert/group_query_attention.cc @@ -110,6 +110,11 @@ Status GroupQueryAttention::ComputeInternal(OpKernelContext* context) const { parameters.do_rotary = do_rotary_; parameters.rotary_interleaved = rotary_interleaved_; + if (do_rotary_ && (cos_cache == nullptr || sin_cache == nullptr)) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "cos_cache and sin_cache must be passed to GroupQueryAttention when do_rotary = 1"); + } + TensorShapeVector output_shape(3); output_shape[0] = static_cast(parameters.batch_size); output_shape[1] = static_cast(sequence_length); @@ -154,8 +159,6 @@ Status GroupQueryAttention::ComputeInternal(OpKernelContext* context) const { !use_flash_attention && !disable_memory_efficient_attention_ && local_window_size_ == -1 && - do_rotary_ == false && - key != nullptr && (parameters.head_size & 7) == 0 && parameters.sequence_length <= parameters.seqlen_past_kv_cache + parameters.sequence_length && (sizeof(T) == 2 || parameters.sequence_length >= attention::kMinSeqLenForMemoryEfficientAttentionFp32) && @@ -167,18 +170,31 @@ Status GroupQueryAttention::ComputeInternal(OpKernelContext* context) const { if (use_memory_efficient_attention && needs_buff) { kv_buffer_bytes = (sizeof(T) * parameters.batch_size * parameters.num_heads * parameters.seqlen_present_kv_cache * parameters.head_size); } + size_t rotary_buffer_bytes = 0; + if (use_memory_efficient_attention && do_rotary_) { + rotary_buffer_bytes = 2 * sizeof(T) * parameters.batch_size * parameters.num_heads * parameters.sequence_length * parameters.head_size; + rotary_buffer_bytes += sizeof(int64_t) * parameters.batch_size * parameters.sequence_length; + } size_t fmha_buffer_bytes = 0; if (use_memory_efficient_attention && MemoryEfficientAttentionParams::need_workspace(parameters.head_size, sizeof(T) == sizeof(float))) { fmha_buffer_bytes = (parameters.batch_size * parameters.sequence_length * parameters.num_heads * parameters.head_size * sizeof(float)); } + size_t unpacked_qkv_bytes = 0; + if (use_memory_efficient_attention && parameters.is_packed_qkv) { + unpacked_qkv_bytes = (parameters.batch_size * parameters.sequence_length * (parameters.num_heads + 2 * parameters.kv_num_heads) * parameters.head_size * sizeof(T)); + } auto k_buffer = GetScratchBuffer(kv_buffer_bytes, context->GetComputeStream()); auto v_buffer = GetScratchBuffer(kv_buffer_bytes, context->GetComputeStream()); + auto rotary_buffer = GetScratchBuffer(rotary_buffer_bytes, context->GetComputeStream()); auto fmha_buffer = GetScratchBuffer(fmha_buffer_bytes, context->GetComputeStream()); + auto unpacked_qkv_buffer = GetScratchBuffer(unpacked_qkv_bytes, context->GetComputeStream()); #else constexpr bool use_memory_efficient_attention = false; auto k_buffer = GetScratchBuffer(0, context->GetComputeStream()); auto v_buffer = GetScratchBuffer(0, context->GetComputeStream()); + auto rotary_buffer = GetScratchBuffer(0, context->GetComputeStream()); auto fmha_buffer = GetScratchBuffer(0, context->GetComputeStream()); + auto unpacked_qkv_buffer = GetScratchBuffer(0, context->GetComputeStream()); #endif // seqlens_k buffer @@ -246,7 +262,13 @@ Status GroupQueryAttention::ComputeInternal(OpKernelContext* context) const { if (fmha_buffer != nullptr) { data.fmha_buffer = reinterpret_cast(fmha_buffer.get()); } - // Rotary + if (unpacked_qkv_buffer != nullptr) { + data.unpacked_qkv_buffer = reinterpret_cast(unpacked_qkv_buffer.get()); + } + if (rotary_buffer != nullptr) { + data.rotary_buffer = reinterpret_cast(rotary_buffer.get()); + } + // Rotary Embedding if (parameters.do_rotary) { data.cos_cache = reinterpret_cast(cos_cache->Data()); data.sin_cache = reinterpret_cast(sin_cache->Data()); diff --git a/onnxruntime/contrib_ops/cuda/bert/group_query_attention_helper.h b/onnxruntime/contrib_ops/cuda/bert/group_query_attention_helper.h index 853e1a710cb24..1a7c3fcea3fa3 100644 --- a/onnxruntime/contrib_ops/cuda/bert/group_query_attention_helper.h +++ b/onnxruntime/contrib_ops/cuda/bert/group_query_attention_helper.h @@ -205,6 +205,7 @@ Status CheckInputs(const Tensor* query, int total_sequence_length = *((*total_seqlen).template Data()); int present_sequence_length = std::max(total_sequence_length, past_sequence_length); + int rotary_dim = 0; if (cos_cache != nullptr && sin_cache != nullptr) { const auto& cos_dims = cos_cache->Shape().GetDims(); const auto& sin_dims = sin_cache->Shape().GetDims(); @@ -214,22 +215,27 @@ Status CheckInputs(const Tensor* query, "head_size shall be a multiple of 16. Got head_size % 16 == ", head_size % 16); } - if (cos_dims[0] != present_sequence_length) { + if (cos_dims[0] < present_sequence_length) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "cos_cache dimension 0 must be of present_sequence_length."); + "cos_cache dimension 0 should be of max_sequence_length."); } - if (sin_dims[0] != present_sequence_length) { + if (sin_dims[0] < present_sequence_length) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "sin_cache dimension 0 must be of present_sequence_length."); + "sin_cache dimension 0 should be of max_sequence_length."); } - if (cos_dims[1] != (head_size / 16) * 8) { + if (cos_dims[1] > (head_size / 16) * 8 || cos_dims[1] % 8 != 0) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "cos_cache dimension 1 must be <= head_size / 2 and a multiple of 8."); } - if (sin_dims[1] != (head_size / 16) * 8) { + if (sin_dims[1] > (head_size / 16) * 8 || sin_dims[1] % 8 != 0) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "sin_cache dimension 1 must be <= head_size / 2 and a multiple of 8."); } + if (cos_dims[1] != sin_dims[1]) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "cos_cache and sin_cache dimension 1 must be the same."); + } + rotary_dim = static_cast(cos_dims[1] * 2); } else if (cos_cache != nullptr || sin_cache != nullptr) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Input 'cos_cache' and 'sin_cache' shall be both present or both absent."); @@ -248,6 +254,7 @@ Status CheckInputs(const Tensor* query, output_parameters->head_size = head_size; output_parameters->kv_hidden_size = kv_hidden_size; output_parameters->kv_num_heads = kv_num_heads; + output_parameters->rotary_dim = rotary_dim; output_parameters->is_packed_qkv = is_packed_qkv; output_parameters->is_unidirectional = true; output_parameters->is_prompt = is_prompt; diff --git a/onnxruntime/contrib_ops/cuda/bert/group_query_attention_impl.cu b/onnxruntime/contrib_ops/cuda/bert/group_query_attention_impl.cu index d88e9a49fb5ee..f519be1c97149 100644 --- a/onnxruntime/contrib_ops/cuda/bert/group_query_attention_impl.cu +++ b/onnxruntime/contrib_ops/cuda/bert/group_query_attention_impl.cu @@ -42,6 +42,7 @@ limitations under the License. #include "contrib_ops/cuda/bert/group_query_attention_impl.h" #include "contrib_ops/cuda/bert/attention_impl.h" #include "core/providers/cuda/shared_inc/cuda_call.h" +#include "contrib_ops/cuda/bert/rotary_embedding_impl.h" #include using namespace onnxruntime::cuda; @@ -150,6 +151,8 @@ __global__ void ConcatNewToPastKVLarge(const int new_seqlen, template Status LaunchConcatNewToPastKV(contrib::GroupQueryAttentionParameters& parameters, GroupQueryAttentionData& data, + const void* new_key, + const void* new_value, cudaStream_t stream, const int max_threads_per_block, const bool past_only = false) { @@ -171,14 +174,14 @@ Status LaunchConcatNewToPastKV(contrib::GroupQueryAttentionParameters& parameter ConcatNewToPastKV<<>>(kv_sequence_length, past_sequence_length, reinterpret_cast(data.past_key), - reinterpret_cast(data.key), + reinterpret_cast(new_key), reinterpret_cast(data.present_key), seqlens_k, past_kv_format == AttentionQkvFormat::Q_K_V_BSNH); ConcatNewToPastKV<<>>(kv_sequence_length, past_sequence_length, reinterpret_cast(data.past_value), - reinterpret_cast(data.value), + reinterpret_cast(new_value), reinterpret_cast(data.present_value), seqlens_k, past_kv_format == AttentionQkvFormat::Q_K_V_BSNH); @@ -191,7 +194,7 @@ Status LaunchConcatNewToPastKV(contrib::GroupQueryAttentionParameters& parameter H, kv_num_heads, reinterpret_cast(data.past_key), - reinterpret_cast(data.key), + reinterpret_cast(new_key), reinterpret_cast(data.present_key), seqlens_k, past_kv_format == AttentionQkvFormat::Q_K_V_BSNH); @@ -200,7 +203,7 @@ Status LaunchConcatNewToPastKV(contrib::GroupQueryAttentionParameters& parameter H, kv_num_heads, reinterpret_cast(data.past_value), - reinterpret_cast(data.value), + reinterpret_cast(new_value), reinterpret_cast(data.present_value), seqlens_k, past_kv_format == AttentionQkvFormat::Q_K_V_BSNH); @@ -281,6 +284,8 @@ __global__ void ConcatKVInPlaceLarge(const int max_seqlen, template Status LaunchConcatKVInPlace(contrib::GroupQueryAttentionParameters& parameters, GroupQueryAttentionData& data, + const void* new_key, + const void* new_value, cudaStream_t stream, const int max_threads_per_block) { const int batch_size = parameters.batch_size; @@ -300,12 +305,12 @@ Status LaunchConcatKVInPlace(contrib::GroupQueryAttentionParameters& parameters, const dim3 block(H, kv_num_heads, 1); ConcatKVInPlace<<>>(present_sequence_length, reinterpret_cast(data.present_key), - reinterpret_cast(data.key), + reinterpret_cast(new_key), seqlens_k, past_kv_format == AttentionQkvFormat::Q_K_V_BSNH); ConcatKVInPlace<<>>(present_sequence_length, reinterpret_cast(data.present_value), - reinterpret_cast(data.value), + reinterpret_cast(new_value), seqlens_k, past_kv_format == AttentionQkvFormat::Q_K_V_BSNH); } else { @@ -316,14 +321,14 @@ Status LaunchConcatKVInPlace(contrib::GroupQueryAttentionParameters& parameters, H, kv_num_heads, reinterpret_cast(data.present_key), - reinterpret_cast(data.key), + reinterpret_cast(new_key), seqlens_k, past_kv_format == AttentionQkvFormat::Q_K_V_BSNH); ConcatKVInPlaceLarge<<>>(present_sequence_length, H, kv_num_heads, reinterpret_cast(data.present_value), - reinterpret_cast(data.value), + reinterpret_cast(new_value), seqlens_k, past_kv_format == AttentionQkvFormat::Q_K_V_BSNH); } @@ -451,7 +456,7 @@ __global__ void PastToTotalSeqlen(int32_t* seqlens_k, // Convert Past to Total sequence length tensor Status LaunchGetSeqlenBuff(contrib::GroupQueryAttentionParameters& parameters, int32_t* seqlens_k, int32_t* seqlens_k_buff, bool is_total, cudaStream_t stream, - const int threads_per_block) { + const int /*threads_per_block*/) { if (parameters.is_prompt) { return Status::OK(); } @@ -468,6 +473,83 @@ Status LaunchGetSeqlenBuff(contrib::GroupQueryAttentionParameters& parameters, i return CUDA_CALL(cudaGetLastError()); } +// Kernel to unpack qkv from packed qkv +template +__global__ void UnpackQKV(const T* packed_qkv, T* unpacked_q, T* unpacked_k, T* unpacked_v, const int num_heads, + const int kv_num_heads, const int head_size, const int sequence_length, + const int batch_size) { + const int tid = threadIdx.x + blockIdx.x * blockDim.x; + int d = (num_heads + 2 * kv_num_heads) * head_size; + const int qkv_size = batch_size * sequence_length * d; + const int q_size = num_heads * head_size; + const int k_size = kv_num_heads * head_size; + if (tid < qkv_size) { + int batch = tid / (d * sequence_length); + int sequence = (tid % (d * sequence_length)) / d; + int offset = tid % d; + if (offset < q_size) { + int unpacked_i = batch * sequence_length * num_heads * head_size + sequence * num_heads * head_size + offset; + unpacked_q[unpacked_i] = packed_qkv[tid]; + } else if (offset < q_size + k_size) { + int unpacked_i = batch * sequence_length * kv_num_heads * head_size + sequence * kv_num_heads * head_size + (offset - q_size); + unpacked_k[unpacked_i] = packed_qkv[tid]; + } else { + int unpacked_i = batch * sequence_length * kv_num_heads * head_size + sequence * kv_num_heads * head_size + (offset - q_size - k_size); + unpacked_v[unpacked_i] = packed_qkv[tid]; + } + } +} + +// Unpack packed qkv +template +Status LaunchUnpackQKV(const T* packed_qkv, T* unpacked_q, T* unpacked_k, T* unpacked_v, const int num_heads, + const int kv_num_heads, const int head_size, const int sequence_length, const int batch_size, + cudaStream_t stream, const int max_threads_per_block) { + const int threads = max_threads_per_block; + const int blocks = (batch_size * sequence_length * (num_heads + 2 * kv_num_heads) * head_size + threads - 1) / threads; + UnpackQKV<<>>(packed_qkv, unpacked_q, unpacked_k, unpacked_v, num_heads, kv_num_heads, + head_size, sequence_length, batch_size); + return CUDA_CALL(cudaGetLastError()); +} + +// Kernel to convert seqlens_k to position_ids +__global__ void SeqlensToPosIdsPrompt(int32_t* seqlens_k, int64_t* position_ids, const int seqlen, + const int batch_size) { + int tid = blockDim.x * blockIdx.x + threadIdx.x; + int b = tid / seqlen; + int s = tid % seqlen; + if (b < batch_size) { + if (s < seqlens_k[b] + 1) { + position_ids[tid] = s; + } else { + position_ids[tid] = 1; + } + } +} + +// Kernel to convert seqlens_k to position_ids +__global__ void SeqlensToPosIdsToken(int32_t* seqlens_k, int64_t* position_ids, const int batch_size) { + int tid = blockDim.x * blockIdx.x + threadIdx.x; + if (tid < batch_size) { + position_ids[tid] = seqlens_k[tid]; + } +} + +// Convert seqlens_k to position_ids +Status LaunchSeqlensToPosIds(contrib::GroupQueryAttentionParameters& parameters, int32_t* seqlens_k, + int64_t* position_ids, cudaStream_t stream, const int max_threads_per_block) { + const int seqlen = parameters.sequence_length; + const int batch_size = parameters.batch_size; + const int threads = max_threads_per_block; + const int blocks = (batch_size * seqlen + threads - 1) / threads; + if (parameters.is_prompt) { + SeqlensToPosIdsPrompt<<>>(seqlens_k, position_ids, seqlen, batch_size); + } else { + SeqlensToPosIdsToken<<>>(seqlens_k, position_ids, batch_size); + } + return CUDA_CALL(cudaGetLastError()); +} + ////////// Launch Kernels #if USE_FLASH_ATTENTION @@ -517,7 +599,8 @@ Status FlashAttention( seqlens_k = data.seqlens_k_total; } } else if (!parameters.kv_share_buffer) { // copy past kv to present kv - ORT_RETURN_IF_ERROR(LaunchConcatNewToPastKV(parameters, data, stream, max_threads_per_block, true)); + ORT_RETURN_IF_ERROR(LaunchConcatNewToPastKV(parameters, data, nullptr, nullptr, stream, max_threads_per_block, + true)); } void* present_key = reinterpret_cast(const_cast(data.present_key)); @@ -530,7 +613,7 @@ Status FlashAttention( device_prop, stream, query, present_key, present_value, key, value, data.output, reinterpret_cast(data.softmax_lse), seqlens_k, cos_cache, sin_cache, batch_size, num_heads, kv_num_heads, head_size, sequence_length, - parameters.seqlen_present_kv_cache, kv_sequence_length, + parameters.seqlen_present_kv_cache, kv_sequence_length, parameters.rotary_dim, scale, is_causal, is_bf16, past_bsnh, parameters.num_splits, reinterpret_cast(data.softmax_lse_accum), reinterpret_cast(data.out_accum), parameters.local_window_size, parameters.rotary_interleaved, parameters.is_packed_qkv)); @@ -563,15 +646,62 @@ Status EfficientAttention( const int head_size = parameters.head_size; AttentionQkvFormat past_kv_format = parameters.past_kv_format; - const void* query = reinterpret_cast(data.query); - const void* key = reinterpret_cast(data.key); - const void* value = reinterpret_cast(data.value); + const void* query; + const void* key; + const void* value; + + if (!parameters.is_packed_qkv) { + query = reinterpret_cast(data.query); + key = reinterpret_cast(data.key); + value = reinterpret_cast(data.value); + } else { + size_t q_size = static_cast(batch_size * sequence_length * num_heads * head_size); + size_t k_size = static_cast(batch_size * sequence_length * kv_num_heads * head_size); + auto q = reinterpret_cast(data.unpacked_qkv_buffer); + auto k = reinterpret_cast(data.unpacked_qkv_buffer + q_size); + auto v = reinterpret_cast(data.unpacked_qkv_buffer + q_size + k_size); + ORT_RETURN_IF_ERROR(LaunchUnpackQKV(reinterpret_cast(data.query), q, k, v, num_heads, kv_num_heads, + head_size, sequence_length, batch_size, stream, max_threads_per_block)); + query = reinterpret_cast(q); + key = reinterpret_cast(k); + value = reinterpret_cast(v); + } + + if (parameters.do_rotary) { + size_t q_size = static_cast(batch_size * sequence_length * num_heads * head_size); + size_t k_size = static_cast(batch_size * sequence_length * kv_num_heads * head_size); + auto q_buffer = reinterpret_cast(data.rotary_buffer); + auto k_buffer = q_buffer + q_size; + auto position_ids_buff = reinterpret_cast(k_buffer + k_size); + ORT_RETURN_IF_ERROR(LaunchSeqlensToPosIds(parameters, data.seqlens_k, position_ids_buff, stream, + max_threads_per_block)); + DUMP_TENSOR_INIT(); + DUMP_TENSOR("position_ids", position_ids_buff, batch_size, sequence_length); + // Launch rotary embedding kernel + ORT_RETURN_IF_ERROR(LaunchRotaryEmbeddingKernel(stream, q_buffer, reinterpret_cast(query), + position_ids_buff, data.cos_cache, data.sin_cache, + parameters.batch_size, parameters.sequence_length, + parameters.num_heads, parameters.head_size, + parameters.rotary_dim, parameters.seqlen_present_kv_cache, + /*position_ids_format*/ 1, parameters.rotary_interleaved, + device_prop.maxThreadsPerBlock, /*transposed*/ false)); + ORT_RETURN_IF_ERROR(LaunchRotaryEmbeddingKernel(stream, k_buffer, reinterpret_cast(key), + position_ids_buff, data.cos_cache, data.sin_cache, + parameters.batch_size, parameters.sequence_length, + parameters.kv_num_heads, parameters.head_size, + parameters.rotary_dim, parameters.seqlen_present_kv_cache, + /*position_ids_format*/ 1, parameters.rotary_interleaved, + device_prop.maxThreadsPerBlock, /*transposed*/ false)); + query = reinterpret_cast(q_buffer); + key = reinterpret_cast(k_buffer); + } if (parameters.is_prompt) { // Launch kernel to copy seqlen constexpr int thr_per_blk = 256; int blk_in_grid = (batch_size + thr_per_blk - 1) / thr_per_blk; - repeat_seqlen<<>>(data.seqlens_k_total, parameters.sequence_length, batch_size); + repeat_seqlen<<>>(data.seqlens_k_total, parameters.sequence_length, + batch_size); } else { ORT_RETURN_IF_ERROR(LaunchGetSeqlenBuff(parameters, data.seqlens_k, data.seqlens_k_total, true, stream, 256)); } @@ -583,7 +713,7 @@ Status EfficientAttention( "Past and present kv shall share the same tensor when kv_share_buffer is on."); } // Concatenate new kv in place - ORT_RETURN_IF_ERROR(LaunchConcatKVInPlace(parameters, data, stream, max_threads_per_block)); + ORT_RETURN_IF_ERROR(LaunchConcatKVInPlace(parameters, data, key, value, stream, max_threads_per_block)); } else { // Not share buffer case if (data.past_key != nullptr && data.past_key == data.present_key) { @@ -591,7 +721,7 @@ Status EfficientAttention( "Past and present kv share the same tensor but kv_share_buffer is not on."); } // Copy past and concat new KV to present buffer - ORT_RETURN_IF_ERROR(LaunchConcatNewToPastKV(parameters, data, stream, max_threads_per_block)); + ORT_RETURN_IF_ERROR(LaunchConcatNewToPastKV(parameters, data, key, value, stream, max_threads_per_block)); } // Ungroup if grouped, otherwise use present kv directly @@ -655,7 +785,7 @@ Status EfficientAttention( template Status QkvToContext( const cudaDeviceProp& device_prop, - cublasHandle_t& cublas, + cublasHandle_t& /*cublas*/, Stream* ort_stream, contrib::GroupQueryAttentionParameters& parameters, GroupQueryAttentionData& data) { diff --git a/onnxruntime/contrib_ops/cuda/bert/group_query_attention_impl.h b/onnxruntime/contrib_ops/cuda/bert/group_query_attention_impl.h index 1bf91f9c875eb..32341afa0e3fa 100644 --- a/onnxruntime/contrib_ops/cuda/bert/group_query_attention_impl.h +++ b/onnxruntime/contrib_ops/cuda/bert/group_query_attention_impl.h @@ -30,6 +30,8 @@ struct GroupQueryAttentionData { int* seqlens_k_total = nullptr; // Memory Efficient buffers T* fmha_buffer = nullptr; + T* unpacked_qkv_buffer = nullptr; + T* rotary_buffer = nullptr; T* k = nullptr; T* v = nullptr; // Output Tensors diff --git a/onnxruntime/contrib_ops/cuda/bert/packed_attention_impl.cu b/onnxruntime/contrib_ops/cuda/bert/packed_attention_impl.cu index ce7ac3796dbe1..a84a310b46ca0 100644 --- a/onnxruntime/contrib_ops/cuda/bert/packed_attention_impl.cu +++ b/onnxruntime/contrib_ops/cuda/bert/packed_attention_impl.cu @@ -440,7 +440,7 @@ Status LaunchTransposeRemovePadding( template Status FusedScaledDotProductAttention( - const cudaDeviceProp& device_prop, + const cudaDeviceProp& /*device_prop*/, cudaStream_t stream, PackedAttentionParameters& parameters, PackedAttentionData& data) { diff --git a/onnxruntime/contrib_ops/cuda/bert/packed_multihead_attention_impl.cu b/onnxruntime/contrib_ops/cuda/bert/packed_multihead_attention_impl.cu index 49029da12a308..982c7eaa2cb2c 100644 --- a/onnxruntime/contrib_ops/cuda/bert/packed_multihead_attention_impl.cu +++ b/onnxruntime/contrib_ops/cuda/bert/packed_multihead_attention_impl.cu @@ -381,7 +381,7 @@ void InvokeTranspose( const T* query, const T* key, const T* value, const T* bias, T* output, const int batch_size, const int sequence_length, const int num_heads, const int qk_head_size, const int v_head_size, - AttentionQkvFormat source_format, AttentionQkvFormat target_format, + [[maybe_unused]] AttentionQkvFormat source_format, AttentionQkvFormat target_format, const int32_t* token_offset, int32_t token_count, cudaStream_t stream) { if (key != nullptr && value != nullptr) { @@ -551,7 +551,7 @@ void LaunchTranspose( template Status FusedAttentionTrt( - const cudaDeviceProp& device_prop, + const cudaDeviceProp& /*device_prop*/, cudaStream_t stream, PackedAttentionParameters& parameters, PackedMultiHeadAttentionData& data) { diff --git a/onnxruntime/contrib_ops/cuda/bert/rotary_embedding.cc b/onnxruntime/contrib_ops/cuda/bert/rotary_embedding.cc index 9de7ba3885c3c..ab7479f2938fe 100644 --- a/onnxruntime/contrib_ops/cuda/bert/rotary_embedding.cc +++ b/onnxruntime/contrib_ops/cuda/bert/rotary_embedding.cc @@ -82,8 +82,6 @@ Status RotaryEmbedding::ComputeInternal(OpKernelContext* context) const { interleaved, device_prop.maxThreadsPerBlock, parameters.transposed); - - return Status::OK(); } } // namespace cuda diff --git a/onnxruntime/contrib_ops/cuda/bert/rotary_embedding_impl.cu b/onnxruntime/contrib_ops/cuda/bert/rotary_embedding_impl.cu index c6637041f05bd..3a14161f29e9f 100644 --- a/onnxruntime/contrib_ops/cuda/bert/rotary_embedding_impl.cu +++ b/onnxruntime/contrib_ops/cuda/bert/rotary_embedding_impl.cu @@ -93,7 +93,7 @@ Status LaunchRotaryEmbeddingKernel( const int num_heads, const int head_size, const int rotary_embedding_dim, - const int max_sequence_length, + const int /*max_sequence_length*/, const int position_ids_format, const bool interleaved, const int max_threads_per_block, diff --git a/onnxruntime/contrib_ops/cuda/bert/tensorrt_fused_multihead_attention/mha_runner.cu b/onnxruntime/contrib_ops/cuda/bert/tensorrt_fused_multihead_attention/mha_runner.cu index 8fb6575d27cc0..4a4e3eeecf642 100644 --- a/onnxruntime/contrib_ops/cuda/bert/tensorrt_fused_multihead_attention/mha_runner.cu +++ b/onnxruntime/contrib_ops/cuda/bert/tensorrt_fused_multihead_attention/mha_runner.cu @@ -53,9 +53,9 @@ class FusedMHARunnerFP16v2::mhaImpl { ~mhaImpl() {} - void setup(const int S, const int B) { + void setup(const int seq_len, const int B) { // For bert and vit, use flash attention when sequence length is larger than the threshold. - use_flash_attention = is_flash_attention(S); + use_flash_attention = is_flash_attention(seq_len); params.force_unroll = use_flash_attention; @@ -68,26 +68,26 @@ class FusedMHARunnerFP16v2::mhaImpl { warps_n = 1; } else { if (sm == 70) { - if (S == 64 || S == 96) { + if (seq_len == 64 || seq_len == 96) { warps_m = 2; warps_n = 2; - } else if (S == 128) { + } else if (seq_len == 128) { warps_m = 1; warps_n = 4; - } else if (S == 256 || S == 384) { + } else if (seq_len == 256 || seq_len == 384) { warps_m = 1; warps_n = 8; } else { ORT_ENFORCE(false, "Unsupported sequence length"); } } else { - if (S == 32 || S == 64 || S == 96 || S == 128) { + if (seq_len == 32 || seq_len == 64 || seq_len == 96 || seq_len == 128) { warps_m = 2; warps_n = 2; - } else if (S == 192 || S == 256) { + } else if (seq_len == 192 || seq_len == 256) { warps_m = 1; warps_n = 4; - } else if (S == 384) { + } else if (seq_len == 384) { warps_m = 1; warps_n = 8; } else { @@ -99,7 +99,7 @@ class FusedMHARunnerFP16v2::mhaImpl { // The number of threads per CTA. threads_per_cta = warps_m * warps_n * warps_k * 32; // The number of xmmas in the M dimension. We use one uint32_t per XMMA in the M dimension. - xmmas_m = (S + 16 * warps_m - 1) / (16 * warps_m); + xmmas_m = (seq_len + 16 * warps_m - 1) / (16 * warps_m); const float scale_bmm1 = interface->mScale; const float scale_softmax = 1.f; // Seems to be only required for int8 @@ -111,7 +111,7 @@ class FusedMHARunnerFP16v2::mhaImpl { params.b = B; params.h = interface->mNumHeads; - params.s = S; + params.s = seq_len; params.d = interface->mHeadSize; params.qkv_stride_in_bytes = 3 * interface->mNumHeads * interface->mHeadSize * sizeof(half); @@ -121,7 +121,7 @@ class FusedMHARunnerFP16v2::mhaImpl { has_causal_mask = false; } - void setup_causal_masked_fmha(const int S, const int B) { + void setup_causal_masked_fmha(const int seq_len, const int B) { const float scale_bmm1 = interface->mScale; const float scale_softmax = 1.f; // Seems to be only required for int8 const float scale_bmm2 = 1.f; @@ -132,7 +132,7 @@ class FusedMHARunnerFP16v2::mhaImpl { params.b = B; params.h = interface->mNumHeads; - params.s = S; + params.s = seq_len; params.d = interface->mHeadSize; params.qkv_stride_in_bytes = 3 * interface->mNumHeads * interface->mHeadSize * sizeof(half); @@ -182,30 +182,30 @@ class FusedMHARunnerFP16v2::mhaImpl { return max_seq_len; } - int S = max_seq_len; + int seq_len = max_seq_len; if (max_seq_len <= 32) { - S = (sm == 70) ? 64 : 32; + seq_len = (sm == 70) ? 64 : 32; } else if (max_seq_len <= 64) { - S = 64; + seq_len = 64; } else if (max_seq_len <= 96) { - S = 96; + seq_len = 96; } else if (max_seq_len <= 128) { - S = 128; + seq_len = 128; } else if (max_seq_len <= 192) { - S = (sm == 70) ? 256 : 192; + seq_len = (sm == 70) ? 256 : 192; } else if (max_seq_len <= 256) { - S = 256; + seq_len = 256; } else if (max_seq_len <= 384) { - S = 384; + seq_len = 384; } - return S; + return seq_len; } protected: - bool is_flash_attention(const int S) const { + bool is_flash_attention(const int seq_len) const { ORT_ENFORCE(interface->mHasCausalMask == false); - return interface->mEnableFlashAttention && S >= kMinSequenceLengthFlashAttention; + return interface->mEnableFlashAttention && seq_len >= kMinSequenceLengthFlashAttention; } private: @@ -232,12 +232,12 @@ FusedMHARunnerFP16v2::FusedMHARunnerFP16v2(const int numHeads, pimpl(new mhaImpl(this)) { } -void FusedMHARunnerFP16v2::setup(const int S, const int B) { - MHARunner::setup(S, B); +void FusedMHARunnerFP16v2::setup(const int seq_len, const int B) { + MHARunner::setup(seq_len, B); if (mHasCausalMask) { - pimpl->setup_causal_masked_fmha(S, B); + pimpl->setup_causal_masked_fmha(seq_len, B); } else { - pimpl->setup(S, B); + pimpl->setup(seq_len, B); } } diff --git a/onnxruntime/contrib_ops/cuda/collective/sharded_moe.cc b/onnxruntime/contrib_ops/cuda/collective/sharded_moe.cc index 40a667ffd5d83..1dbbe8c4e7eaa 100644 --- a/onnxruntime/contrib_ops/cuda/collective/sharded_moe.cc +++ b/onnxruntime/contrib_ops/cuda/collective/sharded_moe.cc @@ -1,6 +1,8 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. +#include + #include "core/common/safeint.h" #include "core/providers/cuda/cuda_common.h" #include "contrib_ops/cuda/bert/transformer_cuda_common.h" @@ -16,25 +18,18 @@ namespace cuda { #if defined(ORT_USE_NCCL) -#define REGISTER_KERNEL_TYPED(T) \ - ONNX_OPERATOR_TYPED_KERNEL_EX( \ - ShardedMoE, \ - kMSDomain, \ - 1, \ - T, \ - kCudaExecutionProvider, \ - (*KernelDefBuilder::Create()) \ - .MayInplace(0, 0) \ - .TypeConstraint("T", DataTypeImpl::GetTensorType()), \ +#define REGISTER_KERNEL_TYPED(T) \ + ONNX_OPERATOR_TYPED_KERNEL_EX( \ + ShardedMoE, kMSDomain, 1, T, kCudaExecutionProvider, \ + (*KernelDefBuilder::Create()).MayInplace(0, 0).TypeConstraint("T", DataTypeImpl::GetTensorType()), \ ShardedMoE); REGISTER_KERNEL_TYPED(float) REGISTER_KERNEL_TYPED(MLFloat16) -using namespace ONNX_NAMESPACE; - template ShardedMoE::ShardedMoE(const OpKernelInfo& op_kernel_info) : NcclKernel(op_kernel_info), MoEBase(op_kernel_info) { + ORT_ENFORCE(op_kernel_info.GetAttr("tensor_shards", &tensor_shards_).IsOK()); ORT_ENFORCE(op_kernel_info.GetAttr("local_experts_start_index", &local_experts_start_index_).IsOK()); rank_to_experts_start_index_.resize(nccl_->Size()); // Initialize rank_to_experts_start_index_[0] to a value to convey that it is not initialized. @@ -55,27 +50,34 @@ Status ShardedMoE::ComputeInternal(OpKernelContext* context) const { // Create a {Rank, ExpertsStartIndex} map on Host. AutoDestoryCudaEvent cuda_event; cudaEvent_t& copy_event = cuda_event.Get(); - ORT_RETURN_IF_ERROR(SynchronizeExpertsStartIndex(allocator, context, copy_event)); const Tensor* input = context->Input(0); const Tensor* router_probs = context->Input(1); const Tensor* fc1_experts_weights = context->Input(2); - const Tensor* fc2_experts_weights = context->Input(3); - const Tensor* fc1_experts_bias_optional = context->Input(4); + const Tensor* fc1_experts_bias_optional = context->Input(3); + const Tensor* fc2_experts_weights = context->Input(4); const Tensor* fc2_experts_bias_optional = context->Input(5); + const Tensor* fc3_experts_weights_optional = context->Input(6); + const Tensor* fc3_experts_bias_optional = context->Input(7); - MoEParameters moe_params; - ORT_RETURN_IF_ERROR(CheckInputs(moe_params, input, router_probs, fc1_experts_weights, fc2_experts_weights, - fc1_experts_bias_optional, fc2_experts_bias_optional)); - ORT_RETURN_IF_NOT(moe_params.num_experts % nccl_->Size() == 0, - "num_experts should be divisible by world_size"); + MoEParameters moe_params(tensor_shards_); + MoEQuantType quant_type = MoEQuantType::None; + ORT_RETURN_IF_ERROR(CheckInputs(moe_params, quant_type, input, router_probs, fc1_experts_weights, + fc1_experts_bias_optional, fc2_experts_weights, fc2_experts_bias_optional, + fc3_experts_weights_optional, fc3_experts_bias_optional)); - ort_fastertransformer::CutlassMoeFCRunner moe_runner(sm); + ORT_RETURN_IF_NOT(moe_params.num_experts % nccl_->Size() == 0, "num_experts should be divisible by world_size"); + + if (moe_params.parallel_type == MoEParallelType::EP || moe_params.parallel_type == MoEParallelType::EPAndTP) { + ORT_RETURN_IF_ERROR(SynchronizeExpertsStartIndex(allocator, context, copy_event)); + } - size_t ws_size = - moe_runner.getWorkspaceSize(static_cast(moe_params.num_rows), static_cast(moe_params.hidden_size), - static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), - static_cast(k_)); + ort_fastertransformer::CutlassMoeFCRunner moe_runner(sm, fc3_experts_weights_optional != nullptr, + normalize_routing_weights_); + + size_t ws_size = moe_runner.getWorkspaceSize( + static_cast(moe_params.num_rows), static_cast(moe_params.hidden_size), + static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), static_cast(k_)); size_t fc2_output_size = k_ * moe_params.num_rows * moe_params.hidden_size * sizeof(CudaT); size_t expert_scales_size = k_ * moe_params.num_rows * sizeof(CudaT); @@ -93,54 +95,71 @@ Status ShardedMoE::ComputeInternal(OpKernelContext* context) const { IAllocatorUniquePtr expert_for_source_row = IAllocator::MakeUniquePtr(allocator, expert_for_source_row_size, false, stream); - // fc1_scales and fc2_scales are used in quantized MoE - const CudaT* fc1_scales_ptr = nullptr; - const CudaT* fc2_scales_ptr = nullptr; - - moe_runner.run_moe_fc(reinterpret_cast(input->template Data()), - reinterpret_cast(router_probs->template Data()), - reinterpret_cast(fc1_experts_weights->template Data()), - std::move(fc1_scales_ptr), - fc1_experts_bias_optional == nullptr - ? nullptr - : reinterpret_cast(fc1_experts_bias_optional->template Data()), - activation_type_, reinterpret_cast(fc2_experts_weights->template Data()), - std::move(fc2_scales_ptr), static_cast(moe_params.num_rows), - static_cast(moe_params.hidden_size), - static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), - static_cast(moe_params.local_num_experts), static_cast(local_experts_start_index_), - static_cast(k_), reinterpret_cast(work_space.get()), - reinterpret_cast(fc2_output.get()), reinterpret_cast(expert_scales.get()), - reinterpret_cast(expanded_source_row_to_expanded_dest_row.get()), - reinterpret_cast(expert_for_source_row.get()), Stream(context)); + const CudaT* fc_scales_ptr = nullptr; + + moe_runner.run_moe_fc( + reinterpret_cast(input->template Data()), + reinterpret_cast(router_probs->template Data()), + reinterpret_cast(fc1_experts_weights->template Data()), std::move(fc_scales_ptr), + fc1_experts_bias_optional == nullptr + ? nullptr + : reinterpret_cast(fc1_experts_bias_optional->template Data()), + activation_type_, + fc3_experts_weights_optional == nullptr + ? nullptr + : reinterpret_cast(fc3_experts_weights_optional->template Data()), + std::move(fc_scales_ptr), + fc3_experts_bias_optional == nullptr + ? nullptr + : reinterpret_cast(fc3_experts_bias_optional->template Data()), + reinterpret_cast(fc2_experts_weights->template Data()), std::move(fc_scales_ptr), + static_cast(moe_params.num_rows), static_cast(moe_params.hidden_size), + static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), + static_cast(moe_params.local_num_experts), static_cast(local_experts_start_index_), + static_cast(k_), reinterpret_cast(work_space.get()), reinterpret_cast(fc2_output.get()), + reinterpret_cast(expert_scales.get()), + reinterpret_cast(expanded_source_row_to_expanded_dest_row.get()), + reinterpret_cast(expert_for_source_row.get()), Stream(context)); Tensor* output = context->Output(0, input->Shape()); - size_t stride_count = moe_params.hidden_size; - size_t stride_bytes = stride_count * sizeof(CudaT); - int64_t total_past_rows = 0; - int64_t total_covered_rows = 0; - if (copy_event != nullptr) { - CUDA_RETURN_IF_ERROR(cudaEventSynchronize(copy_event)); + if (moe_params.parallel_type == MoEParallelType::None) { + fc2_output_bc = std::move(fc2_output); + } + + if (moe_params.parallel_type == MoEParallelType::EPAndTP) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Expert and Tensor Parallelism is not supported yet"); + } + + if (moe_params.parallel_type == MoEParallelType::TP) { + ORT_ENFORCE(moe_params.tensor_shards == nccl_->Size()); + NCCL_RETURN_IF_ERROR(ncclGroupStart()); + NCCL_RETURN_IF_ERROR(ncclAllReduce(reinterpret_cast(fc2_output.get()), + reinterpret_cast(fc2_output_bc.get()), fc2_output_size / sizeof(CudaT), + GetNcclDataType(input->DataType()), ncclSum, nccl_->Comm(), Stream(context))); + NCCL_RETURN_IF_ERROR(ncclGroupEnd()); } - NCCL_RETURN_IF_ERROR(ncclGroupStart()); - for (int rank = 0; rank < nccl_->Size(); ++rank) { - int64_t experts_start_index = rank_to_experts_start_index_[rank]; - moe_runner.get_total_rows_info(experts_start_index, - moe_params.local_num_experts, - total_past_rows, - total_covered_rows); - const char* src = reinterpret_cast(fc2_output.get()) + total_past_rows * stride_bytes; - char* dst = reinterpret_cast(fc2_output_bc.get()) + total_past_rows * stride_bytes; - NCCL_RETURN_IF_ERROR(ncclBroadcast(src, - dst, - total_covered_rows * stride_count, - GetNcclDataType(input->DataType()), - rank, - nccl_->Comm(), - Stream(context))); + + if (moe_params.parallel_type == MoEParallelType::EP) { + size_t stride_count = moe_params.hidden_size; + size_t stride_bytes = stride_count * sizeof(CudaT); + int64_t total_past_rows = 0; + int64_t total_covered_rows = 0; + if (copy_event != nullptr) { + CUDA_RETURN_IF_ERROR(cudaEventSynchronize(copy_event)); + } + NCCL_RETURN_IF_ERROR(ncclGroupStart()); + for (int rank = 0; rank < nccl_->Size(); ++rank) { + int64_t experts_start_index = rank_to_experts_start_index_[rank]; + moe_runner.get_total_rows_info(experts_start_index, moe_params.local_num_experts, total_past_rows, + total_covered_rows); + const char* src = reinterpret_cast(fc2_output.get()) + total_past_rows * stride_bytes; + char* dst = reinterpret_cast(fc2_output_bc.get()) + total_past_rows * stride_bytes; + NCCL_RETURN_IF_ERROR(ncclBroadcast(src, dst, total_covered_rows * stride_count, + GetNcclDataType(input->DataType()), rank, nccl_->Comm(), Stream(context))); + } + NCCL_RETURN_IF_ERROR(ncclGroupEnd()); } - NCCL_RETURN_IF_ERROR(ncclGroupEnd()); ort_fastertransformer::finalize_moe_routing_kernelLauncher( reinterpret_cast(fc2_output_bc.get()), reinterpret_cast(output->template MutableData()), @@ -156,8 +175,7 @@ Status ShardedMoE::ComputeInternal(OpKernelContext* context) const { } template -Status ShardedMoE::SynchronizeExpertsStartIndex(AllocatorPtr& allocator, - OpKernelContext* context, +Status ShardedMoE::SynchronizeExpertsStartIndex(AllocatorPtr& allocator, OpKernelContext* context, cudaEvent_t& cuda_event) const { if (rank_to_experts_start_index_[0] != std::numeric_limits::min()) { return Status::OK(); @@ -174,23 +192,16 @@ Status ShardedMoE::SynchronizeExpertsStartIndex(AllocatorPtr& allocator, IAllocator::MakeUniquePtr(allocator, nccl_->Size(), false, stream); // Only happens in the first run. - CUDA_RETURN_IF_ERROR(cudaMemcpyAsync(experts_start_index_d.get(), - &local_experts_start_index_, - IndexTypeSize, - cudaMemcpyHostToDevice, - Stream(context))); + CUDA_RETURN_IF_ERROR(cudaMemcpyAsync(experts_start_index_d.get(), &local_experts_start_index_, IndexTypeSize, + cudaMemcpyHostToDevice, Stream(context))); NCCL_RETURN_IF_ERROR(ncclAllGather(reinterpret_cast(experts_start_index_d.get()), - reinterpret_cast(rank_to_experts_start_index_d.get()), - 1, - GetNcclDataType(DataTypeImpl::GetType()), - nccl_->Comm(), + reinterpret_cast(rank_to_experts_start_index_d.get()), 1, + GetNcclDataType(DataTypeImpl::GetType()), nccl_->Comm(), Stream(context))); // The const_cast<> violates the const modifier to make sure the synchronization happens only once per session. CUDA_RETURN_IF_ERROR(cudaMemcpyAsync(const_cast(rank_to_experts_start_index_.data()), - rank_to_experts_start_index_d.get(), - nccl_->Size() * IndexTypeSize, - cudaMemcpyDeviceToHost, - Stream(context))); + rank_to_experts_start_index_d.get(), nccl_->Size() * IndexTypeSize, + cudaMemcpyDeviceToHost, Stream(context))); CUDA_RETURN_IF_ERROR(cudaEventCreateWithFlags(&cuda_event, cudaEventDisableTiming)); CUDA_RETURN_IF_ERROR(cudaEventRecord(cuda_event, Stream(context))); diff --git a/onnxruntime/contrib_ops/cuda/collective/sharded_moe.h b/onnxruntime/contrib_ops/cuda/collective/sharded_moe.h index 5ea4ae59c4020..827283a794dd6 100644 --- a/onnxruntime/contrib_ops/cuda/collective/sharded_moe.h +++ b/onnxruntime/contrib_ops/cuda/collective/sharded_moe.h @@ -26,6 +26,7 @@ class ShardedMoE final : public NcclKernel, public MoEBase { Status SynchronizeExpertsStartIndex(AllocatorPtr& alloc, OpKernelContext* ctx, cudaEvent_t& cuda_event) const; int64_t local_experts_start_index_; + int64_t tensor_shards_; std::vector rank_to_experts_start_index_; }; diff --git a/onnxruntime/contrib_ops/cuda/cuda_contrib_kernels.cc b/onnxruntime/contrib_ops/cuda/cuda_contrib_kernels.cc index be8c0dc86c135..3621ffc5c64ca 100644 --- a/onnxruntime/contrib_ops/cuda/cuda_contrib_kernels.cc +++ b/onnxruntime/contrib_ops/cuda/cuda_contrib_kernels.cc @@ -72,6 +72,7 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 1, MLFloat16, Crop); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSDomain, 1, float, MoE); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSDomain, 1, MLFloat16, MoE); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSDomain, 1, QMoE); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSDomain, 1, float, MultiHeadAttention); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSDomain, 1, MLFloat16, MultiHeadAttention); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSDomain, 1, MLFloat16, GroupQueryAttention); @@ -203,6 +204,10 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSDomain, 1 class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSDomain, 1, MLFloat16, DistributedSqueeze); #endif +#ifdef ENABLE_CUDA_NHWC_OPS +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 16, float, GridSample); +#endif + template <> KernelCreateInfo BuildKernelCreateInfo() { KernelCreateInfo info; @@ -271,6 +276,7 @@ Status RegisterCudaContribKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, @@ -408,6 +414,9 @@ Status RegisterCudaContribKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, #endif +#ifdef ENABLE_CUDA_NHWC_OPS + BuildKernelCreateInfo, +#endif }; for (auto& function_table_entry : function_table) { diff --git a/onnxruntime/contrib_ops/cuda/diffusion/group_norm_common_base.h b/onnxruntime/contrib_ops/cuda/diffusion/group_norm_common_base.h index ea87d0c29111e..a80584d3293a0 100644 --- a/onnxruntime/contrib_ops/cuda/diffusion/group_norm_common_base.h +++ b/onnxruntime/contrib_ops/cuda/diffusion/group_norm_common_base.h @@ -136,10 +136,10 @@ struct GroupNormNHWCParams { bool use_silu, bool broadcast_skip, int channels_per_block) { - int32_t channels_per_group = num_channels / num_groups; + int32_t channels_per_group_in = num_channels / num_groups; // channels_per_block is computed in PrePack. // If the gamma is not initializer, channels_per_block might be zero after PrePack. In that happens, compute it here. - if (channels_per_block < channels_per_group) { + if (channels_per_block < channels_per_group_in) { channels_per_block = GetChannelsPerBlock(num_channels, num_groups); } @@ -167,7 +167,7 @@ struct GroupNormNHWCParams { this->hw_per_block = DivUp(this->hw, blocks_per_hw); this->channels_per_block = channels_per_block; - this->channels_per_group = channels_per_group; + this->channels_per_group = channels_per_group_in; this->hwc = this->hw * this->c; this->inv_hw_channels_per_group = 1.F / (float)(this->hw * this->channels_per_group); this->groups_per_block = channels_per_block / this->channels_per_group; diff --git a/onnxruntime/contrib_ops/cuda/grid_sample.cc b/onnxruntime/contrib_ops/cuda/grid_sample.cc index 4c2999c279e0a..2500de39d3536 100644 --- a/onnxruntime/contrib_ops/cuda/grid_sample.cc +++ b/onnxruntime/contrib_ops/cuda/grid_sample.cc @@ -9,22 +9,23 @@ namespace onnxruntime { namespace contrib { namespace cuda { -#define REGISTER_KERNEL_TYPED(T) \ +#define REGISTER_KERNEL_TYPED(T, VERSION, LAYOUT, DOMAIN) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ GridSample, \ - kMSDomain, \ - 1, \ + DOMAIN, \ + VERSION, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("T1", DataTypeImpl::GetTensorType()) \ .TypeConstraint("T2", DataTypeImpl::GetTensorType()), \ - GridSample); + onnxruntime::contrib::cuda::GridSample); -REGISTER_KERNEL_TYPED(float) +REGISTER_KERNEL_TYPED(float, 1, LAYOUT_NCHW, kMSDomain) +REGISTER_KERNEL_TYPED(float, 16, LAYOUT_NHWC, kMSInternalNHWCDomain) -template -GridSample::GridSample(const OpKernelInfo& info) : CudaKernel(info) { +template +GridSample::GridSample(const OpKernelInfo& info) : CudaKernel(info) { std::string mode_str = info.GetAttrOrDefault("mode", "bilinear"); std::string padding_mode_str = info.GetAttrOrDefault("padding_mode", "zeros"); align_corners_ = static_cast(info.GetAttrOrDefault("align_corners", 0)); @@ -48,8 +49,8 @@ GridSample::GridSample(const OpKernelInfo& info) : CudaKernel(info) { } } -template -Status GridSample::ComputeInternal(OpKernelContext* context) const { +template +Status GridSample::ComputeInternal(OpKernelContext* context) const { const Tensor* X = context->Input(0); const auto& dims_input = X->Shape().GetDims(); const Tensor* Grid = context->Input(1); @@ -61,11 +62,13 @@ Status GridSample::ComputeInternal(OpKernelContext* context) const { ORT_ENFORCE(dims_grid[0] == dims_input[0], "Grid batch size ", dims_grid[0], " does not match input batch size ", dims_input[0]); ORT_ENFORCE(dims_grid[3] == 2, "Last dimension of grid: ", dims_grid[3], ", expect 2"); + using Ch = Channels; + TensorShapeVector dims_output(4); - dims_output[0] = dims_input[0]; - dims_output[1] = dims_input[1]; - dims_output[2] = dims_grid[1]; - dims_output[3] = dims_grid[2]; + dims_output[Ch::N] = dims_input[Ch::N]; + dims_output[Ch::C] = dims_input[Ch::C]; + dims_output[Ch::H] = dims_grid[1 /* Grid::H */]; + dims_output[Ch::W] = dims_grid[2 /* Grid::W */]; Tensor* Y = context->Output(0, dims_output); // Return early if the output tensor is going to be of size 0 if (Y->Shape().Size() == 0) { @@ -74,7 +77,7 @@ Status GridSample::ComputeInternal(OpKernelContext* context) const { typedef typename ToCudaType::MappedType CudaT; CudaT* Y_data = reinterpret_cast(Y->MutableData()); - GridSampleImpl( + GridSampleImpl( Stream(context), reinterpret_cast(X->Data()), reinterpret_cast(Grid->Data()), @@ -89,4 +92,8 @@ Status GridSample::ComputeInternal(OpKernelContext* context) const { } } // namespace cuda } // namespace contrib + +namespace cuda { +REGISTER_KERNEL_TYPED(float, 16, LAYOUT_NCHW, kOnnxDomain) +} // namespace cuda } // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/cuda/grid_sample.h b/onnxruntime/contrib_ops/cuda/grid_sample.h index 08ca58c7cc458..16581bfe77482 100644 --- a/onnxruntime/contrib_ops/cuda/grid_sample.h +++ b/onnxruntime/contrib_ops/cuda/grid_sample.h @@ -12,7 +12,7 @@ namespace cuda { using namespace onnxruntime::cuda; -template +template class GridSample final : public CudaKernel { public: explicit GridSample(const OpKernelInfo& info); diff --git a/onnxruntime/contrib_ops/cuda/grid_sample_impl.cu b/onnxruntime/contrib_ops/cuda/grid_sample_impl.cu index 8a391eca7e86a..b23da635bc83d 100644 --- a/onnxruntime/contrib_ops/cuda/grid_sample_impl.cu +++ b/onnxruntime/contrib_ops/cuda/grid_sample_impl.cu @@ -50,28 +50,34 @@ __device__ T GsReflect(T x, float x_min, float x_max) { return static_cast(fx); } -template +template __device__ T PixelAtGrid(const T* input_data, int64_t bIdx, int64_t cIdx, int64_t y, int64_t x, - int64_t padding_mode, int64_t N, int64_t C, int64_t H, int64_t W, float border[4]) { + int64_t padding_mode, int64_t N, int64_t C, int64_t H, int64_t W, float border[4]) { T pixel = 0.0f; + + auto PixelOffset = [bIdx, cIdx, C, H, W](int64_t x, int64_t y) -> int64_t { + return Layout == LAYOUT_NCHW + ? (bIdx * C * H * W + cIdx * H * W + y * W + x) + : (bIdx * H * W * C + y * W * C + x * C + cIdx); + }; + if (padding_mode == 0) { // zeros if (x >= 0 && x < W && y >= 0 && y < H) { - pixel = input_data[bIdx * C * H * W + cIdx * H * W + y * W + x]; + pixel = input_data[PixelOffset(x, y)]; } - } else if (padding_mode == 1) { //border + } else if (padding_mode == 1) { // border x = max((int64_t)0, min((int64_t)W - 1, (int64_t)x)); y = max((int64_t)0, min((int64_t)H - 1, (int64_t)y)); - pixel = input_data[bIdx * C * H * W + cIdx * H * W + y * W + x]; + pixel = input_data[PixelOffset(x, y)]; } else { // Reflection - x = (int64_t) GsReflect(x, border[0], border[2]); - y = (int64_t) GsReflect(y, border[1], border[3]); - pixel = input_data[bIdx * C * H * W + cIdx * H * W + y * W + x]; + x = (int64_t)GsReflect(x, border[0], border[2]); + y = (int64_t)GsReflect(y, border[1], border[3]); + pixel = input_data[PixelOffset(x, y)]; } return pixel; } -__device__ void GsGetCubicCoeffs(float x, float coeffs[4]) -{ +__device__ void GsGetCubicCoeffs(float x, float coeffs[4]) { float cubic_alpha = -0.75f; x = abs(x); coeffs[0] = (((cubic_alpha * (x + 1) - 5 * cubic_alpha) * (x + 1) + 8 * cubic_alpha) * (x + 1) - 4 * cubic_alpha); @@ -93,7 +99,7 @@ __device__ T GsBicubicInterpolate(T p[4][4], float x, float y) { return pixel; } -template +template __global__ void _GridSampleKernel( const T* input_data, const T* grid_data, @@ -110,16 +116,32 @@ __global__ void _GridSampleKernel( { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(idx, N * C * H_out * W_out); // extract batch index, channel index, y index, x index for current thread - int BIdx = idx / (C * H_out * W_out ); - int tmpBCnt = BIdx * (C * H_out * W_out); + int BIdx, yIdx, xIdx, cIdx; + if constexpr (Layout == LAYOUT_NCHW) { + BIdx = idx / (C * H_out * W_out); + int tmpBCnt = BIdx * (C * H_out * W_out); + + cIdx = (idx - tmpBCnt) / (H_out * W_out); + int tmpCCnt = tmpBCnt + cIdx * (H_out * W_out); - int cIdx = (idx - tmpBCnt) / (H_out * W_out); - int tmpCCnt = tmpBCnt + cIdx * (H_out * W_out); + yIdx = (idx - tmpCCnt) / W_out; + int tmpHCnt = tmpCCnt + yIdx * W_out; - int yIdx = (idx - tmpCCnt) / W_out; - int tmpHCnt = tmpCCnt + yIdx * W_out; + xIdx = (idx - tmpHCnt); + } else { + static_assert(Layout == LAYOUT_NHWC, "Unsupported layout"); - int xIdx = (idx - tmpHCnt); + BIdx = idx / (H_out * W_out * C); + int tmpBCnt = BIdx * (H_out * W_out * C); + + yIdx = (idx - tmpBCnt) / (W_out * C); + int tmpHCnt = tmpBCnt + yIdx * (W_out * C); + + xIdx = (idx - tmpHCnt) / C; + int tmpWCnt = tmpHCnt + xIdx * C; + + cIdx = (idx - tmpWCnt); + } int grid_idx = BIdx * H_out * W_out + yIdx * W_out + xIdx; T grid_X = grid_data[grid_idx * 2 + 0]; @@ -147,8 +169,9 @@ __global__ void _GridSampleKernel( if (grid_x_imgSpace < x_min || grid_x_imgSpace > x_max || grid_y_imgSpace < y_min || grid_y_imgSpace > y_max) { // out of bound if (padding_mode == 1) { // border - grid_x_imgSpace = max(0.0f, min(grid_x_imgSpace, W_in - 1.0f)); - grid_y_imgSpace = max(0.0f, min(grid_y_imgSpace, H_in - 1.0f)); + // Clamping must not be done here, see #10607 + // grid_x_imgSpace = max(0.0f, min(grid_x_imgSpace, W_in - 1.0f)); + // grid_y_imgSpace = max(0.0f, min(grid_y_imgSpace, H_in - 1.0f)); } else if (padding_mode == 2) { // reflection grid_x_imgSpace = GsReflect(grid_x_imgSpace, x_min, x_max); grid_y_imgSpace = GsReflect(grid_y_imgSpace, y_min, y_max); @@ -175,10 +198,10 @@ __global__ void _GridSampleKernel( w_lb = w_b * w_l; w_rb = w_b * w_r; - T lt_v = PixelAtGrid(input_data, BIdx, cIdx, y1, x1, padding_mode, N, C, H_in, W_in, border); - T rt_v = PixelAtGrid(input_data, BIdx, cIdx, y1, x2, padding_mode, N, C, H_in, W_in, border); - T lb_v = PixelAtGrid(input_data, BIdx, cIdx, y2, x1, padding_mode, N, C, H_in, W_in, border); - T rb_v = PixelAtGrid(input_data, BIdx, cIdx, y2, x2, padding_mode, N, C, H_in, W_in, border); + T lt_v = PixelAtGrid(input_data, BIdx, cIdx, y1, x1, padding_mode, N, C, H_in, W_in, border); + T rt_v = PixelAtGrid(input_data, BIdx, cIdx, y1, x2, padding_mode, N, C, H_in, W_in, border); + T lb_v = PixelAtGrid(input_data, BIdx, cIdx, y2, x1, padding_mode, N, C, H_in, W_in, border); + T rb_v = PixelAtGrid(input_data, BIdx, cIdx, y2, x2, padding_mode, N, C, H_in, W_in, border); T interpoV = w_lt * lt_v + w_rt * rt_v + w_lb * lb_v + w_rb * rb_v; output_data[outIdx] = interpoV; return; @@ -186,7 +209,8 @@ __global__ void _GridSampleKernel( if (mode == 1) { // nearest int x_n = grid_x_imgSpace; int y_n = grid_y_imgSpace; - output_data[outIdx] = PixelAtGrid(input_data, BIdx, cIdx, y_n, x_n, padding_mode, N, C, H_in, W_in, border); + output_data[outIdx] = + PixelAtGrid(input_data, BIdx, cIdx, y_n, x_n, padding_mode, N, C, H_in, W_in, border); return; } if (mode == 2) { // bicubic @@ -195,7 +219,8 @@ __global__ void _GridSampleKernel( T p[4][4] = {}; // [H][W] for (int64_t h = 0; h < 4; h++) { for (int64_t w = 0; w < 4; w++) { - p[h][w] = PixelAtGrid(input_data, BIdx, cIdx, h + y0, w + x0, padding_mode, N, C, H_in, W_in, border); + p[h][w] = + PixelAtGrid(input_data, BIdx, cIdx, h + y0, w + x0, padding_mode, N, C, H_in, W_in, border); } } T dx = grid_x_imgSpace - x0 - 1; @@ -204,7 +229,7 @@ __global__ void _GridSampleKernel( } } -template +template void GridSampleImpl( cudaStream_t stream, const T* input_data, @@ -216,17 +241,23 @@ void GridSampleImpl( const int64_t H_out, const int64_t W_out, T* output_data) { - int blocksPerGrid = (int)(ceil(static_cast(dims[0] * dims[1] * H_out * W_out) / GridDim::maxThreadsPerBlock)); - _GridSampleKernel<<>>( - input_data, grid_data, mode, padding_mode, align_corners, dims[0], dims[1], dims[2], dims[3], H_out, W_out, output_data); + using Ch = Channels; + + int blocksPerGrid = static_cast( + ceil(static_cast(dims[Ch::N] * dims[Ch::C] * H_out * W_out) / GridDim::maxThreadsPerBlock)); + _GridSampleKernel<<>>( + input_data, grid_data, mode, padding_mode, align_corners, + dims[Ch::N], dims[Ch::C], dims[Ch::H], dims[Ch::W], + H_out, W_out, output_data); } -#define SPECIALIZED_IMPL(T) \ - template void GridSampleImpl(cudaStream_t stream, const T* input_data, const T* grid_data, \ - const int64_t mode, const int64_t padding_mode, const int64_t align_corners, \ - const int64_t[4], const int64_t H_out, const int64_t W_out, T* output_data); +#define SPECIALIZED_IMPL(T, IsNHWC) \ + template void GridSampleImpl(cudaStream_t stream, const T* input_data, const T* grid_data, \ + const int64_t mode, const int64_t padding_mode, const int64_t align_corners, \ + const int64_t[4], const int64_t H_out, const int64_t W_out, T* output_data); -SPECIALIZED_IMPL(float) +SPECIALIZED_IMPL(float, false) // NCHW +SPECIALIZED_IMPL(float, true) // NHWC } // namespace cuda } // namespace contrib diff --git a/onnxruntime/contrib_ops/cuda/grid_sample_impl.h b/onnxruntime/contrib_ops/cuda/grid_sample_impl.h index 6df86ce161908..62cd66a48fa84 100644 --- a/onnxruntime/contrib_ops/cuda/grid_sample_impl.h +++ b/onnxruntime/contrib_ops/cuda/grid_sample_impl.h @@ -8,7 +8,7 @@ namespace onnxruntime { namespace contrib { namespace cuda { -template +template void GridSampleImpl( cudaStream_t stream, const T* input_data, diff --git a/onnxruntime/contrib_ops/cuda/inverse.cc b/onnxruntime/contrib_ops/cuda/inverse.cc index 81e161e60642c..9075dda26f86b 100644 --- a/onnxruntime/contrib_ops/cuda/inverse.cc +++ b/onnxruntime/contrib_ops/cuda/inverse.cc @@ -78,9 +78,9 @@ struct Inverse::ComputeImpl { cudaStream_t stream = ort_stream ? static_cast(ort_stream->GetHandle()) : nullptr; // Make a copy of the input which will serve as a workspace as well. - if (std::is_same::value || std::is_same::value) { + if constexpr (std::is_same::value || std::is_same::value) { IAllocatorUniquePtr input_workspace = inst->GetScratchBuffer(input_count, ort_stream); - if (std::is_same::value) { + if constexpr (std::is_same::value) { // Convert from MLFloat16(half) to float Impl_Cast(stream, reinterpret_cast(input.Data()), input_workspace.get(), input_count); } else { @@ -96,7 +96,7 @@ struct Inverse::ComputeImpl { // Need to compute ptrs for output buffers // Output for MLFloat IAllocatorUniquePtr output_ptrs = inst->GetScratchBuffer(n_batches, ort_stream); - if (std::is_same::value) { + if constexpr (std::is_same::value) { IAllocatorUniquePtr ml_float_output = inst->GetScratchBuffer(input_count, ort_stream); ORT_RETURN_IF_ERROR(ComputeMatrixOffsets(stream, ml_float_output.get(), num_batches, rows, output_ptrs)); // Do the inverse @@ -112,7 +112,7 @@ struct Inverse::ComputeImpl { ORT_RETURN_IF_ERROR(CheckForSingularity(stream, info, info_cpu, num_batches)); // We are done here } - } else if (std::is_same::value) { + } else if constexpr (std::is_same::value) { IAllocatorUniquePtr input_workspace = inst->GetScratchBuffer(static_cast(input_count), ort_stream); CUDA_RETURN_IF_ERROR(cudaMemcpyAsync(input_workspace.get(), input.Data(), sizeof(double) * input_count, cudaMemcpyDeviceToDevice, stream)); diff --git a/onnxruntime/contrib_ops/cuda/math/complex_mul_impl.cu b/onnxruntime/contrib_ops/cuda/math/complex_mul_impl.cu index ca94477114ee2..47a64502b3480 100644 --- a/onnxruntime/contrib_ops/cuda/math/complex_mul_impl.cu +++ b/onnxruntime/contrib_ops/cuda/math/complex_mul_impl.cu @@ -97,8 +97,8 @@ void ComplexMul_Impl( const TArray* rhs_padded_strides, const T* rhs_data, const TArray* fdm_output_strides, - const onnxruntime::cuda::fast_divmod& fdm_H, - const onnxruntime::cuda::fast_divmod& fdm_C, + const onnxruntime::cuda::fast_divmod& /*fdm_H*/, + const onnxruntime::cuda::fast_divmod& /*fdm_C*/, T* output_data, int64_t count, int64_t lhs_size, diff --git a/onnxruntime/contrib_ops/cuda/math/gemm_float8.cu b/onnxruntime/contrib_ops/cuda/math/gemm_float8.cu index 064b6dd392437..28ab27ee33d10 100644 --- a/onnxruntime/contrib_ops/cuda/math/gemm_float8.cu +++ b/onnxruntime/contrib_ops/cuda/math/gemm_float8.cu @@ -174,7 +174,7 @@ Status GemmFloat8::ComputeGemm( int32_t dtype_A, int32_t dtype_B, int32_t dtype_C, int32_t dtype_Y, const TensorShape& shape_A, const TensorShape& shape_B, - const TensorShape& shape_C, const TensorShape& shape_Y, + const TensorShape& shape_C, const TensorShape& /*shape_Y*/, bool trans_A, bool trans_B, const void* p_input_a, const void* p_input_b, const void* p_input_c, const void* p_scale_a, const void* p_scale_b, const void* p_scale_y, void* p_output_y, int M, int N, int K, int lda, diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h new file mode 100644 index 0000000000000..07c38c58e446a --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h @@ -0,0 +1,110 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Templates exposing architecture support for multiply-add operations +*/ + +#pragma once +#include "contrib_ops/cuda/moe/cutlass_extensions/weight_only_quant_op.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace arch { + +// Tag which triggers MMA which will trigger +struct OpMultiplyAddDequantizeInterleavedBToA; + +/* + Below we have extra tags to signal what kind of dequantization we want to do + (per col, scale only fine grained, finegrained with zero). This still lets us + the existing template infrastructure (incl. that in CUTLASS). However, we + split out the template below into OpMultiplyAddDequantizeInterleavedBToA along + with the quantization op before instantiating the GEMM pieces. + + Note that this is somewhat of a hack, but it SIGNIFICANTLY reduces the amount of + code we need to duplicate. + */ +struct OpMultiplyAddDequantizeInterleavedBToA_percol_scale; +struct OpMultiplyAddDequantizeInterleavedBToA_fine_scale; +struct OpMultiplyAddDequantizeInterleavedBToA_fine_scalebias; + +// The default just forwards the original operator +template +struct TagOperator { + using TaggedOperator = MmaOp; +}; + +// Specializations below attach more information to the operator +template <> +struct TagOperator { + using TaggedOperator = OpMultiplyAddDequantizeInterleavedBToA_percol_scale; +}; + +template <> +struct TagOperator { + using TaggedOperator = OpMultiplyAddDequantizeInterleavedBToA_fine_scale; +}; + +template <> +struct TagOperator { + using TaggedOperator = OpMultiplyAddDequantizeInterleavedBToA_fine_scalebias; +}; + +// Here we instantiate some structs to "detag" the tagged operator. It splits it back to the original +// operator + the extra information. If no extra info was tagged, the dequant op per column scaling +// as a default. +template +struct DetagOperator { + using Operator = TaggedMmaOp; + static constexpr WeightOnlyQuantOp QuantOp = WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY; +}; + +template <> +struct DetagOperator { + using Operator = OpMultiplyAddDequantizeInterleavedBToA; + static constexpr WeightOnlyQuantOp QuantOp = WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY; +}; + +template <> +struct DetagOperator { + using Operator = OpMultiplyAddDequantizeInterleavedBToA; + static constexpr WeightOnlyQuantOp QuantOp = WeightOnlyQuantOp::FINEGRAINED_SCALE_ONLY; +}; + +template <> +struct DetagOperator { + using Operator = OpMultiplyAddDequantizeInterleavedBToA; + static constexpr WeightOnlyQuantOp QuantOp = WeightOnlyQuantOp::FINEGRAINED_SCALE_AND_ZEROS; +}; + +} // namespace arch +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/compute_occupancy.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/compute_occupancy.h similarity index 62% rename from onnxruntime/contrib_ops/cuda/moe/ft_moe/compute_occupancy.h rename to onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/compute_occupancy.h index 86136ea244e23..99cbe4a66049e 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/compute_occupancy.h +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/compute_occupancy.h @@ -26,19 +26,22 @@ namespace ort_fastertransformer { template inline int compute_occupancy_for_kernel() { - int smem_size = int(sizeof(typename GemmKernel::SharedStorage)); + int smem_size = static_cast(sizeof(typename GemmKernel::SharedStorage)); if (smem_size > (48 << 10)) { - cudaError_t status = - cudaFuncSetAttribute(cutlass::Kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size); - if (status == cudaError::cudaErrorInvalidValue) { - // Clear the error bit since we can ignore this. - // This should mean that smem_size > cudaDevAttrMaxSharedMemoryPerBlockOptin. In that case, we return an - // occupancy of 0. This will cause the heuristic to ignore this configuration. - status = cudaGetLastError(); + cudaFuncAttributes attr; + int device = 0; + int max_smem_per_block = 0; + CUDA_CALL_THROW(cudaGetDevice(&device)); + CUDA_CALL_THROW(cudaDeviceGetAttribute(&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device)); + CUDA_CALL_THROW(cudaFuncGetAttributes(&attr, cutlass::Kernel)); + if (smem_size + attr.sharedSizeBytes >= static_cast(max_smem_per_block)) { + // This should mean that + // cudaFuncSetAttribute(cutlass::Kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size) + // wouldn't work. In that case, we return an occupancy of 0. This will cause the heuristic to ignore this + // configuration. return 0; } - CUDA_CALL_THROW(status); } int max_active_blocks = -1; diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/gemm_moe_problem_visitor.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/thread/fused_activations.h similarity index 57% rename from onnxruntime/contrib_ops/cuda/moe/ft_moe/gemm_moe_problem_visitor.h rename to onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/thread/fused_activations.h index 311ed323cb90c..da8cb6d294efd 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/gemm_moe_problem_visitor.h +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/thread/fused_activations.h @@ -28,52 +28,68 @@ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ - /*! \file - \brief Scheduler for grouped GEMM + \brief Functor performing linear combination with a maximum operation used by epilogues. */ #pragma once +#include "cutlass/array.h" #include "cutlass/cutlass.h" -#include "cutlass/gemm/gemm.h" -#include "cutlass/gemm/kernel/gemm_grouped_problem_visitor.h" -#include "cutlass/matrix_coord.h" - -#include "moe_problem_visitor.h" +#include "cutlass/epilogue/thread/activation.h" +#include "cutlass/epilogue/thread/linear_combination_generic.h" +#include "cutlass/epilogue/thread/scale_type.h" +#include "cutlass/functional.h" +#include "cutlass/half.h" +#include "cutlass/numeric_conversion.h" +#include "cutlass/numeric_types.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { -namespace gemm { -namespace kernel { +namespace epilogue { +namespace thread { -/// Visitor class to abstract away the algorithm for iterating over tiles -template -struct GemmMoeProblemVisitor - : public MoeProblemVisitor, ThreadblockShape, - GroupScheduleMode_, PrefetchTileCount, ThreadCount> { - static bool const kTransposed = Transposed; +///////////////////////////////////////////////////////////////////////////////////////////////// - using ProblemSizeHelper = detail::GemmGroupedProblemSizeHelper; - using Base = - MoeProblemVisitor; - using Params = typename Base::Params; - using SharedStorage = typename Base::SharedStorage; +__forceinline__ __device__ float copysignf_pos(float a, float b) { + float r; + r = __int_as_float(__float_as_int(a) | (__float_as_int(b) & 0x80000000)); + return r; +} - // - // Methods - // - CUTLASS_DEVICE - GemmMoeProblemVisitor(Params const& params_, SharedStorage& shared_storage_, int32_t block_idx) - : Base(params_, shared_storage_, block_idx) {} -}; +__forceinline__ __device__ float tanh_opt(float x) { +#if (__CUDACC_VER_MAJOR__ < 11) || (__CUDA_ARCH__ < 750) + float const exp_val = -1.f * fabs(2 * x); + return copysignf_pos((1.0f - __expf(exp_val)) / (__expf(exp_val) + 1.0f), x); +#else + return fast_tanh(x); +#endif +} ///////////////////////////////////////////////////////////////////////////////////////////////// +template <> +struct GELU_taylor { + static bool const kIsHeavy = true; + + CUTLASS_DEVICE + float operator()(float const& z) const { + float k0 = static_cast(0.7978845608028654); + float k1 = static_cast(0.044715); + + return static_cast( + cutlass::constants::half() * z * + (cutlass::constants::one() + tanh_opt(k0 * z * (cutlass::constants::one() + k1 * z * z)))); + } + + using Params = LinearCombinationGenericParams; + + CUTLASS_DEVICE + float operator()(float const& scalar, Params const& params_) const { return this->operator()(scalar); } +}; -} // namespace kernel -} // namespace gemm +} // namespace thread +} // namespace epilogue } // namespace cutlass ///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/threadblock/epilogue_per_row_per_col_scale.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/threadblock/epilogue_per_row_per_col_scale.h new file mode 100644 index 0000000000000..affd1d83a35de --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/threadblock/epilogue_per_row_per_col_scale.h @@ -0,0 +1,306 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Epilogue visitor for threadblock scoped INT8 GEMMs that uses one scaling factor per row, and one per column. + + original file: 3rdparty/cutlass/include/cutlass/epilogue/threadblock/epilogue_visitor_with_softmax.h + +*/ + +#pragma once + +///////////////////////////////////////////////////////////////////////////////////////////////// + +#include "cutlass/arch/memory.h" +#include "cutlass/arch/memory_sm75.h" +#include "cutlass/cutlass.h" +#include "cutlass/fast_math.h" +#include "cutlass/numeric_conversion.h" +#include "tensorrt_llm/common/quantization.h" + +namespace tk = tensorrt_llm::common; + +namespace cutlass { +namespace epilogue { +namespace threadblock { + +template +class EpilogueVisitorPerRowPerCol { + public: + using ThreadblockShape = ThreadblockShape_; + static int const kThreadCount = ThreadCount; + + using ScaleTileIterator = ScaleTileIterator_; + using OutputTileIterator = OutputTileIterator_; + using ElementwiseFunctor = ElementwiseFunctor_; + + static int const kIterations = OutputTileIterator::kIterations; + static int const kElementsPerAccess = OutputTileIterator::kElementsPerAccess; + + using ElementOutput = typename OutputTileIterator::Element; + using LayoutOutput = cutlass::layout::RowMajor; + using ElementAccumulator = ElementAccumulator_; + + using AlphaScaleElementType = typename ScaleTileIterator::Element; + + using ElementCompute = ElementCompute_; + using AccumulatorFragment = Array; + using ComputeFragment = Array; + using OutputVector = Array; + + static int const kThreadsPerRow = OutputTileIterator::ThreadMap::Detail::kAccessWidth; + static bool const kHasMultiStepsInRow = (OutputTileIterator::ThreadMap::Iterations::kColumn > 1); + + /// Argument structure + struct Arguments { + typename ElementwiseFunctor::Params elementwise; + int64_t batch_stride_alpha; + int64_t batch_stride_C; + int64_t batch_stride_D; + + // + // Methods + // + Arguments() : batch_stride_alpha(0), batch_stride_C(0), batch_stride_D(0) {} + + explicit Arguments(typename ElementwiseFunctor::Params elementwise_) + : elementwise(elementwise_), batch_stride_alpha(0), batch_stride_C(0), batch_stride_D(0) {} + + Arguments(typename ElementwiseFunctor::Params elementwise_, int64_t batch_stride_alpha_, int64_t batch_stride_C_, + int64_t batch_stride_D_) + : elementwise(elementwise_), + batch_stride_alpha(batch_stride_alpha_), + batch_stride_C(batch_stride_C_), + batch_stride_D(batch_stride_D_) {} + }; + + struct Params { + typename ElementwiseFunctor::Params elementwise; + int64_t batch_stride_alpha; + int64_t batch_stride_C; + int64_t batch_stride_D; + + // + // Methods + // + CUTLASS_HOST_DEVICE + Params() {} + + CUTLASS_HOST_DEVICE + explicit Params(Arguments const& args) + : elementwise(args.elementwise), + batch_stride_alpha(args.batch_stride_alpha), + batch_stride_C(args.batch_stride_C), + batch_stride_D(args.batch_stride_D) {} + }; + + /// Shared storage + struct SharedStorage {}; + + private: + Params const& params_; + SharedStorage& shared_storage_; + MatrixCoord extent_; + MatrixCoord extent_real_; + ElementwiseFunctor elementwise_; + + bool const per_token_quant_; + bool const per_channel_quant_; + + AlphaScaleElementType* ptr_alpha_row_; + AlphaScaleElementType* ptr_alpha_col_; + ScaleTileIterator iterator_alpha_col_; + OutputTileIterator iterator_C_; + OutputTileIterator iterator_D_; + + AlphaScaleElementType element_alpha_row_ = 1.0f; + AlphaScaleElementType element_alpha_col_ = 1.0f; + typename ScaleTileIterator::Fragment fragment_alpha_col_; + typename OutputTileIterator::Fragment fragment_C_; + typename OutputTileIterator::Fragment fragment_D_; + + ElementAccumulator beta_; + + int column_offset_; + + MatrixCoord thread_offset_; + + public: + CUTLASS_DEVICE + EpilogueVisitorPerRowPerCol(Params const& params, SharedStorage& shared_storage, + cutlass::MatrixCoord const& problem_size, int thread_idx, int warp_idx, int lane_idx, + typename ScaleTileIterator::Params params_alpha_col, + typename OutputTileIterator::Params params_C, + typename OutputTileIterator::Params params_D, tk::QuantMode quant_option, + AlphaScaleElementType* ptr_alpha_row, AlphaScaleElementType* ptr_alpha_col, + typename OutputTileIterator::Element* ptr_C, typename OutputTileIterator::Element* ptr_D, + cutlass::MatrixCoord const& threadblock_offset = cutlass::MatrixCoord(0, 0), + int column_offset = 0, + cutlass::MatrixCoord const& problem_size_real = cutlass::MatrixCoord(0, 0)) + : params_(params), + shared_storage_(shared_storage), + extent_(problem_size), + elementwise_(params.elementwise), + per_token_quant_(quant_option.hasPerTokenScaling()), + per_channel_quant_(quant_option.hasPerChannelScaling()), + ptr_alpha_row_(ptr_alpha_row), + ptr_alpha_col_(ptr_alpha_col), + iterator_alpha_col_(params_alpha_col, ptr_alpha_col, problem_size, thread_idx, threadblock_offset), + iterator_C_(params_C, ptr_C, problem_size, thread_idx, threadblock_offset), + iterator_D_(params_D, ptr_D, problem_size, thread_idx, threadblock_offset), + extent_real_(problem_size_real) { + beta_ = (params.elementwise.beta_ptr ? *params.elementwise.beta_ptr : params.elementwise.beta); + + if (beta_ == ElementAccumulator()) { + iterator_C_.clear_mask(); + } + + if (!per_channel_quant_ && (ptr_alpha_col_ != nullptr)) { + element_alpha_col_ = *ptr_alpha_col_; + } + + if (!per_token_quant_ && (ptr_alpha_row_ != nullptr)) { + element_alpha_row_ = *ptr_alpha_row_; + } + } + + /// Helper to indicate split-K behavior + CUTLASS_DEVICE + void set_k_partition(int split_k_index, ///< Index of this threadblock within split-K partitioned scheme + int split_k_slices) { ///< Total number of split-K slices + } + + /// Called to set the batch index + CUTLASS_DEVICE + void set_batch_index(int batch_idx) { + iterator_alpha_col_.add_pointer_offset(batch_idx * params_.batch_stride_alpha); + iterator_C_.add_pointer_offset(batch_idx * params_.batch_stride_C); + iterator_D_.add_pointer_offset(batch_idx * params_.batch_stride_D); + } + + /// Called at the start of the epilogue just before iterating over accumulator slices + CUTLASS_DEVICE + void begin_epilogue() { + if (per_channel_quant_) { + iterator_alpha_col_.load(fragment_alpha_col_); + } + } + + /// Called at the start of one step before starting accumulator exchange + CUTLASS_DEVICE + void begin_step(int step_idx) { + fragment_D_.clear(); + fragment_C_.clear(); + + if (elementwise_.kScale != cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling) { + iterator_C_.load(fragment_C_); + ++iterator_C_; + } + } + + /// Called at the start of a row + CUTLASS_DEVICE + void begin_row(int row_idx) { + // load alpha_row in begin_step only when per token(row) scaling is used + if (per_token_quant_) { + int thread_offset_row = + iterator_D_.thread_start_row() + OutputTileIterator::ThreadMap::iteration_offset(row_idx).row(); + + arch::global_load( + element_alpha_row_, ptr_alpha_row_ + thread_offset_row, thread_offset_row < extent_.row()); + } + } + + /// Called after accumulators have been exchanged for each accumulator vector + CUTLASS_DEVICE + void visit(int iter_idx, int row_idx, int column_idx, int frag_idx, AccumulatorFragment const& accum) { + NumericArrayConverter source_converter; + + ComputeFragment result = source_converter(accum); + if (per_channel_quant_) { + ComputeFragment alpha_col = reinterpret_cast(&fragment_alpha_col_)[column_idx]; + result = per_token_channel_scale_accumulator_(result, alpha_col, element_alpha_row_); + } else { + result = per_token_scale_accumulator_(result, element_alpha_col_, element_alpha_row_); + } + + // Convert to the output + NumericArrayConverter output_converter; + OutputVector& output = reinterpret_cast(&fragment_D_)[frag_idx]; + output = output_converter(result); + } + + /// Called at the end of a row + CUTLASS_DEVICE + void end_row(int row_idx) {} + + /// Called after all accumulator elements have been visited + CUTLASS_DEVICE + void end_step(int step_idx) { + iterator_D_.store(fragment_D_); + ++iterator_D_; + } + + /// Called after all steps have been completed + CUTLASS_DEVICE + void end_epilogue() {} + + private: + CUTLASS_DEVICE + ComputeFragment per_token_channel_scale_accumulator_(ComputeFragment const& accum, ComputeFragment const& scale_col, + AlphaScaleElementType const& scale_row) { + ComputeFragment result; + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < ComputeFragment::kElements; ++i) { + result[i] = accum[i] * (scale_col[i] * scale_row); + } + + return result; + } + + CUTLASS_DEVICE + ComputeFragment per_token_scale_accumulator_(ComputeFragment const& accum, AlphaScaleElementType const& scale_col, + AlphaScaleElementType const& scale_row) { + ComputeFragment result; + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < ComputeFragment::kElements; ++i) { + result[i] = accum[i] * (scale_col * scale_row); + } + + return result; + } +}; + +} // namespace threadblock +} // namespace epilogue +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/threadblock/epilogue_tensor_op_int32.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/threadblock/epilogue_tensor_op_int32.h new file mode 100644 index 0000000000000..40f126d56616a --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue/threadblock/epilogue_tensor_op_int32.h @@ -0,0 +1,247 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Epilogue for threadblock scoped GEMMs using Tensor Ops. + + The epilogue rearranges the result of a matrix product through shared memory to match canonical + tensor layouts in global memory. Epilogues support conversion and reduction operations. + + original file: 3rdparty/cutlass/include/cutlass/epilogue/threadblock/default_epilogue_tensor_op.h + +*/ + +#pragma once + +#include "cutlass/array.h" +#include "cutlass/cutlass.h" +#include "cutlass/numeric_types.h" + +#include "cutlass/platform/platform.h" + +#include "cutlass/gemm/gemm.h" + +#include "cutlass/epilogue/thread/linear_combination.h" +#include "cutlass/epilogue/thread/linear_combination_clamp.h" +#include "cutlass/epilogue/thread/linear_combination_gelu.h" +#include "cutlass/epilogue/thread/linear_combination_hardswish.h" +#include "cutlass/epilogue/thread/linear_combination_planar_complex.h" +#include "cutlass/epilogue/thread/linear_combination_relu.h" +#include "cutlass/epilogue/thread/linear_combination_relu0.h" +#include "cutlass/epilogue/thread/linear_combination_sigmoid.h" + +#include "cutlass/epilogue/thread/conversion_op.h" +#include "cutlass/epilogue/thread/reduction_op.h" + +#include "cutlass/transform/threadblock/regular_tile_iterator_pitch_linear.h" + +#include "cutlass/epilogue/threadblock/default_thread_map_tensor_op.h" +#include "cutlass/epilogue/threadblock/predicated_tile_iterator.h" +#include "cutlass/epilogue/threadblock/predicated_tile_iterator_affine.h" +#include "cutlass/epilogue/threadblock/predicated_tile_iterator_strided_dgrad.h" +#include "cutlass/epilogue/threadblock/shared_load_iterator.h" +#include "cutlass/epilogue/threadblock/shared_load_iterator_mixed.h" +#include "cutlass/epilogue/warp/fragment_iterator_complex_tensor_op.h" +#include "cutlass/epilogue/warp/fragment_iterator_tensor_op.h" +#include "cutlass/epilogue/warp/tile_iterator_tensor_op.h" +#include "cutlass/epilogue/warp/tile_iterator_tensor_op_mixed.h" + +#include "cutlass/epilogue/threadblock/epilogue.h" +#include "cutlass/epilogue/threadblock/interleaved_epilogue.h" + +#include "cutlass/layout/permute.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace epilogue { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +namespace detail { + +/// Partial specialization for bfloat16_t <= int32_t x 8 epilogues avoids shared memory bank conflicts. +template +struct DefaultIteratorsTensorOp { + using WarpTileIterator = + cutlass::epilogue::warp::TileIteratorTensorOpMixed; + + using SharedLoadIterator = cutlass::epilogue::threadblock::SharedLoadIteratorMixed; + + static int const kFragmentsPerIteration = 2; +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace detail + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Tile iterator used to load output tile from shared memory in epilogue. +/// +/// Satisfies: ReadableTileIterator +/// +template +class SharedLoadIteratorMixed { + public: + using ThreadMap = ThreadMap_; + using Shape = typename ThreadMap::Shape; + + using Element = int32_t; + + using Layout = layout::RowMajor; + using TensorRef = TensorRef; + using ConstTensorRef = typename TensorRef::ConstTensorRef; + + using Index = typename Layout::Index; + using LongIndex = typename Layout::LongIndex; + using TensorCoord = MatrixCoord; + + static int const kElementsPerAccess = ThreadMap::kElementsPerAccess; + + static int const kAlignment = ThreadMap::kElementsPerAccess * sizeof_bits::value / 8; + + static int const kThreads = ThreadMap::kThreads; + + /// Fragment object + using Fragment = + Array; + + /// Memory access size + using AccessType = AlignedArray; + + /// Vector type used for SMEM loads + using LoadType = AlignedArray::value, ThreadMap::kElementsPerAccess), + const_min(16, kAlignment)>; + + static int const kLoadsPerAccess = AccessType::kElements / LoadType::kElements; + + private: + // + // Data members + // + + /// Byte-level pointer + LoadType const* pointers_[kLoadsPerAccess]; + + /// Stride along adjacent rows in units of LoadType + int stride_; + + public: + // + // Methods + // + + /// Constructor + CUTLASS_DEVICE + SharedLoadIteratorMixed(TensorRef ref, int thread_idx) : stride_((ref.stride(0) / LoadType::kElements)) { + TensorCoord thread_offset = ThreadMap::initial_offset(thread_idx); + + // Initialize pointers + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < kLoadsPerAccess; ++i) { + pointers_[i] = reinterpret_cast(ref.data()); + + int col_idx = (thread_offset.column() / kElementsPerAccess) * kLoadsPerAccess; + int bank_offset = (col_idx * static_cast(sizeof(LoadType)) / 128) % kLoadsPerAccess; + + col_idx += (bank_offset + i) % kLoadsPerAccess; + + pointers_[i] += thread_offset.row() * stride_ + col_idx; + } + } + + /// Adds a pointer offset in units of Element + CUTLASS_HOST_DEVICE + void add_pointer_offset(LongIndex pointer_offset) { + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < kLoadsPerAccess; ++i) { + pointers_[i] += pointer_offset / LoadType::kElements; + } + } + + CUTLASS_DEVICE + void add_tile_offset(TensorCoord const& offset) { + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < kLoadsPerAccess; ++i) { + pointers_[i] += offset.row() * Shape::kRow * stride_ + offset.column() * Shape::kColumn / LoadType::kElements; + } + } + + /// Loads a fragment from memory + CUTLASS_DEVICE + void load_with_pointer_offset(Fragment& frag, Index pointer_offset) const { + CUTLASS_PRAGMA_UNROLL + for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) { + CUTLASS_PRAGMA_UNROLL + for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) { + CUTLASS_PRAGMA_UNROLL + for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) { + int row_ptr_offset = row * ThreadMap::Delta::kRow * stride_ + group * ThreadMap::Delta::kGroup * stride_ + + cluster * ThreadMap::Delta::kCluster * stride_ + pointer_offset / LoadType::kElements; + + int frag_row_idx = (row + ThreadMap::Iterations::kRow * (group + ThreadMap::Iterations::kGroup * cluster)); + + LoadType* frag_ptr = reinterpret_cast(&frag); + + CUTLASS_PRAGMA_UNROLL + for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) { + int frag_idx = frag_row_idx * ThreadMap::Iterations::kColumn + column; + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < kLoadsPerAccess; ++v) { + int vector_idx = (column * ThreadMap::Delta::kColumn / kElementsPerAccess * kLoadsPerAccess); + + LoadType const* memory_pointer = pointers_[v] + row_ptr_offset; + + frag_ptr[frag_idx * kLoadsPerAccess + v] = memory_pointer[vector_idx]; + } + } + } + } + } + } + + /// Loads a fragment + CUTLASS_DEVICE + void load(Fragment& frag) const { load_with_pointer_offset(frag, 0); } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace threadblock +} // namespace epilogue +} // namespace cutlass + +//////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/epilogue_helpers.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue_helpers.h similarity index 56% rename from onnxruntime/contrib_ops/cuda/moe/ft_moe/epilogue_helpers.h rename to onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue_helpers.h index 78d206bf1d9bc..b784646c31f84 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/epilogue_helpers.h +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/epilogue_helpers.h @@ -1,11 +1,12 @@ /* - * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * - * http://www.apache.org/licenses/LICENSE-2.0 + * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, @@ -24,61 +25,12 @@ #pragma once -#include "cutlass/array.h" -#include "cutlass/cutlass.h" -#include "cutlass/epilogue/thread/activation.h" -#include "cutlass/epilogue/thread/scale_type.h" -#include "cutlass/functional.h" -#include "cutlass/half.h" -#include "cutlass/numeric_conversion.h" -#include "cutlass/numeric_types.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/epilogue/thread/fused_activations.h" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/epilogue/thread/linear_combination_generic.h" #include "cutlass/epilogue/thread/linear_combination_relu.h" #include "cutlass/epilogue/thread/linear_combination_silu.h" -namespace cutlass { -namespace epilogue { -namespace thread { - -__forceinline__ __device__ float copysignf_pos(float a, float b) { - float r; - r = __int_as_float(__float_as_int(a) | (__float_as_int(b) & 0x80000000)); - return r; -} - -__forceinline__ __device__ float tanh_opt(float x) { -#if (__CUDACC_VER_MAJOR__ < 11) || (__CUDA_ARCH__ < 750) - const float exp_val = -1.f * fabs(2 * x); - return copysignf_pos((1.0f - __expf(exp_val)) / (__expf(exp_val) + 1.0f), x); -#else - return fast_tanh(x); -#endif -} - -template <> -struct GELU_taylor { - static const bool kIsHeavy = true; - CUTLASS_DEVICE - float operator()(float const& z) const { - float k0 = float(0.7978845608028654); - float k1 = float(0.044715); - - return float( - cutlass::constants::half() * z * - (cutlass::constants::one() + tanh_opt(k0 * z * (cutlass::constants::one() + k1 * z * z)))); - } - - using Params = LinearCombinationGenericParams; - - CUTLASS_DEVICE - float operator()(float const& scalar, Params const& params_) const { return this->operator()(scalar); } -}; - -} // namespace thread -} // namespace epilogue -} // namespace cutlass - namespace ort_fastertransformer { struct EpilogueOpBiasSilu {}; @@ -87,47 +39,71 @@ struct EpilogueOpBiasReLU {}; struct EpilogueOpBiasFtGelu {}; +struct EpilogueOpDefaultSilu {}; + +struct EpilogueOpDefaultReLU {}; + +struct EpilogueOpDefaultFtGelu {}; + struct EpilogueOpBias {}; -struct EpilogueOpNoBias {}; +struct EpilogueOpDefault {}; template struct Epilogue {}; +constexpr auto BiasScaleMode = cutlass::epilogue::thread::ScaleType::NoBetaScaling; + template struct Epilogue { using Op = cutlass::epilogue::thread::LinearCombinationSilu; + ElementAccumulator, BiasScaleMode>; }; template struct Epilogue { using Op = cutlass::epilogue::thread::LinearCombinationRelu; + ElementAccumulator, BiasScaleMode>; }; template struct Epilogue { using Op = cutlass::epilogue::thread::LinearCombinationGeneric< cutlass::epilogue::thread::GELU_taylor, ElementType, ElementsPerVectorAccess, ElementAccumulator, - ElementAccumulator, cutlass::epilogue::thread::ScaleType::NoBetaScaling, - cutlass::FloatRoundStyle::round_to_nearest, true>; + ElementAccumulator, BiasScaleMode, cutlass::FloatRoundStyle::round_to_nearest, true>; }; template struct Epilogue { using Op = cutlass::epilogue::thread::LinearCombination; + ElementAccumulator, BiasScaleMode>; +}; + +constexpr auto DefaultScaleMode = cutlass::epilogue::thread::ScaleType::Default; + +template +struct Epilogue { + using Op = cutlass::epilogue::thread::LinearCombinationSilu; +}; + +template +struct Epilogue { + using Op = cutlass::epilogue::thread::LinearCombinationRelu; }; template -struct Epilogue { - using Op = - cutlass::epilogue::thread::LinearCombination; +struct Epilogue { + using Op = cutlass::epilogue::thread::LinearCombinationGeneric< + cutlass::epilogue::thread::GELU_taylor, ElementType, ElementsPerVectorAccess, ElementAccumulator, + ElementAccumulator, DefaultScaleMode, cutlass::FloatRoundStyle::round_to_nearest, true>; +}; + +template +struct Epilogue { + using Op = cutlass::epilogue::thread::LinearCombination; }; } // namespace ort_fastertransformer diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/device/gemm_universal_base_compat.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/device/gemm_universal_base_compat.h new file mode 100644 index 0000000000000..f5064afc23ae0 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/device/gemm_universal_base_compat.h @@ -0,0 +1,384 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! + \file + \brief The universal GEMM accommodates serial reductions, parallel reductions, batched strided, and + batched array variants. +*/ + +#pragma once + +// #include +#include + +#include "cutlass/arch/arch.h" +#include "cutlass/cutlass.h" +#include "cutlass/device_kernel.h" +#include "cutlass/numeric_types.h" + +#include "cutlass/gemm/gemm.h" +#include "cutlass/gemm/kernel/gemm_universal.h" +#include "cutlass/gemm/threadblock/threadblock_swizzle.h" + +#include "cutlass/gemm/device/default_gemm_configuration.h" +#include "cutlass/gemm/kernel/default_gemm_universal.h" + +#include "cutlass/trace.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace device { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/* + This is the device layer from CUTLASS 2.10 (SHA - cc85b64cf676c45f98a17e3a47c0aafcf817f088) + It is replicated here since we needed to duplicate kernel level APIs for mixed dtype GEMMs + and SmoothQuant. The newer device layer is not compatible with these older kernel level APIs. + + Note: While CUTLASS 3.x supports stream-k, none of the kernels in the extensions folder support + that feature at the moment. + */ + +template +class GemmUniversalBaseCompat { + public: + using GemmKernel = GemmKernel_; + using ThreadblockShape = typename GemmKernel::Mma::Shape; + + using ElementA = typename GemmKernel::ElementA; + using LayoutA = typename GemmKernel::LayoutA; + using TensorRefA = TensorRef; + static ComplexTransform const kTransformA = GemmKernel::kTransformA; + + using ElementB = typename GemmKernel::ElementB; + using LayoutB = typename GemmKernel::LayoutB; + using TensorRefB = TensorRef; + static ComplexTransform const kTransformB = GemmKernel::kTransformB; + + using ElementC = typename GemmKernel::ElementC; + using LayoutC = typename GemmKernel::LayoutC; + using TensorRefC = TensorRef; + using TensorRefD = TensorRef; + + using ElementAccumulator = typename GemmKernel::Mma::Policy::Operator::ElementC; + + using EpilogueOutputOp = typename GemmKernel::EpilogueOutputOp; + using ThreadblockSwizzle = typename GemmKernel::ThreadblockSwizzle; + using Operator = typename GemmKernel::Operator; + + /// Argument structure + using Arguments = typename GemmKernel::Arguments; + + protected: + /// Kernel parameters object + typename GemmKernel::Params params_; + + protected: + /// Private helper to obtain the grid dimensions with fix-up for split-K + static void get_grid_shape_(gemm::GemmCoord& grid_tiled_shape, int& gemm_k_size, Arguments const& args) { + // Determine grid shape + ThreadblockSwizzle threadblock_swizzle; + + grid_tiled_shape = threadblock_swizzle.get_tiled_shape( + args.problem_size, {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK}, args.batch_count); + + gemm_k_size = args.problem_size.k(); + + if (args.mode == GemmUniversalMode::kGemm || args.mode == GemmUniversalMode::kGemmSplitKParallel) { + int const kAlignK = + const_max(const_max(128 / sizeof_bits::value, 128 / sizeof_bits::value), 1); + + gemm_k_size = round_up(ceil_div(args.problem_size.k(), args.batch_count), kAlignK); + + if (gemm_k_size) { + grid_tiled_shape.k() = ceil_div(args.problem_size.k(), gemm_k_size); + } + } + } + + public: + /// Constructs the GEMM. + GemmUniversalBaseCompat() {} + + /// Determines whether the GEMM can execute the given problem. + static Status can_implement(Arguments const& args) { + // Determine grid shape + cutlass::gemm::GemmCoord grid_tiled_shape; + int gemm_k_size = 0; + + get_grid_shape_(grid_tiled_shape, gemm_k_size, args); + + ThreadblockSwizzle threadblock_swizzle; + dim3 grid = threadblock_swizzle.get_grid_shape(grid_tiled_shape); + + uint32_t const kGridYZMax = ((1 << (sizeof(uint16_t) * 8)) - 1); + + if (!(grid.y <= kGridYZMax && grid.z <= kGridYZMax)) { + return Status::kErrorInvalidProblem; + } + + return GemmKernel::can_implement(args); + } + + /// Gets the workspace size + static size_t get_workspace_size(Arguments const& args) { + CUTLASS_TRACE_HOST("GemmUniversalBaseCompat::get_workspace_size()"); + + size_t workspace_bytes = 0; + + // Determine grid shape + cutlass::gemm::GemmCoord grid_tiled_shape; + int gemm_k_size = 0; + + get_grid_shape_(grid_tiled_shape, gemm_k_size, args); + + if (args.mode == GemmUniversalMode::kGemmSplitKParallel) { + // Split-K parallel always requires a temporary workspace + workspace_bytes = sizeof(ElementC) * size_t(args.batch_stride_D) * size_t(grid_tiled_shape.k()); + } else if (args.mode == GemmUniversalMode::kGemm && grid_tiled_shape.k() > 1) { + // Serial split-K only requires a temporary workspace if the number of partitions along the + // GEMM K dimension is greater than one. + workspace_bytes = sizeof(int) * size_t(grid_tiled_shape.m()) * size_t(grid_tiled_shape.n()); + } + + CUTLASS_TRACE_HOST(" workspace_bytes: " << workspace_bytes); + + workspace_bytes += GemmKernel::get_extra_workspace_size(args, grid_tiled_shape); + + return workspace_bytes; + } + + /// Computes the grid shape + static dim3 get_grid_shape(Arguments const& args) { + CUTLASS_TRACE_HOST("GemmUniversalBaseCompat::get_grid_shape()"); + + ThreadblockSwizzle threadblock_swizzle; + + cutlass::gemm::GemmCoord grid_tiled_shape; + int gemm_k_size = 0; + + get_grid_shape_(grid_tiled_shape, gemm_k_size, args); + dim3 result = threadblock_swizzle.get_grid_shape(grid_tiled_shape); + + CUTLASS_TRACE_HOST(" grid_tiled_shape: " << grid_tiled_shape << "\n" + << " result = {" << result << "}"); + + return result; + } + + /// Computes the maximum number of active blocks per multiprocessor + static int maximum_active_blocks(int smem_capacity = -1) { + CUTLASS_TRACE_HOST("GemmUniversalBaseCompat::maximum_active_blocks()"); + + int max_active_blocks = -1; + int smem_size = static_cast(sizeof(typename GemmKernel::SharedStorage)); + + CUTLASS_TRACE_HOST(" smem_size: " << smem_size << " bytes"); + + if (smem_size <= (48 << 10)) { + cudaError_t result = cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_active_blocks, Kernel, + GemmKernel::kThreadCount, smem_size); + + if (result == cudaSuccess) { + CUTLASS_TRACE_HOST(" max_active_blocks: " << max_active_blocks); + return max_active_blocks; + } + } else { + // Query assuming zero shared memory then compute occupancy limit based on SMEM + cudaError_t result = cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_active_blocks, Kernel, + GemmKernel::kThreadCount, 0); + + if (result != cudaSuccess) { + CUTLASS_TRACE_HOST(" cudaOccupancyMaxActiveBlocksPerMultiprocessor() returned error " + << cudaGetErrorString(result)); + + return -1; + } + + if (smem_capacity < 0) { + int device_idx = 0; + result = cudaGetDevice(&device_idx); + + if (result != cudaSuccess) { + return -1; + } + + cudaDeviceProp properties; + result = cudaGetDeviceProperties(&properties, device_idx); + + if (result != cudaSuccess) { + return -1; + } + + smem_capacity = static_cast(properties.sharedMemPerMultiprocessor); + } + + int occupancy = std::min(max_active_blocks, smem_capacity / smem_size); + + CUTLASS_TRACE_HOST(" occupancy: " << occupancy); + + return occupancy; + } + + CUTLASS_TRACE_HOST(" returning internal error"); + + return -1; + } + + /// Initializes GEMM state from arguments. + Status initialize(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) { + CUTLASS_TRACE_HOST("GemmUniversalBaseCompat::initialize() - workspace " + << workspace << ", stream: " << (stream ? "non-null" : "null")); + + size_t workspace_bytes = get_workspace_size(args); + + CUTLASS_TRACE_HOST(" workspace_bytes: " << workspace_bytes); + + if (workspace_bytes) { + if (!workspace) { + CUTLASS_TRACE_HOST(" error: device workspace must not be null"); + + return Status::kErrorWorkspaceNull; + } + + if (args.mode == GemmUniversalMode::kGemm) { + CUTLASS_TRACE_HOST(" clearing device workspace"); + cudaError_t result = cudaMemsetAsync(workspace, 0, workspace_bytes, stream); + + if (result != cudaSuccess) { + CUTLASS_TRACE_HOST(" cudaMemsetAsync() returned error " << cudaGetErrorString(result)); + + return Status::kErrorInternal; + } + } + } + + // Get CUDA grid shape + cutlass::gemm::GemmCoord grid_tiled_shape; + int gemm_k_size = 0; + + get_grid_shape_(grid_tiled_shape, gemm_k_size, args); + + // Initialize the Params structure + params_ = typename GemmKernel::Params(args, grid_tiled_shape, gemm_k_size, static_cast(workspace)); + + // Specify shared memory capacity for kernel. + int smem_size = static_cast(sizeof(typename GemmKernel::SharedStorage)); + + if (smem_size >= (48 << 10)) { + cudaError_t result = + cudaFuncSetAttribute(Kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size); + + if (result != cudaSuccess) { + return Status::kErrorInternal; + } + } + + return Status::kSuccess; + } + + /// Lightweight update given a subset of arguments + Status update(Arguments const& args, void* workspace = nullptr) { + CUTLASS_TRACE_HOST("GemmUniversalBaseCompat()::update() - workspace: " << workspace); + + size_t workspace_bytes = get_workspace_size(args); + + if (workspace_bytes && !workspace) { + return Status::kErrorWorkspaceNull; + } + + params_.update(args, workspace); + + return Status::kSuccess; + } + + /// Runs the kernel using initialized state. + Status run(cudaStream_t stream = nullptr) { + CUTLASS_TRACE_HOST("GemmUniversalBaseCompat::run()"); + + // + // Configure grid and block dimensions + // + + ThreadblockSwizzle threadblock_swizzle; + + dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape); + dim3 block(GemmKernel::kThreadCount, 1, 1); + + int smem_size = static_cast(sizeof(typename GemmKernel::SharedStorage)); + + // + // Launch kernel + // + + CUTLASS_TRACE_HOST(" grid: (" << grid << "), block: (" << block << "), SMEM: " << smem_size << " bytes"); + + // Launch + cutlass::Kernel<<>>(params_); + + // + // Query for errors + // + cudaError_t result = cudaGetLastError(); + + if (result != cudaSuccess) { + CUTLASS_TRACE_HOST(" grid launch failed with error " << cudaGetErrorString(result)); + return Status::kErrorInternal; + } + + return Status::kSuccess; + } + + /// Runs the kernel using initialized state. + Status operator()(cudaStream_t stream = nullptr) { return run(stream); } + + /// Runs the kernel using initialized state. + Status operator()(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) { + Status status = initialize(args, workspace, stream); + + if (status == Status::kSuccess) { + status = run(stream); + } + + return status; + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace device +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/device/splitk_gemm_grouped.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/device/splitk_gemm_grouped.h new file mode 100644 index 0000000000000..b226b73e86fe1 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/device/splitk_gemm_grouped.h @@ -0,0 +1,476 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! + \file + \brief Based on cutlass/include/cutlass/gemm/kernel/gemm_grouped.h +*/ + +#pragma once + +#include +#include +#include +#include + +#include "cutlass/arch/arch.h" +#include "cutlass/cutlass.h" +#include "cutlass/device_kernel.h" +#include "cutlass/numeric_types.h" + +#include "cutlass/gemm/gemm.h" +#include "cutlass/gemm/kernel/gemm_universal.h" +#include "cutlass/gemm/threadblock/threadblock_swizzle.h" + +#include "cutlass/gemm/device/default_gemm_configuration.h" +#include "cutlass/gemm/kernel/default_gemm_universal.h" + +#include "cutlass/trace.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace device { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +template +__global__ void splitkReduction(T_OUT** out_tensor, const T_IN* in_tensor, GemmCoord const* problem_sizes, int splitk, + int64_t* splitk_buffer_offsets) { + // in_tensor: [problem_idx, k_partition, hidden_size] + // Note that different requests of in_tensor might have different hidden_size (=m*n) + // so, we need to use splitk_buffer_offsets. + // out_tensor: problem_idx * [hidden_size] + + int const problem_idx = blockIdx.y; + GemmCoord problem = problem_sizes[problem_idx]; + int const hidden_size = problem.m() * problem.n(); + const T_IN* in_tensor_ = in_tensor + splitk_buffer_offsets[problem_idx] * splitk; + T_OUT* out_tensor_ = out_tensor[problem_idx]; + + for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < hidden_size; i += blockDim.x * gridDim.x) { + float sum = 0.0f; + for (int k_idx = 0; k_idx < splitk; k_idx++) { + sum += static_cast(in_tensor_[k_idx * hidden_size + i]); + } + out_tensor_[i] = (T_OUT)(sum); + } +} + +/// GEMM Grouped +template +class BaseSplitkGrouped { + public: + using BaseKernel = BaseKernel_; + + using ElementA = typename BaseKernel::ElementA; + using LayoutA = typename BaseKernel::LayoutA; + using TensorRefA = TensorRef; + static ComplexTransform const kTransformA = BaseKernel::kTransformA; + static int const kAlignmentA = BaseKernel::kAlignmentA; + + using ElementB = typename BaseKernel::ElementB; + using LayoutB = typename BaseKernel::LayoutB; + using TensorRefB = TensorRef; + static ComplexTransform const kTransformB = BaseKernel::kTransformB; + static int const kAlignmentB = BaseKernel::kAlignmentB; + + using ElementC = typename BaseKernel::ElementC; + using LayoutC = typename BaseKernel::LayoutC; + using TensorRefC = TensorRef; + using TensorRefD = TensorRef; + static int const kAlignmentC = BaseKernel::kAlignmentC; + + using ElementAccumulator = typename BaseKernel::Mma::Policy::Operator::ElementC; + + using EpilogueOutputOp = typename BaseKernel::EpilogueOutputOp; + using ThreadblockSwizzle = typename threadblock::GemmSplitKHorizontalThreadblockSwizzle; + + using Operator = typename BaseKernel::Operator; + using WarpMmaOperator = typename BaseKernel::Mma::Policy::Operator; + + using ArchMmaOperator = typename WarpMmaOperator::ArchMmaOperator; + using MathOperator = typename WarpMmaOperator::MathOperator; + using OperatorClass = typename WarpMmaOperator::OperatorClass; + using ArchTag = typename WarpMmaOperator::ArchTag; + using ThreadblockShape = typename BaseKernel::Mma::Shape; + using WarpShape = typename BaseKernel::WarpShape; + using InstructionShape = typename BaseKernel::InstructionShape; + static int const kStages = BaseKernel::Mma::kStages; + + /// Argument structure + using Arguments = typename BaseKernel::Arguments; + + using ProblemInfo = typename BaseKernel::ProblemVisitor::ProblemInfo; + + protected: + /// Kernel parameters object + typename BaseKernel::Params gemm_params_; + + private: + /// Get the number of tiles across all problems in a group + static int32_t group_tile_count(cutlass::gemm::GemmCoord const* problem_sizes_ptr, int problem_count) { + int32_t tiles = 0; + for (int32_t i = 0; i < problem_count; ++i) { + cutlass::gemm::GemmCoord problem = problem_sizes_ptr[i]; + BaseKernel::ProblemVisitor::possibly_transpose_problem(problem); + tiles += problem_tile_count(problem); + } + return tiles; + } + + /// Copy from `data` to `workspace` + Status copy_to_workspace(void* workspace, void* data, size_t bytes) { + cudaError_t cuda_error = cudaMemcpy(workspace, data, bytes, cudaMemcpyHostToDevice); + if (cuda_error != cudaSuccess) { + // Call cudaGetLastError() to clear the error bit + cuda_error = cudaGetLastError(); + CUTLASS_TRACE_HOST(" cudaMemcpy() returned error " << cudaGetErrorString(cuda_error)); + return Status::kErrorInternal; + } + + return Status::kSuccess; + } + + /// Precomputes scheduling information for the grouped GEMM + Status precompute(Arguments const& args, int32_t tile_count, void* workspace) { + size_t workspace_bytes = get_workspace_size(args); + std::vector host_workspace(workspace_bytes); + BaseKernel::ProblemVisitor::host_precompute(args.host_problem_sizes, args.problem_count, args.threadblock_count, + reinterpret_cast(host_workspace.data())); + return copy_to_workspace(workspace, host_workspace.data(), workspace_bytes); + } + + /// Reorder `data` according to `indices` + template + static void reorder_array(T* data, std::vector const& indices) { + // For now, simply create a copy of the data and then copy over to the original. + std::vector copy(indices.size()); + for (size_t i = 0; i < indices.size(); ++i) { + copy.at(i) = data[indices[i]]; + } + + memcpy(data, copy.data(), indices.size() * sizeof(T)); + } + + public: + /// Constructs the GEMM. + BaseSplitkGrouped() {} + + /// Determines whether the GEMM can execute the given problem. + static Status can_implement(Arguments const& args) { return BaseKernel::can_implement(args); } + + /// Get the number of tiles in a problem + static int32_t problem_tile_count(cutlass::gemm::GemmCoord const& problem) { + auto grid = BaseKernel::ProblemVisitor::grid_shape(problem); + return BaseKernel::ProblemVisitor::tile_count(grid); + } + + /// Get the number of tiles across all problems in a group + static int32_t group_tile_count(Arguments const& args) { + if (args.host_problem_sizes == nullptr) { + CUTLASS_TRACE_HOST("Received nullptr for `args.host_problem_sizes"); + return -1; + } + + return group_tile_count(args.host_problem_sizes, args.problem_count); + } + + /// Gets the workspace size + static size_t get_workspace_size(Arguments const& args) { + size_t total_mn = 0; + for (int i = 0; i < args.problem_count; i++) { + total_mn += args.host_problem_sizes[i].m() * args.host_problem_sizes[i].n(); + } + size_t workSpaceSize = total_mn * sizeof(ElementAccumulator) * args.split_k_slices; + + if (BaseKernel::ProblemVisitor::kRequiresPrecomputation) { + workSpaceSize += BaseKernel::ProblemVisitor::get_workspace_size(args.host_problem_sizes, args.problem_count, + args.threadblock_count); + } + return workSpaceSize; + } + + /// Computes the grid shape + static dim3 get_grid_shape(Arguments const& args) { return dim3(args.threadblock_count, 1, 1); } + + /// Computes the maximum number of active blocks per multiprocessor + static int maximum_active_blocks(int smem_capacity = -1) { + CUTLASS_TRACE_HOST("BaseSplitkGrouped::maximum_active_blocks()"); + + int smem_size = static_cast(sizeof(typename BaseKernel::SharedStorage)); + + CUTLASS_TRACE_HOST(" smem_size: " << smem_size << " bytes"); + + cudaError_t result; + if (smem_size > (48 << 10)) { + result = cudaFuncSetAttribute(Kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size); + + if (result != cudaSuccess) { + // Call cudaGetLastError() to clear the error bit + result = cudaGetLastError(); + CUTLASS_TRACE_HOST(" cudaFuncSetAttribute() returned error " << cudaGetErrorString(result)); + return -1; + } + } + + int max_active_blocks = -1; + result = cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_active_blocks, Kernel, + BaseKernel::kThreadCount, smem_size); + + if (result != cudaSuccess) { + // Call cudaGetLastError() to clear the error bit + result = cudaGetLastError(); + CUTLASS_TRACE_HOST(" cudaOccupancyMaxActiveBlocksPerMultiprocessor() returned error " + << cudaGetErrorString(result)); + return -1; + } + + CUTLASS_TRACE_HOST(" max_active_blocks: " << max_active_blocks); + return max_active_blocks; + } + + /// Sorts each pointer passed in according to the indices that sort + /// `problem_sizes_ptr` in descending order of problem-K dimension. + static void sort_problems(int problem_count, cutlass::gemm::GemmCoord* problem_sizes_ptr, int64_t* lda_host_ptr, + int64_t* ldb_host_ptr, int64_t* ldc_host_ptr, int64_t* ldd_host_ptr, int64_t* offset_A_ptr, + int64_t* offset_B_ptr, int64_t* offset_C_ptr, int64_t* offset_D_ptr) { + std::vector indices(problem_count); + std::iota(indices.begin(), indices.end(), 0); + std::stable_sort(indices.begin(), indices.end(), [&problem_sizes_ptr](size_t i, size_t j) { + return problem_sizes_ptr[i].k() > problem_sizes_ptr[j].k(); + }); + + reorder_array(problem_sizes_ptr, indices); + reorder_array(lda_host_ptr, indices); + reorder_array(ldb_host_ptr, indices); + reorder_array(ldc_host_ptr, indices); + reorder_array(ldd_host_ptr, indices); + reorder_array(offset_A_ptr, indices); + reorder_array(offset_B_ptr, indices); + reorder_array(offset_C_ptr, indices); + reorder_array(offset_D_ptr, indices); + } + + /// Computes the number of threadblocks to launch for the grouped kernel + static int sufficient(cutlass::gemm::GemmCoord const* problem_sizes_ptr = nullptr, int problem_count = 0, + int available_sm_count = -1) { + // Determine the number of blocks that would be launched to fill up a single + // wave on the GPU with each SM having maximum occupancy. + int device_idx; + cudaError_t result = cudaGetDevice(&device_idx); + if (result != cudaSuccess) { + // Call cudaGetLastError() to clear the error bit + result = cudaGetLastError(); + CUTLASS_TRACE_HOST(" cudaGetDevice() returned error " << cudaGetErrorString(result)); + return 0; + } + + int multiprocessor_count; + result = cudaDeviceGetAttribute(&multiprocessor_count, cudaDevAttrMultiProcessorCount, device_idx); + if (result != cudaSuccess) { + CUTLASS_TRACE_HOST(" cudaDeviceGetAttribute() returned error " << cudaGetErrorString(result)); + return 0; + } + + bool override_sm_count = (available_sm_count < 0 || available_sm_count > multiprocessor_count); + if (override_sm_count) { + available_sm_count = multiprocessor_count; + } + + int max_active_blocks = maximum_active_blocks(); + if (max_active_blocks <= 0) { + return 0; + } + + int occupancy_based_block_count = available_sm_count * max_active_blocks; + + if (problem_sizes_ptr == nullptr || problem_count == 0) { + return occupancy_based_block_count; + } + + int total_tiles = group_tile_count(problem_sizes_ptr, problem_count); + + // If the group contains a single problem, launching the exact number of + // threadblocks needed to cover the problem minimizes the work performed + // per threadblock in finding the next tile to compute. We return total_tiles + // unless the user has provided the SM count. + if (problem_count == 1 && override_sm_count) { + return total_tiles; + } + + // Choose between the full wave of threadblocks and the tile count. If there + // are fewer tiles in the group than threadblocks in the full wave, only + // some threadblocks will be assigned tiles. Those threadblocks + // which are not assigned tiles still need to perform the work of iterating through + // problem sizes to determine that they have no work to do. This competes for cycles + // with those threadblocks that are assigned tiles to compute. + return std::min(total_tiles, occupancy_based_block_count); + } + + /// Initializes GEMM state from arguments. + Status initialize(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) { + CUTLASS_TRACE_HOST("BaseSplitkGrouped::initialize() - workspace " + << workspace << ", stream: " << (stream ? "non-null" : "null")); + + // Workspace + size_t workspace_bytes = get_workspace_size(args); + + if (workspace_bytes && !workspace) { + return Status::kErrorWorkspaceNull; + } + + if (BaseKernel::ProblemVisitor::kRequiresPrecomputation) { + int32_t tile_count = group_tile_count(args); + Status status = precompute(args, tile_count, workspace); + if (status != Status::kSuccess) { + return status; + } + + gemm_params_ = typename BaseKernel::Params(args, workspace, tile_count); + } else { + gemm_params_ = typename BaseKernel::Params(args, workspace); + } + + // Specify shared memory capacity for kernel. + int smem_size = static_cast(sizeof(typename BaseKernel::SharedStorage)); + + if (smem_size >= (48 << 10)) { + cudaError_t result = + cudaFuncSetAttribute(Kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size); + + if (result != cudaSuccess) { + return Status::kErrorInternal; + } + } + + return Status::kSuccess; + } + + /// Lightweight update given a subset of arguments + Status update(Arguments const& args, void* workspace = nullptr) { + size_t workspace_bytes = get_workspace_size(args); + + if (workspace_bytes && !workspace) { + return Status::kErrorWorkspaceNull; + } + + if (BaseKernel::ProblemVisitor::kRequiresPrecomputation) { + int32_t tile_count = group_tile_count(args); + Status status = precompute(args, tile_count, workspace); + if (status != Status::kSuccess) { + return status; + } + + gemm_params_.update(args, workspace, tile_count); + } else { + gemm_params_.update(args, workspace); + } + + return Status::kSuccess; + } + + /// Runs the kernel using initialized state. + Status run(cudaStream_t stream = nullptr) { + if (!gemm_params_.problem_visitor.problem_count) { + return Status::kSuccess; + } + + // + // Launch kernel + // + + // Launch splitk grouped gemm + { + dim3 grid(gemm_params_.threadblock_count, 1, gemm_params_.split_k_slices); + dim3 block(BaseKernel::kThreadCount, 1, 1); + + int smem_size = static_cast(sizeof(typename BaseKernel::SharedStorage)); + cutlass::Kernel<<>>(gemm_params_); + + cudaError_t result = cudaGetLastError(); + + if (result != cudaSuccess) { + CUTLASS_TRACE_HOST(" grid launch failed with error " << cudaGetErrorString(result)); + return Status::kErrorInternal; + } + } + + // Launch splitkReduction + { + dim3 grid(32, gemm_params_.problem_visitor.problem_count); + dim3 block(256); + splitkReduction<<>>(gemm_params_.ptr_D, gemm_params_.ptr_D_split, + gemm_params_.problem_visitor.problem_sizes, + gemm_params_.split_k_slices, gemm_params_.splitk_buffer_offsets); + + cudaError_t result = cudaGetLastError(); + + if (result != cudaSuccess) { + CUTLASS_TRACE_HOST(" grid launch failed with error " << cudaGetErrorString(result)); + return Status::kErrorInternal; + } + } + + return Status::kSuccess; + } + + /// Runs the kernel using initialized state. + Status operator()(cudaStream_t stream = nullptr) { return run(stream); } + + /// Initializes and runs the kernel. + Status operator()(Arguments const& args, void* workspace, cudaStream_t stream = nullptr) { + Status status = initialize(args, workspace, stream); + + if (status == Status::kSuccess) { + status = run(stream); + } + + return status; + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// GEMM Grouped +template +class SplitkGemmGrouped : public BaseSplitkGrouped { + public: + using GemmKernel = GemmKernel_; +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace device +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/layout_traits_helper.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_fpA_intB_traits.h similarity index 71% rename from onnxruntime/contrib_ops/cuda/moe/ft_moe/layout_traits_helper.h rename to onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_fpA_intB_traits.h index eb33a98e4246f..2b3478a38fc2e 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/layout_traits_helper.h +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_fpA_intB_traits.h @@ -1,11 +1,12 @@ /* - * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * - * http://www.apache.org/licenses/LICENSE-2.0 + * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, @@ -13,51 +14,22 @@ * See the License for the specific language governing permissions and * limitations under the License. */ -/* - This file exists so that we use the same weight layout for MoE grouped gemm and regular gemm when the weight is - quantized. The preprocessing code reads this template to know how to organize the quantized weight matrices - to be consumed by CUTLASS. - - Note that for int4, ThreadBlockK MUST be 64. - - */ - #pragma once -#include "cutlass/layout/matrix.h" -#include "cutlass/numeric_types.h" #include "cutlass/arch/arch.h" #include "cutlass/arch/mma.h" -#include "cutlass/platform/platform.h" +#include "cutlass/bfloat16.h" #include "cutlass/cutlass.h" #include "cutlass/gemm/gemm.h" +#include "cutlass/layout/matrix.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/mixed_gemm_B_layout.h" namespace cutlass { namespace gemm { namespace kernel { -template -struct LayoutDetailsB {}; - -// Volta specialiations. Volta will dequantize before STS, so we need a different operator -template -struct LayoutDetailsB { - static constexpr int ThreadblockK = 64; - using Layout = layout::RowMajor; - static constexpr int ElementsPerAccess = 8; - using Operator = cutlass::arch::OpMultiplyAdd; -}; - -// Specializations for Turing+ when B is FP16. These are currently only used for MoE networks. -// TODO - Switch this to column major for weights since gemms should be more performant. -template -struct LayoutDetailsB= 75>::type> { - static constexpr int ThreadblockK = 64; - using Layout = layout::RowMajor; - static constexpr int ElementsPerAccess = 128 / cutlass::sizeof_bits::value; - using Operator = cutlass::arch::OpMultiplyAdd; -}; - template struct MixedGemmArchTraits {}; @@ -66,7 +38,7 @@ struct MixedGemmArchTraits { static constexpr int Stages = 2; using OperatorClass = cutlass::arch::OpClassSimt; using AccType = float; - using LayoutB = cutlass::layout::RowMajor; + using LayoutB = cutlass::layout::ColumnMajor; static constexpr int ElementsPerAccessA = 1; static constexpr int ElementsPerAccessB = 1; @@ -80,10 +52,13 @@ struct MixedGemmArchTraits { // ========================= Volta Traits =========================== // Volta will always dequantize after the global memory load. // This will instantiate any HMMA tensorcore kernels for Volta. +// Note that volta does not have native bfloat support so weights and activations will be casted to fp16 +// and compute will happen in fp16 then will be converted for bf16 output. template struct MixedGemmArchTraits< TypeA, TypeB, cutlass::arch::Sm70, - typename cutlass::platform::enable_if::value>::type> { + typename cutlass::platform::enable_if::value || + cutlass::platform::is_same::value>::type> { private: using LayoutDetails = LayoutDetailsB; @@ -103,10 +78,13 @@ struct MixedGemmArchTraits< }; // ======================= Turing Traits ============================== +// Note that turing does not have native bfloat support so weights and activations will be casted to fp16 +// and compute will happen in fp16 then will be converted for bf16 output. template struct MixedGemmArchTraits< TypeA, TypeB, cutlass::arch::Sm75, - typename cutlass::platform::enable_if::value>::type> { + typename cutlass::platform::enable_if::value || + cutlass::platform::is_same::value>::type> { private: using LayoutDetails = LayoutDetailsB; @@ -129,7 +107,8 @@ struct MixedGemmArchTraits< template struct MixedGemmArchTraits< TypeA, TypeB, cutlass::arch::Sm80, - typename cutlass::platform::enable_if::value>::type> { + typename cutlass::platform::enable_if::value || + cutlass::platform::is_same::value>::type> { private: using LayoutDetails = LayoutDetailsB; @@ -150,4 +129,4 @@ struct MixedGemmArchTraits< } // namespace kernel } // namespace gemm -} // namespace cutlass \ No newline at end of file +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_int8_traits.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_int8_traits.h new file mode 100644 index 0000000000000..fe4bc0940d9e8 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_int8_traits.h @@ -0,0 +1,51 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#pragma once + +#include "cutlass/arch/arch.h" +#include "cutlass/arch/mma.h" +#include "cutlass/cutlass.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/layout/matrix.h" + +namespace cutlass { +namespace gemm { +namespace kernel { + +template +struct Int8GemmArchTraits { + using OperatorClass = cutlass::arch::OpClassSimt; + using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>; +}; + +// ======================= Turing Traits ============================== +template <> +struct Int8GemmArchTraits { + using OperatorClass = cutlass::arch::OpClassTensorOp; + using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; +}; + +// ======================= Ampere Traits ============================== +template <> +struct Int8GemmArchTraits { + using OperatorClass = cutlass::arch::OpClassTensorOp; + using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; +}; + +} // namespace kernel +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_splitk_gemm_grouped.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_splitk_gemm_grouped.h new file mode 100644 index 0000000000000..9339be92dfb2a --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_splitk_gemm_grouped.h @@ -0,0 +1,206 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/*! \file + \brief + Default kernel-level GEMM definitions combine threadblock-scoped matrix multiply-add with + the appropriate threadblock-scoped epilogue. + + Note, CUTLASS epilogues universally target row-major outputs. Column-major outputs are + accommodated by exchanging A and B operands and assuming transposed layouts. Partial + specializations here choose 'device::GemmTransposed' to implement this functionality. + +*/ + +#pragma once + +#include "cutlass/cutlass.h" + +#include "cutlass/complex.h" +#include "cutlass/layout/matrix.h" +#include "cutlass/numeric_types.h" + +#include "cutlass/gemm/device/default_gemm_configuration.h" +#include "cutlass/gemm/kernel/default_gemm.h" +#include "cutlass/gemm/kernel/default_gemm_complex.h" +#include "cutlass/gemm/kernel/gemm_transpose_operands.h" + +#include "cutlass/layout/permute.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/splitk_gemm_grouped.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace kernel { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +template < + /// Element type for A matrix operand + typename ElementA_, + /// Layout type for A matrix operand + typename LayoutA_, + /// Complex elementwise transformation on A operand + ComplexTransform TransformA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Element type for B matrix operand + typename ElementB_, + /// Layout type for B matrix operand + typename LayoutB_, + /// Complex elementwise transformation on B operand + ComplexTransform TransformB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for C and D matrix operands + typename ElementC_, + /// Layout type for C and D matrix operands + typename LayoutC_, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Operator class tag + typename OperatorClass, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Warp-level tile size (concept: GemmShape) + typename InstructionShape, + /// Epilogue output operator + typename EpilogueOutputOp, + /// Threadblock-level swizzling operator + typename ThreadblockSwizzle, + /// Number of stages used in the pipelined mainloop + int Stages, + /// Whether the schedule of problems to visit has been precomputed + GroupScheduleMode GroupScheduleMode_ = GroupScheduleMode::kDeviceOnly, + /// Operation performed by GEMM + typename Operator = typename device::DefaultGemmConfiguration::Operator, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear = SharedMemoryClearOption::kNone, + /// Permute result D + typename PermuteDLayout = layout::NoPermute, + /// + typename Enable = void> +struct DefaultSplitkGemmGrouped; + +///////////////////////////////////////////////////////////////////////////////////////////////// +// +// Real-valued GEMM kernels +// + +template < + /// Element type for A matrix operand + typename ElementA, + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Element type for B matrix operand + typename ElementB, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for C and D matrix operands + typename ElementC, + /// Layout type for C and D matrix operands + typename LayoutC, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Operator class tag + typename OperatorClass, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Warp-level tile size (concept: GemmShape) + typename InstructionShape, + /// Epilogue output operator + typename EpilogueOutputOp, + /// Threadblock-level swizzling operator + typename ThreadblockSwizzle, + /// Number of stages used in the pipelined mainloop + int Stages, + /// Whether the schedule of problems to visit has been precomputed + GroupScheduleMode GroupScheduleMode_, + /// Operation performed by GEMM + typename Operator, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear, + /// Permute result D + typename PermuteDLayout> +struct DefaultSplitkGemmGrouped::value>::type> { + // If true, we must construct a 'transposed-and-exchanged' Mma operator. + static bool const kInternalTranspose = platform::is_same::value; + + using MapArguments = + kernel::detail::MapArguments; + + // Define the default GEMM kernel + using DefaultGemmKernel = + typename kernel::DefaultGemm::GemmKernel; + + /// Define the kernel in terms of the default kernel + using GemmKernel = kernel::SplitkGemmGrouped; +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace kernel +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/fpA_intB_gemm.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/fpA_intB_gemm.h new file mode 100644 index 0000000000000..778d45f39eab3 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/fpA_intB_gemm.h @@ -0,0 +1,513 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/*! \file + \brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K. +*/ + +#pragma once + +#include +#include + +#include "cutlass/cutlass.h" + +#include "cutlass/arch/arch.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/matrix_coord.h" +#include "cutlass/semaphore.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace kernel { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace detail { +template +inline constexpr bool dependent_false_v = false; +} + +template +struct GemmFpAIntB { + using Mma = Mma_; + using Epilogue = Epilogue_; + using EpilogueOutputOp = typename Epilogue::OutputOp; + using ThreadblockSwizzle = ThreadblockSwizzle_; + static bool const kSplitKSerial = SplitKSerial; + + using ElementA = typename Mma::IteratorA::Element; + using LayoutA = typename Mma::IteratorA::Layout; + using ElementB = typename Mma::IteratorB::Element; + using LayoutB = typename Mma::IteratorB::Element; + using ElementC = typename Epilogue::OutputTileIterator::Element; + using LayoutC = typename Mma::LayoutC; + using ElementScale = ElementC; + + static ComplexTransform const kTransformA = Mma::kTransformA; + static ComplexTransform const kTransformB = Mma::kTransformA; + + // Type definitions about the mainloop. + using Operator = typename Mma::Operator; + using OperatorClass = typename Mma::Operator::OperatorClass; + using ThreadblockShape = typename Mma::Shape; + using WarpShape = typename Mma::Operator::Shape; + using InstructionShape = typename Mma::Policy::Operator::InstructionShape; + using ArchTag = typename Mma::ArchTag; + + static int const kStages = Mma::kStages; + static int const kAlignmentA = Mma::IteratorA::AccessType::kElements; + static int const kAlignmentB = Mma::IteratorB::AccessType::kElements; + static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess; + + /// Warp count (concept: GemmShape) + using WarpCount = typename Mma::WarpCount; + static int const kThreadCount = 32 * WarpCount::kCount; + + static constexpr int kInterleave = Mma::IteratorB::Shape::kRow / Mma::Shape::kK; + + /// Parameters structure + struct Arguments { + GemmUniversalMode mode = GemmUniversalMode::kGemm; + + cutlass::gemm::GemmCoord problem_size; + int group_size; + typename Mma::IteratorA::TensorRef ref_A; + typename Mma::IteratorB::TensorRef ref_B; + typename Mma::IteratorScale::TensorRef ref_scale; + typename Mma::IteratorScale::TensorRef ref_zero; + typename Epilogue::OutputTileIterator::TensorRef ref_C; + typename Epilogue::OutputTileIterator::TensorRef ref_D; + + // Control serial split-k + int batch_count; + + typename EpilogueOutputOp::Params output_op; + + // For gather+scatter operations + int const* gather_A_indices; + int const* gather_B_indices; + int const* scatter_D_indices; + + // Included so we can use Gemm Universal + int batch_stride_D = 0; + + // + // Methods + // + + CUTLASS_HOST_DEVICE + Arguments() {} + + CUTLASS_HOST_DEVICE + Arguments(cutlass::gemm::GemmCoord const& problem_size, int const group_size, + typename Mma::IteratorA::TensorRef ref_A, typename Mma::IteratorB::TensorRef ref_B, + typename Mma::IteratorScale::TensorRef ref_scale, typename Mma::IteratorScale::TensorRef ref_zero, + typename Epilogue::OutputTileIterator::TensorRef ref_C, + typename Epilogue::OutputTileIterator::TensorRef ref_D, int serial_split_k_factor, + typename EpilogueOutputOp::Params output_op = typename EpilogueOutputOp::Params(), + int const* gather_A_indices = nullptr, int const* gather_B_indices = nullptr, + int const* scatter_D_indices = nullptr) + : problem_size(problem_size), + group_size(group_size), + ref_A(ref_A), + ref_B(ref_B), + ref_scale(ref_scale), + ref_zero(ref_zero), + ref_C(ref_C), + ref_D(ref_D), + batch_count(serial_split_k_factor), + output_op(output_op), + gather_A_indices(gather_A_indices), + gather_B_indices(gather_B_indices), + scatter_D_indices(scatter_D_indices) {} + }; + + /// Parameters structure + struct Params { + cutlass::gemm::GemmCoord problem_size; + int group_size; + cutlass::gemm::GemmCoord grid_tiled_shape; + int swizzle_log_tile; + typename Mma::IteratorA::Params params_A; + typename Mma::IteratorA::TensorRef ref_A; + typename Mma::IteratorB::Params params_B; + typename Mma::IteratorB::TensorRef ref_B; + typename Mma::IteratorScale::Params params_scale; + typename Mma::IteratorScale::TensorRef ref_scale; + typename Mma::IteratorScale::TensorRef ref_zero; + typename Epilogue::OutputTileIterator::Params params_C; + typename Epilogue::OutputTileIterator::TensorRef ref_C; + typename Epilogue::OutputTileIterator::Params params_D; + typename Epilogue::OutputTileIterator::TensorRef ref_D; + typename EpilogueOutputOp::Params output_op; + int* semaphore; + int gemm_k_size; + // For gather+scatter operations + int const* gather_A_indices; + int const* gather_B_indices; + int const* scatter_D_indices; + + // + // Methods + // + + CUTLASS_HOST_DEVICE + Params() : swizzle_log_tile(0), semaphore(0), gemm_k_size(0) {} + + CUTLASS_HOST_DEVICE + Params(Arguments const& args, cutlass::gemm::GemmCoord const& grid_tiled_shape, int const gemm_k_size, + void* workspace = nullptr) + : problem_size(args.problem_size), + group_size(args.group_size), + grid_tiled_shape(grid_tiled_shape), + swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)), + params_A(args.ref_A.layout()), + ref_A(args.ref_A), + params_B(args.ref_B.layout()), + ref_B(args.ref_B), + params_scale(args.ref_scale.layout()), + ref_scale(args.ref_scale), + ref_zero(args.ref_zero), + params_C(args.ref_C.layout()), + ref_C(args.ref_C), + params_D(args.ref_D.layout()), + ref_D(args.ref_D), + output_op(args.output_op), + semaphore(static_cast(workspace)), + gemm_k_size(gemm_k_size), + gather_A_indices(args.gather_A_indices), + gather_B_indices(args.gather_B_indices), + scatter_D_indices(args.scatter_D_indices) {} + }; + + /// Shared memory storage structure + union SharedStorage { + typename Mma::SharedStorage main_loop; + typename Epilogue::SharedStorage epilogue; + }; + + // + // Methods + // + + CUTLASS_HOST_DEVICE + GemmFpAIntB() {} + + /// Determines whether kernel satisfies alignment + CUTLASS_HOST_DEVICE + static Status can_implement(Arguments const& args) { + static int const kAlignmentA = + (platform::is_same>::value) ? 32 + : (platform::is_same>::value) + ? 64 + : Mma::IteratorA::AccessType::kElements; + static int const kAlignmentB = + (platform::is_same>::value) ? 32 + : (platform::is_same>::value) + ? 64 + : Mma::IteratorB::AccessType::kElements; + + static int const kAlignmentScale = Mma::IteratorScale::AccessType::kElements; + + static int const kAlignmentC = + (platform::is_same>::value) + ? 32 + : (platform::is_same>::value) + ? 64 + : Epilogue::OutputTileIterator::kElementsPerAccess; + + if (!TensorRef_aligned(args.ref_A, kAlignmentA)) { + return Status::kErrorMisalignedOperand; + } + + if (!TensorRef_aligned(args.ref_B, kAlignmentB)) { + return Status::kErrorMisalignedOperand; + } + + if (!TensorRef_aligned(args.ref_scale, kAlignmentScale)) { + return Status::kErrorMisalignedOperand; + } + + if (!TensorRef_aligned(args.ref_zero, kAlignmentScale)) { + return Status::kErrorMisalignedOperand; + } + + if (!TensorRef_aligned(args.ref_C, kAlignmentC)) { + return Status::kErrorMisalignedOperand; + } + + if (!TensorRef_aligned(args.ref_D, kAlignmentC)) { + return Status::kErrorMisalignedOperand; + } + + if (!args.ref_scale.good()) { + return Status::kErrorNotSupported; + } + + if constexpr (hasZero(Mma::QuantOp)) { + if (!args.ref_zero.good()) { + return Status::kErrorNotSupported; + } + } else { + if (args.ref_zero.good()) { + return Status::kErrorNotSupported; + } + } + + if constexpr (isFinegrained(Mma::QuantOp)) { + if (args.group_size != 64 && args.group_size != 128) { + return Status::kErrorNotSupported; + } + } + + return Status::kSuccess; + } + + static size_t get_extra_workspace_size(Arguments const& args, cutlass::gemm::GemmCoord const& grid_tiled_shape) { + return 0; + } + + // Initializes the fine grained scale+bias iterator. Needed since the fine grained iterator + // has a different constructor signature than a regular cutlass iterator + template = true> + CUTLASS_DEVICE static IteratorScale initialize_scale(typename IteratorScale::Params const& params, + typename IteratorScale::Pointer pointer_scale, + typename IteratorScale::Pointer pointer_zero, + typename IteratorScale::TensorCoord extent, int thread_id, + typename IteratorScale::TensorCoord const& threadblock_offset, + int group_size) { + return IteratorScale(params, pointer_scale, pointer_zero, extent, thread_id, threadblock_offset, group_size); + } + + template = true> + CUTLASS_DEVICE static IteratorScale initialize_scale(typename IteratorScale::Params const& params, + typename IteratorScale::Pointer pointer_scale, + typename IteratorScale::Pointer pointer_zero, + typename IteratorScale::TensorCoord extent, int thread_id, + typename IteratorScale::TensorCoord const& threadblock_offset, + int group_size) { + return IteratorScale(params, pointer_scale, extent, thread_id, threadblock_offset); + } + + CUTLASS_DEVICE + void run_kernel_(Params const& params, SharedStorage& shared_storage) { + using LayoutB = typename Mma::IteratorB::Layout; + static_assert(platform::is_same::value && kInterleave == 1 || + platform::is_same::value && kInterleave >= 1, + "B must be row major/col major OR col major interleaved."); + + // Compute threadblock location + ThreadblockSwizzle threadblock_swizzle; + + cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); + + // Early exit if CTA is out of range + if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() || + params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) { + return; + } + + // Compute initial location in logical coordinates + cutlass::MatrixCoord tb_offset_A{ + threadblock_tile_offset.m() * Mma::Shape::kM, + threadblock_tile_offset.k() * params.gemm_k_size, + }; + + cutlass::MatrixCoord tb_offset_B{threadblock_tile_offset.k() * params.gemm_k_size * kInterleave, + threadblock_tile_offset.n() * Mma::Shape::kN / kInterleave}; + + typename MatrixCoord::Index fg_row_offset = threadblock_tile_offset.k() * params.gemm_k_size / 64; + typename MatrixCoord::Index scale_row_offset = isFinegrained(Mma::QuantOp) ? fg_row_offset : 0; + cutlass::MatrixCoord tb_offset_scale{scale_row_offset, threadblock_tile_offset.n() * Mma::Shape::kN}; + + // Problem size is a function of threadblock index in the K dimension + int problem_size_k = min(params.problem_size.k(), (threadblock_tile_offset.k() + 1) * params.gemm_k_size); + + // Compute threadblock-scoped matrix multiply-add + int gemm_k_iterations = (problem_size_k - tb_offset_A.column() + Mma::Shape::kK - 1) / Mma::Shape::kK; + + // Compute position within threadblock + int thread_idx = threadIdx.x; + + // Construct iterators to A and B operands + typename Mma::IteratorA iterator_A(params.params_A, params.ref_A.data(), {params.problem_size.m(), problem_size_k}, + thread_idx, tb_offset_A, params.gather_A_indices); + + typename Mma::IteratorB iterator_B(params.params_B, params.ref_B.data(), + {problem_size_k * kInterleave, params.problem_size.n() / kInterleave}, + thread_idx, tb_offset_B, params.gather_B_indices); + + typename MatrixCoord::Index scale_row_extent = isFinegrained(Mma::QuantOp) ? problem_size_k / 64 : 1; + typename Mma::IteratorScale iterator_scale = initialize_scale( + params.params_scale, params.ref_scale.data(), params.ref_zero.data(), + {scale_row_extent, params.problem_size.n()}, thread_idx, tb_offset_scale, params.group_size); + + // Broadcast the warp_id computed by lane 0 to ensure dependent code + // is compiled as warp-uniform. + int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0); + int lane_idx = threadIdx.x % 32; + + // + // Main loop + // + // Construct thread-scoped matrix multiply + Mma mma(shared_storage.main_loop, params.group_size, thread_idx, warp_idx, lane_idx); + + typename Mma::FragmentC accumulators; + + accumulators.clear(); + + if (!kSplitKSerial || gemm_k_iterations > 0) { + // Compute threadblock-scoped matrix multiply-add + mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, iterator_scale, accumulators); + } + + // + // Epilogue + // + + EpilogueOutputOp output_op(params.output_op); + + // + // Masked tile iterators constructed from members + // + + threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); + + // assume identity swizzle + MatrixCoord threadblock_offset(threadblock_tile_offset.m() * Mma::Shape::kM, + threadblock_tile_offset.n() * Mma::Shape::kN); + + int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m(); + + // Construct the semaphore. + Semaphore semaphore(params.semaphore + block_idx, thread_idx); + + // If performing a reduction via split-K, fetch the initial synchronization + if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { + // Fetch the synchronization lock initially but do not block. + semaphore.fetch(); + + // Indicate which position in a serial reduction the output operator is currently updating + output_op.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k()); + } + + // Tile iterator loading from source tensor. + typename Epilogue::OutputTileIterator iterator_C(params.params_C, params.ref_C.data(), params.problem_size.mn(), + thread_idx, threadblock_offset, params.scatter_D_indices); + + // Tile iterator writing to destination tensor. + typename Epilogue::OutputTileIterator iterator_D(params.params_D, params.ref_D.data(), params.problem_size.mn(), + thread_idx, threadblock_offset, params.scatter_D_indices); + + Epilogue epilogue(shared_storage.epilogue, thread_idx, warp_idx, lane_idx); + + // Wait on the semaphore - this latency may have been covered by iterator construction + if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { + // For subsequent threadblocks, the source matrix is held in the 'D' tensor. + if (threadblock_tile_offset.k()) { + iterator_C = iterator_D; + } + + semaphore.wait(threadblock_tile_offset.k()); + } + + // Execute the epilogue operator to update the destination tensor. + epilogue(output_op, iterator_D, accumulators, iterator_C); + + // + // Release the semaphore + // + + if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { + int lock = 0; + if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) { + // The final threadblock resets the semaphore for subsequent grids. + lock = 0; + } else { + // Otherwise, the semaphore is incremented + lock = threadblock_tile_offset.k() + 1; + } + + semaphore.release(lock); + } + } + + template + CUTLASS_DEVICE void run_kernel(Params const& params, SharedStorage& shared_storage) { + if constexpr (platform::is_same::value) { + run_kernel_(params, shared_storage); + } else { + CUTLASS_NOT_IMPLEMENTED(); + } + } + + /* + To improve compilation speed, we do not compile the device operator if the CUDA_ARCH does not correspond + to the ArchTag of the cutlass kernel operator. + */ + /// Executes one GEMM + CUTLASS_DEVICE + void operator()(Params const& params, SharedStorage& shared_storage) { +#if defined(__CUDA_ARCH__) +#if (__CUDA_ARCH__ >= 700) && (__CUDA_ARCH__ < 750) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 750) && (__CUDA_ARCH__ < 800) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 800) && (__CUDA_ARCH__ < 900) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 900) + CUTLASS_NOT_IMPLEMENTED(); // Don't compile these for Hopper or later. Use CUTLASS 3.x kernels. +#else + static_assert(false, + "Invalid architecture being compiled. Only Volta+ supported in weight-only quantization kernels."); +#endif +#else + CUTLASS_NOT_IMPLEMENTED(); +#endif + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace kernel +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/gemm_moe_problem_visitor.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/gemm_moe_problem_visitor.h new file mode 100644 index 0000000000000..6cb5cc4e1334c --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/gemm_moe_problem_visitor.h @@ -0,0 +1,66 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/*! \file + \brief Scheduler for grouped GEMM +*/ + +#pragma once + +#include "cutlass/cutlass.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/gemm/kernel/gemm_grouped_problem_visitor.h" +#include "cutlass/matrix_coord.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/gemm_moe_problem_visitor.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/moe_problem_visitor.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace kernel { + +/// Visitor class to abstract away the algorithm for iterating over tiles +template +struct GemmMoeProblemVisitor + : public MoeProblemVisitor, ThreadblockShape, + GroupScheduleMode_, PrefetchTileCount, ThreadCount> { + static bool const kTransposed = Transposed; + + using ProblemSizeHelper = detail::GemmGroupedProblemSizeHelper; + using Base = + MoeProblemVisitor; + using Params = typename Base::Params; + using SharedStorage = typename Base::SharedStorage; + + // + // Methods + // + CUTLASS_DEVICE + GemmMoeProblemVisitor(Params const& params_, SharedStorage& shared_storage_, int32_t block_idx) + : Base(params_, shared_storage_, block_idx) {} +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace kernel +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/gemm_with_epilogue_visitor.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/gemm_with_epilogue_visitor.h new file mode 100644 index 0000000000000..fb35b2dbf12cf --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/gemm_with_epilogue_visitor.h @@ -0,0 +1,516 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief GEMM kernel to support the epilogue visitor model + for customized softmax partial reduction epilogue fusion. + + This source file will likely be moved to `include/cutlass/gemm/kernel/` in the future once + its usage has been stabilized. For now, it is included in this example to demonstrate + some basic output fusion options. + + original file: 3rdparty/cutlass/examples/35_gemm_softmax/gemm_with_epilogue_visitor.h +*/ + +#pragma once + +#include "cutlass/complex.h" +#include "cutlass/cutlass.h" +#include "cutlass/fast_math.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/matrix_coord.h" +#include "cutlass/semaphore.h" +#include "cutlass/trace.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/epilogue/threadblock/epilogue_per_row_per_col_scale.h" + +namespace tk = tensorrt_llm::common; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace kernel { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +template +struct GemmWithEpilogueVisitor { + public: + using Mma = Mma_; + using Epilogue = Epilogue_; + using EpilogueVisitor = typename Epilogue::Visitor; + using ThreadblockSwizzle = ThreadblockSwizzle_; + + using ElementA = typename Mma::IteratorA::Element; + using LayoutA = typename Mma::IteratorA::Layout; + using TensorRefA = TensorRef; + + using ElementB = typename Mma::IteratorB::Element; + using LayoutB = typename Mma::IteratorB::Layout; + using TensorRefB = TensorRef; + + using ElementCompute = typename EpilogueVisitor::ElementCompute; + using LayoutAlphaCol = cutlass::layout::RowMajor; + using LayoutAlphaRow = cutlass::layout::ColumnMajor; + using TensorRefAlphaCol = TensorRef; + using TensorRefAlphaRow = TensorRef; + + using ElementC = typename EpilogueVisitor::ElementOutput; + using LayoutC = typename Epilogue::Layout; + using TensorRefC = TensorRef; + + static ComplexTransform const kTransformA = Mma::kTransformA; + static ComplexTransform const kTransformB = Mma::kTransformB; + using Operator = typename Mma::Operator; + + using OperatorClass = typename Mma::Operator::OperatorClass; + using ThreadblockShape = typename Mma::Shape; + using WarpShape = typename Mma::Operator::Shape; + using InstructionShape = typename Mma::Policy::Operator::InstructionShape; + using ArchTag = typename Mma::ArchTag; + using EpilogueOutputOp = + typename Epilogue::Visitor::ElementwiseFunctor; // Define type so GemmUniversalBase doesn't complain + + static int const kStages = Mma::kStages; + static int const kAlignmentA = Mma::IteratorA::AccessType::kElements; + static int const kAlignmentB = Mma::IteratorB::AccessType::kElements; + static int const kAlignmentC = EpilogueVisitor::kElementsPerAccess; + + /// Warp count (concept: GemmShape) + using WarpCount = typename Mma::WarpCount; + static int const kThreadCount = 32 * WarpCount::kCount; + + /// Split-K preserves splits that are 128b aligned + static int const kSplitKAlignment = const_max(128 / sizeof_bits::value, 128 / sizeof_bits::value); + + // + // Structures + // + + /// Argument structure + struct Arguments { + // + // Data members + // + + GemmUniversalMode mode; + GemmCoord problem_size; + int batch_count; + + TensorRefA ref_A; + TensorRefB ref_B; + tk::QuantMode quant_option; + TensorRefAlphaCol ref_alpha_col; + TensorRefAlphaRow ref_alpha_row; + TensorRefC ref_C; + TensorRefC ref_D; + + int64_t batch_stride_A; + int64_t batch_stride_B; + int64_t batch_stride_D; + + typename EpilogueVisitor::Arguments epilogue_visitor; + + // + // Methods + // + + Arguments() : mode(GemmUniversalMode::kGemm), batch_count(1) {} + + /// constructs an arguments structure + Arguments(GemmUniversalMode mode_, GemmCoord problem_size_, int batch_count_, TensorRefA ref_A_, TensorRefB ref_B_, + tk::QuantMode quant_option_, TensorRefAlphaCol ref_alpha_col_, TensorRefAlphaRow ref_alpha_row_, + TensorRefC ref_C_, TensorRefC ref_D_, int64_t batch_stride_A_, int64_t batch_stride_B_, + typename EpilogueVisitor::Arguments epilogue_visitor_) + : mode(mode_), + problem_size(problem_size_), + batch_count(batch_count_), + ref_A(ref_A_), + ref_B(ref_B_), + quant_option(quant_option_), + ref_alpha_col(ref_alpha_col_), + ref_alpha_row(ref_alpha_row_), + ref_C(ref_C_), + ref_D(ref_D_), + batch_stride_A(batch_stride_A_), + batch_stride_B(batch_stride_B_), + batch_stride_D(0), + epilogue_visitor(epilogue_visitor_) {} + }; + + // + // Structure for precomputing values in host memory and passing to kernels + // + + /// Parameters structure + struct Params { + cutlass::gemm::GemmCoord problem_size; + cutlass::gemm::GemmCoord grid_tiled_shape; + int swizzle_log_tile; + + typename Mma::IteratorA::Params params_A; + typename Mma::IteratorB::Params params_B; + typename EpilogueVisitor::ScaleTileIterator::Params params_alpha_col; + typename EpilogueVisitor::ScaleTileIterator::Params params_alpha_row; + typename EpilogueVisitor::OutputTileIterator::Params params_C; + typename EpilogueVisitor::OutputTileIterator::Params params_D; + + GemmUniversalMode mode; + int batch_count; + int gemm_k_size; + + void* ptr_A; + void* ptr_B; + tk::QuantMode quant_option; + typename EpilogueVisitor::ScaleTileIterator::Element* ptr_alpha_col; + typename EpilogueVisitor::ScaleTileIterator::Element* ptr_alpha_row; + ElementC* ptr_C; + ElementC* ptr_D; + + int64_t batch_stride_A; + int64_t batch_stride_B; + + typename EpilogueVisitor::Params epilogue_visitor; + + // + // Methods + // + + CUTLASS_HOST_DEVICE + Params() + : swizzle_log_tile(0), + params_A(0), + params_B(0), + params_alpha_col(0), + params_C(0), + params_D(0), + batch_count(0), + gemm_k_size(0), + mode(cutlass::gemm::GemmUniversalMode::kGemm), + ptr_A(nullptr), + ptr_B(nullptr), + ptr_alpha_col(nullptr), + ptr_alpha_row(nullptr), + ptr_C(nullptr), + ptr_D(nullptr), + batch_stride_A(0), + batch_stride_B(0) {} + + Params(Arguments const& args, cutlass::gemm::GemmCoord const& grid_tiled_shape_, int gemm_k_size_, int* workspace_) + : problem_size(args.problem_size), + swizzle_log_tile(0), + params_A(args.ref_A.layout()), + params_B(args.ref_B.layout()), + params_alpha_col(args.ref_alpha_col.layout()), + params_alpha_row(args.ref_alpha_col.layout()), + params_C(args.ref_C.layout()), + params_D(args.ref_D.layout()), + mode(args.mode), + batch_count(args.batch_count), + gemm_k_size(args.problem_size.k()), + ptr_A(args.ref_A.data()), + ptr_B(args.ref_B.data()), + quant_option(args.quant_option), + ptr_alpha_col(args.ref_alpha_col.data()), + ptr_alpha_row(args.ref_alpha_row.data()), + ptr_C(args.ref_C.data()), + ptr_D(args.ref_D.data()), + batch_stride_A(args.batch_stride_A), + batch_stride_B(args.batch_stride_B), + epilogue_visitor(args.epilogue_visitor) { + ThreadblockSwizzle threadblock_swizzle; + + grid_tiled_shape = threadblock_swizzle.get_tiled_shape( + args.problem_size, {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK}, args.batch_count); + + if (args.mode == GemmUniversalMode::kGemm || args.mode == GemmUniversalMode::kGemmSplitKParallel) { + int const kAlignK = + const_max(const_max(128 / sizeof_bits::value, 128 / sizeof_bits::value), 1); + + gemm_k_size = round_up(ceil_div(args.problem_size.k(), args.batch_count), kAlignK); + + if (gemm_k_size) { + grid_tiled_shape.k() = ceil_div(args.problem_size.k(), gemm_k_size); + } + } + + swizzle_log_tile = threadblock_swizzle.get_log_tile(grid_tiled_shape); + } + }; + + /// Shared memory storage structure + union SharedStorage { + typename Mma::SharedStorage main_loop; + + struct { + typename Epilogue::SharedStorage epilogue; + typename EpilogueVisitor::SharedStorage visitor; + } epilogue; + }; + + public: + // + // Methods + // + + CUTLASS_DEVICE + GemmWithEpilogueVisitor() {} + + /// Determines whether kernel satisfies alignment + static Status can_implement(cutlass::gemm::GemmCoord const& problem_size) { + CUTLASS_TRACE_HOST("GemmWithEpilogueVisitor::can_implement()"); + + static int const kAlignmentA = Mma::IteratorA::AccessType::kElements; + static int const kAlignmentB = Mma::IteratorB::AccessType::kElements; + static int const kAlignmentC = EpilogueVisitor::OutputTileIterator::kElementsPerAccess; + + bool isAMisaligned = false; + bool isBMisaligned = false; + bool isCMisaligned = false; + + if (platform::is_same::value) { + isAMisaligned = problem_size.k() % kAlignmentA; + } else if (platform::is_same::value) { + isAMisaligned = problem_size.m() % kAlignmentA; + } else if (platform::is_same>::value || + platform::is_same>::value) { + isAMisaligned = problem_size.k() % kAlignmentA; + } + + if (platform::is_same::value) { + isBMisaligned = problem_size.n() % kAlignmentB; + } else if (platform::is_same::value) { + isBMisaligned = problem_size.k() % kAlignmentB; + } else if (platform::is_same>::value || + platform::is_same>::value) { + isBMisaligned = problem_size.k() % kAlignmentB; + } + + if (platform::is_same::value) { + isCMisaligned = problem_size.n() % kAlignmentC; + } else if (platform::is_same::value) { + isCMisaligned = problem_size.m() % kAlignmentC; + } else if (platform::is_same>::value || + platform::is_same>::value) { + isCMisaligned = problem_size.n() % kAlignmentC; + } + + if (isAMisaligned) { + CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for A operand"); + return Status::kErrorMisalignedOperand; + } + + if (isBMisaligned) { + CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for B operand"); + return Status::kErrorMisalignedOperand; + } + + if (isCMisaligned) { + CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for C operand"); + return Status::kErrorMisalignedOperand; + } + + CUTLASS_TRACE_HOST(" returning kSuccess"); + + return Status::kSuccess; + } + + static Status can_implement(Arguments const& args) { return can_implement(args.problem_size); } + + static size_t get_extra_workspace_size(Arguments const& args, cutlass::gemm::GemmCoord const& grid_tiled_shape) { + return 0; + } + +#define SPLIT_K_ENABLED 1 + + /// Executes one GEMM + CUTLASS_DEVICE + void run_kernel_(Params const& params, SharedStorage& shared_storage) { + // Compute threadblock location + ThreadblockSwizzle threadblock_swizzle; + + cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); + + // Early exit if CTA is out of range + if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() || + params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) { + return; + } + + int offset_k = 0; + int problem_size_k = params.problem_size.k(); + + ElementA* ptr_A = static_cast(params.ptr_A); + ElementB* ptr_B = static_cast(params.ptr_B); + +#if SPLIT_K_ENABLED + // + // Fetch pointers based on mode. + // + if (params.mode == GemmUniversalMode::kGemm || params.mode == GemmUniversalMode::kGemmSplitKParallel) { + if (threadblock_tile_offset.k() + 1 < params.grid_tiled_shape.k()) { + problem_size_k = (threadblock_tile_offset.k() + 1) * params.gemm_k_size; + } + + offset_k = threadblock_tile_offset.k() * params.gemm_k_size; + } else if (params.mode == GemmUniversalMode::kBatched) { + ptr_A += threadblock_tile_offset.k() * params.batch_stride_A; + ptr_B += threadblock_tile_offset.k() * params.batch_stride_B; + } else if (params.mode == GemmUniversalMode::kArray) { + ptr_A = static_cast(params.ptr_A)[threadblock_tile_offset.k()]; + ptr_B = static_cast(params.ptr_B)[threadblock_tile_offset.k()]; + } +#endif + + // Compute initial location in logical coordinates + cutlass::MatrixCoord tb_offset_A{ + threadblock_tile_offset.m() * Mma::Shape::kM, + offset_k, + }; + + cutlass::MatrixCoord tb_offset_B{offset_k, threadblock_tile_offset.n() * Mma::Shape::kN}; + + // Compute position within threadblock + int thread_idx = threadIdx.x; + + // Construct iterators to A and B operands + typename Mma::IteratorA iterator_A(params.params_A, ptr_A, {params.problem_size.m(), problem_size_k}, thread_idx, + tb_offset_A); + + typename Mma::IteratorB iterator_B(params.params_B, ptr_B, {problem_size_k, params.problem_size.n()}, thread_idx, + tb_offset_B); + + // Broadcast the warp_id computed by lane 0 to ensure dependent code + // is compiled as warp-uniform. + int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0); + + int lane_idx = threadIdx.x % 32; + + // + // Main loop + // + + // Construct thread-scoped matrix multiply + Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); + + typename Mma::FragmentC accumulators; + + accumulators.clear(); + + // Compute threadblock-scoped matrix multiply-add + int gemm_k_iterations = (problem_size_k - offset_k + Mma::Shape::kK - 1) / Mma::Shape::kK; + + // Compute threadblock-scoped matrix multiply-add + mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators); + + // + // Masked tile iterators constructed from members + // + + threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); + + // assume identity swizzle + MatrixCoord threadblock_offset(threadblock_tile_offset.m() * Mma::Shape::kM, + threadblock_tile_offset.n() * Mma::Shape::kN); + + int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m(); + + // + // Construct the epilogue visitor + // + + EpilogueVisitor epilogue_visitor( + params.epilogue_visitor, shared_storage.epilogue.visitor, params.problem_size.mn(), thread_idx, warp_idx, + lane_idx, params.params_alpha_col, params.params_C, params.params_D, params.quant_option, params.ptr_alpha_row, + params.ptr_alpha_col, params.ptr_C, params.ptr_D, threadblock_offset, blockIdx.y * params.problem_size.m()); + + if (params.mode == GemmUniversalMode::kGemm) { + // Indicate which position in a serial reduction the output operator is currently updating + epilogue_visitor.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k()); + } else if (params.mode == GemmUniversalMode::kBatched || params.mode == GemmUniversalMode::kArray) { + epilogue_visitor.set_batch_index(threadblock_tile_offset.k()); + } + + // Construct the epilogue + Epilogue epilogue(shared_storage.epilogue.epilogue, thread_idx, warp_idx, lane_idx); + + // Execute the epilogue operator to update the destination tensor. + epilogue(epilogue_visitor, accumulators); + } + + template + CUTLASS_DEVICE void run_kernel(Params const& params, SharedStorage& shared_storage) { + if constexpr (platform::is_same::value) { + run_kernel_(params, shared_storage); + } else { + CUTLASS_NOT_IMPLEMENTED(); + } + } + + /* + To improve compilation speed, we do not compile the device operator if the CUDA_ARCH does not correspond + to the ArchTag of the cutlass kernel operator. + */ + /// Executes one GEMM + CUTLASS_DEVICE + void operator()(Params const& params, SharedStorage& shared_storage) { +#if defined(__CUDA_ARCH__) +#if (__CUDA_ARCH__ >= 700) && (__CUDA_ARCH__ < 720) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 720) && (__CUDA_ARCH__ < 750) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 750) && (__CUDA_ARCH__ < 800) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 800) && (__CUDA_ARCH__ < 900) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 900) + // replace with CUTLASS_NOT_IMPLEMENTED() and upgrade to 3.x kernels. + run_kernel(params, shared_storage); +#else + static_assert(false, + "Invalid architecture being compiled. Only Volta+ supported in weight-only quantization kernels."); +#endif +#else + CUTLASS_NOT_IMPLEMENTED(); +#endif + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace kernel +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/mixed_gemm_B_layout.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/mixed_gemm_B_layout.h new file mode 100644 index 0000000000000..35d22b2f55a89 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/mixed_gemm_B_layout.h @@ -0,0 +1,126 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +/* + This file exists so that we use the same weight layout for MoE grouped gemm and regular gemm when the weight is + quantized. The preprocessing code reads this template to know how to organize the quantized weight matrices + to be consumed by CUTLASS. + + Note that for int4, ThreadBlockK MUST be 64. + + */ + +#pragma once + +#include "cutlass/layout/matrix.h" +#include "cutlass/numeric_types.h" + +#include "cutlass/arch/arch.h" +#include "cutlass/arch/mma.h" +#include "cutlass/platform/platform.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/tile_interleaved_layout.h" + +namespace cutlass { +namespace gemm { +namespace kernel { + +template +struct LayoutDetailsB {}; + +// Volta specialiations. Volta will dequantize before STS, so we need a different operator +template +struct LayoutDetailsB { + static constexpr int ThreadblockK = 64; + using Layout = layout::ColumnMajor; + static constexpr int ElementsPerAccess = 8; + using Operator = cutlass::arch::OpMultiplyAdd; +}; + +// Specializations for Turing+ when B is FP16. These are currently only used for MoE networks. +// Switch this to column major for weights since gemms should be more performant. +template +struct LayoutDetailsB= 75>::type> { + static constexpr int ThreadblockK = 64; + using Layout = layout::ColumnMajor; + static constexpr int ElementsPerAccess = 128 / cutlass::sizeof_bits::value; + using Operator = cutlass::arch::OpMultiplyAdd; +}; + +template +struct LayoutDetailsB= 75>::type> { + static constexpr int ThreadblockK = 64; + using Layout = layout::ColumnMajor; + static constexpr int ElementsPerAccess = 128 / cutlass::sizeof_bits::value; + using Operator = cutlass::arch::OpMultiplyAdd; +}; + +// Specializations for Turing+ when B is quantized. These can use the operator OpMultiplyAddDequantizeInterleavedBToA, +// which signals that we want to dequantize after loading from smem. +template + struct LayoutDetailsB < + uint8_t, + Arch, + typename platform::enable_if= 75 && Arch::kMinComputeCapability<90>::type> { + static constexpr int ThreadblockK = 64; + + private: + static constexpr int ElementsPerCacheLine = 128 * 8 / sizeof_bits::value; + static constexpr int ColumnsInterleaved = ElementsPerCacheLine / ThreadblockK; + + public: + using Layout = layout::ColumnMajorTileInterleave; + static constexpr int ElementsPerAccess = 128 / cutlass::sizeof_bits::value; + using Operator = cutlass::arch::OpMultiplyAddDequantizeInterleavedBToA; +}; + +template + struct LayoutDetailsB < + uint4b_t, + Arch, + typename platform::enable_if= 75 && Arch::kMinComputeCapability<90>::type> { + static constexpr int ThreadblockK = 64; + + private: + static constexpr int ElementsPerCacheLine = 128 * 8 / sizeof_bits::value; + static constexpr int ColumnsInterleaved = ElementsPerCacheLine / ThreadblockK; + + public: + using Layout = layout::ColumnMajorTileInterleave; + static constexpr int ElementsPerAccess = 128 / cutlass::sizeof_bits::value; + using Operator = cutlass::arch::OpMultiplyAddDequantizeInterleavedBToA; +}; + +template +struct LayoutDetailsB= 90>::type> { + static constexpr int ThreadblockK = 64; + using Layout = layout::ColumnMajor; + static constexpr int ElementsPerAccess = 128 / cutlass::sizeof_bits::value; + using Operator = cutlass::arch::OpMultiplyAdd; +}; + +template +struct LayoutDetailsB= 90>::type> { + static constexpr int ThreadblockK = 64; + using Layout = layout::ColumnMajor; + static constexpr int ElementsPerAccess = 128 / cutlass::sizeof_bits::value; + using Operator = cutlass::arch::OpMultiplyAdd; +}; + +} // namespace kernel +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/moe_cutlass_kernel.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/moe_cutlass_kernel.h new file mode 100644 index 0000000000000..9e3e9d20d7f6e --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/moe_cutlass_kernel.h @@ -0,0 +1,471 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/*! \file + \brief +*/ + +#pragma once + +#include "cutlass/complex.h" +#include "cutlass/cutlass.h" +#include "cutlass/fast_math.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/matrix_coord.h" +#include "cutlass/semaphore.h" + +#include "cutlass/gemm/kernel/gemm_transpose_operands.h" +#include "cutlass/layout/matrix.h" +#include "cutlass/trace.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/gemm_moe_problem_visitor.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/tile_interleaved_layout.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace kernel { + +///////////////////////////////////////////////////////////////////////////////////////////////// +// This section exists to that we can use the same kernel code for regular gemm and dequantizing gemms. +// It will dispatch to the dequantizing gemm if the Mma type has an Iterator for scales in global. +template +using void_t = void; + +template +struct use_dq_gemm : platform::false_type {}; + +template +struct use_dq_gemm> : platform::true_type {}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +template +struct MoeFCGemm { + public: + using Mma = Mma_; + using Epilogue = Epilogue_; + using EpilogueOutputOp = typename Epilogue::OutputOp; + using ThreadblockSwizzle = ThreadblockSwizzle_; + static GroupScheduleMode const kGroupScheduleMode = GroupScheduleMode_; + static bool const kTransposed = false; + + // Optional transpose + using MapArguments = + kernel::detail::MapArguments; + + // Public-facing type definitions related to operand element type, layout, and complex conjugate + // operation. Must interact with the 'kTransposed' notion. + static_assert(!kTransposed, "Transpose problem not supported"); + using ElementA = typename MapArguments::ElementA; + using LayoutA = typename MapArguments::LayoutA; + using ElementB = typename MapArguments::ElementB; + using LayoutB = typename MapArguments::LayoutB; + using ElementC = typename Epilogue::OutputTileIterator::Element; + using LayoutC = typename MapArguments::LayoutC; + using ElementScale = ElementC; + + static ComplexTransform const kTransformA = MapArguments::kTransformA; + static ComplexTransform const kTransformB = MapArguments::kTransformB; + + // Type definitions about the mainloop. + using Operator = typename Mma::Operator; + using OperatorClass = typename Mma::Operator::OperatorClass; + using ThreadblockShape = typename Mma::Shape; + using WarpShape = typename Mma::Operator::Shape; + using InstructionShape = typename Mma::Policy::Operator::InstructionShape; + using ArchTag = typename Mma::ArchTag; + + static int const kStages = Mma::kStages; + static int const kAlignmentA = MapArguments::kAlignmentA; + static int const kAlignmentB = MapArguments::kAlignmentB; + static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess; + + /// Warp count (concept: GemmShape) + using WarpCount = typename Mma::WarpCount; + static int const kThreadCount = 32 * WarpCount::kCount; + + using ProblemVisitor = + GemmMoeProblemVisitor; + + // + // Structures + // + + /// Argument structure + struct Arguments { + // + // Data members + // + + int problem_count; + int threadblock_count; + int group_size; + + typename EpilogueOutputOp::Params output_op; + + ElementA* ptr_A; + ElementB* ptr_B; + ElementScale* weight_scales; + ElementC* ptr_C; + ElementC* ptr_D; + + int64_t* total_rows_before_expert; + int64_t gemm_n; + int64_t gemm_k; + + // Only used by device-level operator + GemmCoord* host_problem_sizes; + + // + // Methods + // + + /// Default ctor + CUTLASS_HOST_DEVICE + Arguments() + : problem_count(0), + threadblock_count(0), + ptr_A(nullptr), + ptr_B(nullptr), + weight_scales(nullptr), + ptr_C(nullptr), + ptr_D(nullptr), + total_rows_before_expert(nullptr), + gemm_n(0), + gemm_k(0), + host_problem_sizes(nullptr) {} + + /// Ctor + CUTLASS_HOST_DEVICE + Arguments(int problem_count, int threadblock_count, int group_size, typename EpilogueOutputOp::Params output_op, + ElementA const* ptr_A, ElementB const* ptr_B, ElementScale const* weight_scales, ElementC const* ptr_C, + ElementC* ptr_D, int64_t* total_rows_before_expert, int64_t gemm_n, int64_t gemm_k, + GemmCoord* host_problem_sizes = nullptr) + : problem_count(problem_count), + threadblock_count(threadblock_count), + group_size(group_size), + output_op(output_op), + ptr_A(const_cast(ptr_A)), + ptr_B(const_cast(ptr_B)), + weight_scales(const_cast(weight_scales)), + ptr_C(const_cast(ptr_C)), + ptr_D(ptr_D), + total_rows_before_expert(total_rows_before_expert), + gemm_n(gemm_n), + gemm_k(gemm_k), + host_problem_sizes(nullptr) { + if (platform::is_same::value || platform::is_same::value) { + assert(weight_scales); + } + } + }; + + // + // Structure for precomputing values in host memory and passing to kernels + // + + /// Parameters structure + struct Params { + typename ProblemVisitor::Params problem_visitor; + int threadblock_count; + int group_size; + + typename EpilogueOutputOp::Params output_op; + + ElementA* ptr_A; + ElementB* ptr_B; + ElementScale* weight_scales; + ElementC* ptr_C; + ElementC* ptr_D; + + // + // Methods + // + + CUTLASS_HOST_DEVICE + Params() : ptr_A(nullptr), ptr_B(nullptr), weight_scales(nullptr), ptr_C(nullptr), ptr_D(nullptr) {} + + CUTLASS_HOST_DEVICE + explicit Params(Arguments const& args, void* workspace = nullptr, int tile_count = 0) + : problem_visitor(args.total_rows_before_expert, args.gemm_n, args.gemm_k, args.problem_count, workspace, + tile_count), + threadblock_count(args.threadblock_count), + group_size(args.group_size), + output_op(args.output_op), + ptr_A(args.ptr_A), + ptr_B(args.ptr_B), + weight_scales(args.weight_scales), + ptr_C(args.ptr_C), + ptr_D(args.ptr_D) {} + + CUTLASS_HOST_DEVICE + void update(Arguments const& args, void* workspace = nullptr, int tile_count = 0) { + problem_visitor = typename ProblemVisitor::Params(args.total_rows_before_expert, args.gemm_n, args.gemm_k, + args.problem_count, workspace, tile_count); + threadblock_count = args.threadblock_count; + output_op = args.output_op; + ptr_A = args.ptr_A; + ptr_B = args.ptr_B; + weight_scales = args.weight_scales; + ptr_C = args.ptr_C; + ptr_D = args.ptr_D; + } + }; + + /// Shared memory storage structure + union SharedStorage { + typename ProblemVisitor::SharedStorage problem_visitor; + typename Mma::SharedStorage main_loop; + typename Epilogue::SharedStorage epilogue; + }; + + public: + // + // Methods + // + + CUTLASS_DEVICE + MoeFCGemm() {} + + /// Determines whether kernel satisfies alignment + static Status can_implement(cutlass::gemm::GemmCoord const& problem_size) { return Status::kSuccess; } + + static Status can_implement(Arguments const& args) { + if (platform::is_same::value || platform::is_same::value) { + if (args.weight_scales == nullptr) { + CUTLASS_TRACE_HOST("MoeFCGemm::can_implement() - weight scales are required for uint8_t and uint4b_t"); + return Status::kInvalid; + } + } else if (args.weight_scales != nullptr) { + CUTLASS_TRACE_HOST( + "MoeFCGemm::can_implement() - weight scales are ignored for all types except uint8_t and uint4b_t"); + return Status::kInvalid; + } else if (args.group_size != args.gemm_k) { + CUTLASS_TRACE_HOST("MoeFCGemm::can_implement() - scale shape should be (1, gemm_n)"); + return Status::kInvalid; + } else if (static_cast(args.gemm_n) < Mma::IteratorB::AccessType::kElements) { + CUTLASS_TRACE_HOST("MoeFCGemm::can_implement() - gemm_n is smaller than the input alignment"); + return Status::kInvalid; + } + return Status::kSuccess; + } + + static size_t get_extra_workspace_size(Arguments const& args, cutlass::gemm::GemmCoord const& grid_tiled_shape) { + return 0; + } + + CUTLASS_DEVICE + void run_kernel_(Params const& params, SharedStorage& shared_storage) { + // + // These types shadow the type-level definitions and support the ability to implement + // a 'transposed' GEMM that computes the transposed problems. + // + using ElementA = typename Mma::IteratorA::Element; + using LayoutA = typename Mma::IteratorA::Layout; + using ElementB = typename Mma::IteratorB::Element; + using LayoutB = typename Mma::IteratorB::Layout; + using ElementC = typename Epilogue::OutputTileIterator::Element; + using LayoutC = typename Epilogue::OutputTileIterator::Layout; + static constexpr int kInterleave = Mma::IteratorB::Shape::kRow / Mma::Shape::kK; + static_assert(platform::is_same::value && kInterleave == 1 || + platform::is_same::value && kInterleave >= 1, + "B must be row major/col major OR col major interleaved."); + + // + // Problem visitor. + // + ProblemVisitor problem_visitor(params.problem_visitor, shared_storage.problem_visitor, blockIdx.x); + + const int64_t gemm_k = params.problem_visitor.gemm_k; + const int64_t gemm_n = params.problem_visitor.gemm_n; + int64_t bytes_per_expert_matrix = (gemm_k * gemm_n / 8) * cutlass::sizeof_bits::value; + + // Outer 'persistent' loop to iterate over tiles + int loop = 0; + while (problem_visitor.next_tile()) { + loop++; + + GemmCoord problem_size = problem_visitor.problem_size(); + int32_t problem_idx = problem_visitor.problem_index(); + int32_t cta_idx = int32_t(problem_visitor.threadblock_idx()); + + GemmCoord grid_shape = problem_visitor.grid_shape(problem_size); + + cutlass::gemm::GemmCoord threadblock_offset(static_cast(cta_idx / grid_shape.n()) * Mma::Shape::kM, + static_cast(cta_idx % grid_shape.n()) * Mma::Shape::kN, 0); + + // Load element pointers. Exchange pointers and strides if working on the transpose + const int64_t rows_to_jump = problem_idx == 0 ? 0 : params.problem_visitor.last_row_for_problem[problem_idx - 1]; + ElementA* ptr_A = reinterpret_cast(params.ptr_A) + rows_to_jump * gemm_k; + typename LayoutA::LongIndex ldm_A = gemm_k; + + char* byte_ptr_B = (reinterpret_cast(params.ptr_B)) + problem_idx * bytes_per_expert_matrix; + ElementB* ptr_B = reinterpret_cast(byte_ptr_B); + typename LayoutB::LongIndex ldm_B = + platform::is_same::value ? gemm_n : gemm_k * kInterleave; + + // Compute initial location in logical coordinates + cutlass::MatrixCoord tb_offset_A{ + threadblock_offset.m(), + 0, + }; + + cutlass::MatrixCoord tb_offset_B{0, threadblock_offset.n() / kInterleave}; + + cutlass::MatrixCoord tb_offset_scale{0, threadblock_offset.n()}; + + // Compute position within threadblock + int thread_idx = threadIdx.x; + + // Construct iterators to A and B operands + typename Mma::IteratorA iterator_A(LayoutA(ldm_A), ptr_A, {problem_size.m(), problem_size.k()}, thread_idx, + tb_offset_A); + + typename Mma::IteratorB iterator_B(LayoutB(ldm_B), ptr_B, + {problem_size.k() * kInterleave, problem_size.n() / kInterleave}, thread_idx, + tb_offset_B); + + typename Mma::FragmentC accumulators; + + accumulators.clear(); + + // Broadcast the warp_id computed by lane 0 to ensure dependent code + // is compiled as warp-uniform. + int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0); + + int lane_idx = threadIdx.x % 32; + + // + // Matrix multiply phase + // + + // Construct thread-scoped matrix multiply + auto CreateMMA = [&]() { + if constexpr (use_dq_gemm::value) + return Mma(shared_storage.main_loop, params.group_size, thread_idx, warp_idx, lane_idx); + else + return Mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); + }; + Mma mma = CreateMMA(); + + // Compute threadblock-scoped matrix multiply-add + int gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK; + + // Wait for all threads to finish their epilogue phases from the previous tile. + __syncthreads(); + + // Compute threadblock-scoped matrix multiply-add + ElementScale* weight_scale_ptr = params.weight_scales + problem_idx * problem_size.n(); + + if constexpr (use_dq_gemm::value) { + const MatrixCoord scale_extent = {1, problem_size.n()}; + typename Mma::IteratorScale iterator_scale(Mma::IteratorScale::Layout(scale_extent.column()), weight_scale_ptr, + scale_extent, thread_idx, tb_offset_scale); + + mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, iterator_scale, accumulators); + } else { + mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators); + } + + // + // Epilogue + // + + EpilogueOutputOp output_op(params.output_op); + + ElementC* ptr_C = reinterpret_cast(params.ptr_C) + problem_idx * gemm_n; + ElementC* ptr_D = reinterpret_cast(params.ptr_D) + rows_to_jump * gemm_n; + + LayoutC layout_C(0); + LayoutC layout_D(gemm_n); + + typename Epilogue::OutputTileIterator::Params params_C(layout_C); + typename Epilogue::OutputTileIterator::Params params_D(layout_D); + + // Tile iterator loading from source tensor. + typename Epilogue::OutputTileIterator iterator_C(params_C, ptr_C, problem_size.mn(), thread_idx, + threadblock_offset.mn()); + + // Tile iterator writing to destination tensor. + typename Epilogue::OutputTileIterator iterator_D(params_D, ptr_D, problem_size.mn(), thread_idx, + threadblock_offset.mn()); + + Epilogue epilogue(shared_storage.epilogue, thread_idx, warp_idx, lane_idx); + + // Execute the epilogue operator to update the destination tensor. + epilogue(output_op, iterator_D, accumulators, iterator_C); + + // Next tile + problem_visitor.advance(gridDim.x); + } + } + + template + CUTLASS_DEVICE void run_kernel(Params const& params, SharedStorage& shared_storage) { + if constexpr (platform::is_same::value) { + run_kernel_(params, shared_storage); + } else { + CUTLASS_NOT_IMPLEMENTED(); + } + } + + /* + To improve compilation speed, we do not compile the device operator if the CUDA_ARCH does not correspond + to the ArchTag of the cutlass kernel operator. + */ + /// Executes one GEMM + CUTLASS_DEVICE + void operator()(Params const& params, SharedStorage& shared_storage) { +#if defined(__CUDA_ARCH__) +#if (__CUDA_ARCH__ >= 700) && (__CUDA_ARCH__ < 750) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 750) && (__CUDA_ARCH__ < 800) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 800) && (__CUDA_ARCH__ < 900) + run_kernel(params, shared_storage); +#elif (__CUDA_ARCH__ >= 900) + run_kernel(params, + shared_storage); // Don't compile these for Hopper or later. Use CUTLASS 3.x kernels. +#else + // static_assert(false, + // "Invalid architecture being compiled. Only Volta+ supported in weight-only quantization kernels."); + ; +#endif +#else + CUTLASS_NOT_IMPLEMENTED(); +#endif + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace kernel +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_problem_visitor.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/moe_problem_visitor.h similarity index 81% rename from onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_problem_visitor.h rename to onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/moe_problem_visitor.h index 00f977c615df6..6852d4c811b4d 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_problem_visitor.h +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/moe_problem_visitor.h @@ -1,33 +1,19 @@ -/*************************************************************************************************** - * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. - * SPDX-License-Identifier: BSD-3-Clause +/* + * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at * - * 1. Redistributions of source code must retain the above copyright notice, this - * list of conditions and the following disclaimer. + * http://www.apache.org/licenses/LICENSE-2.0 * - * 2. Redistributions in binary form must reproduce the above copyright notice, - * this list of conditions and the following disclaimer in the documentation - * and/or other materials provided with the distribution. - * - * 3. Neither the name of the copyright holder nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR - * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, - * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - **************************************************************************************************/ + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ /*! \file \brief Base scheduler for grouped problems, using MoE @@ -106,7 +92,7 @@ struct BaseMoeProblemVisitor { /// Get the grid shape CUTLASS_HOST_DEVICE - static cutlass::gemm::GemmCoord grid_shape(const cutlass::gemm::GemmCoord& problem) { + static cutlass::gemm::GemmCoord grid_shape(cutlass::gemm::GemmCoord const& problem) { return cutlass::gemm::GemmCoord(((problem.m() - 1 + ThreadblockShape::kM) / ThreadblockShape::kM), ((problem.n() - 1 + ThreadblockShape::kN) / ThreadblockShape::kN), 1); } @@ -145,9 +131,9 @@ struct BaseMoeProblemVisitor { } CUTLASS_HOST_DEVICE - static int32_t tile_count(const cutlass::gemm::GemmCoord& grid) { return ProblemSizeHelper::tile_count(grid); } + static int32_t tile_count(cutlass::gemm::GemmCoord const& grid) { return ProblemSizeHelper::tile_count(grid); } - static int32_t group_tile_count(const cutlass::gemm::GemmCoord* host_problem_sizes_ptr, int32_t problem_count) { + static int32_t group_tile_count(cutlass::gemm::GemmCoord const* host_problem_sizes_ptr, int32_t problem_count) { int32_t total_tiles = 0; for (int32_t i = 0; i < problem_count; ++i) { auto problem = host_problem_sizes_ptr[i]; @@ -276,12 +262,12 @@ struct MoeProblemVisitor +struct SplitkGemmGrouped { + public: + using Mma = Mma_; + using Epilogue = Epilogue_; + using EpilogueOutputOp = typename Epilogue::OutputOp; + using ThreadblockSwizzle = ThreadblockSwizzle_; + static GroupScheduleMode const kGroupScheduleMode = GroupScheduleMode_; + static bool const kTransposed = Transposed; + + // Optional transpose + using MapArguments = + kernel::detail::MapArguments; + + // Public-facing type definitions related to operand element type, layout, and complex conjugate + // operation. Must interact with the 'kTransposed' notion. + using ElementA = typename MapArguments::ElementA; + using LayoutA = typename MapArguments::LayoutA; + using ElementB = typename MapArguments::ElementB; + using LayoutB = typename MapArguments::LayoutB; + using ElementC = typename Epilogue::OutputTileIterator::Element; + using LayoutC = typename MapArguments::LayoutC; + + using ElementFinalOutput = typename MapArguments::ElementA; + + static ComplexTransform const kTransformA = MapArguments::kTransformA; + static ComplexTransform const kTransformB = MapArguments::kTransformB; + + // Type definitions about the mainloop. + using Operator = typename Mma::Operator; + using OperatorClass = typename Mma::Operator::OperatorClass; + using ThreadblockShape = typename Mma::Shape; + using WarpShape = typename Mma::Operator::Shape; + using InstructionShape = typename Mma::Policy::Operator::InstructionShape; + using ArchTag = typename Mma::ArchTag; + + static int const kStages = Mma::kStages; + static int const kAlignmentA = MapArguments::kAlignmentA; + static int const kAlignmentB = MapArguments::kAlignmentB; + static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess; + + /// Warp count (concept: GemmShape) + using WarpCount = typename Mma::WarpCount; + static int const kThreadCount = 32 * WarpCount::kCount; + + using ProblemVisitor = + GemmGroupedProblemVisitor; + + // + // Structures + // + + /// Argument structure + struct Arguments { + // + // Data members + // + + GemmCoord* problem_sizes; + int problem_count; + int threadblock_count; + + typename EpilogueOutputOp::Params output_op; + + ElementA** ptr_A; + ElementB** ptr_B; + ElementFinalOutput** ptr_C; + ElementFinalOutput** ptr_D; + + typename LayoutA::Stride::LongIndex* lda; + typename LayoutB::Stride::LongIndex* ldb; + typename LayoutC::Stride::LongIndex* ldc; + typename LayoutC::Stride::LongIndex* ldd; + + // Only used by device-level operator + GemmCoord* host_problem_sizes; + + // splitK + int split_k_slices; + int64_t* splitk_buffer_offsets; + + // + // Methods + // + + /// Default ctor + CUTLASS_HOST_DEVICE + Arguments() + : problem_count(0), + threadblock_count(0), + ptr_A(nullptr), + ptr_B(nullptr), + ptr_C(nullptr), + ptr_D(nullptr), + lda(nullptr), + ldb(nullptr), + ldc(nullptr), + ldd(nullptr), + host_problem_sizes(nullptr), + split_k_slices(1), + splitk_buffer_offsets(nullptr) {} + + /// Ctor + CUTLASS_HOST_DEVICE + Arguments(GemmCoord* problem_sizes, int problem_count, int threadblock_count, + typename EpilogueOutputOp::Params output_op, ElementA** ptr_A, ElementB** ptr_B, + ElementFinalOutput** ptr_C, ElementFinalOutput** ptr_D, typename LayoutA::Stride::LongIndex* lda, + typename LayoutB::Stride::LongIndex* ldb, typename LayoutC::Stride::LongIndex* ldc, + typename LayoutC::Stride::LongIndex* ldd, GemmCoord* host_problem_sizes, int split_k_slices, + int64_t* splitk_buffer_offsets) + : problem_sizes(problem_sizes), + problem_count(problem_count), + threadblock_count(threadblock_count), + output_op(output_op), + ptr_A(ptr_A), + ptr_B(ptr_B), + ptr_C(ptr_C), + ptr_D(ptr_D), + lda(lda), + ldb(ldb), + ldc(ldc), + ldd(ldd), + host_problem_sizes(host_problem_sizes), + split_k_slices(split_k_slices), + splitk_buffer_offsets(splitk_buffer_offsets) {} + }; + + // + // Structure for precomputing values in host memory and passing to kernels + // + + /// Parameters structure + struct Params { + typename ProblemVisitor::Params problem_visitor; + int threadblock_count; + + typename EpilogueOutputOp::Params output_op; + + ElementA** ptr_A; + ElementB** ptr_B; + ElementFinalOutput** ptr_C; + ElementFinalOutput** ptr_D; + ElementC* ptr_C_split; + ElementC* ptr_D_split; + + typename LayoutA::Stride::LongIndex* lda; + typename LayoutB::Stride::LongIndex* ldb; + typename LayoutC::Stride::LongIndex* ldc; + typename LayoutC::Stride::LongIndex* ldd; + + // + // Methods + // + + // splitk + GemmCoord grid_tiled_shape; + int swizzle_log_tile; + int gemm_k_size; + GemmCoord* host_problem_sizes; + int split_k_slices; + int64_t* splitk_buffer_offsets; + + CUTLASS_HOST_DEVICE + Params() + : ptr_A(nullptr), + ptr_B(nullptr), + ptr_C(nullptr), + ptr_D(nullptr), + ptr_C_split(nullptr), + ptr_D_split(nullptr), + lda(nullptr), + ldb(nullptr), + ldc(nullptr), + ldd(nullptr), + swizzle_log_tile(0), + gemm_k_size(0), + host_problem_sizes(nullptr), + split_k_slices(1), + splitk_buffer_offsets(nullptr) {} + + CUTLASS_HOST_DEVICE + explicit(Arguments const& args, void* workspace = nullptr, int tile_count = 0) + : problem_visitor(args.problem_sizes, args.problem_count, workspace, tile_count), + host_problem_sizes(args.host_problem_sizes), + threadblock_count(args.threadblock_count), + output_op(args.output_op), + ptr_A(args.ptr_A), + ptr_B(args.ptr_B), + ptr_C(args.ptr_C), + ptr_D(args.ptr_D), + ptr_C_split(reinterpret_cast(workspace)), + ptr_D_split(reinterpret_cast(workspace)), + lda(args.lda), + ldb(args.ldb), + ldc(args.ldc), + ldd(args.ldd), + split_k_slices(args.split_k_slices), + splitk_buffer_offsets(args.splitk_buffer_offsets) { + // Determine grid shape + ThreadblockSwizzle threadblock_swizzle; + grid_tiled_shape = threadblock_swizzle.get_tiled_shape( + args.host_problem_sizes[0], {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK}, + args.split_k_slices); + swizzle_log_tile = ThreadblockSwizzle().get_log_tile(grid_tiled_shape); + + // only support same k + int full_gemm_k_iterations = args.host_problem_sizes[0].k() / Mma::Shape::kK; + int gemm_k_iterations = full_gemm_k_iterations / grid_tiled_shape.k(); + + gemm_k_size = gemm_k_iterations * Mma::Shape::kK; + } + + CUTLASS_HOST_DEVICE + void update(Arguments const& args, void* workspace = nullptr, int tile_count = 0) { + problem_visitor = typename ProblemVisitor::Params(args.problem_sizes, args.problem_count, workspace, tile_count); + threadblock_count = args.threadblock_count; + output_op = args.output_op; + ptr_A = args.ptr_A; + ptr_B = args.ptr_B; + ptr_C = args.ptr_C; + ptr_D = args.ptr_D; + ptr_C_split = workspace; + ptr_D_split = workspace; + + lda = args.lda; + ldb = args.ldb; + ldc = args.ldc; + ldd = args.ldd; + } + }; + + /// Shared memory storage structure + struct SharedStorage { + union { + typename Mma::SharedStorage main_loop; + typename Epilogue::SharedStorage epilogue; + } kernel; + + // ProblemVisitor shared storage can't be overlapped with others + typename ProblemVisitor::SharedStorage problem_visitor; + }; + + public: + // + // Methods + // + + CUTLASS_DEVICE + SplitkGemmGrouped() {} + + /// Determines whether kernel satisfies alignment + static Status can_implement(cutlass::gemm::GemmCoord const& problem_size) { return Status::kSuccess; } + + static Status can_implement(Arguments const& args) { return Status::kSuccess; } + + /// Executes one GEMM + CUTLASS_DEVICE + void operator()(Params const& params, SharedStorage& shared_storage) { + // + // These types shadow the type-level definitions and support the ability to implement + // a 'transposed' GEMM that computes the transposed problems. + // + using ElementA = typename Mma::IteratorA::Element; + using LayoutA = typename Mma::IteratorA::Layout; + using ElementB = typename Mma::IteratorB::Element; + using LayoutB = typename Mma::IteratorB::Layout; + using ElementC = typename Epilogue::OutputTileIterator::Element; + using LayoutC = typename Epilogue::OutputTileIterator::Layout; + + // + // Problem visitor. + // + ProblemVisitor problem_visitor(params.problem_visitor, shared_storage.problem_visitor, blockIdx.x); + + // Outer 'persistent' loop to iterate over tiles + while (problem_visitor.next_tile()) { + GemmCoord problem_size = problem_visitor.problem_size(); + int32_t problem_idx = problem_visitor.problem_index(); + int32_t threadblock_idx = int32_t(problem_visitor.threadblock_idx()); + + GemmCoord grid_shape = problem_visitor.grid_shape(problem_size); + + // Load element pointers. Exchange pointers and strides if working on the transpose + ElementA* ptr_A = + reinterpret_cast((kTransposed ? params.ptr_B[problem_idx] : params.ptr_A[problem_idx])); + typename LayoutA::LongIndex ldm_A = (kTransposed ? params.ldb[problem_idx] : params.lda[problem_idx]); + + ElementB* ptr_B = + reinterpret_cast((kTransposed ? params.ptr_A[problem_idx] : params.ptr_B[problem_idx])); + typename LayoutB::LongIndex ldm_B = (kTransposed ? params.lda[problem_idx] : params.ldb[problem_idx]); + + // Compute threadblock location + ThreadblockSwizzle threadblock_swizzle; + GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); + + cutlass::gemm::GemmCoord threadblock_offset(static_cast(threadblock_idx / grid_shape.n()) * Mma::Shape::kM, + static_cast(threadblock_idx % grid_shape.n()) * Mma::Shape::kN, + 0); + + // Compute initial location in logical coordinates + cutlass::MatrixCoord tb_offset_A{ + threadblock_offset.m(), + threadblock_tile_offset.k() * params.gemm_k_size, + }; + + cutlass::MatrixCoord tb_offset_B{threadblock_tile_offset.k() * params.gemm_k_size, threadblock_offset.n()}; + + // Problem size is a function of threadblock index in the K dimension + int problem_size_k; + if (threadblock_tile_offset.k() + 1 == params.grid_tiled_shape.k()) { + problem_size_k = problem_size.k(); + } else { + problem_size_k = (threadblock_tile_offset.k() + 1) * params.gemm_k_size; + } + + // Compute threadblock-scoped matrix multiply-add + int gemm_k_iterations = (problem_size_k - tb_offset_A.column() + Mma::Shape::kK - 1) / Mma::Shape::kK; + + // Compute position within threadblock + int thread_idx = threadIdx.x; + + // Construct iterators to A and B operands + typename Mma::IteratorA iterator_A(LayoutA(ldm_A), ptr_A, {problem_size.m(), problem_size_k}, thread_idx, + tb_offset_A); + + typename Mma::IteratorB iterator_B(LayoutB(ldm_B), ptr_B, {problem_size_k, problem_size.n()}, thread_idx, + tb_offset_B); + + typename Mma::FragmentC accumulators; + + accumulators.clear(); + + // Broadcast the warp_id computed by lane 0 to ensure dependent code + // is compiled as warp-uniform. + int warp_idx = canonical_warp_idx_sync(); + + int lane_idx = threadIdx.x % 32; + + // + // Matrix multiply phase + // + + // Construct thread-scoped matrix multiply + Mma mma(shared_storage.kernel.main_loop, thread_idx, warp_idx, lane_idx); + + // Wait for all threads to finish their epilogue phases from the previous tile. + __syncthreads(); + + // Compute threadblock-scoped matrix multiply-add + mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators); + + // + // Epilogue + // + + EpilogueOutputOp output_op(params.output_op); + + ElementC* ptr_C = params.ptr_C_split; + ElementC* ptr_D = params.ptr_D_split; + + LayoutC layout_C(params.ldc[problem_idx]); + LayoutC layout_D(params.ldd[problem_idx]); + + typename Epilogue::OutputTileIterator::Params params_C(layout_C); + typename Epilogue::OutputTileIterator::Params params_D(layout_D); + + // assume identity swizzle + MatrixCoord threadblock_offset_C(threadblock_offset.m(), threadblock_offset.n()); + + // Tile iterator loading from source tensor. + typename Epilogue::OutputTileIterator iterator_C(params_C, ptr_C, problem_size.mn(), thread_idx, + threadblock_offset_C); + + iterator_C.add_pointer_offset(problem_size.m() * problem_size.n() * threadblock_tile_offset.k() + + gridDim.z * params.splitk_buffer_offsets[problem_idx]); + + // Tile iterator writing to destination tensor. + typename Epilogue::OutputTileIterator iterator_D(params_D, ptr_D, problem_size.mn(), thread_idx, + threadblock_offset_C); + iterator_D.add_pointer_offset(problem_size.m() * problem_size.n() * threadblock_tile_offset.k() + + gridDim.z * params.splitk_buffer_offsets[problem_idx]); + + Epilogue epilogue(shared_storage.kernel.epilogue, thread_idx, warp_idx, lane_idx); + + // Execute the epilogue operator to update the destination tensor. + epilogue(output_op, iterator_D, accumulators, iterator_C); + + // Next tile + problem_visitor.advance(gridDim.x); + } + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace kernel +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma.h new file mode 100644 index 0000000000000..8bbc1ee4e6c47 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma.h @@ -0,0 +1,120 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#pragma once + +#include "contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/interleaved_numeric_conversion.h" + +namespace cutlass { +namespace gemm { +namespace threadblock { +//////////////////////////////////////////////////////////////////////////////// + +// We need to distinguish here, since we want volta support. It is too much effort +// to write shared memory iterators that are probably needed for volta to function +// properly. As a result, we allow converters both after the LDG (for volta) and after +// the LDS for Turing+. +template < + /// Iterator for B matrix in global memory + typename IteratorB, + /// Warp level Mma + typename MmaOperator, + /// Math operation perform by warp level operator + typename MathOperator> +struct SetConverters {}; + +// Dequantize after LDG, so set transforms accordingly +template < + /// Iterator for B matrix in global memory + typename IteratorB, + /// Mma Policy + typename MmaOperator> +struct SetConverters { + using TransformAfterLDG = + FastInterleavedAndBiasedNumericArrayConverter; + + using TransformAfterLDS = + NumericArrayConverter; +}; + +// Dequantize after LDS, so set transforms accordingly + +template < + /// Iterator for B matrix in global memory + typename IteratorB, + /// Mma Policy + typename MmaOperator> +struct SetConverters { + using TransformAfterLDG = + NumericArrayConverter; + + using TransformAfterLDS = + FastInterleavedAndBiasedNumericArrayConverter; +}; + +//////////////////////////////////////////////////////////////////////////////// + +template < + /// Element type for A matrix operand + typename ElementA_, + /// Layout type for A matrix operand + typename LayoutA_, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Element type for B matrix operand + typename ElementB_, + /// Layout type for B matrix operand + typename LayoutB_, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for the input scale + typename ElementScale_, + /// Layout for the scale operand + typename LayoutScale_, + /// Access granularity of Scales in unit of elements + int kAlignmentScale, + /// Element type for internal accumulation + typename ElementAccumulator_, + /// Layout type for C and D matrix operands + typename LayoutC_, + /// Operator class tag + typename OperatorClass_, + /// Tag indicating architecture to tune for + typename ArchTag_, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape_, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape_, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape_, + /// Number of stages used in the pipelined mainloop + int Stages, + /// Operation performed by GEMM + typename Operator_, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear = SharedMemoryClearOption::kNone, + /// + typename Enable = void> +struct DqMma; + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_multistage.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_multistage.h new file mode 100644 index 0000000000000..8b9d6b0b14add --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_multistage.h @@ -0,0 +1,289 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#pragma once + +#include + +#include "cutlass/gemm/threadblock/default_mma.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/default_mma_tensor_op.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_compute_B_with_f16.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/tile_interleaved_layout.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/transform/threadblock/fine_grained_scale_zero_iterator.h" + +namespace cutlass { +namespace gemm { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +template +struct DefaultScaleIterators; + +// Fine grained iterators +template +struct DefaultScaleIterators> { + using IteratorScale = + cutlass::transform::threadblock::FineGrainedScaleZeroIterator, Element, + Layout, 0, Alignment>; + + using SmemIteratorScale = IteratorScale; +}; + +// Per column iterators +template +struct DefaultScaleIterators> { + // ThreadMap for scale iterator + static_assert((MmaShape::kN % Alignment) == 0, ""); + + private: + using IteratorScaleThreadMap = transform::PitchLinearStripminedThreadMap, + MmaShape::kN / Alignment, Alignment>; + + public: + // Define iterators over tiles from the scale operand + using IteratorScale = + cutlass::transform::threadblock::PredicatedTileIterator, Element, Layout, 0, + IteratorScaleThreadMap, Alignment>; + + using SmemIteratorScale = IteratorScale; +}; + +//////////////////////////////////////////////////////////////////////////////// + +template < + /// Type for elementA + typename ElementA, + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Type for element B + typename ElementB, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for the input scale + typename ElementScale, + /// Layout for the scale operand + typename LayoutScale, + /// Access granularity of Scales in unit of elements + int kAlignmentScale, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Operator class tag + typename OperatorClass, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Stages in GEMM + int kStages, + /// + typename Operator_, + /// + SharedMemoryClearOption SharedMemoryClear> +struct DqMma= 80 && + !layout::IsColumnMajorTileInterleave::value)>::type> { + static_assert(platform::is_same::value || platform::is_same::value, + "Element A must be fp16 or bf16"); + + using OperatorInfo = arch::DetagOperator; + using Operator = typename OperatorInfo::Operator; + static_assert(platform::is_same::value, + "Mma multistage must dequantize after ldsm"); + + static_assert(platform::is_same::value || platform::is_same::value, + "Element B must be uint8 or uint4"); + + static cutlass::arch::CacheOperation::Kind const CacheOpA = ((sizeof_bits::value * kAlignmentA) == 128) + ? cutlass::arch::CacheOperation::Global + : cutlass::arch::CacheOperation::Always; + + static cutlass::arch::CacheOperation::Kind const CacheOpB = ((sizeof_bits::value * kAlignmentB) == 128) + ? cutlass::arch::CacheOperation::Global + : cutlass::arch::CacheOperation::Always; + + // Define the MmaCore components + // Mma core does not depend on stages, so pass in at least 3 here to mma multistage pieces are created + using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< + ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, + layout::RowMajor, OperatorClass, std::max(kStages, 3), Operator, false, CacheOpA, CacheOpB>; + + // Define iterators over tiles from the A operand + using ThreadMapA = typename MmaCore::IteratorThreadMapA; + using AccessTypeA = cutlass::Array; + using IteratorA = cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, ElementA, LayoutA, 1, ThreadMapA, AccessTypeA>; + + // Define iterators over tiles from the B operand + using ThreadMapB = typename MmaCore::IteratorThreadMapB; + using AccessTypeB = cutlass::Array; + using IteratorB = cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, ElementB, LayoutB, 0, ThreadMapB, AccessTypeB>; + + using ScaleIterators = + DefaultScaleIterators; + + // Define iterators over tiles from the scale operand + using IteratorScale = typename ScaleIterators::IteratorScale; + + using SmemIteratorScale = typename ScaleIterators::SmemIteratorScale; + + using Converter = FastInterleavedAndBiasedNumericArrayConverter; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = cutlass::gemm::threadblock::DqMmaMultistage< + typename MmaCore::Shape, IteratorA, typename MmaCore::SmemIteratorA, MmaCore::kCacheOpA, IteratorB, + typename MmaCore::SmemIteratorB, MmaCore::kCacheOpB, IteratorScale, SmemIteratorScale, ElementAccumulator, + layout::RowMajor, typename MmaCore::MmaPolicy, kStages, Converter, OperatorInfo::QuantOp, SharedMemoryClear>; +}; + +template < + /// Type for element A + typename ElementA, + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Type for element B + typename ElementB, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for the input scale + typename ElementScale, + /// Layout for the scale operand + typename LayoutScale, + /// Access granularity of Scales in unit of elements + int kAlignmentScale, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Operator class tag + typename OperatorClass, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Stages in GEMM + int kStages, + /// + typename Operator_, + /// + SharedMemoryClearOption SharedMemoryClear> +struct DqMma= 80 && + layout::IsColumnMajorTileInterleave::value)>::type> { + static_assert(platform::is_same::value || platform::is_same::value, + "Element A must be fp16 or bf16"); + + using OperatorInfo = arch::DetagOperator; + using Operator = typename OperatorInfo::Operator; + static_assert(platform::is_same::value, + "Mma multistage must dequantize after ldsm"); + + static_assert(platform::is_same::value || platform::is_same::value, + "Element B must be uint8 or uint4"); + + static cutlass::arch::CacheOperation::Kind const CacheOpA = ((sizeof_bits::value * kAlignmentA) == 128) + ? cutlass::arch::CacheOperation::Global + : cutlass::arch::CacheOperation::Always; + + static cutlass::arch::CacheOperation::Kind const CacheOpB = ((sizeof_bits::value * kAlignmentB) == 128) + ? cutlass::arch::CacheOperation::Global + : cutlass::arch::CacheOperation::Always; + + // Define the MmaCore components + // Mma core does not depend on stages, so pass in at least 3 here to mma multistage pieces are created + using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< + ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, layout::ColumnMajor, + ElementAccumulator, layout::RowMajor, OperatorClass, std::max(kStages, 3), Operator, false, CacheOpA, CacheOpB>; + + // Define iterators over tiles from the A operand + using ThreadMapA = typename MmaCore::IteratorThreadMapA; + using AccessTypeA = cutlass::Array; + using IteratorA = cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, ElementA, LayoutA, 1, ThreadMapA, AccessTypeA>; + + private: + static constexpr int ColumnsInterleaved = LayoutB::kColumnsInterleaved; + static constexpr int RowsPerTile = LayoutB::kRowsPerTile; + static_assert(!(MmaCore::Shape::kN % ColumnsInterleaved), ""); + static_assert(RowsPerTile == MmaCore::Shape::kK, ""); + + using OriginalThreadMap = typename MmaCore::IteratorThreadMapB; + using OriginalWarpArrangement = typename OriginalThreadMap::Detail::WarpThreadArrangement; + static_assert(!(OriginalWarpArrangement::kStrided % ColumnsInterleaved), ""); + + using GmemIteratorShape = + MatrixShape; + using GmemThreadMapB = transform::PitchLinearWarpRakedThreadMap< + layout::PitchLinearShape, OriginalThreadMap::kThreads, + layout::PitchLinearShape, + MmaCore::kAccessSizeInBits / sizeof_bits::value>; + + public: + // Define iterators over tiles from the B operand + using ThreadMapB = typename MmaCore::IteratorThreadMapB; + using AccessTypeB = cutlass::Array; + using IteratorB = + cutlass::transform::threadblock::PredicatedTileAccessIterator; + + using ScaleIterators = + DefaultScaleIterators; + + // Define iterators over tiles from the scale operand + using IteratorScale = typename ScaleIterators::IteratorScale; + + using SmemIteratorScale = typename ScaleIterators::SmemIteratorScale; + + using Converter = FastInterleavedAndBiasedNumericArrayConverter; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = cutlass::gemm::threadblock::DqMmaMultistage< + typename MmaCore::Shape, IteratorA, typename MmaCore::SmemIteratorA, MmaCore::kCacheOpA, IteratorB, + typename MmaCore::SmemIteratorB, MmaCore::kCacheOpB, IteratorScale, SmemIteratorScale, ElementAccumulator, + layout::RowMajor, typename MmaCore::MmaPolicy, kStages, Converter, OperatorInfo::QuantOp, SharedMemoryClear>; +}; + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_pipelined.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_pipelined.h new file mode 100644 index 0000000000000..91c4cd342569e --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_pipelined.h @@ -0,0 +1,245 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#pragma once + +#include "cutlass/gemm/threadblock/default_mma.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_pipelined.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/default_mma_tensor_op.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_compute_B_with_f16.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/tile_interleaved_layout.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma.h" + +namespace cutlass { +namespace gemm { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +template < + /// Type for element A + typename ElementA, + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Type for element B + typename ElementB, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for the input scale + typename ElementScale, + /// Layout for the scale operand + typename LayoutScale, + /// Access granularity of Scales in unit of elements + int kAlignmentScale, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Operator class tag + typename OperatorClass, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator_> +struct DqMma::value)>::type> { + static_assert(platform::is_same::value || platform::is_same::value, + "Element A must be fp16 or bf16"); + + static_assert(platform::is_same::value || platform::is_same::value, + "Element B must be uint8 or uint4"); + + using OperatorInfo = arch::DetagOperator; + using Operator = typename OperatorInfo::Operator; + static_assert(OperatorInfo::QuantOp == WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY, ""); + + static constexpr bool DqAfterLDG = platform::is_same::value; + static constexpr bool arch_has_bf16_mma = ArchTag::kMinComputeCapability >= 80; + using MmaCoreElementA = typename platform::conditional::type; + using MmaCoreElementB = typename platform::conditional::type; + + // Define the MmaCore components + using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< + ThreadblockShape, WarpShape, InstructionShape, MmaCoreElementA, LayoutA, MmaCoreElementB, LayoutB, + ElementAccumulator, layout::RowMajor, OperatorClass, 2, Operator>; + + // Define iterators over tiles from the A operand + using IteratorA = cutlass::transform::threadblock::PredicatedTileIterator< + cutlass::MatrixShape, ElementA, LayoutA, 1, + typename MmaCore::IteratorThreadMapA, kAlignmentA>; + + // Define iterators over tiles from the B operand + using IteratorB = cutlass::transform::threadblock::PredicatedTileIterator< + cutlass::MatrixShape, ElementB, LayoutB, 0, + typename MmaCore::IteratorThreadMapB, kAlignmentB>; + + // ThreadMap for scale iterator + static_assert((MmaCore::Shape::kN % kAlignmentScale) == 0, ""); + using IteratorScaleThreadMap = + transform::PitchLinearStripminedThreadMap, + MmaCore::Shape::kN / kAlignmentScale, kAlignmentScale>; + + // Define iterators over tiles from the scale operand + using IteratorScale = + cutlass::transform::threadblock::PredicatedTileIterator, ElementScale, + LayoutScale, 0, IteratorScaleThreadMap, kAlignmentScale>; + + using SmemScaleType = typename platform::conditional::type; + using SmemIteratorScale = + cutlass::transform::threadblock::PredicatedTileIterator, + SmemScaleType, LayoutScale, 0, IteratorScaleThreadMap, + kAlignmentScale>; + + using Converters = SetConverters; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = cutlass::gemm::threadblock::DqMmaPipelined< + typename MmaCore::Shape, IteratorA, typename MmaCore::SmemIteratorA, IteratorB, typename MmaCore::SmemIteratorB, + IteratorScale, SmemIteratorScale, ElementAccumulator, layout::RowMajor, typename MmaCore::MmaPolicy, + typename Converters::TransformAfterLDG, typename Converters::TransformAfterLDS, OperatorInfo::QuantOp>; +}; + +// Specialization to handle column major interleave B +template < + /// Type for element A + typename ElementA, + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Type for element B + typename ElementB, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for the input scale + typename ElementScale, + /// Layout for the scale operand + typename LayoutScale, + /// Access granularity of Scales in unit of elements + int kAlignmentScale, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Operator class tag + typename OperatorClass, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator_> +struct DqMma::value)>::type> { + static_assert(platform::is_same::value || platform::is_same::value, + "Element A must be fp16 or bf16"); + + static_assert(platform::is_same::value || platform::is_same::value, + "Element B must be uint8 or uint4"); + + using OperatorInfo = arch::DetagOperator; + using Operator = typename OperatorInfo::Operator; + static_assert(OperatorInfo::QuantOp == WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY, ""); + + static constexpr bool DqAfterLDG = platform::is_same::value; + static constexpr bool arch_has_bf16_mma = ArchTag::kMinComputeCapability >= 80; + using MmaCoreElementA = typename platform::conditional::type; + using MmaCoreElementB = typename platform::conditional::type; + + // Define the MmaCore components + using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< + ThreadblockShape, WarpShape, InstructionShape, MmaCoreElementA, LayoutA, MmaCoreElementB, layout::ColumnMajor, + ElementAccumulator, layout::RowMajor, OperatorClass, 2, Operator>; + + // Define iterators over tiles from the A operand + using IteratorA = cutlass::transform::threadblock::PredicatedTileIterator< + cutlass::MatrixShape, ElementA, LayoutA, 1, + typename MmaCore::IteratorThreadMapA, kAlignmentA>; + + private: + static constexpr int ColumnsInterleaved = LayoutB::kColumnsInterleaved; + static constexpr int RowsPerTile = LayoutB::kRowsPerTile; + static_assert(!(MmaCore::Shape::kN % ColumnsInterleaved), ""); + static_assert(RowsPerTile == MmaCore::Shape::kK, ""); + + using OriginalThreadMap = typename MmaCore::IteratorThreadMapB; + using OriginalWarpArrangement = typename OriginalThreadMap::Detail::WarpThreadArrangement; + static_assert(!(OriginalWarpArrangement::kStrided % ColumnsInterleaved), ""); + + using GmemIteratorShape = + MatrixShape; + using GmemThreadMapB = transform::PitchLinearWarpRakedThreadMap< + layout::PitchLinearShape, OriginalThreadMap::kThreads, + layout::PitchLinearShape, + MmaCore::kAccessSizeInBits / sizeof_bits::value>; + + public: + // Define iterators over tiles from the B operand + using IteratorB = + cutlass::transform::threadblock::PredicatedTileIterator; + + // ThreadMap for scale iterator + static_assert((MmaCore::Shape::kN % kAlignmentScale) == 0, ""); + using IteratorScaleThreadMap = + transform::PitchLinearStripminedThreadMap, + MmaCore::Shape::kN / kAlignmentScale, kAlignmentScale>; + + // Define iterators over tiles from the scale operand + using IteratorScale = + cutlass::transform::threadblock::PredicatedTileIterator, ElementScale, + LayoutScale, 0, IteratorScaleThreadMap, kAlignmentScale>; + + using SmemScaleType = typename platform::conditional::type; + using SmemIteratorScale = + cutlass::transform::threadblock::PredicatedTileIterator, + SmemScaleType, LayoutScale, 0, IteratorScaleThreadMap, + kAlignmentScale>; + + using Converters = SetConverters; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = cutlass::gemm::threadblock::DqMmaPipelined< + typename MmaCore::Shape, IteratorA, typename MmaCore::SmemIteratorA, IteratorB, typename MmaCore::SmemIteratorB, + IteratorScale, SmemIteratorScale, ElementAccumulator, layout::RowMajor, typename MmaCore::MmaPolicy, + typename Converters::TransformAfterLDG, typename Converters::TransformAfterLDS, OperatorInfo::QuantOp>; +}; + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_mma.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_mma.h new file mode 100644 index 0000000000000..1a3e7e39c9656 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_mma.h @@ -0,0 +1,283 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#pragma once + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_multistage.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_pipelined.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_mma_bf16.h" + +namespace cutlass { +namespace gemm { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +/// Specialization for row-major output (OperatorClass TensorOp), fp16 activation & int8 weight +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator> +struct DefaultMma { + private: + static constexpr int kAlignmentScale = 128 / sizeof_bits::value; + + using Mma = DqMma; + + public: + // Define the MmaCore components + using MmaCore = typename Mma::MmaCore; + + // Define iterators over tiles from the A operand + using IteratorA = typename Mma::IteratorA; + + // Define iterators over tiles from the B operand + using IteratorB = typename Mma::IteratorB; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = typename Mma::ThreadblockMma; +}; + +//////////////////////////////////////////////////////////////////////////////// +/// Specialization for row-major output (OperatorClass TensorOp), fp16 activation & int4 weight +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator> +struct DefaultMma { + private: + static constexpr int kAlignmentScale = 128 / sizeof_bits::value; + + using Mma = DqMma; + + public: + // Define the MmaCore components + using MmaCore = typename Mma::MmaCore; + + // Define iterators over tiles from the A operand + using IteratorA = typename Mma::IteratorA; + + // Define iterators over tiles from the B operand + using IteratorB = typename Mma::IteratorB; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = typename Mma::ThreadblockMma; +}; + +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator, + /// + int kStages, + /// Shared memory clear option + SharedMemoryClearOption SharedMemoryClear> +struct DefaultMma { + private: + static constexpr int kAlignmentScale = 128 / sizeof_bits::value; + + using Mma = DqMma; + + public: + // Define the MmaCore components + using MmaCore = typename Mma::MmaCore; + + // Define iterators over tiles from the A operand + using IteratorA = typename Mma::IteratorA; + + // Define iterators over tiles from the B operand + using IteratorB = typename Mma::IteratorB; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = typename Mma::ThreadblockMma; +}; + +//////////////////////////////////////////////////////////////////////////////// +/// Specialization for row-major output (OperatorClass TensorOp), fp16 activation & int4 weight +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator, + /// + int kStages, + /// Shared memory clear option + SharedMemoryClearOption SharedMemoryClear> +struct DefaultMma { + private: + static constexpr int kAlignmentScale = 128 / sizeof_bits::value; + + using Mma = DqMma; + + public: + // Define the MmaCore components + using MmaCore = typename Mma::MmaCore; + + // Define iterators over tiles from the A operand + using IteratorA = typename Mma::IteratorA; + + // Define iterators over tiles from the B operand + using IteratorB = typename Mma::IteratorB; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = typename Mma::ThreadblockMma; +}; + +// fp16 x fp16 specialization on Ampere to use mma multistage for 2 stage. Helps avoid reg spills on +// large tile when not enough shared mem is present to do 3+ stage +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear, + /// Gather operand A by using an index array + bool GatherA, + /// Gather operand B by using an index array + bool GatherB> +struct DefaultMma { + // Define the MmaCore components + // 3 is used on purpose here to trigger components for mma multistage + using MmaCore = + typename cutlass::gemm::threadblock::DefaultMmaCore; + + // Define iterators over tiles from the A operand + using ThreadMapA = typename MmaCore::IteratorThreadMapA; + using AccessTypeA = cutlass::Array; + using IteratorA = cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, half_t, LayoutA, 1, ThreadMapA, AccessTypeA, + GatherA>; + + // Define iterators over tiles from the B operand + using ThreadMapB = typename MmaCore::IteratorThreadMapB; + using AccessTypeB = cutlass::Array; + using IteratorB = cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, half_t, LayoutB, 0, ThreadMapB, AccessTypeB, + GatherB>; + + // Define the threadblock-scoped multistage matrix multiply + using ThreadblockMma = + cutlass::gemm::threadblock::MmaMultistage; +}; + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_mma_bf16.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_mma_bf16.h new file mode 100644 index 0000000000000..4afd482f85628 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_mma_bf16.h @@ -0,0 +1,345 @@ +/* + * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#pragma once + +#include "cutlass/gemm/threadblock/default_mma.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_multistage.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_dq_mma_pipelined.h" + +namespace cutlass { +namespace gemm { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +/// Specialization for row-major output (OperatorClass TensorOp), bf16 activation & bf16 weight +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear, + /// Gather operand A by using an index array + bool GatherA, + /// Gather operand B by using an index array + bool GatherB> +struct DefaultMma { + private: + // Conversions only needed pre-ampere. This will trigger mma pipeline, so we convert before STS. + static constexpr bool arch_has_bf16_mma = ArchTag::kMinComputeCapability >= 80; + using MmaElementA = typename platform::conditional::type; + using MmaElementB = typename platform::conditional::type; + + public: + // Define the MmaCore components + using MmaCore = + typename cutlass::gemm::threadblock::DefaultMmaCore; + + using IteratorA = cutlass::transform::threadblock::PredicatedTileIterator< + cutlass::MatrixShape, bfloat16_t, LayoutA, 1, + typename MmaCore::IteratorThreadMapA, kAlignmentA, GatherA>; + + // Define iterators over tiles from the B operand + using IteratorB = cutlass::transform::threadblock::PredicatedTileIterator< + cutlass::MatrixShape, bfloat16_t, LayoutB, 0, + typename MmaCore::IteratorThreadMapB, kAlignmentB, GatherB>; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = + cutlass::gemm::threadblock::MmaPipelined; +}; + +// bf16 x bf16 specialization on Ampere to use mma multistage for 2 stage. Helps avoid reg spills on +// large tile when not enough shared mem is present to do 3+ stage +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear, + /// Gather operand A by using an index array + bool GatherA, + /// Gather operand B by using an index array + bool GatherB> +struct DefaultMma { + // Define the MmaCore components + // 3 is used on purpose here to trigger components for mma multistage + using MmaCore = + typename cutlass::gemm::threadblock::DefaultMmaCore; + + // Define iterators over tiles from the A operand + using ThreadMapA = typename MmaCore::IteratorThreadMapA; + using AccessTypeA = cutlass::Array; + using IteratorA = cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, bfloat16_t, LayoutA, 1, ThreadMapA, AccessTypeA, + GatherA>; + + // Define iterators over tiles from the B operand + using ThreadMapB = typename MmaCore::IteratorThreadMapB; + using AccessTypeB = cutlass::Array; + using IteratorB = cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, bfloat16_t, LayoutB, 0, ThreadMapB, AccessTypeB, + GatherB>; + + // Define the threadblock-scoped multistage matrix multiply + using ThreadblockMma = + cutlass::gemm::threadblock::MmaMultistage; +}; + +//////////////////////////////////////////////////////////////////////////////// + +/// Specialization for row-major output (OperatorClass TensorOp), bf16 activation & int8 weight +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator> +struct DefaultMma { + private: + static constexpr int kAlignmentScale = 128 / sizeof_bits::value; + + using Mma = DqMma; + + public: + // Define the MmaCore components + using MmaCore = typename Mma::MmaCore; + + // Define iterators over tiles from the A operand + using IteratorA = typename Mma::IteratorA; + + // Define iterators over tiles from the B operand + using IteratorB = typename Mma::IteratorB; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = typename Mma::ThreadblockMma; +}; + +//////////////////////////////////////////////////////////////////////////////// +/// Specialization for row-major output (OperatorClass TensorOp), bf16 activation & int4 weight +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator> +struct DefaultMma { + private: + static constexpr int kAlignmentScale = 128 / sizeof_bits::value; + + using Mma = DqMma; + + public: + // Define the MmaCore components + using MmaCore = typename Mma::MmaCore; + + // Define iterators over tiles from the A operand + using IteratorA = typename Mma::IteratorA; + + // Define iterators over tiles from the B operand + using IteratorB = typename Mma::IteratorB; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = typename Mma::ThreadblockMma; +}; + +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator, + /// + int kStages, + /// Shared memory clear option + SharedMemoryClearOption SharedMemoryClear> +struct DefaultMma { + private: + static constexpr int kAlignmentScale = 128 / sizeof_bits::value; + + using Mma = DqMma; + + public: + // Define the MmaCore components + using MmaCore = typename Mma::MmaCore; + + // Define iterators over tiles from the A operand + using IteratorA = typename Mma::IteratorA; + + // Define iterators over tiles from the B operand + using IteratorB = typename Mma::IteratorB; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = typename Mma::ThreadblockMma; +}; + +//////////////////////////////////////////////////////////////////////////////// +/// Specialization for row-major output (OperatorClass TensorOp), fp16 activation & int4 weight +template < + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Operation performed by GEMM + typename Operator, + /// + int kStages, + /// Shared memory clear option + SharedMemoryClearOption SharedMemoryClear> +struct DefaultMma { + private: + static constexpr int kAlignmentScale = 128 / sizeof_bits::value; + + using Mma = DqMma; + + public: + // Define the MmaCore components + using MmaCore = typename Mma::MmaCore; + + // Define iterators over tiles from the A operand + using IteratorA = typename Mma::IteratorA; + + // Define iterators over tiles from the B operand + using IteratorB = typename Mma::IteratorB; + + // Define the threadblock-scoped pipelined matrix multiply + using ThreadblockMma = typename Mma::ThreadblockMma; +}; + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_base.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_base.h new file mode 100644 index 0000000000000..cf5ba6faa0c82 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_base.h @@ -0,0 +1,237 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Template for a double-buffered threadblock-scoped GEMM kernel. +*/ + +#pragma once + +#include "cutlass/aligned_buffer.h" +#include "cutlass/arch/memory.h" +#include "cutlass/array.h" +#include "cutlass/cutlass.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/gemm/threadblock/mma_base.h" +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_types.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/weight_only_quant_op.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// +// SFINAE trick so I can keep the same loop code for Volta and dispatch to the +// correct warp level mma. On volta, all data is stored to shared memory as FP16. +template +CUTLASS_DEVICE void run_warp_mma(WarpMma& warp_mma, typename WarpMma::FragmentC& D, + typename WarpMma::FragmentA const& A, typename WarpMma::FragmentB const& B, + typename WarpMma::FragmentC const& C, int const warp_tileB_k_offset) { + warp_mma(D, A, B, C); +} + +template +CUTLASS_DEVICE void run_warp_mma(WarpMma& warp_mma, typename WarpMma::FragmentC& D, + typename WarpMma::TransformedFragmentA const& A, + typename WarpMma::TransformedFragmentB const& B, typename WarpMma::FragmentC const& C, + int const warp_tileB_k_offset) { + warp_mma(D, A, B, C, warp_tileB_k_offset); +} + +//////////////////////////////////////////////////////////////////////////////// + +/// Structure to compute the matrix product targeting CUDA cores and SIMT math +/// instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Policy describing tuning details (concept: MmaPolicy) + typename Policy_, + /// The type of the scales + typename ElementScale_, + /// Number of stages, + int Stages, + /// The dequantizing op to be performed. + WeightOnlyQuantOp DequantOp, + /// Used for partial specialization, + typename Enable = bool> +class DqMmaBase { + public: + ///< Size of the Gemm problem - concept: gemm::GemmShape<> + using Shape = Shape_; + + ///< Policy describing tuning details + using Policy = Policy_; + + ///< Type of the scale to be loaded + using ElementScale = ElementScale_; + + static_assert(DequantOp != WeightOnlyQuantOp::UNDEFINED, ""); + + // Finegrained scales get streamed in via cp.async + static constexpr int ScalebiasStages = isFinegrained(DequantOp) ? Stages : 1; + // We always have scales. + static constexpr int ScaleElementsPerStage = Shape::kN; + // We sometimes have a bias + static constexpr int BiasElementsPerStage = hasZero(DequantOp) ? Shape::kN : 0; + + // + // Dependent types + // + + /// Warp-level Mma + using Operator = typename Policy::Operator; + + /// Shape describing the overall GEMM computed from shared memory + /// by each warp. + using WarpGemm = typename Policy::Operator::Shape; + + /// Shape describing the number of warps filling the CTA + using WarpCount = GemmShape; + + /// Number of warp-level GEMM operations + static int const kWarpGemmIterations = (WarpGemm::kK / Operator::Policy::MmaShape::kK); + + static constexpr int kNumKIterationsPerWarpBLoad = + Operator::IteratorB::InstructionShape::kRow / Operator::InstructionShape::kK; + + static_assert(!(kWarpGemmIterations % kNumKIterationsPerWarpBLoad), ""); + static constexpr int kWarpGemmIterationsForB = kWarpGemmIterations / kNumKIterationsPerWarpBLoad; + + /// Number of stages + static int const kStages = Stages; + + /// Tensor reference to the A operand + using TensorRefA = TensorRef; + + /// Tensor reference to the B operand + using TensorRefB = TensorRef; + + // + // Nested structs + // + + /// Shared storage object needed by threadblock-scoped GEMM + class SharedStorage { + public: + // + // Type definitions + // + + /// Shape of the A matrix operand in shared memory + using ShapeA = + MatrixShape; + + /// Shape of the B matrix operand in shared memory + using ShapeB = + MatrixShape; + + /// Shape of the shared memory buffer for the scales for the B matrix. + using ShapeScale = MatrixShape; + /// Shape of the shared memory buffer for the biases of the B matrix. + using ShapeZero = MatrixShape; + + public: + // + // Data members + // + + /// Buffer for A operand + AlignedBuffer operand_A; + + /// Buffer for B operand + AlignedBuffer operand_B; + + /// Buffer to hold scales for threadblock + AlignedBuffer operand_scale; + + /// Buffer to hold scales for threadblock + AlignedBuffer operand_zero; + + public: + // + // Methods + // + + /// Returns a layout object for the A matrix + CUTLASS_DEVICE + static typename Operator::LayoutA LayoutA() { return Operator::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn}); } + + /// Returns a layout object for the B matrix + CUTLASS_HOST_DEVICE + static typename Operator::LayoutB LayoutB() { return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn}); } + + /// Returns a TensorRef to the A operand + CUTLASS_HOST_DEVICE + TensorRefA operand_A_ref() { return TensorRefA{operand_A.data(), LayoutA()}; } + + /// Returns a TensorRef to the B operand + CUTLASS_HOST_DEVICE + TensorRefB operand_B_ref() { return TensorRefB{operand_B.data(), LayoutB()}; } + }; + + protected: + // + // Data members + // + + /// Iterator to load a warp-scoped tile of A operand from shared memory + typename Operator::IteratorA warp_tile_iterator_A_; + + /// Iterator to load a warp-scoped tile of B operand from shared memory + typename Operator::IteratorB warp_tile_iterator_B_; + + public: + /// Construct from tensor references + CUTLASS_DEVICE + DqMmaBase( + ///< Shared storage needed for internal use by threadblock-scoped GEMM + SharedStorage& shared_storage, + ///< ID within the threadblock + int thread_idx, + ///< ID of warp + int warp_idx, + ///< ID of each thread within a warp + int lane_idx) + : warp_tile_iterator_A_(shared_storage.operand_A_ref(), lane_idx), + warp_tile_iterator_B_(shared_storage.operand_B_ref(), lane_idx) {} +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage.h new file mode 100644 index 0000000000000..f11e94d9d2b95 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage.h @@ -0,0 +1,107 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Template for a double-buffered threadblock-scoped GEMM kernel. +*/ + +#pragma once + +#include "cutlass/aligned_buffer.h" +#include "cutlass/arch/memory.h" +#include "cutlass/array.h" +#include "cutlass/cutlass.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_types.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_base.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_dequantizer.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/interleaved_numeric_conversion.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace threadblock { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Structure to compute the matrix product targeting CUDA cores and SIMT math +/// instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Iterates over tiles of A operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | + // MaskedTileIterator) + typename IteratorA_, + /// Iterates over tiles of A operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorA_, + /// Cache operation for operand A + cutlass::arch::CacheOperation::Kind CacheOpA, + /// Iterates over tiles of B operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | + // MaskedTileIterator) + typename IteratorB_, + /// Iterates over tiles of B operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorB_, + /// Cache operation for operand B + cutlass::arch::CacheOperation::Kind CacheOpB, + /// Data type for the scales + typename IteratorScale_, + /// Iterators over scales in shared memory + typename SmemIteratorScale_, + /// Data type of accumulator matrix + typename ElementC_, + /// Data type of accumulator matrix + typename LayoutC_, + /// Policy describing tuning details (concept: MmaPolicy) + typename Policy_, + /// Number of stages, + int Stages, + /// Converter for B matrix applited immediately after the LDS + typename TransformBAfterLDS_, + /// The quantization operator being used + WeightOnlyQuantOp QuantOp_, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear = SharedMemoryClearOption::kNone, + /// Used for partial specialization + typename Enable = void> +class DqMmaMultistage; + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage_finegrained.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage_percol.h" diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage_finegrained.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage_finegrained.h new file mode 100644 index 0000000000000..dd934b9a00369 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage_finegrained.h @@ -0,0 +1,634 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Template for a double-buffered threadblock-scoped GEMM kernel. +*/ + +#pragma once + +#include "cutlass/aligned_buffer.h" +#include "cutlass/arch/memory.h" +#include "cutlass/array.h" +#include "cutlass/cutlass.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_types.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_base.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_dequantizer.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/interleaved_numeric_conversion.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace threadblock { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Structure to compute the matrix product targeting CUDA cores and SIMT math +/// instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Iterates over tiles of A operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | + // MaskedTileIterator) + typename IteratorA_, + /// Iterates over tiles of A operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorA_, + /// Cache operation for operand A + cutlass::arch::CacheOperation::Kind CacheOpA, + /// Iterates over tiles of B operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | + // MaskedTileIterator) + typename IteratorB_, + /// Iterates over tiles of B operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorB_, + /// Cache operation for operand B + cutlass::arch::CacheOperation::Kind CacheOpB, + /// Data type for the scales + typename IteratorScale_, + /// Iterators over scales in shared memory + typename SmemIteratorScale_, + /// Data type of accumulator matrix + typename ElementC_, + /// Data type of accumulator matrix + typename LayoutC_, + /// Policy describing tuning details (concept: MmaPolicy) + typename Policy_, + /// Number of stages, + int Stages, + /// Converter for B matrix applited immediately after the LDS + typename TransformBAfterLDS_, + /// The quantization operator being used + WeightOnlyQuantOp QuantOp_, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear> +class DqMmaMultistage> + : public DqMmaBase { + public: + ///< Base class + using Base = DqMmaBase; + ///< Size of the Gemm problem - concept: gemm::GemmShape<> + using Shape = Shape_; + ///< Iterates over tiles of A operand in global memory + using IteratorA = IteratorA_; + ///< Iterates over tiles of B operand in global memory + using IteratorB = IteratorB_; + ///< Data type of accumulator matrix + using ElementC = ElementC_; + ///< Layout of accumulator matrix + using LayoutC = LayoutC_; + ///< Policy describing tuning details + using Policy = Policy_; + + using IteratorScale = IteratorScale_; + using ElementScale = typename IteratorScale::Element; + using LayoutScale = typename IteratorScale::Layout; + + using SmemIteratorA = SmemIteratorA_; + using SmemIteratorB = SmemIteratorB_; + using SmemIteratorScale = SmemIteratorScale_; + + static cutlass::arch::CacheOperation::Kind const kCacheOpA = CacheOpA; + static cutlass::arch::CacheOperation::Kind const kCacheOpB = CacheOpB; + + using TransformBAfterLDS = TransformBAfterLDS_; + + static constexpr WeightOnlyQuantOp QuantOp = QuantOp_; + // + // Dependent types + // + + /// Fragment of accumulator tile + using FragmentC = typename Policy::Operator::FragmentC; + + /// Warp-level Mma + using Operator = typename Policy::Operator; + + /// Minimum architecture is Sm80 to support cp.async + using ArchTag = arch::Sm80; + + using Dequantizer = warp::MmaTensorOpDequantizer; + + /// Complex transform on A operand + static ComplexTransform const kTransformA = Operator::kTransformA; + + /// Complex transform on B operand + static ComplexTransform const kTransformB = Operator::kTransformB; + + static_assert(Base::SharedStorage::ShapeScale::kRow == Stages, ""); + static_assert(Base::SharedStorage::ShapeScale::kColumn == Shape::kN, ""); + + /// Internal structure exposed for introspection. + struct Detail { + static_assert(Base::kWarpGemmIterations > 1, + "The pipelined structure requires at least two warp-level " + "GEMM operations."); + + /// Number of cp.async instructions to load one stage of operand A + static int const AsyncCopyIterationsPerStageA = IteratorA::ThreadMap::Iterations::kCount; + + /// Number of cp.async instructions to load one stage of operand B + static int const AsyncCopyIterationsPerStageB = IteratorB::ThreadMap::Iterations::kCount; + + /// Number of stages + static int const kStages = Stages; + + /// Number of cp.async instructions to load on group of operand A + static int const kAccessesPerGroupA = + (AsyncCopyIterationsPerStageA + Base::kWarpGemmIterations - 1) / Base::kWarpGemmIterations; + + /// Number of cp.async instructions to load on group of operand B + static int const kAccessesPerGroupB = + (AsyncCopyIterationsPerStageB + Base::kWarpGemmIterations - 1) / Base::kWarpGemmIterations; + }; + + private: + using WarpFragmentA = typename Operator::FragmentA; + using WarpFragmentB = typename Operator::FragmentB; + Dequantizer warp_dequantizer_; + + using ElementB = typename IteratorB::Element; + using LayoutDetailsForB = kernel::LayoutDetailsB; + + static constexpr bool RequiresTileInterleave = + layout::IsColumnMajorTileInterleave::value; + static_assert(!RequiresTileInterleave || (RequiresTileInterleave && (Shape::kK == LayoutDetailsForB::ThreadblockK)), + "Layout K must match threadblockK"); + + private: + // + // Data members + // + + /// Iterator to write threadblock-scoped tile of A operand to shared memory + SmemIteratorA smem_iterator_A_; + + /// Iterator to write threadblock-scoped tile of B operand to shared memory + SmemIteratorB smem_iterator_B_; + + /// Iterator to write threadblock-scoped tile of scale and zero operand to shared memory + SmemIteratorScale smem_iterator_scale_; + + public: + /// Construct from tensor references + CUTLASS_DEVICE + DqMmaMultistage( + ///< Shared storage needed for internal use by threadblock-scoped GEMM + typename Base::SharedStorage& shared_storage, + /// The group size for quantization + int group_size, + ///< ID within the threadblock + int thread_idx, + ///< ID of warp + int warp_idx, + ///< ID of each thread within a warp + int lane_idx) + : Base(shared_storage, thread_idx, warp_idx, lane_idx), + warp_dequantizer_({shared_storage.operand_scale.data(), LayoutScale(Shape::kN)}, + {shared_storage.operand_zero.data(), LayoutScale(Shape::kN)}, + (warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN)) / Base::WarpCount::kM, lane_idx), + smem_iterator_A_(shared_storage.operand_A_ref(), thread_idx), + smem_iterator_B_(shared_storage.operand_B_ref(), thread_idx), + smem_iterator_scale_(LayoutScale(Shape::kN), shared_storage.operand_scale.data(), + shared_storage.operand_zero.data(), {Base::kStages, Shape::kN}, thread_idx, group_size) { + // Compute warp location within threadblock tile by mapping the warp_id to + // three coordinates: + // _m: the warp's position within the threadblock along the M dimension + // _n: the warp's position within the threadblock along the N dimension + // _k: the warp's position within the threadblock along the K dimension + + int warp_idx_mn = warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN); + int warp_idx_k = warp_idx / (Base::WarpCount::kM * Base::WarpCount::kN); + + int warp_idx_m = warp_idx_mn % Base::WarpCount::kM; + int warp_idx_n = warp_idx_mn / Base::WarpCount::kM; + + // Add per-warp offsets in units of warp-level tiles + this->warp_tile_iterator_A_.add_tile_offset({warp_idx_m, Base::kWarpGemmIterations * warp_idx_k}); + this->warp_tile_iterator_B_.add_tile_offset({Base::kWarpGemmIterationsForB * warp_idx_k, warp_idx_n}); + } + + CUTLASS_DEVICE + void copy_scales_and_advance(IteratorScale& iterator_scale, int stage = -1, int k_iter = -1) { + static_assert(IteratorScale::Shape::kRow == 1, "Scale stride must be 1."); + + typename IteratorScale::AccessType* gmem_scale_ptr = iterator_scale.get_scale(); + typename IteratorScale::AccessType* gmem_zero_ptr = iterator_scale.get_zero(); + + typename IteratorScale::AccessType* smem_scale_ptr = + reinterpret_cast(this->smem_iterator_scale_.get_scale()); + typename IteratorScale::AccessType* smem_zero_ptr = + reinterpret_cast(this->smem_iterator_scale_.get_zero()); + + int const kSrcBytes = sizeof_bits::value * IteratorScale::kAlignment / 8; + + cutlass::arch::cp_async(smem_scale_ptr, gmem_scale_ptr, iterator_scale.valid()); + + if (gmem_zero_ptr != nullptr) { + cutlass::arch::cp_async(smem_zero_ptr, gmem_zero_ptr, iterator_scale.valid()); + } + + if (iterator_scale.group_size_ == 64) { + iterator_scale.add_tile_offset({1, 0}); + } else if (iterator_scale.group_size_ == 128) { + if (iterator_scale.row_groupsize64_ & 0x1) { + iterator_scale.add_tile_offset({1, 0}); + } + } + + iterator_scale.row_groupsize64_++; + + this->smem_iterator_scale_.add_tile_offset({1, 0}); + } + + CUTLASS_DEVICE + void copy_tiles_and_advance(IteratorA& iterator_A, IteratorB& iterator_B, IteratorScale& iterator_scale, + int group_start_A = 0, int group_start_B = 0) { + iterator_A.set_iteration_index(group_start_A * IteratorA::kAccessesPerVector); + this->smem_iterator_A_.set_iteration_index(group_start_A); + + // Async Copy for operand A + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::kAccessesPerGroupA; ++j) { + if (group_start_A + j < Detail::AsyncCopyIterationsPerStageA) { + typename IteratorA::AccessType* dst_ptr = + reinterpret_cast(this->smem_iterator_A_.get()); + + int const kSrcBytes = sizeof_bits::value * + IteratorA::ThreadMap::kElementsPerAccess / IteratorA::kAccessesPerVector / 8; + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorA::kAccessesPerVector; ++v) { + auto gmem_ptr = iterator_A.get(); + + if (SharedMemoryClear == SharedMemoryClearOption::kZfill) { + cutlass::arch::cp_async_zfill(dst_ptr + v, gmem_ptr, iterator_A.valid()); + } else { + cutlass::arch::cp_async(dst_ptr + v, gmem_ptr, iterator_A.valid()); + } + + ++iterator_A; + } + + ++this->smem_iterator_A_; + } + } + + iterator_B.set_iteration_index(group_start_B * IteratorB::kAccessesPerVector); + this->smem_iterator_B_.set_iteration_index(group_start_B); + + // Async Copy for operand B + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::kAccessesPerGroupB; ++j) { + if (group_start_B + j < Detail::AsyncCopyIterationsPerStageB) { + typename IteratorB::AccessType* dst_ptr = + reinterpret_cast(this->smem_iterator_B_.get()); + + int const kSrcBytes = sizeof_bits::value * + IteratorB::ThreadMap::kElementsPerAccess / IteratorB::kAccessesPerVector / 8; + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorB::kAccessesPerVector; ++v) { + auto gmem_ptr = iterator_B.get(); + + if (SharedMemoryClear == SharedMemoryClearOption::kZfill) { + cutlass::arch::cp_async_zfill(dst_ptr + v, gmem_ptr, iterator_B.valid()); + } else { + cutlass::arch::cp_async(dst_ptr + v, gmem_ptr, iterator_B.valid()); + } + + ++iterator_B; + } + ++this->smem_iterator_B_; + } + } + } + + /// Perform a threadblock-scoped matrix multiply-accumulate + CUTLASS_DEVICE + void operator()( + ///< problem size of GEMM + int gemm_k_iterations, + ///< destination accumulator tile + FragmentC& accum, + ///< iterator over A operand in global memory + IteratorA iterator_A, + ///< iterator over B operand in global memory + IteratorB iterator_B, + ///< iterator over scale operand in global memory + IteratorScale iterator_scale, + ///< initial value of accumulator + FragmentC const& src_accum) { + // + // Prologue + // + + TransformBAfterLDS lds_converter; + + // Issue several complete stages + CUTLASS_PRAGMA_UNROLL + for (int stage = 0; stage < Base::kStages - 1; ++stage, --gemm_k_iterations) { + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + iterator_scale.clear_mask(gemm_k_iterations == 0); + + iterator_A.set_iteration_index(0); + this->smem_iterator_A_.set_iteration_index(0); + + // Async Copy for operand A + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA; ++j) { + typename IteratorA::AccessType* dst_ptr = + reinterpret_cast(this->smem_iterator_A_.get()); + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorA::kAccessesPerVector; ++v) { + int const kSrcBytes = sizeof_bits::value * + IteratorA::ThreadMap::kElementsPerAccess / IteratorA::kAccessesPerVector / 8; + + int src_bytes = (iterator_A.valid() ? kSrcBytes : 0); + + cutlass::arch::cp_async_zfill(dst_ptr + v, iterator_A.get(), iterator_A.valid()); + + ++iterator_A; + } + + ++this->smem_iterator_A_; + } + + iterator_B.set_iteration_index(0); + this->smem_iterator_B_.set_iteration_index(0); + + // Async Copy for operand B + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB; ++j) { + typename IteratorB::AccessType* dst_ptr = + reinterpret_cast(this->smem_iterator_B_.get()); + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorB::kAccessesPerVector; ++v) { + int const kSrcBytes = sizeof_bits::value * + IteratorB::ThreadMap::kElementsPerAccess / IteratorB::kAccessesPerVector / 8; + + cutlass::arch::cp_async_zfill(dst_ptr + v, iterator_B.get(), iterator_B.valid()); + + ++iterator_B; + } + + ++this->smem_iterator_B_; + } + + copy_scales_and_advance(iterator_scale, stage, gemm_k_iterations); + + // Move to the next stage + iterator_A.add_tile_offset({0, 1}); + iterator_B.add_tile_offset({1, 0}); + + this->smem_iterator_A_.add_tile_offset({0, 1}); + this->smem_iterator_B_.add_tile_offset({1, 0}); + + // Defines the boundary of a stage of cp.async. + cutlass::arch::cp_async_fence(); + } + + // Perform accumulation in the 'd' output operand + accum = src_accum; + + // + // Clear the remaining tiles of SMEM. This is a functional requirement for some kernels + // so that all accumulator elements outside the GEMM footprint are zero. + // + + if (SharedMemoryClear == SharedMemoryClearOption::kClearLastStage) { + /// Iterator to write threadblock-scoped tile of A operand to shared memory + SmemIteratorA last_smem_iterator_A(this->smem_iterator_A_); + + typename IteratorA::AccessType zero_A; + zero_A.clear(); + + last_smem_iterator_A.set_iteration_index(0); + + // Async Copy for operand A + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA; ++j) { + typename IteratorA::AccessType* dst_ptr = + reinterpret_cast(last_smem_iterator_A.get()); + + *dst_ptr = zero_A; + + ++last_smem_iterator_A; + } + + /// Iterator to write threadblock-scoped tile of B operand to shared memory + SmemIteratorB last_smem_iterator_B(this->smem_iterator_B_); + typename IteratorB::AccessType zero_B; + + zero_B.clear(); + last_smem_iterator_B.set_iteration_index(0); + + // Async Copy for operand B + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB; ++j) { + typename IteratorB::AccessType* dst_ptr = + reinterpret_cast(last_smem_iterator_B.get()); + + *dst_ptr = zero_B; + + ++last_smem_iterator_B; + } + } + + // Wait until we have at least one committed global fetch stage. (#uncommitted = Base::kStages - 1 - #committed) + cutlass::arch::cp_async_wait(); + __syncthreads(); + + // Pair of fragments used to overlap shared memory loads and math + // instructions + WarpFragmentA warp_frag_A[2]; + WarpFragmentB warp_frag_B[2]; + typename Dequantizer::FragmentScale warp_frag_scales; + typename Dequantizer::FragmentZero warp_frag_zeros; + + Operator warp_mma; + + this->warp_tile_iterator_A_.set_kgroup_index(0); + this->warp_tile_iterator_B_.set_kgroup_index(0); + + this->warp_tile_iterator_A_.load(warp_frag_A[0]); + this->warp_tile_iterator_B_.load(warp_frag_B[0]); + + warp_dequantizer_.load(warp_frag_scales, warp_frag_zeros); + + ++this->warp_tile_iterator_A_; + ++this->warp_tile_iterator_B_; + warp_dequantizer_.add_pointer_offset(Shape::kN); + + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + iterator_scale.clear_mask(gemm_k_iterations == 0); + + int smem_write_stage_idx = Base::kStages - 1; + int smem_read_stage_idx = 0; + + // + // Mainloop + // + + CUTLASS_GEMM_LOOP + for (; gemm_k_iterations > (-Base::kStages + 1);) { + // + // Loop over GEMM K dimension + // + + // Computes a warp-level GEMM on data held in shared memory + // Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate + CUTLASS_PRAGMA_UNROLL + for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations; ++warp_mma_k) { + // Load warp-level tiles from shared memory, wrapping to k offset if + // this is the last group as the case may be. + + this->warp_tile_iterator_A_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations); + this->warp_tile_iterator_A_.load(warp_frag_A[(warp_mma_k + 1) % 2]); + ++this->warp_tile_iterator_A_; + + int const warp_tileB_k_compute_offset = warp_mma_k % Base::kNumKIterationsPerWarpBLoad; + int const warp_tileB_k_load_offset = warp_mma_k / Base::kNumKIterationsPerWarpBLoad; + if (warp_tileB_k_compute_offset == Base::kNumKIterationsPerWarpBLoad - 1) { + this->warp_tile_iterator_B_.set_kgroup_index((warp_tileB_k_load_offset + 1) % Base::kWarpGemmIterationsForB); + this->warp_tile_iterator_B_.load(warp_frag_B[(warp_tileB_k_load_offset + 1) % 2]); + ++this->warp_tile_iterator_B_; + } + + typename TransformBAfterLDS::result_type converted_frag_B = + lds_converter(warp_frag_B[warp_tileB_k_load_offset % 2]); + warp_dequantizer_.dequantize(converted_frag_B, warp_frag_scales, warp_frag_zeros); + + run_warp_mma(warp_mma, accum, warp_frag_A[warp_mma_k % 2], converted_frag_B, accum, + warp_tileB_k_compute_offset); + + // Issue global->shared copies for the this stage + if (warp_mma_k < Base::kWarpGemmIterations - 1) { + int group_start_iteration_A, group_start_iteration_B; + + group_start_iteration_A = warp_mma_k * Detail::kAccessesPerGroupA; + group_start_iteration_B = warp_mma_k * Detail::kAccessesPerGroupB; + + copy_tiles_and_advance(iterator_A, iterator_B, iterator_scale, group_start_iteration_A, + group_start_iteration_B); + + // This is the first group of a given stage, so we issue the loads for the B scales immediately. + if (group_start_iteration_B == 0) { + copy_scales_and_advance(iterator_scale); + } + } + + if (warp_mma_k + 2 == Base::kWarpGemmIterations) { + int group_start_iteration_A, group_start_iteration_B; + group_start_iteration_A = (warp_mma_k + 1) * Detail::kAccessesPerGroupA; + group_start_iteration_B = (warp_mma_k + 1) * Detail::kAccessesPerGroupB; + + copy_tiles_and_advance(iterator_A, iterator_B, iterator_scale, group_start_iteration_A, + group_start_iteration_B); + + // Inserts a memory fence between stages of cp.async instructions. + cutlass::arch::cp_async_fence(); + + // Wait until we have at least one committed global fetch stage. (#uncommitted = Base::kStages - 1 - + // #committed) + arch::cp_async_wait(); + __syncthreads(); + + // Move to the next stage + iterator_A.add_tile_offset({0, 1}); + iterator_B.add_tile_offset({1, 0}); + + this->smem_iterator_A_.add_tile_offset({0, 1}); + this->smem_iterator_B_.add_tile_offset({1, 0}); + + // Add negative offsets to return iterators to the 'start' of the + // circular buffer in shared memory + if (smem_write_stage_idx == (Base::kStages - 1)) { + this->smem_iterator_A_.add_tile_offset({0, -Base::kStages}); + this->smem_iterator_B_.add_tile_offset({-Base::kStages, 0}); + this->smem_iterator_scale_.add_tile_offset({-Base::kStages, 0}); + smem_write_stage_idx = 0; + } else { + ++smem_write_stage_idx; + } + + if (smem_read_stage_idx == (Base::kStages - 1)) { + this->warp_tile_iterator_A_.add_tile_offset( + {0, -Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations}); + this->warp_tile_iterator_B_.add_tile_offset( + {-Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterationsForB, 0}); + warp_dequantizer_.add_pointer_offset(-Base::kStages * Shape::kN); + smem_read_stage_idx = 0; + } else { + ++smem_read_stage_idx; + } + + --gemm_k_iterations; + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + iterator_scale.clear_mask(gemm_k_iterations == 0); + } + } + + // Load the scale needed for the next tile iteration. + warp_dequantizer_.load(warp_frag_scales, warp_frag_zeros); + // Update internal pointer to set of scales in shared memory. + warp_dequantizer_.add_pointer_offset(Shape::kN); + } + + if (SharedMemoryClear == SharedMemoryClearOption::kZfill) { + // commit and drain all pending and predicated LDGSTS pnz from the GEMM mainloop + cutlass::arch::cp_async_fence(); + cutlass::arch::cp_async_wait<0>(); + __syncthreads(); + } + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage_percol.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage_percol.h new file mode 100644 index 0000000000000..33bcb19106381 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_multistage_percol.h @@ -0,0 +1,586 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Template for a double-buffered threadblock-scoped GEMM kernel. +*/ + +#pragma once + +#include "cutlass/aligned_buffer.h" +#include "cutlass/arch/memory.h" +#include "cutlass/array.h" +#include "cutlass/cutlass.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_types.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_base.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_dequantizer.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/interleaved_numeric_conversion.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace threadblock { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Structure to compute the matrix product targeting CUDA cores and SIMT math +/// instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Iterates over tiles of A operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | + // MaskedTileIterator) + typename IteratorA_, + /// Iterates over tiles of A operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorA_, + /// Cache operation for operand A + cutlass::arch::CacheOperation::Kind CacheOpA, + /// Iterates over tiles of B operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | + // MaskedTileIterator) + typename IteratorB_, + /// Iterates over tiles of B operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorB_, + /// Cache operation for operand B + cutlass::arch::CacheOperation::Kind CacheOpB, + /// Data type for the scales + typename IteratorScale_, + /// Iterators over scales in shared memory + typename SmemIteratorScale_, + /// Data type of accumulator matrix + typename ElementC_, + /// Data type of accumulator matrix + typename LayoutC_, + /// Policy describing tuning details (concept: MmaPolicy) + typename Policy_, + /// Number of stages, + int Stages, + /// Converter for B matrix applited immediately after the LDS + typename TransformBAfterLDS_, + /// The quantization operator being used + WeightOnlyQuantOp QuantOp_, + /// Use zfill or predicate for out-of-bound cp.async + SharedMemoryClearOption SharedMemoryClear> +class DqMmaMultistage> + : public DqMmaBase { + public: + ///< Base class + using Base = DqMmaBase; + ///< Size of the Gemm problem - concept: gemm::GemmShape<> + using Shape = Shape_; + ///< Iterates over tiles of A operand in global memory + using IteratorA = IteratorA_; + ///< Iterates over tiles of B operand in global memory + using IteratorB = IteratorB_; + ///< Data type of accumulator matrix + using ElementC = ElementC_; + ///< Layout of accumulator matrix + using LayoutC = LayoutC_; + ///< Policy describing tuning details + using Policy = Policy_; + + using IteratorScale = IteratorScale_; + using ElementScale = typename IteratorScale::Element; + using LayoutScale = typename IteratorScale::Layout; + + using SmemIteratorA = SmemIteratorA_; + using SmemIteratorB = SmemIteratorB_; + using SmemIteratorScale = SmemIteratorScale_; + + static cutlass::arch::CacheOperation::Kind const kCacheOpA = CacheOpA; + static cutlass::arch::CacheOperation::Kind const kCacheOpB = CacheOpB; + + using TransformBAfterLDS = TransformBAfterLDS_; + + static constexpr WeightOnlyQuantOp QuantOp = QuantOp_; + + // + // Dependent types + // + + /// Fragment of operand Scale loaded from global memory; + using FragmentScale = typename IteratorScale::Fragment; + + /// Fragment of accumulator tile + using FragmentC = typename Policy::Operator::FragmentC; + + /// Warp-level Mma + using Operator = typename Policy::Operator; + + /// Minimum architecture is Sm80 to support cp.async + using ArchTag = arch::Sm80; + + using Dequantizer = warp::MmaTensorOpDequantizer; + + /// Complex transform on A operand + static ComplexTransform const kTransformA = Operator::kTransformA; + + /// Complex transform on B operand + static ComplexTransform const kTransformB = Operator::kTransformB; + + /// Internal structure exposed for introspection. + struct Detail { + static_assert(Base::kWarpGemmIterations > 1, + "The pipelined structure requires at least two warp-level " + "GEMM operations."); + + /// Number of cp.async instructions to load one stage of operand A + static int const AsyncCopyIterationsPerStageA = IteratorA::ThreadMap::Iterations::kCount; + + /// Number of cp.async instructions to load one stage of operand B + static int const AsyncCopyIterationsPerStageB = IteratorB::ThreadMap::Iterations::kCount; + + /// Number of stages + static int const kStages = Stages; + + /// Number of cp.async instructions to load on group of operand A + static int const kAccessesPerGroupA = + (AsyncCopyIterationsPerStageA + Base::kWarpGemmIterations - 1) / Base::kWarpGemmIterations; + + /// Number of cp.async instructions to load on group of operand B + static int const kAccessesPerGroupB = + (AsyncCopyIterationsPerStageB + Base::kWarpGemmIterations - 1) / Base::kWarpGemmIterations; + }; + + private: + using WarpFragmentA = typename Operator::FragmentA; + using WarpFragmentB = typename Operator::FragmentB; + Dequantizer warp_dequantizer_; + + using ElementB = typename IteratorB::Element; + using LayoutDetailsForB = kernel::LayoutDetailsB; + + static constexpr bool RequiresTileInterleave = + layout::IsColumnMajorTileInterleave::value; + static_assert(!RequiresTileInterleave || (RequiresTileInterleave && (Shape::kK == LayoutDetailsForB::ThreadblockK)), + "Layout K must match threadblockK"); + + private: + // + // Data members + // + + /// Iterator to write threadblock-scoped tile of A operand to shared memory + SmemIteratorA smem_iterator_A_; + + /// Iterator to write threadblock-scoped tile of B operand to shared memory + SmemIteratorB smem_iterator_B_; + + /// Iterator to write threadblock-scoped tile of scale operand to shared memory + SmemIteratorScale smem_iterator_scale_; + + public: + /// Construct from tensor references + CUTLASS_DEVICE + DqMmaMultistage( + ///< Shared storage needed for internal use by threadblock-scoped GEMM + typename Base::SharedStorage& shared_storage, + ///< Group size for quantization. Not used by this main loop since it assumes per-column + int const group_size, + ///< ID within the threadblock + int thread_idx, + ///< ID of warp + int warp_idx, + ///< ID of each thread within a warp + int lane_idx) + : Base(shared_storage, thread_idx, warp_idx, lane_idx), + warp_dequantizer_({shared_storage.operand_scale.data(), LayoutScale(Shape::kN)}, + (warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN)) / Base::WarpCount::kM, lane_idx), + smem_iterator_A_(shared_storage.operand_A_ref(), thread_idx), + smem_iterator_B_(shared_storage.operand_B_ref(), thread_idx), + smem_iterator_scale_(LayoutScale(Shape::kN), shared_storage.operand_scale.data(), {1, Shape::kN}, thread_idx) { + // Compute warp location within threadblock tile by mapping the warp_id to + // three coordinates: + // _m: the warp's position within the threadblock along the M dimension + // _n: the warp's position within the threadblock along the N dimension + // _k: the warp's position within the threadblock along the K dimension + + int warp_idx_mn = warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN); + int warp_idx_k = warp_idx / (Base::WarpCount::kM * Base::WarpCount::kN); + + int warp_idx_m = warp_idx_mn % Base::WarpCount::kM; + int warp_idx_n = warp_idx_mn / Base::WarpCount::kM; + + // Add per-warp offsets in units of warp-level tiles + this->warp_tile_iterator_A_.add_tile_offset({warp_idx_m, Base::kWarpGemmIterations * warp_idx_k}); + this->warp_tile_iterator_B_.add_tile_offset({Base::kWarpGemmIterationsForB * warp_idx_k, warp_idx_n}); + } + + CUTLASS_DEVICE + void copy_tiles_and_advance(IteratorA& iterator_A, IteratorB& iterator_B, int group_start_A = 0, + int group_start_B = 0) { + iterator_A.set_iteration_index(group_start_A * IteratorA::kAccessesPerVector); + this->smem_iterator_A_.set_iteration_index(group_start_A); + + // Async Copy for operand A + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::kAccessesPerGroupA; ++j) { + if (group_start_A + j < Detail::AsyncCopyIterationsPerStageA) { + typename IteratorA::AccessType* dst_ptr = + reinterpret_cast(this->smem_iterator_A_.get()); + + int const kSrcBytes = sizeof_bits::value * + IteratorA::ThreadMap::kElementsPerAccess / IteratorA::kAccessesPerVector / 8; + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorA::kAccessesPerVector; ++v) { + auto gmem_ptr = iterator_A.get(); + + if (SharedMemoryClear == SharedMemoryClearOption::kZfill) { + cutlass::arch::cp_async_zfill(dst_ptr + v, gmem_ptr, iterator_A.valid()); + } else { + cutlass::arch::cp_async(dst_ptr + v, gmem_ptr, iterator_A.valid()); + } + + ++iterator_A; + } + + ++this->smem_iterator_A_; + } + } + + iterator_B.set_iteration_index(group_start_B * IteratorB::kAccessesPerVector); + this->smem_iterator_B_.set_iteration_index(group_start_B); + + // Async Copy for operand B + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::kAccessesPerGroupB; ++j) { + if (group_start_B + j < Detail::AsyncCopyIterationsPerStageB) { + typename IteratorB::AccessType* dst_ptr = + reinterpret_cast(this->smem_iterator_B_.get()); + + int const kSrcBytes = sizeof_bits::value * + IteratorB::ThreadMap::kElementsPerAccess / IteratorB::kAccessesPerVector / 8; + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorB::kAccessesPerVector; ++v) { + auto gmem_ptr = iterator_B.get(); + + if (SharedMemoryClear == SharedMemoryClearOption::kZfill) { + cutlass::arch::cp_async_zfill(dst_ptr + v, gmem_ptr, iterator_B.valid()); + } else { + cutlass::arch::cp_async(dst_ptr + v, gmem_ptr, iterator_B.valid()); + } + + ++iterator_B; + } + ++this->smem_iterator_B_; + } + } + } + + /// Perform a threadblock-scoped matrix multiply-accumulate + CUTLASS_DEVICE + void operator()( + ///< problem size of GEMM + int gemm_k_iterations, + ///< destination accumulator tile + FragmentC& accum, + ///< iterator over A operand in global memory + IteratorA iterator_A, + ///< iterator over B operand in global memory + IteratorB iterator_B, + ///< iterator over scale operand in global memory + IteratorScale iterator_scale, + ///< initial value of accumulator + FragmentC const& src_accum) { + // + // Prologue + // + + TransformBAfterLDS lds_converter; + + // NOTE - switch to ldg.sts + // Issue this first, so cp.async.commit_group will commit this load as well. + // Note: we do not commit here and this load will commit in the same group as + // the first load of A. + FragmentScale tb_frag_scales; + tb_frag_scales.clear(); + iterator_scale.load(tb_frag_scales); + this->smem_iterator_scale_.store(tb_frag_scales); + + // Issue several complete stages + CUTLASS_PRAGMA_UNROLL + for (int stage = 0; stage < Base::kStages - 1; ++stage, --gemm_k_iterations) { + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + + iterator_A.set_iteration_index(0); + this->smem_iterator_A_.set_iteration_index(0); + + // Async Copy for operand A + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA; ++j) { + typename IteratorA::AccessType* dst_ptr = + reinterpret_cast(this->smem_iterator_A_.get()); + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorA::kAccessesPerVector; ++v) { + int const kSrcBytes = sizeof_bits::value * + IteratorA::ThreadMap::kElementsPerAccess / IteratorA::kAccessesPerVector / 8; + + int src_bytes = (iterator_A.valid() ? kSrcBytes : 0); + + cutlass::arch::cp_async_zfill(dst_ptr + v, iterator_A.get(), iterator_A.valid()); + + ++iterator_A; + } + + ++this->smem_iterator_A_; + } + + iterator_B.set_iteration_index(0); + this->smem_iterator_B_.set_iteration_index(0); + + // Async Copy for operand B + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB; ++j) { + typename IteratorB::AccessType* dst_ptr = + reinterpret_cast(this->smem_iterator_B_.get()); + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorB::kAccessesPerVector; ++v) { + int const kSrcBytes = sizeof_bits::value * + IteratorB::ThreadMap::kElementsPerAccess / IteratorB::kAccessesPerVector / 8; + + cutlass::arch::cp_async_zfill(dst_ptr + v, iterator_B.get(), iterator_B.valid()); + + ++iterator_B; + } + + ++this->smem_iterator_B_; + } + + // Move to the next stage + iterator_A.add_tile_offset({0, 1}); + iterator_B.add_tile_offset({1, 0}); + + this->smem_iterator_A_.add_tile_offset({0, 1}); + this->smem_iterator_B_.add_tile_offset({1, 0}); + + // Defines the boundary of a stage of cp.async. + cutlass::arch::cp_async_fence(); + } + + // Perform accumulation in the 'd' output operand + accum = src_accum; + + // + // Clear the remaining tiles of SMEM. This is a functional requirement for some kernels + // so that all accumulator elements outside the GEMM footprint are zero. + // + + if (SharedMemoryClear == SharedMemoryClearOption::kClearLastStage) { + /// Iterator to write threadblock-scoped tile of A operand to shared memory + SmemIteratorA last_smem_iterator_A(this->smem_iterator_A_); + + typename IteratorA::AccessType zero_A; + zero_A.clear(); + + last_smem_iterator_A.set_iteration_index(0); + + // Async Copy for operand A + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA; ++j) { + typename IteratorA::AccessType* dst_ptr = + reinterpret_cast(last_smem_iterator_A.get()); + + *dst_ptr = zero_A; + + ++last_smem_iterator_A; + } + + /// Iterator to write threadblock-scoped tile of B operand to shared memory + SmemIteratorB last_smem_iterator_B(this->smem_iterator_B_); + typename IteratorB::AccessType zero_B; + + zero_B.clear(); + last_smem_iterator_B.set_iteration_index(0); + + // Async Copy for operand B + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB; ++j) { + typename IteratorB::AccessType* dst_ptr = + reinterpret_cast(last_smem_iterator_B.get()); + + *dst_ptr = zero_B; + + ++last_smem_iterator_B; + } + } + + // Waits until kStages-2 stages have committed. + cutlass::arch::cp_async_wait(); + __syncthreads(); + + // Pair of fragments used to overlap shared memory loads and math + // instructions + WarpFragmentA warp_frag_A[2]; + WarpFragmentB warp_frag_B[2]; + typename Dequantizer::FragmentScale warp_frag_scales; + + Operator warp_mma; + + this->warp_tile_iterator_A_.set_kgroup_index(0); + this->warp_tile_iterator_B_.set_kgroup_index(0); + + this->warp_tile_iterator_A_.load(warp_frag_A[0]); + this->warp_tile_iterator_B_.load(warp_frag_B[0]); + warp_dequantizer_.load(warp_frag_scales); + + ++this->warp_tile_iterator_A_; + ++this->warp_tile_iterator_B_; + + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + + int smem_write_stage_idx = Base::kStages - 1; + int smem_read_stage_idx = 0; + + // + // Mainloop + // + + CUTLASS_GEMM_LOOP + for (; gemm_k_iterations > (-Base::kStages + 1);) { + // + // Loop over GEMM K dimension + // + + // Computes a warp-level GEMM on data held in shared memory + // Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate + CUTLASS_PRAGMA_UNROLL + for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations; ++warp_mma_k) { + // Load warp-level tiles from shared memory, wrapping to k offset if + // this is the last group as the case may be. + + this->warp_tile_iterator_A_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations); + this->warp_tile_iterator_A_.load(warp_frag_A[(warp_mma_k + 1) % 2]); + ++this->warp_tile_iterator_A_; + + int const warp_tileB_k_compute_offset = warp_mma_k % Base::kNumKIterationsPerWarpBLoad; + int const warp_tileB_k_load_offset = warp_mma_k / Base::kNumKIterationsPerWarpBLoad; + if (warp_tileB_k_compute_offset == Base::kNumKIterationsPerWarpBLoad - 1) { + this->warp_tile_iterator_B_.set_kgroup_index((warp_tileB_k_load_offset + 1) % Base::kWarpGemmIterationsForB); + this->warp_tile_iterator_B_.load(warp_frag_B[(warp_tileB_k_load_offset + 1) % 2]); + ++this->warp_tile_iterator_B_; + } + + typename TransformBAfterLDS::result_type converted_frag_B = + lds_converter(warp_frag_B[warp_tileB_k_load_offset % 2]); + warp_dequantizer_.dequantize(converted_frag_B, warp_frag_scales); + + run_warp_mma(warp_mma, accum, warp_frag_A[warp_mma_k % 2], converted_frag_B, accum, + warp_tileB_k_compute_offset); + + // Issue global->shared copies for the this stage + if (warp_mma_k < Base::kWarpGemmIterations - 1) { + int group_start_iteration_A, group_start_iteration_B; + + group_start_iteration_A = warp_mma_k * Detail::kAccessesPerGroupA; + group_start_iteration_B = warp_mma_k * Detail::kAccessesPerGroupB; + + copy_tiles_and_advance(iterator_A, iterator_B, group_start_iteration_A, group_start_iteration_B); + } + + if (warp_mma_k + 2 == Base::kWarpGemmIterations) { + int group_start_iteration_A, group_start_iteration_B; + group_start_iteration_A = (warp_mma_k + 1) * Detail::kAccessesPerGroupA; + group_start_iteration_B = (warp_mma_k + 1) * Detail::kAccessesPerGroupB; + + copy_tiles_and_advance(iterator_A, iterator_B, group_start_iteration_A, group_start_iteration_B); + + // Inserts a memory fence between stages of cp.async instructions. + cutlass::arch::cp_async_fence(); + + // Waits until kStages-2 stages have committed. + arch::cp_async_wait(); + __syncthreads(); + + // Move to the next stage + iterator_A.add_tile_offset({0, 1}); + iterator_B.add_tile_offset({1, 0}); + + this->smem_iterator_A_.add_tile_offset({0, 1}); + this->smem_iterator_B_.add_tile_offset({1, 0}); + + // Add negative offsets to return iterators to the 'start' of the + // circular buffer in shared memory + if (smem_write_stage_idx == (Base::kStages - 1)) { + this->smem_iterator_A_.add_tile_offset({0, -Base::kStages}); + this->smem_iterator_B_.add_tile_offset({-Base::kStages, 0}); + smem_write_stage_idx = 0; + } else { + ++smem_write_stage_idx; + } + + if (smem_read_stage_idx == (Base::kStages - 1)) { + this->warp_tile_iterator_A_.add_tile_offset( + {0, -Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations}); + this->warp_tile_iterator_B_.add_tile_offset( + {-Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterationsForB, 0}); + smem_read_stage_idx = 0; + } else { + ++smem_read_stage_idx; + } + + --gemm_k_iterations; + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + } + } + } + + if (SharedMemoryClear == SharedMemoryClearOption::kZfill) { + // commit and drain all pending and predicated LDGSTS pnz from the GEMM mainloop + cutlass::arch::cp_async_fence(); + cutlass::arch::cp_async_wait<0>(); + __syncthreads(); + } + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_pipelined.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_pipelined.h new file mode 100644 index 0000000000000..2c85ba8a1995e --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_pipelined.h @@ -0,0 +1,379 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Template for a double-buffered threadblock-scoped GEMM kernel. +*/ + +#pragma once + +#include "cutlass/aligned_buffer.h" +#include "cutlass/array.h" +#include "cutlass/cutlass.h" +#include "cutlass/numeric_conversion.h" + +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_types.h" + +#include "cutlass/gemm/gemm.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/dq_mma_base.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_dequantizer.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/interleaved_numeric_conversion.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/mixed_gemm_B_layout.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm_configs.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace threadblock { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Structure to compute the matrix product targeting CUDA cores and SIMT math instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Iterates over tiles of A operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator) + typename IteratorA_, + /// Iterates over tiles of A operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorA_, + /// Iterates over tiles of B operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator) + typename IteratorB_, + /// Iterates over tiles of B operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorB_, + /// Data type for the scales + typename IteratorScale_, + /// Iterators over scales in shared memory + typename SmemIteratorScale_, + /// Data type of accumulator matrix + typename ElementC_, + /// Data type of accumulator matrix + typename LayoutC_, + /// Policy describing tuning details (concept: MmaPolicy) + typename Policy_, + /// Converter for B matrix applied immediately after the LDG (before STS) + typename TransformBAfterLDG_, + /// Converter for B matrix applited immediately after the LDS + typename TransformBAfterLDS_, + /// The quantization operator being used + WeightOnlyQuantOp QuantOp_, + /// Used for partial specialization + typename Enable = bool> +class DqMmaPipelined : public DqMmaBase { + public: + ///< Base class + using Base = DqMmaBase; + + using Shape = Shape_; ///< Size of the Gemm problem - concept: gemm::GemmShape<> + using IteratorA = IteratorA_; ///< Iterates over tiles of A operand in global memory + using IteratorB = IteratorB_; ///< Iterates over tiles of B operand in global memory + using ElementC = ElementC_; ///< Data type of accumulator matrix + using LayoutC = LayoutC_; ///< Layout of accumulator matrix + using Policy = Policy_; ///< Policy describing tuning details + + using IteratorScale = IteratorScale_; + using ElementScale = typename IteratorScale::Element; + using LayoutScale = typename IteratorScale::Layout; + + using SmemIteratorA = SmemIteratorA_; + using SmemIteratorB = SmemIteratorB_; + using SmemIteratorScale = SmemIteratorScale_; + + using TransformBAfterLDG = TransformBAfterLDG_; + using TransformBAfterLDS = TransformBAfterLDS_; + + static constexpr WeightOnlyQuantOp QuantOp = QuantOp_; + + // + // Dependent types + // + + /// Fragment of operand A loaded from global memory + using FragmentA = typename IteratorA::Fragment; + + /// Fragment of operand B loaded from global memory + using FragmentB = typename IteratorB::Fragment; + + /// Fragment of operand Scale loaded from global memory; + using FragmentScale = typename IteratorScale::Fragment; + + /// Fragment of accumulator tile + using FragmentC = typename Policy::Operator::FragmentC; + + /// Warp-level Mma + using Operator = typename Policy::Operator; + + /// Obtain the arch tag from the warp-level operator + using ArchTag = typename Policy::Operator::ArchTag; + + using Dequantizer = + warp::MmaTensorOpDequantizer; + + /// Complex transform on A operand + static ComplexTransform const kTransformA = Operator::kTransformA; + + /// Complex transform on B operand + static ComplexTransform const kTransformB = Operator::kTransformB; + + // staticaly assert kStages for DqMmaPipelined is two (Double-buffered pipeline) + static_assert((Base::kStages == 2), "DqMmaPipelined requires kStages set to value 2"); + + private: + using WarpFragmentA = typename Operator::FragmentA; + using WarpFragmentB = typename Operator::FragmentB; + Dequantizer warp_dequantizer_; + + using ElementB = typename IteratorB::Element; + using LayoutDetailsForB = kernel::LayoutDetailsB; + + static constexpr bool RequiresTileInterleave = + layout::IsColumnMajorTileInterleave::value; + static_assert(!RequiresTileInterleave || (RequiresTileInterleave && (Shape::kK == LayoutDetailsForB::ThreadblockK)), + "Layout K must match threadblockK"); + + protected: + /// Iterator to write threadblock-scoped tile of A operand to shared memory + SmemIteratorA smem_iterator_A_; + + /// Iterator to write threadblock-scoped tile of B operand to shared memory + SmemIteratorB smem_iterator_B_; + + /// Iterator to write threadblock-scoped tile of scale operand to shared memory + SmemIteratorScale smem_iterator_scale_; + + public: + /// Construct from tensor references + CUTLASS_DEVICE + DqMmaPipelined( + typename Base::SharedStorage& + shared_storage, ///< Shared storage needed for internal use by threadblock-scoped GEMM + int const group_size, ///< Will not be used, just to adapt to finegrained modifications and make the compilation + ///< successful. Because DqMmaPipelined is only enabled for sm<80, so even if this + ///< argument is not added, it does not affect compilation for sm>=80. + int thread_idx, ///< ID within the threadblock + int warp_idx, ///< ID of warp + int lane_idx ///< ID of each thread within a warp + ) + : Base(shared_storage, thread_idx, warp_idx, lane_idx), + warp_dequantizer_({shared_storage.operand_scale.data(), LayoutScale(Shape::kN)}, + (warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN)) / Base::WarpCount::kM, lane_idx), + smem_iterator_A_(shared_storage.operand_A_ref(), thread_idx), + smem_iterator_B_(shared_storage.operand_B_ref(), thread_idx), + smem_iterator_scale_(LayoutScale(Shape::kN), shared_storage.operand_scale.data(), {1, Shape::kN}, thread_idx) { + // Compute warp location within threadblock tile by mapping the warp_id to + // three coordinates: + // _m: the warp's position within the threadblock along the M dimension + // _n: the warp's position within the threadblock along the N dimension + // _k: the warp's position within the threadblock along the K dimension + + int warp_idx_mn = warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN); + int warp_idx_k = warp_idx / (Base::WarpCount::kM * Base::WarpCount::kN); + + int warp_idx_m = warp_idx_mn % Base::WarpCount::kM; + int warp_idx_n = warp_idx_mn / Base::WarpCount::kM; + + // Add per-warp offsets in units of warp-level tiles + this->warp_tile_iterator_A_.add_tile_offset({warp_idx_m, Base::kWarpGemmIterations * warp_idx_k}); + this->warp_tile_iterator_B_.add_tile_offset({Base::kWarpGemmIterationsForB * warp_idx_k, warp_idx_n}); + } + + /// Perform a threadblock-scoped matrix multiply-accumulate + CUTLASS_DEVICE + void operator()(int gemm_k_iterations, ///< number of iterations of the mainloop + FragmentC& accum, ///< destination accumulator tile + IteratorA iterator_A, ///< iterator over A operand in global memory + IteratorB iterator_B, ///< iterator over B operand in global memory + IteratorScale iterator_scale, ///< iterator over scale operand in global memory + FragmentC const& src_accum) { ///< source accumulator tile + // + // Prologue + // + TransformBAfterLDG ldg_converter; + TransformBAfterLDS lds_converter; + + using TransformA = + NumericArrayConverter; + + using TransformScale = NumericArrayConverter; + + // These transforms are mainly to handle when we have bfloat activations and weights in GMEM and want + // to issue HMMA on architectures older than Ampere. We will convert to FP16 before STS. + TransformA transformA; + TransformScale transformScale; + + // Perform accumulation in the 'd' output operand + accum = src_accum; + + FragmentA tb_frag_A; + FragmentB tb_frag_B; + FragmentScale tb_frag_scales; + + using WarpFragmentScale = typename Dequantizer::FragmentScale; + WarpFragmentScale warp_frag_scales; + + tb_frag_A.clear(); + tb_frag_B.clear(); + tb_frag_scales.clear(); + + // The last kblock is loaded in the prolog + iterator_A.load(tb_frag_A); + iterator_B.load(tb_frag_B); + iterator_scale.load(tb_frag_scales); + + ++iterator_A; + ++iterator_B; + + this->smem_iterator_A_.store(transformA(tb_frag_A)); + this->smem_iterator_B_.store(ldg_converter(tb_frag_B)); + this->smem_iterator_scale_.store(transformScale(tb_frag_scales)); + + ++this->smem_iterator_A_; + ++this->smem_iterator_B_; + + __syncthreads(); + + warp_dequantizer_.load(warp_frag_scales); + + // Pair of fragments used to overlap shared memory loads and math instructions + WarpFragmentA warp_frag_A[2]; + WarpFragmentB warp_frag_B[2]; + + this->warp_tile_iterator_A_.set_kgroup_index(0); + this->warp_tile_iterator_B_.set_kgroup_index(0); + + this->warp_tile_iterator_A_.load(warp_frag_A[0]); + this->warp_tile_iterator_B_.load(warp_frag_B[0]); + + ++this->warp_tile_iterator_A_; + ++this->warp_tile_iterator_B_; + + Operator warp_mma; + + int smem_write_stage_idx = 1; + + // Avoid reading out of bounds + iterator_A.clear_mask(gemm_k_iterations <= 1); + iterator_B.clear_mask(gemm_k_iterations <= 1); + + // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing + // shared memory loads (which have the tighest latency requirement). + + // + // Mainloop + // + + // Note: The main loop does not support Base::kWarpGemmIterations == 2. + CUTLASS_GEMM_LOOP + for (; gemm_k_iterations > 0; --gemm_k_iterations) { + // + // Loop over GEMM K dimension + // + + CUTLASS_PRAGMA_UNROLL + for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations; ++warp_mma_k) { + // Load warp-level tiles from shared memory, wrapping to k offset if this is the last group + // as the case may be. + + if (warp_mma_k == Base::kWarpGemmIterations - 1) { + // Write fragments to shared memory + this->smem_iterator_A_.store(transformA(tb_frag_A)); + + this->smem_iterator_B_.store(ldg_converter(tb_frag_B)); + + __syncthreads(); + + ++this->smem_iterator_A_; + ++this->smem_iterator_B_; + + // Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory + if (smem_write_stage_idx == 1) { + this->smem_iterator_A_.add_tile_offset({0, -Base::kStages}); + this->smem_iterator_B_.add_tile_offset({-Base::kStages, 0}); + } else { + this->warp_tile_iterator_A_.add_tile_offset( + {0, -Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations}); + this->warp_tile_iterator_B_.add_tile_offset( + {-Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterationsForB, 0}); + } + + smem_write_stage_idx ^= 1; + } + + this->warp_tile_iterator_A_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations); + this->warp_tile_iterator_A_.load(warp_frag_A[(warp_mma_k + 1) % 2]); + ++this->warp_tile_iterator_A_; + + int const warp_tileB_k_compute_offset = warp_mma_k % Base::kNumKIterationsPerWarpBLoad; + int const warp_tileB_k_load_offset = warp_mma_k / Base::kNumKIterationsPerWarpBLoad; + // We are just about to finish computing on a fragment of B, so initiate the load for the next fragment. + if (warp_tileB_k_compute_offset == Base::kNumKIterationsPerWarpBLoad - 1) { + this->warp_tile_iterator_B_.set_kgroup_index((warp_tileB_k_load_offset + 1) % Base::kWarpGemmIterationsForB); + this->warp_tile_iterator_B_.load(warp_frag_B[(warp_tileB_k_load_offset + 1) % 2]); + ++this->warp_tile_iterator_B_; + } + + if (warp_mma_k == 0) { + iterator_A.load(tb_frag_A); + iterator_B.load(tb_frag_B); + + ++iterator_A; + ++iterator_B; + + // Avoid reading out of bounds if this was the last loop iteration + iterator_A.clear_mask(gemm_k_iterations <= 2); + iterator_B.clear_mask(gemm_k_iterations <= 2); + } + + typename TransformBAfterLDS::result_type converted_frag_B = + lds_converter(warp_frag_B[warp_tileB_k_load_offset % 2]); + warp_dequantizer_.dequantize(converted_frag_B, warp_frag_scales); + run_warp_mma(warp_mma, accum, warp_frag_A[warp_mma_k % 2], converted_frag_B, accum, + warp_tileB_k_compute_offset); + } + } + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/default_mma_tensor_op.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/default_mma_tensor_op.h new file mode 100644 index 0000000000000..f0b6f4fcaad33 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/default_mma_tensor_op.h @@ -0,0 +1,103 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Default warp-level GEMM operators selected by data type, size, and layouts of operands. +*/ + +#pragma once + +#include "cutlass/cutlass.h" +#include "cutlass/gemm/warp/default_mma_tensor_op.h" +#include "cutlass/gemm/warp/mma_tensor_op.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/arch/mma.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_compute_B_with_f16.h" + +namespace cutlass { +namespace gemm { +namespace warp { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Partial specialization for m-by-n-by-kgroup +template < + /// Shape of one matrix production operation (concept: GemmShape) + typename WarpShape_, + /// Shape of one matrix production operation (concept: GemmShape) + typename InstructionShape_, + /// Data type of A elements, + typename ElementA, + /// Layout of A matrix (concept: MatrixLayout) + typename LayoutA, + /// Data type of B elements + typename ElementB, + /// Layout of B matrix (concept: MatrixLayout) + typename LayoutB, + /// Element type of C matrix + typename ElementC, + /// Layout of C matrix (concept: MatrixLayout) + typename LayoutC, + /// Number of partitions along K dimension + int PartitionsK, + /// Store the accumulators in row major or column major. Row major is used + /// when output layout is interleaved. + bool AccumulatorsInRowMajor> +struct DefaultMmaTensorOp { + private: + // Shape for computing the FP16s + using ComputeInstructionShape = InstructionShape_; + + // Chosen so we get K=16 for int8 and K=32 for int4. + static constexpr int LoadInstructionK = 8 * sizeof_bits::value / sizeof_bits::value; + + // Shape for loading the narrow data type from shared memory + using LoadInstructionShape = GemmShape; + + public: + using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< + cutlass::arch::Mma, + cutlass::MatrixShape<1, 1>>; + + // Define the warp-level tensor op + using Type = cutlass::gemm::warp::MmaTensorOpComputeBWithF16; +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace warp +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_compute_B_with_f16.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_compute_B_with_f16.h new file mode 100644 index 0000000000000..a368c6d220266 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_compute_B_with_f16.h @@ -0,0 +1,283 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Templates implementing warp-level matrix multiply-accumulate operations targeting + Tensor Cores. +*/ + +#pragma once + +#include "cutlass/array.h" +#include "cutlass/cutlass.h" +#include "cutlass/platform/platform.h" + +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_conversion.h" +#include "cutlass/numeric_types.h" + +#include "cutlass/arch/memory_sm75.h" +#include "cutlass/arch/mma_sm75.h" +#include "cutlass/arch/mma_sm80.h" + +#include "cutlass/gemm/gemm.h" +#include "cutlass/gemm/warp/mma.h" + +#include "cutlass/gemm/warp/mma_tensor_op_policy.h" + +#include "cutlass/gemm/warp/mma_tensor_op_tile_iterator.h" +#include "cutlass/gemm/warp/mma_tensor_op_tile_iterator_sm80.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace warp { + +///////////////////////////////////////////////////////////////////////////////////////////////// +/// Structure to compute the matrix product targeting CUDA cores and SIMT math instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Data type of A elements + typename ElementA_, + /// Layout of A matrix (concept: MatrixLayout) + typename LayoutA_, + /// Data type of B elements + typename ElementB_, + /// Layout of B matrix (concept: MatrixLayout) + typename LayoutB_, + /// Element type of C matrix + typename ElementC_, + /// Layout of C matrix (concept: MatrixLayout) + typename LayoutC_, + /// Policy describing warp-level MmaTensorOp (concept: MmaTensorOp policy) + typename Policy_, + /// Instruction shape to override shared memory iterators with + typename SharedMemoryInstructionShape_, + /// Number of partitions along K dimension + int PartitionsK_ = 1, + /// Store the accumulators in row major or column major. Row major is used + /// when output layout is interleaved. + bool AccumulatorsInRowMajor = false, + /// Used for partial specialization + typename Enable = bool> +class MmaTensorOpComputeBWithF16 { + public: + /// Shape of warp-level matrix operation (concept: GemmShape) + using Shape = Shape_; + + /// Data type of multiplicand A + using ElementA = ElementA_; + + /// Layout of multiplicand A + using LayoutA = LayoutA_; + + /// Data type of multiplicand B + using ElementB = ElementB_; + + /// Layout of multiplicand B + using LayoutB = LayoutB_; + + /// Data type of accumulator matrix C + using ElementC = ElementC_; + + /// Layout of accumulator matrix C + using LayoutC = LayoutC_; + + /// Shape of the warp in units of thread (concept: MmaLanePolicySimt) + using Policy = Policy_; + + /// Underlying matrix multiply operator (concept: arch::Mma) + using ArchMmaOperator = typename Policy::Operator; + + /// Indicates math operator + using MathOperator = typename ArchMmaOperator::Operator; + + /// Architecture tag from underlying instruction + using ArchTag = typename ArchMmaOperator::ArchTag; + static_assert((platform::is_same::value && + platform::is_same::value) || + (platform::is_same::value && + platform::is_same::value && + ArchTag::kMinComputeCapability >= 80), + "MmaTensorOpCvtBToA only supports underlying HMMA"); + + static_assert(platform::is_same::value || + (platform::is_same::value && ArchTag::kMinComputeCapability >= 80), + "MmaTensorOpCvtBToA only supports Fp16 A or Bf16 A on Ampere+"); + + /// Indicates class of matrix operator + using OperatorClass = arch::OpClassTensorOp; + + /// Shape of underlying instruction + using InstructionShape = typename ArchMmaOperator::Shape; + + /// Instruction shape to override shared memory iterators with + using SharedMemoryInstructionShape = SharedMemoryInstructionShape_; + + static_assert(SharedMemoryInstructionShape::kM == InstructionShape::kM, + "M dimension of compute instruction must match load"); + static_assert(SharedMemoryInstructionShape::kN == InstructionShape::kN, + "N dimension of compute instruction must match load"); + + static constexpr int kExpansionFactor = SharedMemoryInstructionShape::kK / InstructionShape::kK; + + static_assert(!(Shape::kK % SharedMemoryInstructionShape::kK), ""); + + /// Complex transform on A operand + static ComplexTransform const kTransformA = ComplexTransform::kNone; + + /// Complex transform on B operand + static ComplexTransform const kTransformB = ComplexTransform::kNone; + + /// Number of threads participating in warp-level matrix product + static int const kThreadCount = 32; + + /// Number of partitions along K dimension + static int const kPartitionsK = PartitionsK_; + + public: + /// Iterates over the A operand in memory + using IteratorA = + MmaTensorOpMultiplicandTileIterator, Operand::kA, ElementA, LayoutA, + MatrixShape, + Policy::OpDelta::kRow, kThreadCount, kPartitionsK>; + + /// Storage for A tile + using FragmentA = typename IteratorA::Fragment; + + /// Storage for transformed A tile + using TransformedFragmentA = Array; + + /// Iterates over the B operand in memory + using IteratorB = + MmaTensorOpMultiplicandTileIterator, Operand::kB, ElementB, LayoutB, + MatrixShape, + Policy::OpDelta::kRow, kThreadCount, kPartitionsK>; + + /// Storage for B tile + using FragmentB = typename IteratorB::Fragment; + + /// Storage for transformed B tile + using TransformedFragmentB = Array; + + /// Iterates over the C operand in memory + using IteratorC = MmaTensorOpAccumulatorTileIterator, ElementC, LayoutC, + typename ArchMmaOperator::Shape, typename Policy::OpDelta>; + + /// Storage for C tile + using FragmentC = typename IteratorC::Fragment; + + /// Number of mma operations performed + using MmaIterations = MatrixShape<(Shape::kM + ArchMmaOperator::Shape::kM - 1) / ArchMmaOperator::Shape::kM, + (Shape::kN + ArchMmaOperator::Shape::kN - 1) / ArchMmaOperator::Shape::kN>; + + public: + /// Underlying matrix multiply operator (concept: arch::Mma) + ArchMmaOperator mma; + + public: + // + // Methods + // + + /// Ctor + CUTLASS_DEVICE + MmaTensorOpComputeBWithF16() {} + + /// Performs a warp-level matrix multiply-accumulate operation + CUTLASS_DEVICE + void operator()(FragmentC& D, TransformedFragmentA const& A, TransformedFragmentB const& B, FragmentC const& C, + int const warp_tileB_k_offset) const { + using MmaOperandA = typename ArchMmaOperator::FragmentA; + using MmaOperandB = typename ArchMmaOperator::FragmentB; + using MmaOperandC = typename ArchMmaOperator::FragmentC; + + static_assert( + TransformedFragmentB::kElements == MmaOperandB::kElements * kExpansionFactor * MmaIterations::kColumn, + "Each thread should have a pack of mma registers for each column iteration AND for the expanded K dim of " + "B"); + + D = C; + + MmaOperandA const* ptr_A = reinterpret_cast(&A); + MmaOperandB const* ptr_B = reinterpret_cast(&B); + MmaOperandC* ptr_D = reinterpret_cast(&D); + +#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800) + // Serpentine visitation order maximizing reuse of Rb + CUTLASS_PRAGMA_UNROLL + for (int n = 0; n < MmaIterations::kColumn; ++n) { + CUTLASS_PRAGMA_UNROLL + for (int m = 0; m < MmaIterations::kRow; ++m) { + int m_serpentine = ((n % 2) ? (MmaIterations::kRow - 1 - m) : m); + + int n_offsetB = warp_tileB_k_offset + kExpansionFactor * n; + if (AccumulatorsInRowMajor) { // matrix B is reordered + mma(ptr_D[n + m_serpentine * MmaIterations::kColumn], ptr_A[m_serpentine], ptr_B[n_offsetB], + ptr_D[n + m_serpentine * MmaIterations::kColumn]); + } else { + mma(ptr_D[m_serpentine + n * MmaIterations::kRow], ptr_A[m_serpentine], ptr_B[n_offsetB], + ptr_D[m_serpentine + n * MmaIterations::kRow]); + } + } + } +#elif defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) + // Serpentine visitation order maximizing reuse of Ra + CUTLASS_PRAGMA_UNROLL + for (int m = 0; m < MmaIterations::kRow; ++m) { + CUTLASS_PRAGMA_UNROLL + for (int n = 0; n < MmaIterations::kColumn; ++n) { + int n_serpentine = ((m % 2) ? (MmaIterations::kColumn - 1 - n) : n); + + int n_serpentine_offsetB = warp_tileB_k_offset + kExpansionFactor * n_serpentine; + if (AccumulatorsInRowMajor) { // matrix B is reordered + mma(ptr_D[n_serpentine + m * MmaIterations::kColumn], ptr_A[m], ptr_B[n_serpentine_offsetB], + ptr_D[n_serpentine + m * MmaIterations::kColumn]); + } else { + mma(ptr_D[m + n_serpentine * MmaIterations::kRow], ptr_A[m], ptr_B[n_serpentine_offsetB], + ptr_D[m + n_serpentine * MmaIterations::kRow]); + } + } + } +#else + assert(0); +#endif + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace warp +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_dequantizer.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_dequantizer.h new file mode 100644 index 0000000000000..51ca8282e42ff --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm/warp/mma_tensorop_dequantizer.h @@ -0,0 +1,534 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Defines iterators used by warp-level matrix multiply operations targeting Tensor Cores. +*/ + +#pragma once + +#include + +#include "cutlass/cutlass.h" + +#include "cutlass/array.h" +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_types.h" +#include "cutlass/tensor_ref.h" + +#include "cutlass/arch/arch.h" +#include "cutlass/arch/memory_sm75.h" +#include "cutlass/gemm/gemm.h" + +#include "cutlass/layout/matrix.h" +#include "cutlass/layout/pitch_linear.h" +#include "cutlass/layout/tensor.h" + +#include "cutlass/functional.h" +#include "cutlass/platform/platform.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/weight_only_quant_op.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace warp { + +//////////////////////////////////////////////////////////////////////////////// + +template < + /// Matrix multiply operator + typename MmaOperator_, + /// Size of the matrix to load (concept: MatrixShape) + typename Shape_, + /// Operand identity + Operand Operand, + /// Data type of Scale elements + typename Element_, + /// Layout of operand + typename Layout_, + /// Number of threads participating in one matrix operation + int Threads, + /// + WeightOnlyQuantOp QuantOp_, + /// + typename Enable = void> +class MmaTensorOpDequantizer; + +//////////////////////////////////////////////////////////////////////////////// +// Bfloat specialization for Ampere +template < + /// Underlying matrix multiply operator (concept: MmaTensorOp) + typename MmaOperator_, + /// Shape of the warp level matrix multiply (concept: GemmShape) + typename Shape_, + /// + WeightOnlyQuantOp QuantOp_> +class MmaTensorOpDequantizer< + MmaOperator_, Shape_, Operand::kB, bfloat16_t, layout::RowMajor, 32, QuantOp_, + typename platform::enable_if< + MmaOperator_::ArchTag::kMinComputeCapability >= 80 && + platform::is_same::value>::type> { + public: + /// Mma Operator + using MmaOperator = MmaOperator_; + + // The architecture specific mma ooperator being used + using ArchMmaOperator = typename MmaOperator::ArchMmaOperator; + + // Mma Instruction Shape + using InstructionShape = typename ArchMmaOperator::Shape; + + // This is the ratio of the load instruction vs the compute instruction. + static constexpr int kExpansionFactor = MmaOperator::IteratorB::InstructionShape::kRow / InstructionShape::kK; + + /// Type of the scales + using ElementScale = bfloat16_t; + + /// Fragment to hold B data before Mma + using FragmentDequantizedOperand = Array; + + // Fragment to hold scale data to apply to B before mma + // We need 1 fp16 per matrix iteration in the N dimension + static constexpr int kColsPerMmaPerThread = 1; + using FragmentScale = Array; + using FragmentZero = Array; + + /// Warp mma shape + using Shape = Shape_; + + /// Layout of the scales in shared memory + using Layout = layout::RowMajor; + + /// TensorRef type for loading element from a tensor + using TensorRef = TensorRef; + + static constexpr WeightOnlyQuantOp QuantOp = QuantOp_; + + CUTLASS_DEVICE + MmaTensorOpDequantizer(TensorRef smem_scales, TensorRef smem_zeros, int const warp_idx_n, int const lane_idx) { + int const warp_offset = warp_idx_n * Shape::kN; + int const quad = lane_idx / 4; + int const thread_offset = warp_offset + quad; + pointer_scale_ = smem_scales.data() + thread_offset; + if constexpr (hasZero(QuantOp)) { + pointer_zero_ = smem_zeros.data() + thread_offset; + } + } + + CUTLASS_DEVICE + MmaTensorOpDequantizer(TensorRef smem_scales, int const warp_idx_n, int const lane_idx) + : MmaTensorOpDequantizer(smem_scales, TensorRef(), warp_idx_n, lane_idx) {} + + CUTLASS_DEVICE + void load(FragmentScale& scale_frag) { + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + scale_frag[mma_n_iter] = pointer_scale_[mma_n_iter * InstructionShape::kN]; + } + } + + CUTLASS_DEVICE + void dequantize(FragmentDequantizedOperand& operand_frag, FragmentScale const& scale_frag) { + // Slow path not implemented here on purpose. If we need to do HMMA on older arch, scale conversion should + // happen before scales are stored to shared memory and we should use the fp16 dequantizer. This will avoid + // numerous conversion instructions in GEMM main loop. + arch::device_breakpoint(); + } + + CUTLASS_DEVICE + void load(FragmentScale& scale_frag, FragmentScale& zero_frag) { + if constexpr (hasZero(QuantOp)) { + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + scale_frag[mma_n_iter] = pointer_scale_[mma_n_iter * InstructionShape::kN]; + zero_frag[mma_n_iter] = pointer_zero_[mma_n_iter * InstructionShape::kN]; + } + } else { + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + scale_frag[mma_n_iter] = pointer_scale_[mma_n_iter * InstructionShape::kN]; + } + } + } + + CUTLASS_DEVICE + void dequantize(FragmentDequantizedOperand& operand_frag, FragmentScale const& scale_frag, + FragmentScale const& zero_frag) { + // Slow path not implemented here on purpose. If we need to do HMMA on older arch, scale conversion should + // happen before scales are stored to shared memory and we should use the fp16 dequantizer. This will avoid + // numerous conversion instructions in GEMM main loop. + arch::device_breakpoint(); + } + + // Adds a pointer offset in units of elements. + CUTLASS_DEVICE + void add_pointer_offset(int64_t const& offset) { + static_assert(sizeof(ElementScale) > 1, ""); + pointer_scale_ += offset; + pointer_zero_ += offset; + } + + private: + ElementScale const* pointer_scale_; + ElementScale const* pointer_zero_; +}; + +//////////////////////////////////////////////////////////////////////////////// + +// Specialization for Turing & Ampere +template < + /// Underlying matrix multiply operator (concept: MmaTensorOp) + typename MmaOperator_, + /// Shape of the warp level matrix multiply (concept: GemmShape) + typename Shape_, + /// + WeightOnlyQuantOp QuantOp_> +class MmaTensorOpDequantizer< + MmaOperator_, Shape_, Operand::kB, half_t, layout::RowMajor, 32, QuantOp_, + typename platform::enable_if< + MmaOperator_::ArchTag::kMinComputeCapability >= 75 && + platform::is_same::value>::type> { + public: + /// Mma Operator + using MmaOperator = MmaOperator_; + + // The architecture specific mma ooperator being used + using ArchMmaOperator = typename MmaOperator::ArchMmaOperator; + + // Mma Instruction Shape + using InstructionShape = typename ArchMmaOperator::Shape; + + // This is the ratio of the load instruction vs the compute instruction. + static constexpr int kExpansionFactor = MmaOperator::IteratorB::InstructionShape::kRow / InstructionShape::kK; + + /// Type of the scales + using ElementScale = half_t; + + /// Fragment to hold B data before Mma + using FragmentDequantizedOperand = Array; + + // Fragment to hold scale data to apply to B before mma + // We need 1 fp16 per matrix iteration in the N dimension + static constexpr int kColsPerMmaPerThread = 1; + using FragmentScale = Array; + using FragmentZero = Array; + + /// Warp mma shape + using Shape = Shape_; + + /// Layout of the scales in shared memory + using Layout = layout::RowMajor; + + /// TensorRef type for loading element from a tensor + using TensorRef = TensorRef; + + static constexpr WeightOnlyQuantOp QuantOp = QuantOp_; + + CUTLASS_DEVICE + MmaTensorOpDequantizer(TensorRef smem_scales, TensorRef smem_zeros, int const warp_idx_n, int const lane_idx) { + int const warp_offset = warp_idx_n * Shape::kN; + int const quad = lane_idx / 4; + int const thread_offset = warp_offset + quad; + pointer_scale_ = smem_scales.data() + thread_offset; + if constexpr (hasZero(QuantOp)) { + pointer_zero_ = smem_zeros.data() + thread_offset; + } + } + + CUTLASS_DEVICE + MmaTensorOpDequantizer(TensorRef smem_scales, int const warp_idx_n, int const lane_idx) + : MmaTensorOpDequantizer(smem_scales, TensorRef(), warp_idx_n, lane_idx) {} + + CUTLASS_DEVICE + void load(FragmentScale& scale_frag) { + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + scale_frag[mma_n_iter] = pointer_scale_[mma_n_iter * InstructionShape::kN]; + } + } + + CUTLASS_DEVICE + void dequantize(FragmentDequantizedOperand& operand_frag, FragmentScale const& scale_frag) { + using _MmaOperandB = typename ArchMmaOperator::FragmentB; + using ExpandedMmaOperandB = Array; + static_assert( + ExpandedMmaOperandB::kElements * MmaOperator::MmaIterations::kColumn == FragmentDequantizedOperand::kElements, + ""); + + multiplies mul_op; + + ExpandedMmaOperandB* operand_frag_ptr = reinterpret_cast(&operand_frag); + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + operand_frag_ptr[mma_n_iter] = mul_op(operand_frag_ptr[mma_n_iter], scale_frag[mma_n_iter]); + } + } + + CUTLASS_DEVICE + void load(FragmentScale& scale_frag, FragmentScale& zero_frag) { + if constexpr (hasZero(QuantOp)) { + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + scale_frag[mma_n_iter] = pointer_scale_[mma_n_iter * InstructionShape::kN]; + zero_frag[mma_n_iter] = pointer_zero_[mma_n_iter * InstructionShape::kN]; + } + } else { + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + scale_frag[mma_n_iter] = pointer_scale_[mma_n_iter * InstructionShape::kN]; + } + } + } + + CUTLASS_DEVICE + void dequantize(FragmentDequantizedOperand& operand_frag, FragmentScale const& scale_frag, + FragmentScale const& zero_frag) { + using _MmaOperandB = typename ArchMmaOperator::FragmentB; + using ExpandedMmaOperandB = Array; + static_assert( + ExpandedMmaOperandB::kElements * MmaOperator::MmaIterations::kColumn == FragmentDequantizedOperand::kElements, + ""); + + multiplies mul_op; + ExpandedMmaOperandB* operand_frag_ptr = reinterpret_cast(&operand_frag); + + if constexpr (hasZero(QuantOp)) { + plus plus_op; + + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + operand_frag_ptr[mma_n_iter] = + plus_op(mul_op(operand_frag_ptr[mma_n_iter], scale_frag[mma_n_iter]), zero_frag[mma_n_iter]); + } + } else { + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < MmaOperator::MmaIterations::kColumn; ++mma_n_iter) { + operand_frag_ptr[mma_n_iter] = mul_op(operand_frag_ptr[mma_n_iter], scale_frag[mma_n_iter]); + } + } + } + + // Adds a pointer offset in units of elements. + CUTLASS_DEVICE + void add_pointer_offset(int64_t const& offset) { + static_assert(sizeof(ElementScale) > 1, ""); + pointer_scale_ += offset; + pointer_zero_ += offset; + } + + private: + ElementScale const* pointer_scale_; + ElementScale const* pointer_zero_; +}; + +//////////////////////////////////////////////////////////////////////////////// + +// Specialization for Volta A x RowMajor B tensorOp, for 32x32x4 interleaved gemm +template < + /// Underlying matrix multiply operator (concept: MmaTensorOp) + typename MmaOperator_, + /// Shape of the warp level matrix multiply (concept: GemmShape) + typename Shape_, + /// + WeightOnlyQuantOp QuantOp_> +class MmaTensorOpDequantizer< + MmaOperator_, Shape_, Operand::kB, half_t, layout::RowMajor, 32, QuantOp_, + typename platform::enable_if< + platform::is_same::value && + platform::is_same::value>::type> { + public: + static_assert(platform::is_same>::value, ""); + + /// Mma Operator + using MmaOperator = MmaOperator_; + + // The architecture specific mma ooperator being used + using ArchMmaOperator = typename MmaOperator::ArchMmaOperator; + + // Mma Instruction Shape + using InstructionShape = typename ArchMmaOperator::Shape; + + /// Type of the scales + using ElementScale = half_t; + + /// Fragment to hold B data before Mma + using FragmentDequantizedOperand = Array; + + /// Warp mma shape + using Shape = Shape_; + + // Fragment to hold scale data to apply to B before mma + // Each 32x32x4 matmul uses 8 elements from B. + static constexpr int ColsPerMmaTile = 32; + static constexpr int TileNIterations = Shape::kN / ColsPerMmaTile; + using FragmentScale = Array; + using AccessType = Array; + + /// Layout of the scales in shared memory + using Layout = layout::RowMajor; + + /// TensorRef type for loading element from a tensor + using TensorRef = TensorRef; + + static constexpr WeightOnlyQuantOp QuantOp = QuantOp_; + static_assert(QuantOp == WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY, ""); + + CUTLASS_DEVICE + MmaTensorOpDequantizer(TensorRef smem_scales, int const warp_idx_n, int const lane_idx) { + int const warp_offset = warp_idx_n * Shape::kN; + int const base_col = lane_idx & 0xF8; + int const thread_offset = warp_offset + base_col; + pointer_ = smem_scales.data() + thread_offset; + } + + CUTLASS_DEVICE + void load(FragmentScale& scale_frag) { + AccessType* scale_frag_ptr = reinterpret_cast(&scale_frag); + + CUTLASS_PRAGMA_UNROLL + for (int tile_iter = 0; tile_iter < TileNIterations; ++tile_iter) { + // We jump by 32 here since volta does <32x32x4> super mmas inside a warp. + scale_frag_ptr[tile_iter] = *reinterpret_cast(pointer_ + ColsPerMmaTile * tile_iter); + } + } + + CUTLASS_DEVICE + void dequantize(FragmentDequantizedOperand& operand_frag, FragmentScale const& scale_frag) { + static_assert(FragmentScale::kElements == FragmentDequantizedOperand::kElements, ""); + + multiplies mul_op; + operand_frag = mul_op(operand_frag, scale_frag); + } + + private: + ElementScale const* pointer_; +}; + +//////////////////////////////////////////////////////////////////////////////// + +// Specialization for Volta A x ColumnMajor B tensorOp, for 32x32x4 interleaved gemm +template < + /// Underlying matrix multiply operator (concept: MmaTensorOp) + typename MmaOperator_, + /// Shape of the warp level matrix multiply (concept: GemmShape) + typename Shape_, + /// + WeightOnlyQuantOp QuantOp_> +class MmaTensorOpDequantizer< + MmaOperator_, Shape_, Operand::kB, half_t, layout::RowMajor, 32, QuantOp_, + typename platform::enable_if< + platform::is_same::value && + platform::is_same::value>::type> { + public: + static_assert(platform::is_same>::value, ""); + + /// Mma Operator + using MmaOperator = MmaOperator_; + + // The architecture specific mma ooperator being used + using ArchMmaOperator = typename MmaOperator::ArchMmaOperator; + + // Mma Instruction Shape + using InstructionShape = typename ArchMmaOperator::Shape; + + /// Type of the scales + using ElementScale = half_t; + + /// Fragment to hold B data before Mma + using FragmentDequantizedOperand = Array; + + /// Warp mma shape + using Shape = Shape_; + + // Fragment to hold scale data to apply to B before mma + // Each 32x32x4 matmul uses 8 elements from B. + static constexpr int ColsPerMmaTile = 32; + static constexpr int TileNIterations = Shape::kN / ColsPerMmaTile; + using FragmentScale = Array; + + /// Layout of the scales in shared memory + using Layout = layout::RowMajor; + + /// TensorRef type for loading element from a tensor + using TensorRef = TensorRef; + + static constexpr WeightOnlyQuantOp QuantOp = QuantOp_; + static_assert(QuantOp == WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY, ""); + + CUTLASS_DEVICE + MmaTensorOpDequantizer(TensorRef smem_scales, int const warp_idx_n, int const lane_idx) { + int const warp_offset = warp_idx_n * Shape::kN; + int const base_col = lane_idx & 0xF8 + lane_idx % 4; + int const thread_offset = warp_offset + base_col; + pointer_ = smem_scales.data() + thread_offset; + } + + CUTLASS_DEVICE + void load(FragmentScale& scale_frag) { + CUTLASS_PRAGMA_UNROLL + for (int tile_iter = 0; tile_iter < TileNIterations; ++tile_iter) { + // We jump by 32 here since volta does <32x32x4> super mmas inside a warp. + // For col major B, each thread will jump 4 cols to get its next value inside + // of the super mma. + CUTLASS_PRAGMA_UNROLL + for (int mma_iter = 0; mma_iter < 2; ++mma_iter) { + scale_frag[tile_iter * 2 + mma_iter] = pointer_[ColsPerMmaTile * tile_iter + 4 * mma_iter]; + } + } + } + + CUTLASS_DEVICE + void dequantize(FragmentDequantizedOperand& operand_frag, FragmentScale const& scale_frag) { + using MmaOperandB = typename ArchMmaOperator::FragmentB; + static constexpr int total_n_mmas = 2 * TileNIterations; + static_assert(MmaOperandB::kElements * total_n_mmas == FragmentDequantizedOperand::kElements, ""); + + multiplies mul_op; + + MmaOperandB* operand_frag_ptr = reinterpret_cast(&operand_frag); + CUTLASS_PRAGMA_UNROLL + for (int mma_n_iter = 0; mma_n_iter < total_n_mmas; ++mma_n_iter) { + operand_frag_ptr[mma_n_iter] = mul_op(operand_frag_ptr[mma_n_iter], scale_frag[mma_n_iter]); + } + } + + private: + ElementScale const* pointer_; +}; + +//////////////////////////////////////////////////////////////////////////////// + +} // namespace warp +} // namespace gemm +} // namespace cutlass + +//////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm_configs.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm_configs.h new file mode 100644 index 0000000000000..0841218a480ba --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/gemm_configs.h @@ -0,0 +1,125 @@ +/* + * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +namespace ort_fastertransformer { +// Note: The shapes are in the format MxNxK. The K shape of the runtime config MUST match the K shape +// in the kernel layout details when doing weight only quantization. +enum class CutlassTileConfig { + // Signals that we should run heuristics do choose a config + Undefined, + + // Signals that we should run heuristics do choose a config + ChooseWithHeuristic, + + // SiMT config + CtaShape128x128x8_WarpShape64x64x8, + + // TensorCore configs CTA_N = 128, CTA_K = 64 + // Warp configs for M=16 + CtaShape16x128x64_WarpShape16x32x64, + // Warp configs for M=32 + CtaShape32x128x64_WarpShape32x32x64, + + // Warp configs for M=64 + CtaShape64x128x64_WarpShape32x64x64, + CtaShape64x64x128_WarpShape32x64x64, + CtaShape64x128x64_WarpShape64x32x64, + + // Warp configs for M=128 + CtaShape128x64x64_WarpShape64x32x64, + CtaShape128x128x64_WarpShape64x32x64, + CtaShape128x128x64_WarpShape64x64x64, + CtaShape128x128x64_WarpShape128x32x64, + CtaShape128x256x64_WarpShape64x64x64, + + // Warp configs for M=256 + CtaShape256x128x64_WarpShape64x64x64, + + // TensorCore config CTA_N = 256, CTA_K = 64 + CtaShape16x256x64_WarpShape16x64x64 +}; + +enum class SplitKStyle { + NO_SPLIT_K, + SPLIT_K_SERIAL, + // SPLIT_K_PARALLEL // Not supported yet +}; + +enum class CutlassTileConfigSM90 { + // Signals that we should run heuristics do choose a config + Undefined, + + // Signals that we should run heuristics do choose a config + ChooseWithHeuristic, + + // CTA configs for M=64 + CtaShape64x16x128B, + CtaShape64x32x128B, + CtaShape64x64x128B, + CtaShape64x128x128B, + CtaShape64x256x128B, + + // CTA configs for M=128 + CtaShape128x16x128B, + CtaShape128x32x128B, + CtaShape128x64x128B, + CtaShape128x128x128B, + CtaShape128x256x128B, +}; + +enum class MainloopScheduleType { + AUTO // Automatically selects between pingpong and cooperative schedules on Hopper. On older architectures, this + // defaults to the "legacy" main loop schedule. +}; + +enum class EpilogueScheduleType { + AUTO // Automatically chooses an epilogue schedule compatible with the selected main loop schedule for Hopper. For + // architectures older than hopper, the epilogue is always performed by the same thread block as the main loop. +}; + +enum class ClusterShape { ClusterShape_1x1x1, + ClusterShape_2x1x1, + ClusterShape_1x2x1, + ClusterShape_2x2x1 }; + +struct CutlassGemmConfig { + CutlassTileConfig tile_config = CutlassTileConfig::ChooseWithHeuristic; + SplitKStyle split_k_style = SplitKStyle::NO_SPLIT_K; + int split_k_factor = -1; + int stages = -1; + + // config options for sm90 + CutlassTileConfigSM90 tile_config_sm90 = CutlassTileConfigSM90::ChooseWithHeuristic; + MainloopScheduleType mainloop_schedule = MainloopScheduleType::AUTO; + EpilogueScheduleType epilogue_schedule = EpilogueScheduleType::AUTO; + ClusterShape cluster_shape = ClusterShape::ClusterShape_1x1x1; + + CutlassGemmConfig() {} + + CutlassGemmConfig(CutlassTileConfig tile_config, SplitKStyle split_k_style, int split_k_factor, int stages) + : tile_config(tile_config), split_k_style(split_k_style), split_k_factor(split_k_factor), stages(stages) {} + + CutlassGemmConfig(CutlassTileConfigSM90 tile_config_sm90, MainloopScheduleType mainloop_schedule, + EpilogueScheduleType epilogue_schedule, ClusterShape cluster_shape) + : tile_config_sm90(tile_config_sm90), + mainloop_schedule(mainloop_schedule), + epilogue_schedule(epilogue_schedule), + cluster_shape(cluster_shape) {} +}; + +} // namespace ort_fastertransformer diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/interleaved_numeric_conversion.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/interleaved_numeric_conversion.h new file mode 100644 index 0000000000000..7fd1745aa2c54 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/interleaved_numeric_conversion.h @@ -0,0 +1,392 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! + \file + \brief Boost-like numeric conversion operator for int8 and CUTLASS int4b_t interleaved in a register +*/ + +#pragma once + +#include "cutlass/arch/arch.h" +#include "cutlass/array.h" +#include "cutlass/half.h" +#include "cutlass/numeric_types.h" + +namespace cutlass { + +// This converter is meant to be used with data interleaved in a 32-bit register where the even elements are in the low +// bits and the odd elemeents are in the high bits of the register. In addition, it assumes elements were originally +// signed and had a bias of 2**(b-1) added (where b is the number of bits in the type) to make all numbers unsigned. +// This converter will uninterleave the data and subtract the bias while converting to the result type. +template +struct FastInterleavedAndBiasedNumericArrayConverter {}; + +template <> +struct FastInterleavedAndBiasedNumericArrayConverter { + using result_type = Array; + using source_type = Array; + + CUTLASS_DEVICE + static result_type convert(source_type const& source) { + result_type result; + + uint32_t* h = reinterpret_cast(&result); + uint32_t const i8s = reinterpret_cast(source); + + static constexpr uint32_t mask_for_elt_01 = 0x5250; + static constexpr uint32_t mask_for_elt_23 = 0x5351; + static constexpr uint32_t start_byte_for_fp16 = 0x64646464; + asm volatile("prmt.b32 %0,%1,%2,%3;\n" : "=r"(h[0]) : "r"(i8s), "n"(start_byte_for_fp16), "n"(mask_for_elt_01)); + asm volatile("prmt.b32 %0,%1,%2,%3;\n" : "=r"(h[1]) : "r"(i8s), "n"(start_byte_for_fp16), "n"(mask_for_elt_23)); + + // Lastly, we subtract 1152 from our constructed number using fp16 math to get our signed integer as fp16. + static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480; + asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[0]) : "r"(h[0]), "r"(I8s_TO_F16s_MAGIC_NUM)); + asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[1]) : "r"(h[1]), "r"(I8s_TO_F16s_MAGIC_NUM)); + + return result; + } + + CUTLASS_DEVICE + result_type operator()(source_type const& s) { return convert(s); } +}; + +template +struct FastInterleavedAndBiasedNumericArrayConverter { + static constexpr int VEC_WIDTH = 4; + static_assert(!(N % VEC_WIDTH), "N must be multiple of 4."); + + using result_type = Array; + using source_type = Array; + + CUTLASS_DEVICE + static result_type convert(source_type const& source) { + using scalar_result_type = typename result_type::Element; + using scalar_source_type = typename source_type::Element; + FastInterleavedAndBiasedNumericArrayConverter convert_vector_; + + result_type result; + using vec_result = Array; + using vec_source = Array; + + vec_result* result_ptr = reinterpret_cast(&result); + vec_source const* source_ptr = reinterpret_cast(&source); + + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < N / VEC_WIDTH; ++i) { + result_ptr[i] = convert_vector_(source_ptr[i]); + } + + return result; + } + + CUTLASS_DEVICE + result_type operator()(source_type const& s) { return convert(s); } +}; + +template <> +struct FastInterleavedAndBiasedNumericArrayConverter { + using result_type = Array; + using source_type = Array; + + CUTLASS_DEVICE + static result_type convert(source_type const& source) { + result_type result; +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + + uint32_t* bf16_result_ptr = reinterpret_cast(&result); + uint32_t const i8s = reinterpret_cast(source); + + static constexpr uint32_t fp32_base = 0x4B000000; + float fp32_intermediates[4]; + + // Construct FP32s, bfloat does not have enough mantissa for IADD trick + uint32_t* fp32_intermediates_casted = reinterpret_cast(fp32_intermediates); + fp32_intermediates_casted[0] = __byte_perm(i8s, fp32_base, 0x7650); + fp32_intermediates_casted[1] = __byte_perm(i8s, fp32_base, 0x7652); + fp32_intermediates_casted[2] = __byte_perm(i8s, fp32_base, 0x7651); + fp32_intermediates_casted[3] = __byte_perm(i8s, fp32_base, 0x7653); + + // Subtract out fp32_base + 128 to make the unsigned integer signed. + CUTLASS_PRAGMA_UNROLL + for (int ii = 0; ii < 4; ++ii) { + fp32_intermediates[ii] -= 8388736.f; + } + + // Truncate the fp32 representation and pack up as bfloat16s. + CUTLASS_PRAGMA_UNROLL + for (int ii = 0; ii < 2; ++ii) { + bf16_result_ptr[ii] = + __byte_perm(fp32_intermediates_casted[2 * ii + 0], fp32_intermediates_casted[2 * ii + 1], 0x7632); + } +#else + // Disable this on architectures older than Ampere since they lack hardware for bf16 mma. If one wishes to use + // HMMA on older hardware, they should Convert directly to FP16 using FP16 converters. + result.clear(); // Suppress compiler warning + arch::device_breakpoint(); +#endif + return result; + } + + CUTLASS_DEVICE + result_type operator()(source_type const& s) { return convert(s); } +}; + +template +struct FastInterleavedAndBiasedNumericArrayConverter { + static constexpr int VEC_WIDTH = 4; + static_assert(!(N % VEC_WIDTH), "N must be multiple of 4."); + + using result_type = Array; + using source_type = Array; + + CUTLASS_DEVICE + static result_type convert(source_type const& source) { + using scalar_result_type = typename result_type::Element; + using scalar_source_type = typename source_type::Element; + FastInterleavedAndBiasedNumericArrayConverter convert_vector_; + + result_type result; + using vec_result = Array; + using vec_source = Array; + + vec_result* result_ptr = reinterpret_cast(&result); + vec_source const* source_ptr = reinterpret_cast(&source); + + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < N / VEC_WIDTH; ++i) { + result_ptr[i] = convert_vector_(source_ptr[i]); + } + + return result; + } + + CUTLASS_DEVICE + result_type operator()(source_type const& s) { return convert(s); } +}; + +template <> +struct FastInterleavedAndBiasedNumericArrayConverter { + using result_type = Array; + using source_type = Array; + + CUTLASS_DEVICE + static result_type convert(source_type const& source) { + result_type result; + + uint32_t* h = reinterpret_cast(&result); + uint32_t const i4s = reinterpret_cast(source); + + // First, we extract the i4s and construct an intermediate fp16 number. + static constexpr uint32_t immLut = (0xf0 & 0xcc) | 0xaa; + static constexpr uint32_t BOTTOM_MASK = 0x000f000f; + static constexpr uint32_t TOP_MASK = 0x00f000f0; + static constexpr uint32_t I4s_TO_F16s_MAGIC_NUM = 0x64006400; + + // Note that the entire sequence only requires 1 shift instruction. This is thanks to the register packing + // format and the fact that we force our integers to be unsigned, and account for this in the fp16 subtractions. + // In addition, I exploit the fact that sub and fma have the same throughput in order to convert elt_23 and + // elt_67 to fp16 without having to shift them to the bottom bits before hand. + + // Shift right by 8 to now consider elt_45 and elt_67. Issue first to hide RAW dependency if we issue + // immediately before required. + const uint32_t top_i4s = i4s >> 8; + // Extract elt_01 - (i4s & 0x000f000f) | 0x64006400 + asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" + : "=r"(h[0]) + : "r"(i4s), "n"(BOTTOM_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut)); + // Extract elt_23 (i4s & 0x00f000f0) | 0x64006400 + asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" + : "=r"(h[1]) + : "r"(i4s), "n"(TOP_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut)); + // Extract elt_45 (top_i4s & 0x000f000f) | 0x64006400 + asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" + : "=r"(h[2]) + : "r"(top_i4s), "n"(BOTTOM_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut)); + // Extract elt_67 (top_i4s & 0x00f000f0) | 0x64006400 + asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" + : "=r"(h[3]) + : "r"(top_i4s), "n"(TOP_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut)); + + // I use inline PTX below because I am not sure if the compiler will emit float2half instructions if I use the + // half2 ctor. In this case, I chose performance reliability over code readability. + + // This is the half2 {1032, 1032} represented as an integer. + static constexpr uint32_t FP16_TOP_MAGIC_NUM = 0x64086408; + // This is the half2 {1 / 16, 1 / 16} represented as an integer. + static constexpr uint32_t ONE_SIXTEENTH = 0x2c002c00; + // This is the half2 {-72, -72} represented as an integer. + static constexpr uint32_t NEG_72 = 0xd480d480; + + // Finally, we construct the output numbers. + // Convert elt_01 + asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[0]) : "r"(h[0]), "r"(FP16_TOP_MAGIC_NUM)); + // Convert elt_23 + asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[1]) : "r"(h[1]), "r"(ONE_SIXTEENTH), "r"(NEG_72)); + // Convert elt_45 + asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[2]) : "r"(h[2]), "r"(FP16_TOP_MAGIC_NUM)); + // Convert elt_67 + asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[3]) : "r"(h[3]), "r"(ONE_SIXTEENTH), "r"(NEG_72)); + + return result; + } + + CUTLASS_DEVICE + result_type operator()(source_type const& s) { return convert(s); } +}; + +template +struct FastInterleavedAndBiasedNumericArrayConverter { + static constexpr int VEC_WIDTH = 8; + static_assert(!(N % VEC_WIDTH), "N must be multiple of 8."); + + using result_type = Array; + using source_type = Array; + + CUTLASS_DEVICE + static result_type convert(source_type const& source) { + using scalar_result_type = typename result_type::Element; + using scalar_source_type = typename source_type::Element; + FastInterleavedAndBiasedNumericArrayConverter convert_vector_; + + result_type result; + using vec_result = Array; + using vec_source = Array; + + vec_result* result_ptr = reinterpret_cast(&result); + vec_source const* source_ptr = reinterpret_cast(&source); + + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < N / VEC_WIDTH; ++i) { + result_ptr[i] = convert_vector_(source_ptr[i]); + } + + return result; + } + + CUTLASS_DEVICE + result_type operator()(source_type const& s) { return convert(s); } +}; + +template <> +struct FastInterleavedAndBiasedNumericArrayConverter { + using result_type = Array; + using source_type = Array; + + CUTLASS_DEVICE + static result_type convert(source_type const& source) { + result_type result; +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + + uint32_t* h = reinterpret_cast(&result); + uint32_t const source_i4s = reinterpret_cast(source); + + // First, we extract the i4s and construct an intermediate fp16 number. + static constexpr uint32_t immLut = (0xf0 & 0xcc) | 0xaa; + static constexpr uint32_t MASK = 0x000f000f; + static constexpr uint32_t I4s_TO_BF16s_MAGIC_NUM = 0x43004300; + + // We don't have enough mantissa to remove as much shift overhead as FP16, so we must loop. + // No shift needed for first item. + uint32_t i4s = source_i4s; + asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" + : "=r"(h[0]) + : "r"(i4s), "n"(MASK), "n"(I4s_TO_BF16s_MAGIC_NUM), "n"(immLut)); + CUTLASS_PRAGMA_UNROLL + for (int ii = 1; ii < result_type::kElements / 2; ++ii) { + i4s >>= sizeof_bits::value; + // (i4s & 0x000f000f) | 0x43004300 + asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" + : "=r"(h[ii]) + : "r"(i4s), "n"(MASK), "n"(I4s_TO_BF16s_MAGIC_NUM), "n"(immLut)); + } + + // This is the BF16 {-136, -136} represented as an integer. + static constexpr uint32_t BF16_BIAS = 0xC308C308; + static constexpr uint32_t BF16_ONE = 0x3F803F80; + + // Finally, we construct the output numbers. + CUTLASS_PRAGMA_UNROLL + for (int ii = 0; ii < result_type::kElements / 2; ++ii) { + // Since this section is for Ampere+, we use bf16 fma to do the bias subtraction + asm("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(h[ii]) : "r"(h[ii]), "r"(BF16_ONE), "r"(BF16_BIAS)); + } +#else + // Disable this on architectures older than Ampere since they lack hardware for bf16 mma. If one wishes to use + // HMMA on older hardware, they should Convert directly to FP16 using FP16 converters. + arch::device_breakpoint(); + result.clear(); // Suppress compiler warning. +#endif + return result; + } + + CUTLASS_DEVICE + result_type operator()(source_type const& s) { return convert(s); } +}; + +template +struct FastInterleavedAndBiasedNumericArrayConverter { + static constexpr int VEC_WIDTH = 8; + static_assert(!(N % VEC_WIDTH), "N must be multiple of 8."); + + using result_type = Array; + using source_type = Array; + + CUTLASS_DEVICE + static result_type convert(source_type const& source) { + using scalar_result_type = typename result_type::Element; + using scalar_source_type = typename source_type::Element; + FastInterleavedAndBiasedNumericArrayConverter convert_vector_; + + result_type result; + using vec_result = Array; + using vec_source = Array; + + vec_result* result_ptr = reinterpret_cast(&result); + vec_source const* source_ptr = reinterpret_cast(&source); + + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < N / VEC_WIDTH; ++i) { + result_ptr[i] = convert_vector_(source_ptr[i]); + } + + return result; + } + + CUTLASS_DEVICE + result_type operator()(source_type const& s) { return convert(s); } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/tile_interleaved_layout.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/tile_interleaved_layout.h similarity index 98% rename from onnxruntime/contrib_ops/cuda/moe/ft_moe/tile_interleaved_layout.h rename to onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/tile_interleaved_layout.h index 3505bea24e4d9..e5abefa35bc84 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/tile_interleaved_layout.h +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/tile_interleaved_layout.h @@ -42,7 +42,7 @@ namespace cutlass { namespace layout { template -class ColumnMajorTileInterleave { +struct ColumnMajorTileInterleave { static constexpr int kRowsPerTile = RowsPerTile; static constexpr int kColumnsInterleaved = ColumnsInterleaved; }; diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/transform/threadblock/fine_grained_scale_zero_iterator.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/transform/threadblock/fine_grained_scale_zero_iterator.h new file mode 100644 index 0000000000000..79811ef3e611b --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/transform/threadblock/fine_grained_scale_zero_iterator.h @@ -0,0 +1,222 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Templates for visiting scales to be used when dequantizing the weights for weight-only GEMM + quantization. +*/ + +#pragma once + +#include "cutlass/array.h" +#include "cutlass/coord.h" +#include "cutlass/cutlass.h" +#include "cutlass/layout/matrix.h" +#include "cutlass/layout/pitch_linear.h" +#include "cutlass/matrix_shape.h" +#include "cutlass/predicate_vector.h" +#include "cutlass/tensor_ref.h" +#include "cutlass/tensor_view.h" +#include "cutlass/transform/threadblock/predicated_tile_access_iterator_params.h" + +//////////////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace transform { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +template +class FineGrainedScaleZeroIterator; + +template +class FineGrainedScaleZeroIterator { + public: + using Shape = Shape_; + using Element = Element_; + using Layout = layout::RowMajor; + static int const kAdvanceRank = 0; + static int const kAlignment = Alignment_; + + static int const kAccessesPerVector = 1; + + /// Row index of scales corresponding to the groupsize of 64 + int row_groupsize64_; + int group_size_; + + using Index = typename Layout::Index; + using LongIndex = typename Layout::LongIndex; + + using TensorRef = TensorRef; + using TensorView = TensorView; + using TensorCoord = typename Layout::TensorCoord; + using Pointer = Element*; + using NonConstPointer = typename platform::remove_const::type*; + + using AccessType = AlignedArray; + + // For compatibility with existing iterator interface + struct Params { + LongIndex stride_ = 0; + + /// amount (in byte) to increment pointer from first access of current tile + /// to first access of next tile + LongIndex inc_advance_ = 0; + + // Default ctor + CUTLASS_HOST_DEVICE + Params() {} + + /// Construct the Params object given a pitch-linear tensor's layout + CUTLASS_HOST_DEVICE + explicit Params(Layout const& layout) : stride_(layout.stride(0)) { + inc_advance_ = Shape::kRow * stride_ * sizeof_bits::value / 8; + } + }; + + private: + /// Internal pointer type permits fast address arithmetic + using BytePointer = char*; + + private: + // + // Data members + // + + /// Parameters object with precomputed internal state + Params const params_; + + /// Internal pointer to first access of tile + BytePointer pointer_scale_; + BytePointer pointer_zero_; + + bool is_valid_ = false; + + public: + /// Constructs a TileIterator from its precomputed state, threadblock offset, + /// and thread ID + CUTLASS_DEVICE + FineGrainedScaleZeroIterator( + ///< Precomputed parameters object + Params const& params, + ///< Pointer to start of scale tensor + Pointer pointer_scale, + ///< Pointer to start of zero tensor + Pointer pointer_zero, + ///< Extent of the scale and bias + TensorCoord extent, + ///< ID of each participating thread + int thread_id, + ///< Initial offset of threadblock + TensorCoord const& threadblock_offset, + ///< Group size + int group_size) + : params_(params), + pointer_scale_(reinterpret_cast(const_cast(pointer_scale))), + pointer_zero_(reinterpret_cast(const_cast(pointer_zero))) { + row_groupsize64_ = threadblock_offset.row(); + group_size_ = group_size; + + const LongIndex tb_row_byte_offset = + threadblock_offset.row() / (group_size / 64) * params_.stride_ * sizeof_bits::value / 8; + const LongIndex tb_col_byte_offset = threadblock_offset.column() * sizeof_bits::value / 8; + pointer_scale_ += (tb_row_byte_offset + tb_col_byte_offset); + + if (pointer_zero_ != nullptr) { + pointer_zero_ += (tb_row_byte_offset + tb_col_byte_offset); + } + + static constexpr int THREADS_PER_ROW = Shape::kColumn / kAlignment; + + int const thread_row = thread_id / THREADS_PER_ROW; + int const thread_col = thread_id % THREADS_PER_ROW; + + const LongIndex thread_row_byte_offset = thread_row * params_.stride_ * sizeof_bits::value / 8; + const LongIndex thread_col_byte_offset = thread_col * kAlignment * sizeof_bits::value / 8; + pointer_scale_ += (thread_row_byte_offset + thread_col_byte_offset); + if (pointer_zero_ != nullptr) { + pointer_zero_ += (thread_row_byte_offset + thread_col_byte_offset); + } + + // For the rows, we must check that we are within the extent AND the tile to avoid extra reads on + // a given iteration. The same threads will be responsible for issues reads since the number of scales + // read in a given iteration is a constant. Therefore, we should never have to update is_valid_ + // outside of the constructor. + int const global_row = threadblock_offset.row() + thread_row; + int const global_col = threadblock_offset.column() + thread_col * kAlignment; + + bool const row_in_bounds = global_row < extent.row() && thread_row < Shape::kRow; + bool const col_in_bounds = global_col < extent.column(); + + is_valid_ = row_in_bounds && col_in_bounds; + } + + /// Construct a PredicatedTileAccessIterator with zero threadblock offset + CUTLASS_HOST_DEVICE FineGrainedScaleZeroIterator(Params const& params, ///< Precomputed parameters object + Pointer pointer_scale, ///< Pointer to start of scale tensor + Pointer pointer_zero, ///< Pointer to start of zero tensor + TensorCoord extent, ///< Extent of tensor + int thread_id, ///< ID of each participating thread + int group_size) + : FineGrainedScaleZeroIterator(params, pointer_scale, pointer_zero, extent, thread_id, make_Coord(0, 0), + group_size) {} + + CUTLASS_DEVICE + void add_tile_offset(TensorCoord const& tile_offset) { + const LongIndex row_byte_offset = tile_offset.row() * params_.inc_advance_; + const LongIndex col_byte_offset = tile_offset.column() * Shape::kColumn * sizeof_bits::value / 8; + pointer_scale_ += row_byte_offset + col_byte_offset; + if (pointer_zero_ != nullptr) { + pointer_zero_ += row_byte_offset + col_byte_offset; + } + } + + /// Clears the predicate set efficiently + CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { is_valid_ &= (!enable); } + + /// Returns whether access is valid or not + CUTLASS_HOST_DEVICE + bool valid() const { return is_valid_; } + + /// Returns a scale pointer + CUTLASS_HOST_DEVICE + AccessType* get_scale() const { return reinterpret_cast(pointer_scale_); } + + /// Returns a zero pointer + CUTLASS_HOST_DEVICE + AccessType* get_zero() const { return reinterpret_cast(pointer_zero_); } +}; + +} // namespace threadblock +} // namespace transform +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/weight_only_quant_op.h b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/weight_only_quant_op.h new file mode 100644 index 0000000000000..403221a956017 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/cutlass_extensions/weight_only_quant_op.h @@ -0,0 +1,50 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ +/*! \file + \brief Defines iterators used by warp-level matrix multiply operations targeting Tensor Cores. +*/ + +#pragma once + +namespace cutlass { + +enum class WeightOnlyQuantOp { UNDEFINED, + PER_COLUMN_SCALE_ONLY, + FINEGRAINED_SCALE_ONLY, + FINEGRAINED_SCALE_AND_ZEROS }; + +constexpr bool isFinegrained(WeightOnlyQuantOp op) { + return op == WeightOnlyQuantOp::FINEGRAINED_SCALE_AND_ZEROS || op == WeightOnlyQuantOp::FINEGRAINED_SCALE_ONLY; +} + +constexpr bool hasZero(WeightOnlyQuantOp op) { return op == WeightOnlyQuantOp::FINEGRAINED_SCALE_AND_ZEROS; } + +} // namespace cutlass diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/cutlass_heuristic.cc b/onnxruntime/contrib_ops/cuda/moe/ft_moe/cutlass_heuristic.cc index adc043e5689e2..cd59e904ad9eb 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/cutlass_heuristic.cc +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/cutlass_heuristic.cc @@ -151,8 +151,8 @@ CutlassGemmConfig estimate_best_config_from_occupancies(const std::vector(ctas_per_wave); + const float current_score = static_cast(num_waves_total) - num_waves_fractional; const float score_slack = 0.1f; if (current_score < config_score || diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/cutlass_heuristic.h b/onnxruntime/contrib_ops/cuda/moe/ft_moe/cutlass_heuristic.h index e70efe0503b55..0f75a121b3b92 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/cutlass_heuristic.h +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/cutlass_heuristic.h @@ -16,7 +16,7 @@ #pragma once -#include "ft_gemm_configs.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm_configs.h" #include #include diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/ft_gemm_configs.h b/onnxruntime/contrib_ops/cuda/moe/ft_moe/ft_gemm_configs.h deleted file mode 100644 index a5faad423fad9..0000000000000 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/ft_gemm_configs.h +++ /dev/null @@ -1,58 +0,0 @@ -/* - * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -namespace ort_fastertransformer { -// Note: The shapes are in the format MxNxK. The K shape of the runtime config MUST match the K shape -// in the kernel layout details when doing weight only quantization. -enum class CutlassTileConfig { - // Signals that we should run heuristics do choose a config - Undefined, - - // Signals that we should run heuristics do choose a config - ChooseWithHeuristic, - - // SiMT config - CtaShape128x128x8_WarpShape64x64x8, - - // TensorCore configs CTA_N = 128, CTA_K = 64 - // Warp configs for M=32 - CtaShape32x128x64_WarpShape32x32x64, - - // Warp configs for M=64 - CtaShape64x128x64_WarpShape32x64x64, - CtaShape64x128x64_WarpShape64x32x64, - - // Warp configs for M=128 - CtaShape128x128x64_WarpShape64x32x64, - CtaShape128x128x64_WarpShape128x32x64 -}; - -enum class SplitKStyle { - NO_SPLIT_K, - SPLIT_K_SERIAL, - // SPLIT_K_PARALLEL // Not supported yet -}; - -struct CutlassGemmConfig { - CutlassTileConfig tile_config = CutlassTileConfig::ChooseWithHeuristic; - SplitKStyle split_k_style = SplitKStyle::NO_SPLIT_K; - int split_k_factor = -1; - int stages = -1; -}; - -} // namespace ort_fastertransformer diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_cutlass_kernel.h b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_cutlass_kernel.h deleted file mode 100644 index bfe30b71170d8..0000000000000 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_cutlass_kernel.h +++ /dev/null @@ -1,463 +0,0 @@ -/*************************************************************************************************** - * Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without modification, are permitted - * provided that the following conditions are met: - * * Redistributions of source code must retain the above copyright notice, this list of - * conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright notice, this list of - * conditions and the following disclaimer in the documentation and/or other materials - * provided with the distribution. - * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used - * to endorse or promote products derived from this software without specific prior written - * permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR - * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND - * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; - * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - **************************************************************************************************/ - -#pragma once - -#include "cutlass/complex.h" -#include "cutlass/cutlass.h" -#include "cutlass/fast_math.h" -#include "cutlass/gemm/gemm.h" -#include "cutlass/matrix_coord.h" -#include "cutlass/semaphore.h" - -#include "cutlass/gemm/kernel/gemm_transpose_operands.h" -#include "cutlass/layout/matrix.h" -#include "cutlass/trace.h" - -#include "gemm_moe_problem_visitor.h" -#include "tile_interleaved_layout.h" -///////////////////////////////////////////////////////////////////////////////////////////////// - -namespace cutlass { -namespace gemm { -namespace kernel { - -///////////////////////////////////////////////////////////////////////////////////////////////// -// This section exists to that we can use the same kernel code for regular gemm and dequantizing gemms. -// It will dispatch to the dequantizing gemm if the Mma type has an Iterator for scales in global. -template -using void_t = void; - -template -struct use_dq_gemm : platform::false_type {}; - -template -struct use_dq_gemm> : platform::true_type {}; - -// SFINAE overload for dequantizing gemm -template ::value, bool>::type = true> -CUTLASS_DEVICE static void run_mma(Mma mma, int gemm_k_iterations, typename Mma::FragmentC& accum, - typename Mma::IteratorA iterator_A, typename Mma::IteratorB iterator_B, - typename Mma::FragmentC const& src_accum, ElementScale* weight_scale_ptr, - MatrixCoord scale_extent, const int thread_idx, MatrixCoord tb_offset_scale) { - typename Mma::IteratorScale iterator_scale(Mma::IteratorScale::Layout(scale_extent.column()), weight_scale_ptr, - scale_extent, thread_idx, tb_offset_scale); - - mma(gemm_k_iterations, accum, iterator_A, iterator_B, iterator_scale, src_accum); -} - -// SFINAE overload for normal gemm. This completely ignores the scale parameters -template ::value, bool>::type = true> -CUTLASS_DEVICE static void run_mma(Mma mma, int gemm_k_iterations, typename Mma::FragmentC& accum, - typename Mma::IteratorA iterator_A, typename Mma::IteratorB iterator_B, - typename Mma::FragmentC const& src_accum, ElementScale* weight_scale_ptr, - MatrixCoord scale_extent, const int thread_idx, MatrixCoord tb_offset_scale) { - mma(gemm_k_iterations, accum, iterator_A, iterator_B, src_accum); -} - -///////////////////////////////////////////////////////////////////////////////////////////////// - -template -struct MoeFCGemm { - public: - using Mma = Mma_; - using Epilogue = Epilogue_; - using EpilogueOutputOp = typename Epilogue::OutputOp; - using ThreadblockSwizzle = ThreadblockSwizzle_; - static GroupScheduleMode const kGroupScheduleMode = GroupScheduleMode_; - static bool const kTransposed = false; - - // Optional transpose - using MapArguments = - kernel::detail::MapArguments; - - // Public-facing type definitions related to operand element type, layout, and complex conjugate - // operation. Must interact with the 'kTransposed' notion. - static_assert(!kTransposed, "Transpose problem not supported"); - using ElementA = typename MapArguments::ElementA; - using LayoutA = typename MapArguments::LayoutA; - using ElementB = typename MapArguments::ElementB; - using LayoutB = typename MapArguments::LayoutB; - using ElementC = typename Epilogue::OutputTileIterator::Element; - using LayoutC = typename MapArguments::LayoutC; - using ElementScale = ElementC; - - static ComplexTransform const kTransformA = MapArguments::kTransformA; - static ComplexTransform const kTransformB = MapArguments::kTransformB; - - // Type definitions about the mainloop. - using Operator = typename Mma::Operator; - using OperatorClass = typename Mma::Operator::OperatorClass; - using ThreadblockShape = typename Mma::Shape; - using WarpShape = typename Mma::Operator::Shape; - using InstructionShape = typename Mma::Policy::Operator::InstructionShape; - using ArchTag = typename Mma::ArchTag; - - static int const kStages = Mma::kStages; - static int const kAlignmentA = MapArguments::kAlignmentA; - static int const kAlignmentB = MapArguments::kAlignmentB; - static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess; - - /// Warp count (concept: GemmShape) - using WarpCount = typename Mma::WarpCount; - static int const kThreadCount = 32 * WarpCount::kCount; - - using ProblemVisitor = - GemmMoeProblemVisitor; - - // - // Structures - // - - /// Argument structure - struct Arguments { - // - // Data members - // - - int problem_count; - int threadblock_count; - - typename EpilogueOutputOp::Params output_op; - - ElementA* ptr_A; - ElementB* ptr_B; - ElementScale* weight_scales; - ElementC* ptr_C; - ElementC* ptr_D; - - int64_t* total_rows_before_expert; - int64_t gemm_n; - int64_t gemm_k; - - // Only used by device-level operator - GemmCoord* host_problem_sizes; - - // - // Methods - // - - /// Default ctor - CUTLASS_HOST_DEVICE - Arguments() - : problem_count(0), - threadblock_count(0), - ptr_A(nullptr), - ptr_B(nullptr), - weight_scales(nullptr), - ptr_C(nullptr), - ptr_D(nullptr), - total_rows_before_expert(nullptr), - gemm_n(0), - gemm_k(0), - host_problem_sizes(nullptr) {} - - /// Ctor - CUTLASS_HOST_DEVICE - Arguments(int problem_count, int threadblock_count, typename EpilogueOutputOp::Params output_op, - const ElementA* ptr_A, const ElementB* ptr_B, const ElementScale* weight_scales, const ElementC* ptr_C, - ElementC* ptr_D, int64_t* total_rows_before_expert, int64_t gemm_n, int64_t gemm_k, - GemmCoord* host_problem_sizes = nullptr) - : problem_count(problem_count), - threadblock_count(threadblock_count), - output_op(output_op), - ptr_A(const_cast(ptr_A)), - ptr_B(const_cast(ptr_B)), - weight_scales(const_cast(weight_scales)), - ptr_C(const_cast(ptr_C)), - ptr_D(ptr_D), - total_rows_before_expert(total_rows_before_expert), - gemm_n(gemm_n), - gemm_k(gemm_k), - host_problem_sizes(nullptr) { - if (platform::is_same::value || platform::is_same::value) { - assert(weight_scales); - } - } - }; - - // - // Structure for precomputing values in host memory and passing to kernels - // - - /// Parameters structure - struct Params { - typename ProblemVisitor::Params problem_visitor; - int threadblock_count; - - typename EpilogueOutputOp::Params output_op; - - ElementA* ptr_A; - ElementB* ptr_B; - ElementScale* weight_scales; - ElementC* ptr_C; - ElementC* ptr_D; - - // - // Methods - // - - CUTLASS_HOST_DEVICE - Params() : ptr_A(nullptr), ptr_B(nullptr), weight_scales(nullptr), ptr_C(nullptr), ptr_D(nullptr) {} - - CUTLASS_HOST_DEVICE - Params(Arguments const& args, void* workspace = nullptr, int tile_count = 0) - : problem_visitor(args.total_rows_before_expert, args.gemm_n, args.gemm_k, args.problem_count, workspace, - tile_count), - threadblock_count(args.threadblock_count), - output_op(args.output_op), - ptr_A(args.ptr_A), - ptr_B(args.ptr_B), - weight_scales(args.weight_scales), - ptr_C(args.ptr_C), - ptr_D(args.ptr_D) {} - - CUTLASS_HOST_DEVICE - void update(Arguments const& args, void* workspace = nullptr, int tile_count = 0) { - problem_visitor = typename ProblemVisitor::Params(args.total_rows_before_expert, args.gemm_n, args.gemm_k, - args.problem_count, workspace, tile_count); - threadblock_count = args.threadblock_count; - output_op = args.output_op; - ptr_A = args.ptr_A; - ptr_B = args.ptr_B; - weight_scales = args.weight_scales; - ptr_C = args.ptr_C; - ptr_D = args.ptr_D; - } - }; - - /// Shared memory storage structure - union SharedStorage { - typename ProblemVisitor::SharedStorage problem_visitor; - typename Mma::SharedStorage main_loop; - typename Epilogue::SharedStorage epilogue; - }; - - public: - // - // Methods - // - - CUTLASS_DEVICE - MoeFCGemm() {} - - /// Determines whether kernel satisfies alignment - static Status can_implement(cutlass::gemm::GemmCoord const& problem_size) { return Status::kSuccess; } - - static Status can_implement(Arguments const& args) { - if (args.weight_scales != nullptr) { - CUTLASS_TRACE_HOST( - "MoeFCGemm::can_implement() - weight scales are ignored for all types except uint8_t and uint4b_t"); - return Status::kInvalid; - } - return Status::kSuccess; - } - - static size_t get_extra_workspace_size(Arguments const& args, cutlass::gemm::GemmCoord const& grid_tiled_shape) { - return 0; - } - - // The dummy template parameter is not used and exists so that we can compile this code using - // a standard earlier than C++17. Prior to C++17, fully specialized templates HAD to exists in - // a namespace - template - struct KernelRunner { - CUTLASS_DEVICE - static void run_kernel(Params const& params, SharedStorage& shared_storage) { CUTLASS_NOT_IMPLEMENTED(); } - }; - - template - struct KernelRunner { - CUTLASS_DEVICE - static void run_kernel(Params const& params, SharedStorage& shared_storage) { - // - // These types shadow the type-level definitions and support the ability to implement - // a 'transposed' GEMM that computes the transposed problems. - // - using ElementA = typename Mma::IteratorA::Element; - using LayoutA = typename Mma::IteratorA::Layout; - using ElementB = typename Mma::IteratorB::Element; - using LayoutB = typename Mma::IteratorB::Layout; - using ElementC = typename Epilogue::OutputTileIterator::Element; - using LayoutC = typename Epilogue::OutputTileIterator::Layout; - static constexpr int kInterleave = Mma::IteratorB::Shape::kRow / Mma::Shape::kK; - static_assert(platform::is_same::value && kInterleave == 1 || - platform::is_same::value && kInterleave >= 1, - "B must be row major/col major OR col major interleaved."); - - // - // Problem visitor. - // - ProblemVisitor problem_visitor(params.problem_visitor, shared_storage.problem_visitor, blockIdx.x); - - const int64_t gemm_k = params.problem_visitor.gemm_k; - const int64_t gemm_n = params.problem_visitor.gemm_n; - int64_t bytes_per_expert_matrix = (gemm_k * gemm_n / 8) * cutlass::sizeof_bits::value; - - // Outer 'persistent' loop to iterate over tiles - while (problem_visitor.next_tile()) { - GemmCoord problem_size = problem_visitor.problem_size(); - int32_t problem_idx = problem_visitor.problem_index(); - int32_t cta_idx = int32_t(problem_visitor.threadblock_idx()); - - GemmCoord grid_shape = problem_visitor.grid_shape(problem_size); - - cutlass::gemm::GemmCoord threadblock_offset(int(cta_idx / grid_shape.n()) * Mma::Shape::kM, - int(cta_idx % grid_shape.n()) * Mma::Shape::kN, 0); - - // Load element pointers. Exchange pointers and strides if working on the transpose - const int64_t rows_to_jump = - problem_idx == 0 ? 0 : params.problem_visitor.last_row_for_problem[problem_idx - 1]; - ElementA* ptr_A = reinterpret_cast(params.ptr_A) + rows_to_jump * gemm_k; - typename LayoutA::LongIndex ldm_A = gemm_k; - - char* byte_ptr_B = ((char*)params.ptr_B) + problem_idx * bytes_per_expert_matrix; - ElementB* ptr_B = reinterpret_cast(byte_ptr_B); - typename LayoutB::LongIndex ldm_B = - platform::is_same::value ? gemm_n : gemm_k * kInterleave; - - // Compute initial location in logical coordinates - cutlass::MatrixCoord tb_offset_A{ - threadblock_offset.m(), - 0, - }; - - cutlass::MatrixCoord tb_offset_B{0, threadblock_offset.n() / kInterleave}; - - cutlass::MatrixCoord tb_offset_scale{0, threadblock_offset.n()}; - - // Compute position within threadblock - int thread_idx = threadIdx.x; - - // Construct iterators to A and B operands - typename Mma::IteratorA iterator_A(LayoutA(ldm_A), ptr_A, {problem_size.m(), problem_size.k()}, thread_idx, - tb_offset_A); - - typename Mma::IteratorB iterator_B(LayoutB(ldm_B), ptr_B, - {problem_size.k() * kInterleave, problem_size.n() / kInterleave}, thread_idx, - tb_offset_B); - - typename Mma::FragmentC accumulators; - - accumulators.clear(); - - // Broadcast the warp_id computed by lane 0 to ensure dependent code - // is compiled as warp-uniform. - int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0); - - int lane_idx = threadIdx.x % 32; - - // - // Matrix multiply phase - // - - // Construct thread-scoped matrix multiply - Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); - - // Compute threadblock-scoped matrix multiply-add - int gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK; - - // Wait for all threads to finish their epilogue phases from the previous tile. - __syncthreads(); - - // Compute threadblock-scoped matrix multiply-add - ElementScale* weight_scale_ptr = params.weight_scales + problem_idx * problem_size.n(); - run_mma(mma, gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators, weight_scale_ptr, - {1, problem_size.n()}, thread_idx, tb_offset_scale); - - // - // Epilogue - // - - EpilogueOutputOp output_op(params.output_op); - - ElementC* ptr_C = reinterpret_cast(params.ptr_C) + problem_idx * gemm_n; - ElementC* ptr_D = reinterpret_cast(params.ptr_D) + rows_to_jump * gemm_n; - - LayoutC layout_C(0); - LayoutC layout_D(gemm_n); - - typename Epilogue::OutputTileIterator::Params params_C(layout_C); - typename Epilogue::OutputTileIterator::Params params_D(layout_D); - - // Tile iterator loading from source tensor. - typename Epilogue::OutputTileIterator iterator_C(params_C, ptr_C, problem_size.mn(), thread_idx, - threadblock_offset.mn()); - - // Tile iterator writing to destination tensor. - typename Epilogue::OutputTileIterator iterator_D(params_D, ptr_D, problem_size.mn(), thread_idx, - threadblock_offset.mn()); - - Epilogue epilogue(shared_storage.epilogue, thread_idx, warp_idx, lane_idx); - - // Execute the epilogue operator to update the destination tensor. - epilogue(output_op, iterator_D, accumulators, iterator_C); - - // Next tile - problem_visitor.advance(gridDim.x); - } - } - }; - - /* - To improve compilation speed, we do not compile the device operator if the CUDA_ARCH does not correspond - to the ArchTag of the cutlass kernel operator. - */ - /// Executes one GEMM - CUTLASS_DEVICE - void operator()(Params const& params, SharedStorage& shared_storage) { -#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 700) && (__CUDA_ARCH__ < 750) - static constexpr bool compile_needed = platform::is_same::value; - KernelRunner::run_kernel(params, shared_storage); -#elif defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 750) && (__CUDA_ARCH__ < 800) - static constexpr bool compile_needed = platform::is_same::value; - KernelRunner::run_kernel(params, shared_storage); -#elif defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) && (__CUDA_ARCH__ < 900) - static constexpr bool compile_needed = platform::is_same::value; - KernelRunner::run_kernel(params, shared_storage); -#else - CUTLASS_NOT_IMPLEMENTED(); -#endif - } -}; - -///////////////////////////////////////////////////////////////////////////////////////////////// - -} // namespace kernel -} // namespace gemm -} // namespace cutlass - -///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels.h b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels.h index 60608f462fde5..7e29dde8f897b 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels.h +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels.h @@ -16,8 +16,8 @@ #pragma once +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm_configs.h" #include -#include "ft_gemm_configs.h" namespace ort_fastertransformer { @@ -42,8 +42,9 @@ class MoeGemmRunner { int64_t* total_rows_before_expert, int64_t total_rows, int64_t gemm_n, int64_t gemm_k, int num_experts, ActivationType activation_type, cudaStream_t stream); - void moe_gemm(const T* A, const WeightType* B, const T* weight_scales, T* C, int64_t* total_rows_before_expert, - int64_t total_rows, int64_t gemm_n, int64_t gemm_k, int num_experts, cudaStream_t stream); + void moe_gemm(const T* A, const WeightType* B, const T* weight_scales, const T* biases, T* C, + int64_t* total_rows_before_expert, int64_t total_rows, int64_t gemm_n, int64_t gemm_k, int num_experts, + cudaStream_t stream); private: template diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp16_fp16.cu b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp16_fp16.cu index 1d9a249db4237..15cab9dd4a9bf 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp16_fp16.cu +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp16_fp16.cu @@ -13,9 +13,18 @@ * See the License for the specific language governing permissions and * limitations under the License. */ +#if defined(_MSC_VER) +#pragma warning(push) +#pragma warning(disable : 4100) +#pragma warning(disable : 4244) +#pragma warning(disable : 4200) +#endif -#include "moe_gemm_kernels_template.h" +#include "contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_template.h" +#if defined(_MSC_VER) +#pragma warning(pop) +#endif namespace ort_fastertransformer { template class MoeGemmRunner; } // namespace ort_fastertransformer diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp16_uint4.cu b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp16_uint4.cu new file mode 100644 index 0000000000000..1309a7c32a37a --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp16_uint4.cu @@ -0,0 +1,30 @@ +/* + * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#if defined(_MSC_VER) +#pragma warning(push) +#pragma warning(disable : 4100) +#pragma warning(disable : 4244) +#pragma warning(disable : 4200) +#endif + +#include "contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_template.h" + +#if defined(_MSC_VER) +#pragma warning(pop) +#endif +namespace ort_fastertransformer { +template class MoeGemmRunner; +} // namespace ort_fastertransformer diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp32_fp32.cu b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp32_fp32.cu index 7b250e6ca9060..0277fab9df95c 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp32_fp32.cu +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_fp32_fp32.cu @@ -13,8 +13,18 @@ * See the License for the specific language governing permissions and * limitations under the License. */ +#if defined(_MSC_VER) +#pragma warning(push) +#pragma warning(disable : 4100) +#pragma warning(disable : 4244) +#pragma warning(disable : 4200) +#endif -#include "moe_gemm_kernels_template.h" +#include "contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_template.h" + +#if defined(_MSC_VER) +#pragma warning(pop) +#endif namespace ort_fastertransformer { template class MoeGemmRunner; diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_template.h b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_template.h index 66950c9b65970..d81808e217fbc 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_template.h +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_gemm_kernels_template.h @@ -20,21 +20,32 @@ #pragma GCC diagnostic ignored "-Wstrict-aliasing" #endif +// Ignore CUTLASS warning C4100: unreferenced formal parameter +#if defined(_MSC_VER) +#pragma warning(push) +#pragma warning(disable : 4100) +#endif + +#include "cutlass/arch/arch.h" #include "cutlass/array.h" -#include "cutlass/numeric_conversion.h" -#include "cutlass/layout/matrix.h" -#include "cutlass/numeric_types.h" -#include "cutlass/gemm/device/gemm_grouped.h" -#include "cutlass/gemm/kernel/default_gemm_grouped.h" #include "cutlass/cutlass.h" -#include "cutlass/gemm/gemm.h" -#include "cutlass/arch/arch.h" #include "cutlass/epilogue/thread/linear_combination_relu.h" +#include "cutlass/gemm/device/gemm_grouped.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/gemm/kernel/default_gemm_grouped.h" +#include "cutlass/layout/matrix.h" +#include "cutlass/numeric_conversion.h" +#include "cutlass/numeric_types.h" + +#include "contrib_ops/cuda/moe/cutlass_extensions/compute_occupancy.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/epilogue_helpers.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/default_fpA_intB_traits.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/kernel/moe_cutlass_kernel.h" +#include "contrib_ops/cuda/moe/cutlass_extensions/gemm/threadblock/default_mma.h" -#include "compute_occupancy.h" -#include "epilogue_helpers.h" -#include "layout_traits_helper.h" -#include "moe_cutlass_kernel.h" +#if defined(_MSC_VER) +#pragma warning(pop) +#endif #ifdef __GNUC__ #pragma GCC diagnostic pop @@ -57,10 +68,6 @@ void generic_moe_gemm_kernelLauncher(const T* A, const WeightType* B, const T* w int64_t* total_rows_before_expert, int64_t gemm_n, int64_t gemm_k, int num_experts, CutlassGemmConfig gemm_config, const int multi_processor_count, cudaStream_t stream, int* kernel_occupancy = nullptr) { - if (gemm_config.split_k_style != SplitKStyle::NO_SPLIT_K) { - ORT_THROW("[FT Error][MoeGemm] Grouped gemm does not support split-k"); - } - static_assert(cutlass::platform::is_same::value || cutlass::platform::is_same::value, "Specialized for half, float"); @@ -77,10 +84,11 @@ void generic_moe_gemm_kernelLauncher(const T* A, const WeightType* B, const T* w using CutlassWeightType_ = typename cutlass::platform::conditional::value, cutlass::half_t, WeightType>::type; + using CutlassWeightType = CutlassWeightType_; - // We need separate config for each architecture since we will target different tensorcore instructions. For float, - // we do not target TCs. + // We need separate config for each architecture since we will target different tensorcore instructions. For + // float, we do not target TCs. using MixedGemmArchTraits = cutlass::gemm::kernel::MixedGemmArchTraits; using ElementAccumulator = typename MixedGemmArchTraits::AccType; @@ -109,17 +117,17 @@ void generic_moe_gemm_kernelLauncher(const T* A, const WeightType* B, const T* w return; } int occupancy = std::min(2, GemmGrouped::maximum_active_blocks()); - if (occupancy == 0) { - ORT_THROW("[FT Error][MoE Runner] GPU lacks the shared memory resources to run GroupedGEMM kernel"); - } - const int threadblock_count = multi_processor_count * occupancy; + ORT_ENFORCE(occupancy > 0, "GPU lacks the shared memory resources to run GroupedGEMM kernel"); + int const threadblock_count = multi_processor_count * occupancy; - typename EpilogueOp::Params epilogue_op(ElementAccumulator(1.f), ElementAccumulator(0.f)); + typename EpilogueOp::Params epilogue_op(ElementAccumulator(1.f), + biases ? ElementAccumulator(1.f) : ElementAccumulator(0.f)); + int const group_size = gemm_k; typename GemmGrouped::Arguments args( - num_experts, threadblock_count, epilogue_op, reinterpret_cast(A), - reinterpret_cast(B), reinterpret_cast(weight_scales), - reinterpret_cast(biases), reinterpret_cast(C), total_rows_before_expert, gemm_n, + num_experts, threadblock_count, group_size, epilogue_op, reinterpret_cast(A), + reinterpret_cast(B), reinterpret_cast(weight_scales), + reinterpret_cast(biases), reinterpret_cast(C), total_rows_before_expert, gemm_n, gemm_k); GemmGrouped gemm; @@ -149,10 +157,10 @@ void generic_moe_gemm_kernelLauncher(const T* A, const WeightType* B, const T* w template struct dispatch_stages { - static void dispatch(const T* A, const WeightType* B, const T* weight_scales, const T* biases, T* C, - int64_t* total_rows_before_expert, int64_t gemm_n, int64_t gemm_k, int num_experts, - CutlassGemmConfig gemm_config, int multi_processor_count, cudaStream_t stream, - int* occupancy = nullptr) { + static void dispatch(const T* /*A*/, const WeightType* /*B*/, const T* /*weight_scales*/, const T* /*biases*/, + T* /*C*/, int64_t* /*total_rows_before_expert*/, int64_t /*gemm_n*/, int64_t /*gemm_k*/, + int /*num_experts*/, CutlassGemmConfig /*gemm_config*/, int /*multi_processor_count*/, + cudaStream_t /*stream*/, [[maybe_unused]] int* occupancy = nullptr) { std::string err_msg = "Cutlass fpA_intB gemm. Not instantiates for arch " + std::to_string(arch::kMinComputeCapability) + " with stages set to " + std::to_string(Stages); ORT_THROW("[FT Error][dispatch_stages::dispatch] " + err_msg); @@ -221,10 +229,28 @@ template < typename T, typename WeightType, typename arch, typename EpilogueTag, typename std::enable_if::value && std::is_same::value>::type* = nullptr> void dispatch_moe_gemm_to_cutlass(const T* A, const WeightType* B, const T* weight_scales, const T* biases, T* C, - int64_t* total_rows_before_expert, int64_t total_rows, int64_t gemm_n, int64_t gemm_k, - int num_experts, CutlassGemmConfig gemm_config, int sm_version, + int64_t* total_rows_before_expert, int64_t /*total_rows*/, int64_t gemm_n, + int64_t gemm_k, int num_experts, CutlassGemmConfig gemm_config, int /*sm_version*/, int multi_processor_count, cudaStream_t stream, int* occupancy = nullptr) { switch (gemm_config.tile_config) { + case CutlassTileConfig::CtaShape16x128x64_WarpShape16x32x64: + ORT_ENFORCE(arch::kMinComputeCapability >= 75, "Invalid config on Volta"); + if constexpr (arch::kMinComputeCapability >= 75) { + dispatch_gemm_config, + cutlass::gemm::GemmShape<16, 32, 64>>( + A, B, weight_scales, biases, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, gemm_config, + multi_processor_count, stream, occupancy); + } + break; + case CutlassTileConfig::CtaShape16x256x64_WarpShape16x64x64: + ORT_ENFORCE(arch::kMinComputeCapability >= 75, "Invalid config on Volta"); + if constexpr (arch::kMinComputeCapability >= 75) { + dispatch_gemm_config, + cutlass::gemm::GemmShape<16, 64, 64>>( + A, B, weight_scales, biases, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, gemm_config, + multi_processor_count, stream, occupancy); + } + break; case CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64: dispatch_gemm_config, cutlass::gemm::GemmShape<32, 32, 64>>(A, B, weight_scales, biases, C, @@ -244,13 +270,13 @@ void dispatch_moe_gemm_to_cutlass(const T* A, const WeightType* B, const T* weig gemm_config, multi_processor_count, stream, occupancy); break; case CutlassTileConfig::Undefined: - ORT_THROW("[FT Error][dispatch_moe_gemm_to_cutlass] gemm config undefined."); + ORT_THROW("GEMM config undefined."); break; case CutlassTileConfig::ChooseWithHeuristic: - ORT_THROW("[FT Error][dispatch_moe_gemm_to_cutlass] gemm config should have already been set by heuristic."); + ORT_THROW("GEMM config should have already been set by heuristic."); break; default: - ORT_THROW("[FT Error][dispatch_moe_gemm_to_cutlass] Config is invalid for same type MoE tensorop GEMM."); + ORT_THROW("Config is invalid for same type tensorop GEMM."); break; } } @@ -300,8 +326,8 @@ void dispatch_moe_gemm_to_cutlass(const T* A, const WeightType* B, const T* weig template ::value>::type* = nullptr> void dispatch_moe_gemm_to_cutlass(const T* A, const WeightType* B, const T* weight_scales, const T* biases, T* C, - int64_t* total_rows_before_expert, int64_t total_rows, int64_t gemm_n, int64_t gemm_k, - int num_experts, CutlassGemmConfig gemm_config, int sm_version, + int64_t* total_rows_before_expert, int64_t /*total_rows*/, int64_t gemm_n, + int64_t gemm_k, int num_experts, CutlassGemmConfig gemm_config, int /*sm_version*/, int multi_processor_count, cudaStream_t stream, int* occupancy = nullptr) { switch (gemm_config.tile_config) { case CutlassTileConfig::CtaShape128x128x8_WarpShape64x64x8: @@ -393,20 +419,20 @@ void MoeGemmRunner::moe_gemm_bias_act(const T* A, const WeightTyp cudaStream_t stream) { switch (activation_type) { case ActivationType::Relu: - run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, gemm_k, - num_experts, stream); + run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, + gemm_k, num_experts, stream); break; case ActivationType::Gelu: - run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, - gemm_k, num_experts, stream); + run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, + gemm_k, num_experts, stream); break; case ActivationType::Silu: - run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, gemm_k, - num_experts, stream); + run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, + gemm_k, num_experts, stream); break; case ActivationType::Identity: - run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, gemm_k, - num_experts, stream); + run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, gemm_k, + num_experts, stream); break; case ActivationType::InvalidType: ORT_THROW("[FT Error][MoE Runner] Invalid activation type for MoE GEMM"); @@ -418,11 +444,11 @@ void MoeGemmRunner::moe_gemm_bias_act(const T* A, const WeightTyp } template -void MoeGemmRunner::moe_gemm(const T* A, const WeightType* B, const T* weight_scales, T* C, - int64_t* total_rows_before_expert, int64_t total_rows, int64_t gemm_n, +void MoeGemmRunner::moe_gemm(const T* A, const WeightType* B, const T* weight_scales, const T* biases, + T* C, int64_t* total_rows_before_expert, int64_t total_rows, int64_t gemm_n, int64_t gemm_k, int num_experts, cudaStream_t stream) { - run_gemm(A, B, weight_scales, nullptr, C, total_rows_before_expert, total_rows, gemm_n, gemm_k, - num_experts, stream); + run_gemm(A, B, weight_scales, biases, C, total_rows_before_expert, total_rows, gemm_n, gemm_k, + num_experts, stream); } } // namespace ort_fastertransformer diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_kernel.cu b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_kernel.cu index f4f2b49032d23..360c0aacd9c7a 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_kernel.cu +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_kernel.cu @@ -16,11 +16,11 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. +#include #include #include #include #include -#include // Ignore CUTLASS warnings about type punning #ifdef __GNUC__ @@ -30,7 +30,6 @@ #include "cutlass/array.h" #include "cutlass/numeric_conversion.h" -#include "cutlass/numeric_types.h" #ifdef __GNUC__ #pragma GCC diagnostic pop @@ -49,7 +48,6 @@ #endif namespace ort_fastertransformer { - static constexpr int WARP_SIZE = 32; // ====================== Softmax things =============================== @@ -108,14 +106,15 @@ __launch_bounds__(TPB) __global__ #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 530 template -__launch_bounds__(TPB) __global__ void moe_top_k(const T*, const bool*, T*, int*, int*, int, const int) { +__launch_bounds__(TPB) __global__ void moe_top_k(const T*, const bool*, T*, int*, int*, int, int, bool) { // Does not support pre-Kepler architectures ; } #else template -__launch_bounds__(TPB) __global__ void moe_top_k(const T* inputs_after_softmax, const bool* finished, T* output, - int* indices, int* source_rows, int num_experts, int k) { +__launch_bounds__(TPB) __global__ + void moe_top_k(const T* inputs_after_softmax, const bool* finished, T* output, int* indices, int* source_rows, + int num_experts, int k, bool normalize_routing_weights) { using cub_kvp = cub::KeyValuePair; using BlockReduce = cub::BlockReduce; __shared__ typename BlockReduce::TempStorage tmpStorage; @@ -128,6 +127,7 @@ __launch_bounds__(TPB) __global__ void moe_top_k(const T* inputs_after_softmax, const bool should_process_row = finished ? !finished[block_row] : true; const int thread_read_offset = blockIdx.x * num_experts; + float output_row_sum = 0.f; for (int k_idx = 0; k_idx < k; ++k_idx) { thread_kvp.key = 0; thread_kvp.value = T(-1.f); // This is OK because inputs are probabilities @@ -155,6 +155,13 @@ __launch_bounds__(TPB) __global__ void moe_top_k(const T* inputs_after_softmax, output[idx] = result_kvp.value; indices[idx] = should_process_row ? result_kvp.key : num_experts; source_rows[idx] = k_idx * num_rows + block_row; + + if (normalize_routing_weights && k_idx == k - 1) { +#pragma unroll + for (int ki = 0; ki < k; ++ki) { + output[idx - ki] = T(static_cast(output[idx - ki]) / output_row_sum); + } + } } __syncthreads(); } @@ -178,7 +185,7 @@ __launch_bounds__(TPB) __global__ void moe_top_k(const T* inputs_after_softmax, template __launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__ void topk_gating_softmax(const T* input, const bool* finished, T* output, int num_rows, int* indices, - int* source_rows, int k) { + int* source_rows, int k, bool normalize_routing_weights) { // We begin by enforcing compile time assertions and setting up compile time constants. static_assert(VPT == (VPT & -VPT), "VPT must be power of 2"); static_assert(NUM_EXPERTS == (NUM_EXPERTS & -NUM_EXPERTS), "NUM_EXPERTS must be power of 2"); @@ -296,6 +303,7 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__ int start_col = first_elt_read_by_thread; static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW; + float output_row_sum = 0.f; for (int k_idx = 0; k_idx < k; ++k_idx) { // First, each thread does the local argmax float max_val = row_chunk[0]; @@ -336,8 +344,16 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__ // single) thread per row of the input/output matrices. const int idx = k * thread_row + k_idx; output[idx] = T(max_val); + output_row_sum = output_row_sum + static_cast(max_val); indices[idx] = should_process_row ? expert : NUM_EXPERTS; source_rows[idx] = k_idx * num_rows + thread_row; + + if (normalize_routing_weights && k_idx == k - 1) { +#pragma unroll + for (int ki = 0; ki < k; ++ki) { + output[idx - ki] = T(static_cast(output[idx - ki]) / output_row_sum); + } + } } // Finally, we clear the value in the thread with the current max if there is another iteration to run. @@ -370,7 +386,8 @@ struct TopkConstants { template void topk_gating_softmax_launcher_helper(const T* input, const bool* finished, T* output, int* indices, int* source_row, - int num_rows, int num_experts, int k, cudaStream_t stream) { + int num_rows, int /*num_experts*/, int k, bool normalize_routing_weights, + cudaStream_t stream) { static constexpr unsigned long MAX_BYTES_PER_LDG = 16; static constexpr int BYTES_PER_LDG = std::min((int)MAX_BYTES_PER_LDG, (int)sizeof(T) * EXPERTS); @@ -381,62 +398,62 @@ void topk_gating_softmax_launcher_helper(const T* input, const bool* finished, T const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB; dim3 block_dim(WARP_SIZE, WARPS_PER_TB); - topk_gating_softmax - <<>>(input, finished, output, num_rows, indices, source_row, k); + topk_gating_softmax<<>>( + input, finished, output, num_rows, indices, source_row, k, normalize_routing_weights); } template void topk_gating_softmax_kernelLauncher(const T* input, const bool* finished, T* output, T* softmax_temp_output, - int* indices, int* source_row, int num_rows, int num_experts, - int k, cudaStream_t stream) { + int* indices, int* source_row, int num_rows, int num_experts, int k, + bool normalize_routing_weights, cudaStream_t stream) { static constexpr int WARPS_PER_TB = 4; switch (num_experts) { case 2: { topk_gating_softmax_launcher_helper(input, finished, output, indices, source_row, num_rows, - num_experts, k, stream); + num_experts, k, normalize_routing_weights, stream); break; } case 4: { topk_gating_softmax_launcher_helper(input, finished, output, indices, source_row, num_rows, - num_experts, k, stream); + num_experts, k, normalize_routing_weights, stream); break; } case 8: { topk_gating_softmax_launcher_helper(input, finished, output, indices, source_row, num_rows, - num_experts, k, stream); + num_experts, k, normalize_routing_weights, stream); break; } case 16: { topk_gating_softmax_launcher_helper(input, finished, output, indices, source_row, num_rows, - num_experts, k, stream); + num_experts, k, normalize_routing_weights, stream); break; } case 32: { topk_gating_softmax_launcher_helper(input, finished, output, indices, source_row, num_rows, - num_experts, k, stream); + num_experts, k, normalize_routing_weights, stream); break; } case 64: { topk_gating_softmax_launcher_helper(input, finished, output, indices, source_row, num_rows, - num_experts, k, stream); + num_experts, k, normalize_routing_weights, stream); break; } case 128: { topk_gating_softmax_launcher_helper(input, finished, output, indices, source_row, num_rows, - num_experts, k, stream); + num_experts, k, normalize_routing_weights, stream); break; } case 256: { topk_gating_softmax_launcher_helper(input, finished, output, indices, source_row, num_rows, - num_experts, k, stream); + num_experts, k, normalize_routing_weights, stream); break; } default: { static constexpr int TPB = 256; moe_softmax<<>>(input, finished, softmax_temp_output, num_experts); - moe_top_k - <<>>(softmax_temp_output, finished, output, indices, source_row, num_experts, k); + moe_top_k<<>>(softmax_temp_output, finished, output, indices, source_row, + num_experts, k, normalize_routing_weights); } } } @@ -503,8 +520,8 @@ __global__ void compute_total_rows_before_expert_kernel(const int* sorted_expert total_rows_before_expert[expert] = find_total_elts_leq_target(sorted_experts, sorted_experts_len, expert); } -__global__ void dispatch_activations_kernel(int64_t* total_rows_before_expert, int num_experts, - int local_num_experts, int local_experts_start_index) { +__global__ void dispatch_activations_kernel(int64_t* total_rows_before_expert, int num_experts, int local_num_experts, + int local_experts_start_index) { const int expert = blockIdx.x * blockDim.x + threadIdx.x; const int local_experts_end_index = local_experts_start_index + local_num_experts - 1; @@ -521,25 +538,30 @@ __global__ void dispatch_activations_kernel(int64_t* total_rows_before_expert, i } template -CutlassMoeFCRunner::CutlassMoeFCRunner(int sm_version) { - total_past_rows_ = 0; - total_covered_rows_ = 0; +CutlassMoeFCRunner::CutlassMoeFCRunner(int sm_version, bool has_fc3, + bool normalize_routing_weights) + : has_fc3_(has_fc3), + total_past_rows_(0), + total_covered_rows_(0), + normalize_routing_weights_(normalize_routing_weights) { moe_gemm_runner_.initialize(sm_version); } template -size_t CutlassMoeFCRunner::getWorkspaceSize(int num_rows, const int hidden_size, - const int inter_size, int num_experts, - int k) { - const int buf_size = static_cast(pad_to_multiple_of_16(k * num_rows * hidden_size)); - const int interbuf_size = static_cast(pad_to_multiple_of_16(k * num_rows * inter_size)); - const int padded_experts = static_cast(pad_to_multiple_of_16(num_experts)); - const int num_moe_inputs = static_cast(pad_to_multiple_of_16(k * num_rows)); - int num_softmax_outs = 0; +size_t CutlassMoeFCRunner::getWorkspaceSize(size_t num_rows, const size_t hidden_size, + const size_t inter_size, size_t num_experts, + size_t k) { + total_covered_rows_ = k * num_rows; + + const size_t buf_size = pad_to_multiple_of_16(k * num_rows * hidden_size); + const size_t interbuf_size = pad_to_multiple_of_16(k * num_rows * inter_size); + const size_t padded_experts = pad_to_multiple_of_16(num_experts); + const size_t num_moe_inputs = pad_to_multiple_of_16(k * num_rows); + size_t num_softmax_outs = 0; const bool is_pow_2 = (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0); if (!is_pow_2 || num_experts > 256) { - num_softmax_outs = static_cast(pad_to_multiple_of_16(num_rows * num_experts)); + num_softmax_outs = pad_to_multiple_of_16(num_rows * num_experts); } // softmax output, permuted_rows and permuted_experts have moved to outside of moe kernel, allocate them @@ -548,13 +570,13 @@ size_t CutlassMoeFCRunner::getWorkspaceSize(int num_rows, total_ws_bytes += buf_size * sizeof(T); // permuted_data total_ws_bytes += padded_experts * sizeof(int64_t); // Hold total_rows_before_expert_ total_ws_bytes += num_softmax_outs * sizeof(T); - const int bytes_for_fc1_result = interbuf_size * sizeof(T); - const int sorter_ws_size_bytes = static_cast(pad_to_multiple_of_16(sorter_.getWorkspaceSize(num_rows))); - sorter_.update_num_experts(num_experts); + const size_t bytes_for_fc1_result = has_fc3_ ? 2 * interbuf_size * sizeof(T) : interbuf_size * sizeof(T); + const size_t sorter_ws_size_bytes = pad_to_multiple_of_16(sorter_.getWorkspaceSize(num_rows)); + sorter_.update_num_experts(static_cast(num_experts)); - int bytes_for_intermediate_and_sorting = bytes_for_fc1_result; + size_t bytes_for_intermediate_and_sorting = bytes_for_fc1_result; if (sorter_ws_size_bytes > bytes_for_fc1_result) { - int remaining_bytes = static_cast(pad_to_multiple_of_16(sorter_ws_size_bytes - bytes_for_fc1_result)); + size_t remaining_bytes = pad_to_multiple_of_16(sorter_ws_size_bytes - bytes_for_fc1_result); bytes_for_intermediate_and_sorting += remaining_bytes; } @@ -563,39 +585,140 @@ size_t CutlassMoeFCRunner::getWorkspaceSize(int num_rows, } template -void CutlassMoeFCRunner::configure_ws_ptrs(char* ws_ptr, int num_rows, - const int hidden_size, const int inter_size, - int num_experts, int k) { - const int buf_size = static_cast(pad_to_multiple_of_16(k * num_rows * hidden_size)); - const int interbuf_size = static_cast(pad_to_multiple_of_16(k * num_rows * inter_size)); - const int padded_experts = static_cast(pad_to_multiple_of_16(num_experts)); - const int num_moe_inputs = static_cast(pad_to_multiple_of_16(k * num_rows)); - - source_rows_ = (int*)ws_ptr; +void CutlassMoeFCRunner::configure_ws_ptrs(char* ws_ptr, size_t num_rows, + const size_t hidden_size, const size_t inter_size, + size_t num_experts, size_t k) { + const size_t buf_size = pad_to_multiple_of_16(k * num_rows * hidden_size); + const size_t interbuf_size = pad_to_multiple_of_16(k * num_rows * inter_size); + const size_t padded_experts = pad_to_multiple_of_16(num_experts); + const size_t num_moe_inputs = pad_to_multiple_of_16(k * num_rows); + + source_rows_ = reinterpret_cast(ws_ptr); permuted_rows_ = source_rows_ + num_moe_inputs; permuted_experts_ = permuted_rows_ + num_moe_inputs; - permuted_data_ = (T*)(permuted_experts_ + num_moe_inputs); + permuted_data_ = reinterpret_cast(permuted_experts_ + num_moe_inputs); - total_rows_before_expert_ = (int64_t*)(permuted_data_ + buf_size); + total_rows_before_expert_ = reinterpret_cast(permuted_data_ + buf_size); - fc1_result_ = (T*)(total_rows_before_expert_ + padded_experts); + if (has_fc3_) { + fc3_result_ = reinterpret_cast(total_rows_before_expert_ + padded_experts); + fc1_result_ = reinterpret_cast(fc3_result_ + interbuf_size); + } else { + fc1_result_ = reinterpret_cast(total_rows_before_expert_ + padded_experts); + } const bool is_pow_2 = (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0); if (!is_pow_2 || num_experts > 256) { - softmax_out_ = (T*)(fc1_result_ + interbuf_size); + softmax_out_ = reinterpret_cast(fc1_result_ + interbuf_size); } else { softmax_out_ = nullptr; } } +namespace { + +struct __align__(8) Half4 { + half2 x; + half2 y; +}; + +// TODO(wy): move to common header +template +struct T4; +template <> +struct T4 { + using Type = float4; +}; +template <> +struct T4 { + using Type = Half4; +}; + +template +struct T2; +template <> +struct T2 { + using Type = float2; +}; +template <> +struct T2 { + using Type = half2; +}; + +inline __device__ float2 operator*(const float2 a, const float2 b) { return make_float2(a.x * b.x, a.y * b.y); } + +inline __device__ float4 operator*(const float4 a, const float4 b) { + return make_float4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); +} + +// TODO(wy): use cuda common header and investigate pipeline build issue. +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 530 && \ + ((__CUDACC_VER_MAJOR__ < 12) || ((__CUDACC_VER_MAJOR__ == 12) && (__CUDACC_VER_MINOR__ < 2))) +inline __device__ half operator*(const half a, const half b) { + return __float2half(__half2float(a) * __half2float(b)); +} + +inline __device__ half2 operator*(const half2 a, const half2 b) { + return make_half2(a.x * b.x, a.y * b.y); +} +#endif + +// TODO(wy): use cuda common header and investigate pipeline build issue. +inline __device__ Half4 operator*(const Half4 a, const Half4 b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 530 && \ + ((__CUDACC_VER_MAJOR__ < 12) || ((__CUDACC_VER_MAJOR__ == 12) && (__CUDACC_VER_MINOR__ < 2))) + Half4 result; + result.x = a.x * b.x; + result.y = a.y * b.y; + return result; +#else + return Half4{__hmul2(a.x, b.x), __hmul2(a.y, b.y)}; +#endif +} + +} // anonymous namespace + +template +__global__ void elementWiseMulKernel(T* output, T const* input, size_t inter_size) { + int const tid = threadIdx.x; + int const token = blockIdx.x; + + output = output + token * inter_size; + input = input + token * inter_size; + for (int i = tid; i < inter_size; i += blockDim.x) { + T fc1_value = input[i]; + output[i] = fc1_value * output[i]; + } +} + +template +void elementWiseMul(T* output, T const* input, int inter_size, int num_tokens, cudaStream_t stream) { + int const blocks = num_tokens; + + if (inter_size & 3 == 0) { + using vec_type = typename T4::Type; + int const threads = std::min(inter_size / 4, 1024); + elementWiseMulKernel<<>>( + reinterpret_cast(output), reinterpret_cast(input), inter_size / 4); + } else if (inter_size & 1 == 0) { + using vec_type = typename T2::Type; + int const threads = std::min(inter_size / 2, 1024); + elementWiseMulKernel<<>>( + reinterpret_cast(output), reinterpret_cast(input), inter_size / 2); + } else { + int const threads = std::min(inter_size, 1024); + elementWiseMulKernel<<>>(output, input, inter_size); + } +} + template void CutlassMoeFCRunner::run_moe_fc( const T* input_activations, const T* gating_output, const WeightType* fc1_expert_weights, const T* fc1_scales, - const T* fc1_expert_biases, ActivationType fc1_activation_type, const WeightType* fc2_expert_weights, - const T* fc2_scales, int num_rows, const int hidden_size, const int inter_size, int num_experts, - int local_num_experts, int local_experts_start_index, int k, char* workspace_ptr, T* fc2_result, - const bool* finished, int active_rows, T* expert_scales, int* expanded_source_row_to_expanded_dest_row, - int* expert_for_source_row, cudaStream_t stream) { + const T* fc1_expert_biases, ActivationType fc1_activation_type, const WeightType* fc3_expert_weights, + const T* fc3_scales, const T* fc3_expert_biases, const WeightType* fc2_expert_weights, const T* fc2_scales, + int num_rows, const int hidden_size, const int inter_size, int num_experts, int local_num_experts, + int local_experts_start_index, int k, char* workspace_ptr, T* fc2_result, const bool* finished, int active_rows, + T* expert_scales, int* expanded_source_row_to_expanded_dest_row, int* expert_for_source_row, cudaStream_t stream) { static constexpr bool scales_required = std::is_same::value || std::is_same::value; @@ -613,13 +736,14 @@ void CutlassMoeFCRunner::run_moe_fc( } } - configure_ws_ptrs(workspace_ptr, num_rows, hidden_size, inter_size, num_experts, k); + configure_ws_ptrs(workspace_ptr, static_cast(num_rows), static_cast(hidden_size), + static_cast(inter_size), static_cast(num_experts), static_cast(k)); topk_gating_softmax_kernelLauncher(gating_output, finished, expert_scales, softmax_out_, expert_for_source_row, - source_rows_, num_rows, num_experts, k, stream); + source_rows_, num_rows, num_experts, k, normalize_routing_weights_, stream); const int sorter_ws_size_bytes = static_cast(pad_to_multiple_of_16(sorter_.getWorkspaceSize(k * num_rows))); - sorter_.run((void*)fc1_result_, sorter_ws_size_bytes, expert_for_source_row, permuted_experts_, source_rows_, - permuted_rows_, k * num_rows, stream); + sorter_.run(reinterpret_cast(fc1_result_), sorter_ws_size_bytes, expert_for_source_row, permuted_experts_, + source_rows_, permuted_rows_, k * num_rows, stream); initialize_moe_routing_kernelLauncher(input_activations, permuted_data_, permuted_rows_, expanded_source_row_to_expanded_dest_row, num_rows, active_rows, hidden_size, k, @@ -633,33 +757,63 @@ void CutlassMoeFCRunner::run_moe_fc( dispatch_activations(total_rows_before_expert_, num_experts, local_num_experts, local_experts_start_index, stream); } - // expanded_active_expert_rows is not used - moe_gemm_runner_.moe_gemm_bias_act(permuted_data_ + total_past_rows_ * hidden_size, - fc1_expert_weights, fc1_scales, fc1_expert_biases, - fc1_result_ + total_past_rows_ * inter_size, - total_rows_before_expert_ + local_experts_start_index, - expanded_active_expert_rows, inter_size, hidden_size, - local_num_experts, fc1_activation_type, stream); + moe_gemm_runner_.moe_gemm_bias_act(permuted_data_ + total_past_rows_ * hidden_size, fc1_expert_weights, fc1_scales, + fc1_expert_biases, fc1_result_ + total_past_rows_ * inter_size, + total_rows_before_expert_ + local_experts_start_index, expanded_active_expert_rows, + inter_size, hidden_size, local_num_experts, fc1_activation_type, stream); - moe_gemm_runner_.moe_gemm(fc1_result_ + total_past_rows_ * inter_size, - fc2_expert_weights, fc2_scales, + if (has_fc3_) { + if (scales_required) { + if (fc3_scales == nullptr) { + ORT_THROW("[FT Error][Run MoE FC] Scales expected but scale for third matmul is a null pointer"); + } + } else { + if (fc3_scales != nullptr) { + ORT_THROW("[FT Error][Run MoE FC] Scales are ignored for fp32/fp16/bf16 but received scale for FC3"); + } + } + if (fc3_expert_weights == nullptr) { + ORT_THROW("[FT Error][Run MoE FC] FC3 weights are null"); + } + moe_gemm_runner_.moe_gemm(permuted_data_ + total_past_rows_ * hidden_size, fc3_expert_weights, fc3_scales, + fc3_expert_biases, fc3_result_ + total_past_rows_ * inter_size, + total_rows_before_expert_ + local_experts_start_index, expanded_active_expert_rows, + inter_size, hidden_size, local_num_experts, stream); + + elementWiseMul(fc1_result_ + total_past_rows_ * inter_size, fc3_result_ + total_past_rows_ * inter_size, + static_cast(inter_size), static_cast(total_covered_rows_), stream); + } + + moe_gemm_runner_.moe_gemm(fc1_result_ + total_past_rows_ * inter_size, fc2_expert_weights, fc2_scales, nullptr, fc2_result + total_past_rows_ * hidden_size, - total_rows_before_expert_ + local_experts_start_index, - expanded_active_expert_rows, hidden_size, inter_size, local_num_experts, stream); + total_rows_before_expert_ + local_experts_start_index, expanded_active_expert_rows, + hidden_size, inter_size, local_num_experts, stream); } +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700 +template +void CutlassMoeFCRunner::run_moe_fc(const T*, const T*, const WeightType*, const T*, const T*, + ActivationType, const WeightType*, const T*, const T*, + const WeightType*, const T*, int, const int, const int, int, + int, int, int k, char*, T*, T*, int*, int*, cudaStream_t) { + // MoE gemm only supports Volta+ architectures + ORT_THROW("[FT Error][Run MoE FC] MoE gemm only supports Volta+ architectures"); +} +#else template void CutlassMoeFCRunner::run_moe_fc( const T* input_activations, const T* gating_output, const WeightType* fc1_expert_weights, const T* fc1_scales, - const T* fc1_expert_biases, ActivationType fc1_activation_type, const WeightType* fc2_expert_weights, - const T* fc2_scales, int num_rows, const int hidden_size, const int inter_size, int num_experts, - int local_num_experts, int local_experts_start_index, int k, char* workspace_ptr, T* fc2_result, T* expert_scales, + const T* fc1_expert_biases, ActivationType fc1_activation_type, const WeightType* fc3_expert_weights, + const T* fc3_scales, const T* fc3_expert_biases, const WeightType* fc2_expert_weights, const T* fc2_scales, + int num_rows, const int hidden_size, const int inter_size, int num_experts, int local_num_experts, + int local_experts_start_index, int k, char* workspace_ptr, T* fc2_result, T* expert_scales, int* expanded_source_row_to_expanded_dest_row, int* expert_for_source_row, cudaStream_t stream) { run_moe_fc(input_activations, gating_output, fc1_expert_weights, fc1_scales, fc1_expert_biases, fc1_activation_type, - fc2_expert_weights, fc2_scales, num_rows, hidden_size, inter_size, num_experts, local_num_experts, - local_experts_start_index, k, workspace_ptr, fc2_result, nullptr, num_rows, expert_scales, - expanded_source_row_to_expanded_dest_row, expert_for_source_row, stream); + fc3_expert_weights, fc3_scales, fc3_expert_biases, fc2_expert_weights, fc2_scales, num_rows, hidden_size, + inter_size, num_experts, local_num_experts, local_experts_start_index, k, workspace_ptr, fc2_result, + nullptr, num_rows, expert_scales, expanded_source_row_to_expanded_dest_row, expert_for_source_row, stream); } +#endif template void CutlassMoeFCRunner::compute_total_rows_before_expert(const int* sorted_indices, @@ -675,8 +829,8 @@ void CutlassMoeFCRunner::compute_total_rows_before_expert } template -void CutlassMoeFCRunner::dispatch_activations(int64_t* total_rows_before_expert, - int num_experts, int local_num_experts, +void CutlassMoeFCRunner::dispatch_activations(int64_t* total_rows_before_expert, int num_experts, + int local_num_experts, int local_experts_start_index, cudaStream_t stream) { total_rows_before_expert_host_.resize(num_experts); @@ -690,16 +844,15 @@ void CutlassMoeFCRunner::dispatch_activations(int64_t* to cudaEventCreateWithFlags(©_event, cudaEventDisableTiming); cudaEventRecord(copy_event, stream); - dispatch_activations_kernel<<>>(total_rows_before_expert, num_experts, - local_num_experts, local_experts_start_index); + dispatch_activations_kernel<<>>(total_rows_before_expert, num_experts, local_num_experts, + local_experts_start_index); get_total_rows_info(local_experts_start_index, local_num_experts, total_past_rows_, total_covered_rows_); } template void CutlassMoeFCRunner::get_total_rows_info(int64_t experts_start_index, - int64_t local_num_experts, - int64_t& total_past_rows, + int64_t local_num_experts, int64_t& total_past_rows, int64_t& total_covered_rows) { int64_t experts_end_index = experts_start_index + local_num_experts - 1; total_past_rows = 0; @@ -756,8 +909,8 @@ __global__ void initialize_moe_routing_kernel(const T* unpermuted_input, T* perm template void initialize_moe_routing_kernelLauncher(const T* unpermuted_input, T* permuted_output, const int* expanded_dest_row_to_expanded_source_row, - int* expanded_source_row_to_expanded_dest_row, int num_rows, - int active_rows, int cols, int k, cudaStream_t stream) { + int* expanded_source_row_to_expanded_dest_row, int num_rows, int active_rows, + int cols, int k, cudaStream_t stream) { const int blocks = num_rows * k; const int threads = std::min(cols, 1024); initialize_moe_routing_kernel @@ -811,9 +964,10 @@ __global__ void finalize_moe_routing_kernel(const T* expanded_permuted_rows, T* const T* expanded_permuted_rows_row_ptr = expanded_permuted_rows + expanded_permuted_row * cols; const int expert_idx = expert_for_source_row[k_offset]; - const T* bias_ptr = bias + expert_idx * cols; + const T* bias_ptr = bias ? bias + expert_idx * cols : nullptr; - thread_output = thread_output + row_scale * (expanded_permuted_rows_row_ptr[tid] + bias_ptr[tid]); + thread_output = + thread_output + row_scale * (expanded_permuted_rows_row_ptr[tid] + (bias_ptr ? bias_ptr[tid] : T(0))); } reduced_row_ptr[tid] = thread_output; } @@ -823,8 +977,8 @@ __global__ void finalize_moe_routing_kernel(const T* expanded_permuted_rows, T* template void finalize_moe_routing_kernelLauncher(const T* expanded_permuted_rows, T* reduced_unpermuted_output, const T* bias, const T* scales, const int* expanded_source_row_to_expanded_dest_row, - const int* expert_for_source_row, int num_rows, int cols, - int k, cudaStream_t stream) { + const int* expert_for_source_row, int num_rows, int cols, int k, + cudaStream_t stream) { const int blocks = num_rows; const int threads = std::min(cols, 1024); finalize_moe_routing_kernel<<>>( @@ -836,8 +990,8 @@ template void finalize_moe_routing_kernelLauncher(const T* expanded_permuted_rows, T* reduced_unpermuted_output, const T* skip, const T* bias, const T* scales, const int* expanded_source_row_to_expanded_dest_row, - const int* expert_for_source_row, int num_rows, int cols, - int k, cudaStream_t stream) { + const int* expert_for_source_row, int num_rows, int cols, int k, + cudaStream_t stream) { const int blocks = num_rows; const int threads = std::min(cols, 1024); finalize_moe_routing_kernel @@ -849,8 +1003,8 @@ template void finalize_moe_routing_kernelLauncher(const T* expanded_permuted_rows, T* reduced_unpermuted_output, const T* skip_1, const T* skip_2, const T* bias, const T* scales, const int* expanded_source_row_to_expanded_dest_row, - const int* expert_for_source_row, int num_rows, int cols, - int k, cudaStream_t stream) { + const int* expert_for_source_row, int num_rows, int cols, int k, + cudaStream_t stream) { const int blocks = num_rows; const int threads = std::min(cols, 1024); if (skip_2 == nullptr) { @@ -865,20 +1019,21 @@ void finalize_moe_routing_kernelLauncher(const T* expanded_permuted_rows, T* red } // ========================= TopK Softmax specializations =========================== -template void topk_gating_softmax_kernelLauncher(const float*, const bool*, float*, float*, int*, int*, int, - int, int, cudaStream_t); -template void topk_gating_softmax_kernelLauncher(const half*, const bool*, half*, half*, int*, int*, int, - int, int, cudaStream_t); +template void topk_gating_softmax_kernelLauncher(const float*, const bool*, float*, float*, int*, int*, int, int, int, + bool, cudaStream_t); +template void topk_gating_softmax_kernelLauncher(const half*, const bool*, half*, half*, int*, int*, int, int, int, + bool, cudaStream_t); // ==================== Variable batched GEMM specializations ================================== template class CutlassMoeFCRunner; template class CutlassMoeFCRunner; +template class CutlassMoeFCRunner; // ===================== Specializations for init routing ========================= -template void initialize_moe_routing_kernelLauncher(const float*, float*, const int*, int*, int, int, - int, int, cudaStream_t); -template void initialize_moe_routing_kernelLauncher(const half*, half*, const int*, int*, int, int, - int, int, cudaStream_t); +template void initialize_moe_routing_kernelLauncher(const float*, float*, const int*, int*, int, int, int, int, + cudaStream_t); +template void initialize_moe_routing_kernelLauncher(const half*, half*, const int*, int*, int, int, int, int, + cudaStream_t); // ==================== Specializations for final routing =================================== template void finalize_moe_routing_kernelLauncher(const float*, float*, const float*, const float*, const int*, @@ -886,15 +1041,12 @@ template void finalize_moe_routing_kernelLauncher(const float*, float*, const fl template void finalize_moe_routing_kernelLauncher(const half*, half*, const half*, const half*, const int*, const int*, int, int, int, cudaStream_t); template void finalize_moe_routing_kernelLauncher(const float*, float*, const float*, const float*, const float*, - const int*, const int*, int, int, int, - cudaStream_t); + const int*, const int*, int, int, int, cudaStream_t); template void finalize_moe_routing_kernelLauncher(const half*, half*, const half*, const half*, const half*, const int*, const int*, int, int, int, cudaStream_t); template void finalize_moe_routing_kernelLauncher(const float*, float*, const float*, const float*, const float*, - const float*, const int*, const int*, int, int, int, - cudaStream_t); + const float*, const int*, const int*, int, int, int, cudaStream_t); template void finalize_moe_routing_kernelLauncher(const half*, half*, const half*, const half*, const half*, - const half*, const int*, const int*, int, int, int, - cudaStream_t); + const half*, const int*, const int*, int, int, int, cudaStream_t); } // namespace ort_fastertransformer diff --git a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_kernel.h b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_kernel.h index 5cc2a3f79f003..5eef6f95f4820 100644 --- a/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_kernel.h +++ b/onnxruntime/contrib_ops/cuda/moe/ft_moe/moe_kernel.h @@ -24,6 +24,8 @@ #include "core/common/common.h" #include "contrib_ops/cuda/bert/transformer_cuda_common.h" +#include "cutlass/numeric_types.h" + using namespace onnxruntime; namespace ort_fastertransformer { @@ -107,12 +109,13 @@ template class CutlassMoeFCRunner { public: - CutlassMoeFCRunner(int sm_version); + CutlassMoeFCRunner(int sm_version, bool has_fc3, bool normalize_routing_weights); - size_t getWorkspaceSize(int num_rows, int hidden_size, int inter_size, int num_experts, int k); + size_t getWorkspaceSize(size_t num_rows, size_t hidden_size, size_t inter_size, size_t num_experts, size_t k); void run_moe_fc(const T* input_activations, const T* gating_output, const WeightType* fc1_expert_weights, const T* fc1_scales, const T* fc1_expert_biases, ActivationType fc1_activation_type, + const WeightType* fc3_expert_weights, const T* fc3_scales, const T* fc3_expert_biases, const WeightType* fc2_expert_weights, const T* fc2_scales, int num_rows, int hidden_size, int inter_size, int num_experts, int local_num_experts, int local_experts_start_index, int k, char* workspace_ptr, T* fc2_result, T* expert_scales, int* expanded_source_row_to_expanded_dest_row, @@ -120,6 +123,7 @@ class CutlassMoeFCRunner { void run_moe_fc(const T* input_activations, const T* gating_output, const WeightType* fc1_expert_weights, const T* fc1_scales, const T* fc1_expert_biases, ActivationType fc1_activation_type, + const WeightType* fc3_expert_weights, const T* fc3_scales, const T* fc3_expert_biases, const WeightType* fc2_expert_weights, const T* fc2_scales, int num_rows, int hidden_size, int inter_size, int num_experts, int local_num_experts, int local_experts_start_index, int k, char* workspace_ptr, T* fc2_result, const bool* finished, int active_rows, T* expert_scales, @@ -135,7 +139,8 @@ class CutlassMoeFCRunner { int64_t& total_covered_rows); private: - void configure_ws_ptrs(char* ws_ptr, int num_rows, int hidden_size, int inter_size, int num_experts, int k); + void configure_ws_ptrs(char* ws_ptr, size_t num_rows, size_t hidden_size, size_t inter_size, size_t num_experts, + size_t k); private: CubKeyValueSorter sorter_; @@ -152,12 +157,17 @@ class CutlassMoeFCRunner { int64_t* total_rows_before_expert_; T* fc1_result_; + T* fc3_result_; + + bool has_fc3_; + bool normalize_routing_weights_; // Cuda events contrib::cuda::AutoDestoryCudaEvent cuda_event_; int64_t total_past_rows_; int64_t total_covered_rows_; + // TODO: use pinned memory std::vector total_rows_before_expert_host_; }; @@ -165,11 +175,11 @@ class CutlassMoeFCRunner { template class CutlassMoeFCRunner::value>> { public: - CutlassMoeFCRunner(int sm_version); + CutlassMoeFCRunner(int sm_version, bool has_fc3, bool normalize_routing_weights); - size_t getWorkspaceSize(int num_rows, int hidden_size, int inter_size, int num_experts, int k) { + size_t getWorkspaceSize(size_t num_rows, size_t hidden_size, size_t inter_size, size_t num_experts, size_t k) { return 0; } }; -} // namespace ort_fastertransformer \ No newline at end of file +} // namespace ort_fastertransformer diff --git a/onnxruntime/contrib_ops/cuda/moe/moe.cc b/onnxruntime/contrib_ops/cuda/moe/moe.cc index 3f26a274109ad..dbd783c0cb11c 100644 --- a/onnxruntime/contrib_ops/cuda/moe/moe.cc +++ b/onnxruntime/contrib_ops/cuda/moe/moe.cc @@ -13,39 +13,33 @@ namespace onnxruntime { namespace contrib { namespace cuda { -#define REGISTER_KERNEL_TYPED(T) \ - ONNX_OPERATOR_TYPED_KERNEL_EX( \ - MoE, \ - kMSDomain, \ - 1, \ - T, \ - kCudaExecutionProvider, \ - (*KernelDefBuilder::Create()) \ - .MayInplace(0, 0) \ - .TypeConstraint("T", DataTypeImpl::GetTensorType()), \ - MoE); +#define REGISTER_KERNEL_TYPED(T) \ + ONNX_OPERATOR_TYPED_KERNEL_EX( \ + MoE, kMSDomain, 1, T, kCudaExecutionProvider, \ + (*KernelDefBuilder::Create()).MayInplace(0, 0).TypeConstraint("T", DataTypeImpl::GetTensorType()), MoE); REGISTER_KERNEL_TYPED(float) REGISTER_KERNEL_TYPED(MLFloat16) -using namespace ONNX_NAMESPACE; - template -MoE::MoE(const OpKernelInfo& op_kernel_info) : CudaKernel(op_kernel_info), MoEBase(op_kernel_info) { -} +MoE::MoE(const OpKernelInfo& op_kernel_info) : CudaKernel(op_kernel_info), MoEBase(op_kernel_info) {} template Status MoE::ComputeInternal(OpKernelContext* context) const { const Tensor* input = context->Input(0); const Tensor* router_probs = context->Input(1); const Tensor* fc1_experts_weights = context->Input(2); - const Tensor* fc2_experts_weights = context->Input(3); - const Tensor* fc1_experts_bias_optional = context->Input(4); + const Tensor* fc1_experts_bias_optional = context->Input(3); + const Tensor* fc2_experts_weights = context->Input(4); const Tensor* fc2_experts_bias_optional = context->Input(5); + const Tensor* fc3_experts_weights_optional = context->Input(6); + const Tensor* fc3_experts_bias_optional = context->Input(7); MoEParameters moe_params; - ORT_RETURN_IF_ERROR(CheckInputs(moe_params, input, router_probs, fc1_experts_weights, fc2_experts_weights, - fc1_experts_bias_optional, fc2_experts_bias_optional)); + MoEQuantType quant_type = MoEQuantType::None; + ORT_RETURN_IF_ERROR(CheckInputs(moe_params, quant_type, input, router_probs, fc1_experts_weights, + fc1_experts_bias_optional, fc2_experts_weights, fc2_experts_bias_optional, + fc3_experts_weights_optional, fc3_experts_bias_optional)); typedef typename ToCudaType::MappedType CudaT; auto stream = context->GetComputeStream(); @@ -53,12 +47,12 @@ Status MoE::ComputeInternal(OpKernelContext* context) const { auto& device_prop = GetDeviceProp(); const int sm = device_prop.major * 10 + device_prop.minor; - ort_fastertransformer::CutlassMoeFCRunner moe_runner(sm); + ort_fastertransformer::CutlassMoeFCRunner moe_runner(sm, fc3_experts_weights_optional != nullptr, + normalize_routing_weights_); - size_t ws_size = - moe_runner.getWorkspaceSize(static_cast(moe_params.num_rows), static_cast(moe_params.hidden_size), - static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), - static_cast(k_)); + size_t ws_size = moe_runner.getWorkspaceSize( + static_cast(moe_params.num_rows), static_cast(moe_params.hidden_size), + static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), static_cast(k_)); size_t fc2_output_size = k_ * moe_params.num_rows * moe_params.hidden_size * sizeof(CudaT); size_t expert_scales_size = k_ * moe_params.num_rows * sizeof(CudaT); size_t expanded_source_row_to_expanded_dest_row_size = k_ * moe_params.num_rows * sizeof(int); @@ -77,26 +71,29 @@ Status MoE::ComputeInternal(OpKernelContext* context) const { IAllocatorUniquePtr expert_for_source_row = IAllocator::MakeUniquePtr(allocator, expert_for_source_row_size, false, stream); - // fc1_scales and fc2_scales are used in quantized MoE - const CudaT* fc1_scales_ptr = nullptr; - const CudaT* fc2_scales_ptr = nullptr; - - moe_runner.run_moe_fc(reinterpret_cast(input->template Data()), - reinterpret_cast(router_probs->template Data()), - reinterpret_cast(fc1_experts_weights->template Data()), - std::move(fc1_scales_ptr), - fc1_experts_bias_optional == nullptr - ? nullptr - : reinterpret_cast(fc1_experts_bias_optional->template Data()), - activation_type_, reinterpret_cast(fc2_experts_weights->template Data()), - std::move(fc2_scales_ptr), static_cast(moe_params.num_rows), - static_cast(moe_params.hidden_size), static_cast(moe_params.inter_size), - static_cast(moe_params.num_experts), static_cast(moe_params.local_num_experts), - 0 /*local_experts_start_index_ used in sharded MoE*/, static_cast(k_), - reinterpret_cast(work_space.get()), reinterpret_cast(fc2_output.get()), - reinterpret_cast(expert_scales.get()), - reinterpret_cast(expanded_source_row_to_expanded_dest_row.get()), - reinterpret_cast(expert_for_source_row.get()), Stream(context)); + const CudaT* fc_scales_ptr = nullptr; + moe_runner.run_moe_fc( + reinterpret_cast(input->template Data()), + reinterpret_cast(router_probs->template Data()), + reinterpret_cast(fc1_experts_weights->DataRaw()), fc_scales_ptr, + fc1_experts_bias_optional == nullptr + ? nullptr + : reinterpret_cast(fc1_experts_bias_optional->template Data()), + activation_type_, + fc3_experts_weights_optional == nullptr ? nullptr + : reinterpret_cast(fc3_experts_weights_optional->DataRaw()), + fc_scales_ptr, + fc3_experts_bias_optional == nullptr + ? nullptr + : reinterpret_cast(fc3_experts_bias_optional->template Data()), + reinterpret_cast(fc2_experts_weights->DataRaw()), fc_scales_ptr, + static_cast(moe_params.num_rows), static_cast(moe_params.hidden_size), + static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), + static_cast(moe_params.local_num_experts), 0 /*local_experts_start_index_ used in sharded MoE*/, + static_cast(k_), reinterpret_cast(work_space.get()), reinterpret_cast(fc2_output.get()), + reinterpret_cast(expert_scales.get()), + reinterpret_cast(expanded_source_row_to_expanded_dest_row.get()), + reinterpret_cast(expert_for_source_row.get()), Stream(context)); Tensor* output = context->Output(0, input->Shape()); @@ -108,8 +105,7 @@ Status MoE::ComputeInternal(OpKernelContext* context) const { reinterpret_cast(expert_scales.get()), reinterpret_cast(expanded_source_row_to_expanded_dest_row.get()), reinterpret_cast(expert_for_source_row.get()), static_cast(moe_params.num_rows), - static_cast(moe_params.hidden_size), - static_cast(k_), Stream(context)); + static_cast(moe_params.hidden_size), static_cast(k_), Stream(context)); return Status::OK(); } diff --git a/onnxruntime/contrib_ops/cuda/moe/moe_base.h b/onnxruntime/contrib_ops/cuda/moe/moe_base.h index f55a7cde2e208..4ecf1a6206643 100644 --- a/onnxruntime/contrib_ops/cuda/moe/moe_base.h +++ b/onnxruntime/contrib_ops/cuda/moe/moe_base.h @@ -13,27 +13,36 @@ namespace cuda { enum class MoEParallelType { None = 0, - ExpertSlicing = 1, + EP = 1, + TP = 2, + EPAndTP = 3, +}; + +enum class MoEQuantType { + None = 0, + UINT4 = 1, }; struct MoEParameters { + MoEParameters() {} + explicit MoEParameters(int64_t tensor_shards) : tensor_shards(tensor_shards) {} int64_t num_rows; int64_t num_experts; int64_t local_num_experts; int64_t hidden_size; int64_t inter_size; + MoEParallelType parallel_type; + int64_t tensor_shards{1}; }; class MoEBase { public: - Status CheckInputs(MoEParameters& parameters, - const Tensor* input, - const Tensor* router_probs, - const Tensor* fc1_experts_weights, - const Tensor* fc2_experts_weights, - const Tensor* fc1_experts_bias_optional, - const Tensor* fc2_experts_bias_optional) const { + Status CheckInputs(MoEParameters& parameters, MoEQuantType& quant_type, const Tensor* input, + const Tensor* router_probs, const Tensor* fc1_experts_weights, + const Tensor* fc1_experts_bias_optional, const Tensor* fc2_experts_weights, + const Tensor* fc2_experts_bias_optional, const Tensor* fc3_experts_weights_optional, + const Tensor* fc3_experts_bias_optional) const { const auto& input_dims = input->Shape().GetDims(); const auto& router_probs_dims = router_probs->Shape().GetDims(); const auto& fc1_experts_weights_dims = fc1_experts_weights->Shape().GetDims(); @@ -43,7 +52,7 @@ class MoEBase { int64_t hidden_size = input_dims[input_dims.size() - 1]; int64_t local_num_experts = fc1_experts_weights_dims[0]; int64_t num_experts = router_probs_dims[1]; - int64_t inter_size = fc1_experts_weights_dims[2]; + int64_t inter_size = fc2_experts_weights_dims[1]; if (fc1_experts_weights_dims.size() != 3) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc1_experts_weights_dims must be 3D, got ", @@ -61,20 +70,21 @@ class MoEBase { if (fc2_experts_weights_dims[1] != inter_size) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc2_experts_weights_dims[1] must be equal to inter_size, got ", - fc2_experts_weights_dims[1], - " and ", inter_size); + fc2_experts_weights_dims[1], " and ", inter_size); } - if (fc1_experts_weights_dims[2] != inter_size) { + + const int64_t coe = quant_type == MoEQuantType::UINT4 ? 2 : 1; + if (fc1_experts_weights_dims[2] != inter_size / coe) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc1_experts_weights_dims[2] must be equal to inter_size, got ", - fc1_experts_weights_dims[2], - " and ", inter_size); + fc1_experts_weights_dims[2], " and ", inter_size); } - if (fc2_experts_weights_dims[2] != hidden_size) { + if (fc2_experts_weights_dims[2] != hidden_size / coe) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc2_experts_weights_dims[2] must be equal to hidden_size, got ", fc2_experts_weights_dims[2], " and ", hidden_size); } + if (router_probs_dims.size() != 2) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "router_probs_dims must be 2D, got ", router_probs_dims.size()); @@ -83,12 +93,6 @@ class MoEBase { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "router_probs_dims[0] must be equal to num_rows, got ", router_probs_dims[0], " and ", num_rows); } - if (fc1_experts_bias_optional != nullptr && fc2_experts_bias_optional == nullptr) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc1_experts_bias is set but fc2_experts_bias is not set"); - } - if (fc1_experts_bias_optional == nullptr && fc2_experts_bias_optional != nullptr) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc1_experts_bias is not set but fc2_experts_bias is set"); - } if (fc1_experts_bias_optional != nullptr && fc2_experts_bias_optional != nullptr) { const auto& fc1_experts_bias_dims = fc1_experts_bias_optional->Shape().GetDims(); const auto& fc2_experts_bias_dims = fc2_experts_bias_optional->Shape().GetDims(); @@ -103,42 +107,99 @@ class MoEBase { if (fc1_experts_bias_dims[0] != local_num_experts) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc1_experts_bias_dims[0] must be equal to local_num_experts, got ", - fc1_experts_bias_dims[0], - " and ", local_num_experts); + fc1_experts_bias_dims[0], " and ", local_num_experts); } if (fc2_experts_bias_dims[0] != num_experts) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "fc2_experts_bias_dims[0] must be equal to num_experts, got ", - fc2_experts_bias_dims[0], + "fc2_experts_bias_dims[0] must be equal to num_experts, got ", fc2_experts_bias_dims[0], " and ", num_experts); } if (fc1_experts_bias_dims[1] != inter_size) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "fc1_experts_bias_dims[1] must be equal to inter_size, got ", - fc1_experts_bias_dims[1], + "fc1_experts_bias_dims[1] must be equal to inter_size, got ", fc1_experts_bias_dims[1], " and ", inter_size); } if (fc2_experts_bias_dims[1] != hidden_size) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "fc2_experts_bias_dims[1] must be equal to hidden_size, got ", - fc2_experts_bias_dims[1], + "fc2_experts_bias_dims[1] must be equal to hidden_size, got ", fc2_experts_bias_dims[1], " and ", hidden_size); } } + if (fc3_experts_weights_optional != nullptr && + fc3_experts_weights_optional->Shape().GetDims() != fc1_experts_weights_dims) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "fc3_experts_weights_dims must be equal to fc1_experts_weights_dims, got ", + fc3_experts_weights_optional->Shape().GetDims(), " and ", fc1_experts_weights_dims); + } + + if (fc3_experts_bias_optional != nullptr && fc1_experts_bias_optional != nullptr && + fc3_experts_bias_optional->Shape().GetDims() != fc1_experts_bias_optional->Shape().GetDims()) { + return ORT_MAKE_STATUS( + ONNXRUNTIME, INVALID_ARGUMENT, "fc3_experts_bias_dims must be equal to fc1_experts_bias_dims, got ", + fc3_experts_bias_optional->Shape().GetDims(), " and ", fc1_experts_bias_optional->Shape().GetDims()); + } + parameters.num_rows = num_rows; parameters.num_experts = num_experts; parameters.local_num_experts = local_num_experts; parameters.hidden_size = hidden_size; parameters.inter_size = inter_size; if (num_experts == local_num_experts) { - parameters.parallel_type = MoEParallelType::None; + if (parameters.tensor_shards == 1) { + parameters.parallel_type = MoEParallelType::None; + } else { + parameters.parallel_type = MoEParallelType::TP; + } } else if (num_experts > local_num_experts) { - parameters.parallel_type = MoEParallelType::ExpertSlicing; + if (parameters.tensor_shards == 1) { + parameters.parallel_type = MoEParallelType::EP; + } else { + parameters.parallel_type = MoEParallelType::EPAndTP; + } } else { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "num_experts must be greater than or equal to local_num_experts, got ", - num_experts, " and ", local_num_experts); + "num_experts must be greater than or equal to local_num_experts, got ", num_experts, + " and ", local_num_experts); + } + + return Status::OK(); + } + + Status CheckInputScales(const Tensor* fc1_experts_scales, const Tensor* fc2_experts_scales, + const Tensor* fc3_experts_scales, int64_t num_experts, int64_t hidden_size, + int64_t inter_size) const { + const auto& fc1_experts_scales_dims = fc1_experts_scales->Shape().GetDims(); + const auto& fc2_experts_scales_dims = fc2_experts_scales->Shape().GetDims(); + + if (fc1_experts_scales_dims.size() != 2) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc1_experts_scales must be 2D, got ", + fc1_experts_scales->Shape().GetDims().size()); + } + if (fc1_experts_scales_dims[0] != num_experts) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc1_experts_scales[0] must be equal to num_experts, got ", + fc1_experts_scales_dims[0], " and ", num_experts); + } + if (fc1_experts_scales_dims[1] != inter_size) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc1_experts_scales[1] must be equal to inter_size, got ", + fc1_experts_scales_dims[1], " and ", inter_size); + } + if (fc2_experts_scales_dims.size() != 2) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc2_experts_scales must be 2D, got ", + fc2_experts_scales->Shape().GetDims().size()); + } + if (fc2_experts_scales_dims[0] != num_experts) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc2_experts_scales[0] must be equal to num_experts, got ", + fc2_experts_scales_dims[0], " and ", num_experts); + } + if (fc2_experts_scales_dims[1] != hidden_size) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "fc2_experts_scales[1] must be equal to hidden_size, got ", + fc2_experts_scales_dims[1], " and ", hidden_size); + } + if (fc3_experts_scales != nullptr && fc1_experts_scales_dims != fc3_experts_scales->Shape().GetDims()) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "fc3_experts_scales must be equal to fc1_experts_scales, got ", + fc3_experts_scales->Shape().GetDims(), " and ", fc1_experts_scales_dims); } return Status::OK(); @@ -161,8 +222,11 @@ class MoEBase { } else { ORT_THROW("Unsupported MoE activation type: ", activation_type_str); } + + normalize_routing_weights_ = op_kernel_info.GetAttrOrDefault("normalize_routing_weights", 0) == 1; } + bool normalize_routing_weights_; int64_t k_; ort_fastertransformer::ActivationType activation_type_; }; diff --git a/onnxruntime/contrib_ops/cuda/quantization/attention_quantization.cc b/onnxruntime/contrib_ops/cuda/quantization/attention_quantization.cc index 001b6070d5e1a..168c69c69f003 100644 --- a/onnxruntime/contrib_ops/cuda/quantization/attention_quantization.cc +++ b/onnxruntime/contrib_ops/cuda/quantization/attention_quantization.cc @@ -154,7 +154,7 @@ Status QAttention::ComputeInternal(OpKernelContext* context) const { CudaT dequant_scale; CudaT input_scale = *(reinterpret_cast(input_scale_tensor->Data())); CudaT weight_scale = *(reinterpret_cast(weight_scale_tensor->Data())); - if (sizeof(T) == 2) { + if constexpr (sizeof(T) == 2) { dequant_scale = __float2half(__half2float(input_scale) * __half2float(weight_scale)); } else { dequant_scale = input_scale * weight_scale; diff --git a/onnxruntime/contrib_ops/cuda/quantization/dequantize_blockwise.cu b/onnxruntime/contrib_ops/cuda/quantization/dequantize_blockwise.cu index 6b66f1d84e221..265adf22eeb61 100644 --- a/onnxruntime/contrib_ops/cuda/quantization/dequantize_blockwise.cu +++ b/onnxruntime/contrib_ops/cuda/quantization/dequantize_blockwise.cu @@ -2,10 +2,12 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. +#include #include #include #include #include +#include #include #include "core/providers/cuda/cu_inc/common.cuh" #include "core/providers/cuda/cuda_common.h" @@ -21,7 +23,7 @@ namespace cuda { __device__ __forceinline__ void DequantizeEightElements(uint32_t values_quant, half scale, half zp, half* output) { half2 scale_half2 = {scale, scale}; - half zp_adjust = -scale * __short2half_rn(zp); + half zp_adjust = -scale * zp; half2 zp_adjust2 = {zp_adjust, zp_adjust}; alignas(16) half2 results[4]; @@ -56,41 +58,95 @@ __device__ __forceinline__ void DequantizeEightElements(uint32_t values_quant, f } template -__global__ void Dequantize4BitsKernel( +__global__ void Dequantize4BitsKernelReOrder( T* output, const uint8_t* quant_data, const T* scale_data, const uint8_t* zero_points, + const int32_t* reorder_idx, int block_size, - int blocks_per_K, - int blocks_per_threadblock, - int total_blks, - int shift) { - int block_id = blockIdx.x * blocks_per_threadblock + ((threadIdx.x * 8) >> shift); - if (block_id >= total_blks) { + int groups_per_K, + int groups_per_threadblock, + int total_groups) { + int group_id = blockIdx.x * groups_per_threadblock + ((threadIdx.x * 8) / block_size); + if (group_id >= total_groups) { return; } - int n_idx = block_id / blocks_per_K; - int kb_idx = block_id % blocks_per_K; - int element_offset = block_id * block_size + ((threadIdx.x * 8) & ((1 << shift) - 1)); + // T __shared__ zero_points_after_reorder[];//K + // T __shared__ scales_after_reorder[]; // K + // const int num_r_per_thread = k / 256; + + const int zero_point_shape_x = (groups_per_K + 1) / 2; + const int scales_shape_x = groups_per_K; + int n_idx = group_id / scales_shape_x; + int kb_idx = group_id % scales_shape_x; + int element_offset = group_id * block_size + ((threadIdx.x * 8) & (block_size - 1)); + T* output_i = output + element_offset; + uint32_t quant_value = *(reinterpret_cast(quant_data + element_offset / 2)); + const int32_t* reorder_idx_with_off = reorder_idx + kb_idx * block_size + ((threadIdx.x * 8) & (block_size - 1)); + for (int i = 0; i < 8; i++) { + int32_t rid = reorder_idx_with_off[i]; + T scale = *(scale_data + n_idx * scales_shape_x + rid); + uint8_t zp = 8; + if (zero_points) { + zp = zero_points[n_idx * zero_point_shape_x + rid / 2]; + zp = (rid & 0x01) ? (zp >> 4) : (zp & 0x0f); + } + + if constexpr (std::is_same_v) { + T zp_adjust = -scale * __short2half_rn(zp); + output_i[i] = __uint2half_rn((quant_value >> (4 * i)) & 0xF) * scale + zp_adjust; + } else { + T zp_adjust = -scale * T(zp); + output_i[i] = T((quant_value >> (4 * i)) & 0xF) * scale + zp_adjust; + } + } +} + +template +__global__ void Dequantize4BitsKernel( + T* output, + const uint8_t* quant_data, + const T* scale_data, + const ZeroT* zero_points, + int block_size, + int groups_per_K, + int groups_per_threadblock, + int total_groups) { + int block_id = blockIdx.x * groups_per_threadblock + ((threadIdx.x * 8) / block_size); + if (block_id >= total_groups) { + return; + } + int element_offset = block_id * block_size + ((threadIdx.x * 8) & (block_size - 1)); uint32_t quant_value = *(reinterpret_cast(quant_data + element_offset / 2)); T scale = *(scale_data + block_id); - uint8_t zp = 8; - if (zero_points) { - zp = zero_points[n_idx * ((blocks_per_K + 1)/2) + kb_idx / 2]; - zp = (kb_idx & 0x01) ? (zp >> 4) : (zp & 0x0f); + T zero_point_value; + if constexpr (std::is_same_v) { + const int scales_shape_x = groups_per_K; + const int zero_point_shape_x = (groups_per_K + 1) / 2; + int kb_idx = block_id % scales_shape_x; + int n_idx = block_id / scales_shape_x; + uint8_t zp = 8; + if (zero_points) { + zp = zero_points[n_idx * zero_point_shape_x + kb_idx / 2]; + zp = (kb_idx & 0x01) ? (zp >> 4) : (zp & 0x0f); + } + zero_point_value = static_cast(zp); + } else { + zero_point_value = zero_points? *(zero_points + block_id):static_cast(8); } output = output + element_offset; - DequantizeEightElements(quant_value, scale, static_cast(zp), output); + DequantizeEightElements(quant_value, scale, zero_point_value, output); } -template +template Status Dequantize4Bits( T* output, const uint8_t* quant_data, const T* scales_data, - const uint8_t* zero_points, // shape: [N, (block_per_K + 1)/2] + const ZeroT* zero_points, // shape: [N, (block_per_K + 1)/2] + const int32_t* reorder_idx, int k, int n, int block_size, @@ -98,47 +154,79 @@ Status Dequantize4Bits( // k is padded and equal to block_per_K * block_size ORT_ENFORCE(k % block_size == 0, "k must be a multiplier of block_size"); constexpr int element_per_thread = 8; - int blocks_per_threadblock = GridDim::maxThreadsPerBlock * element_per_thread / block_size; - int blocks_per_K = k / block_size; - int total_blks = n * blocks_per_K; - int blocks_per_grid = static_cast(CeilDiv(n * blocks_per_K, blocks_per_threadblock)); - int shift = static_cast(log2f(float(block_size))); - - Dequantize4BitsKernel<<>>( - output, - quant_data, - scales_data, - zero_points, - block_size, - blocks_per_K, - blocks_per_threadblock, - total_blks, - shift); + int groups_per_threadblock = GridDim::maxThreadsPerBlock * element_per_thread / block_size; + int groups_per_K = k / block_size; + int total_groups = n * groups_per_K; // total elemenets in quant_data + int groups_per_grid = static_cast(CeilDiv(total_groups, groups_per_threadblock)); + if (!reorder_idx || std::is_same_v) { + Dequantize4BitsKernel<<>>( + output, + quant_data, + scales_data, + zero_points, + block_size, + groups_per_K, + groups_per_threadblock, + total_groups); + } else { + // static_assert(std::is_same_v, "ZeroT must be uint8_t"); + Dequantize4BitsKernelReOrder<<>>( + output, + quant_data, + scales_data, + (const uint8_t*)zero_points, + reorder_idx, + block_size, + groups_per_K, + groups_per_threadblock, + total_groups); + } return Status::OK(); } -template Status Dequantize4Bits( +template Status Dequantize4Bits( float* output, const uint8_t* quant_data, const float* scales_data, const uint8_t* zero_points, + const int32_t* reorder_idx, int k, int n, int block_size, cudaStream_t stream); -template Status Dequantize4Bits( +template Status Dequantize4Bits( half* output, const uint8_t* quant_data, const half* scales_data, const uint8_t* zero_points, + const int32_t* reorder_idx, + int k, + int n, + int block_size, + cudaStream_t stream); +template Status Dequantize4Bits( + float* output, + const uint8_t* quant_data, + const float* scales_data, + const float* zero_points, + const int32_t* reorder_idx, int k, int n, int block_size, cudaStream_t stream); - +template Status Dequantize4Bits( + half* output, + const uint8_t* quant_data, + const half* scales_data, + const half* zero_points, + const int32_t* reorder_idx, + int k, + int n, + int block_size, + cudaStream_t stream); /////////////////////////////////////////////////////////////////////////////// // A more general block-wise dequantization implementation that supports // different block sizes and block orientations (row-wise/column-wise). diff --git a/onnxruntime/contrib_ops/cuda/quantization/dequantize_blockwise.cuh b/onnxruntime/contrib_ops/cuda/quantization/dequantize_blockwise.cuh index f9c09c55fd893..580b5087f3fa3 100644 --- a/onnxruntime/contrib_ops/cuda/quantization/dequantize_blockwise.cuh +++ b/onnxruntime/contrib_ops/cuda/quantization/dequantize_blockwise.cuh @@ -7,18 +7,18 @@ namespace onnxruntime { namespace contrib { namespace cuda { -template +template Status Dequantize4Bits( T* output, const uint8_t* quant_data, const T* scales_data, - const uint8_t* zero_points, + const ZeroT* zero_points, + const int32_t* reorder_idx, int k, int n, int block_size, cudaStream_t stream); - /** * @brief Dequantize a block-wise quantized matrix, and store the result in a * column major matrix for use in subsequent GEMM. This implementation supports diff --git a/onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cc b/onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cc index 015df70c8ec3c..1cec6f6a12f1c 100644 --- a/onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cc +++ b/onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cc @@ -1,15 +1,12 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. -// -// This module define MatMulFp32Q4 operator, it is basically -// matmul float32 with right hand side being a 2-D matrix -// pre-packed and block-compacted into int4 -// - -#include "core/common/safeint.h" -#include "core/providers/cuda/cuda_kernel.h" -#include "core/providers/cuda/shared_inc/fpgeneric.h" +#include "contrib_ops/cuda/quantization/matmul_nbits.h" + +#include + +#include "core/common/status.h" +#include "core/framework/float16.h" #include "core/providers/cpu/math/matmul_helper.h" #include "matmul_nbits.cuh" #include "dequantize_blockwise.cuh" @@ -19,40 +16,19 @@ namespace contrib { namespace cuda { using namespace onnxruntime::cuda; -template -class MatMulNBits final : public CudaKernel { - public: - MatMulNBits(const OpKernelInfo& info) : CudaKernel(info) { - ORT_ENFORCE(Status::OK() == info.GetAttr("K", &K_)); - ORT_ENFORCE(Status::OK() == info.GetAttr("N", &N_)); - ORT_ENFORCE(Status::OK() == info.GetAttr("block_size", &block_size_)); - ORT_ENFORCE(Status::OK() == info.GetAttr("bits", &nbits_)); - ORT_ENFORCE(nbits_ == 4, - "Only 4b quantization is supported for MatMulNBits op," - " additional bits support is planned."); - } - - Status ComputeInternal(OpKernelContext* context) const override; - - private: - int64_t K_; - int64_t N_; - int64_t block_size_; - int64_t nbits_; - bool column_wise_quant_blk_{true}; -}; - template Status MatMulNBits::ComputeInternal(OpKernelContext* ctx) const { const Tensor* a = ctx->Input(0); const Tensor* b = ctx->Input(1); const Tensor* scales = ctx->Input(2); const Tensor* zero_points = ctx->Input(3); + const Tensor* reorder_idx = ctx->Input(4); const auto* a_data = a->Data(); const uint8_t* blob_data = b->Data(); const auto* scales_data = scales->Data(); - const auto* zero_points_data = zero_points == nullptr ? nullptr : zero_points->Data(); + const auto* zero_points_data = zero_points == nullptr ? nullptr : zero_points->DataRaw(); + const auto* reorder_idx_data = reorder_idx == nullptr ? nullptr : reorder_idx->Data(); typedef typename ToCudaType::MappedType CudaT; @@ -67,77 +43,99 @@ Status MatMulNBits::ComputeInternal(OpKernelContext* ctx) const { // Bail out early if the output is going to be empty if (Y->Shape().Size() == 0) return Status::OK(); - bool is_4bit_done = TryMatMul4Bits( - reinterpret_cast(Y->MutableData()), - reinterpret_cast(a_data), - blob_data, - reinterpret_cast(scales_data), - zero_points_data, - SafeInt(helper.M()), - SafeInt(helper.N()), - SafeInt(helper.K()), - SafeInt(block_size_), - SafeInt(GetDeviceProp().sharedMemPerBlock), - static_cast(ctx->GetComputeStream()->GetHandle())); - if (!is_4bit_done) { - int64_t K_padded = (K_ + block_size_ - 1) / block_size_ * block_size_; - IAllocatorUniquePtr b_data_ptr = GetScratchBuffer(N_ * K_padded, ctx->GetComputeStream()); - auto* b_data = b_data_ptr.get(); - if (column_wise_quant_blk_) { - // column-wise block + bool is_4bit_done = (reorder_idx_data == nullptr) && + (!zero_points || !zero_points->IsDataType()) && + TryMatMul4Bits( + reinterpret_cast(Y->MutableData()), + reinterpret_cast(a_data), + blob_data, + reinterpret_cast(scales_data), + static_cast(zero_points_data), + SafeInt(helper.M()), + SafeInt(helper.N()), + SafeInt(helper.K()), + SafeInt(block_size_), + SafeInt(GetDeviceProp().sharedMemPerBlock), + static_cast(ctx->GetComputeStream()->GetHandle())); + + if (is_4bit_done) { + return Status::OK(); + } + + int64_t K_padded = (K_ + block_size_ - 1) / block_size_ * block_size_; + IAllocatorUniquePtr b_data_ptr = GetScratchBuffer(N_ * K_padded, ctx->GetComputeStream()); + auto* b_data = b_data_ptr.get(); + if (column_wise_quant_blk_) { + if (reorder_idx) { + ORT_ENFORCE(K_padded == reorder_idx->Shape()[0], "K_padded != g_idx->Shape()[0]"); + } + // column-wise block + if ((zero_points && zero_points->IsDataType())) { ORT_RETURN_IF_ERROR(Dequantize4Bits( reinterpret_cast(b_data), blob_data, reinterpret_cast(scales_data), - zero_points_data, + (const CudaT*)zero_points_data, + reorder_idx_data, SafeInt(K_padded), SafeInt(N_), SafeInt(block_size_), static_cast(ctx->GetComputeStream()->GetHandle()))); } else { - // row-wise block - K_padded = K_; - - ORT_RETURN_IF_ERROR(DequantizeBlockwise4b( + ORT_RETURN_IF_ERROR(Dequantize4Bits( reinterpret_cast(b_data), blob_data, reinterpret_cast(scales_data), - zero_points_data, - SafeInt(block_size_), - column_wise_quant_blk_, - SafeInt(K_), + (const uint8_t*)zero_points_data, + reorder_idx_data, + SafeInt(K_padded), SafeInt(N_), + SafeInt(block_size_), static_cast(ctx->GetComputeStream()->GetHandle()))); } + } else { + // row-wise block + K_padded = K_; + + ORT_RETURN_IF_ERROR(DequantizeBlockwise4b( + reinterpret_cast(b_data), + blob_data, + reinterpret_cast(scales_data), + (const uint8_t*)zero_points_data, + SafeInt(block_size_), + column_wise_quant_blk_, + SafeInt(K_), + SafeInt(N_), + static_cast(ctx->GetComputeStream()->GetHandle()))); + } #if 0 - cudaStreamSynchronize(static_cast(ctx->GetComputeStream()->GetHandle())); - T* b_data_cpu = new T[K_ * N_]; - cudaMemcpy(b_data_cpu, b_data, K_ * N_ * sizeof(T), cudaMemcpyDeviceToHost); - delete[] b_data_cpu; +cudaStreamSynchronize(static_cast(ctx->GetComputeStream()->GetHandle())); +T* b_data_cpu = new T[K_ * N_]; +cudaMemcpy(b_data_cpu, b_data, K_ * N_ * sizeof(T), cudaMemcpyDeviceToHost); +delete[] b_data_cpu; #endif - const CudaT alpha = ToCudaType::FromFloat(1.f); - const CudaT zero = ToCudaType::FromFloat(0.f); - - if (helper.OutputOffsets().size() == 1) { - CUBLAS_RETURN_IF_ERROR(cublasGemmHelper( - GetCublasHandle(ctx), - CUBLAS_OP_T, - CUBLAS_OP_N, - SafeInt(helper.N()), - SafeInt(helper.M()), - SafeInt(helper.K()), - &alpha, - reinterpret_cast(b_data), - SafeInt(K_padded), - reinterpret_cast(a_data), - helper.Lda(transa), - &zero, - reinterpret_cast(Y->MutableData()), - helper.Ldc(), - GetDeviceProp(), - UseTF32())); - } + const CudaT alpha = ToCudaType::FromFloat(1.f); + const CudaT zero = ToCudaType::FromFloat(0.f); + + if (helper.OutputOffsets().size() == 1) { + CUBLAS_RETURN_IF_ERROR(cublasGemmHelper( + GetCublasHandle(ctx), + CUBLAS_OP_T, + CUBLAS_OP_N, + SafeInt(helper.N()), + SafeInt(helper.M()), + SafeInt(helper.K()), + &alpha, + reinterpret_cast(b_data), + SafeInt(K_padded), + reinterpret_cast(a_data), + helper.Lda(transa), + &zero, + reinterpret_cast(Y->MutableData()), + helper.Ldc(), + GetDeviceProp(), + UseTF32())); } return Status::OK(); diff --git a/onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.h b/onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.h new file mode 100644 index 0000000000000..f5c2c6c4e4fdf --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.h @@ -0,0 +1,41 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +// +// This module define MatMulNBits operator, it is basically +// matmul float with right hand side being a 2-D matrix +// pre-packed and block-compacted into int4 +// +#pragma once +#include "core/common/safeint.h" +#include "core/providers/cuda/cuda_kernel.h" +#include "core/providers/cuda/shared_inc/fpgeneric.h" + +namespace onnxruntime { +namespace contrib { +namespace cuda { +using namespace onnxruntime::cuda; + +template +class MatMulNBits final : public CudaKernel { + public: + MatMulNBits(const OpKernelInfo& info) : CudaKernel(info) { + ORT_ENFORCE(Status::OK() == info.GetAttr("K", &K_)); + ORT_ENFORCE(Status::OK() == info.GetAttr("N", &N_)); + ORT_ENFORCE(Status::OK() == info.GetAttr("block_size", &block_size_)); + ORT_ENFORCE(Status::OK() == info.GetAttr("bits", &nbits_)); + } + + Status ComputeInternal(OpKernelContext* context) const override; + + private: + int64_t K_; + int64_t N_; + int64_t block_size_; + int64_t nbits_; + bool column_wise_quant_blk_{true}; +}; + +} // namespace cuda +} // namespace contrib +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/cuda/quantization/moe_quantization.cc b/onnxruntime/contrib_ops/cuda/quantization/moe_quantization.cc new file mode 100644 index 0000000000000..7bb0945615d37 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/quantization/moe_quantization.cc @@ -0,0 +1,143 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include +#include "core/common/safeint.h" +#include "core/providers/cuda/cuda_common.h" +#include "contrib_ops/cuda/quantization/moe_quantization.h" + +using namespace onnxruntime::cuda; +using namespace ::onnxruntime::common; +using namespace ONNX_NAMESPACE; + +namespace onnxruntime { +namespace contrib { +namespace cuda { + +#define REGISTER_KERNEL() \ + ONNX_OPERATOR_KERNEL_EX(QMoE, kMSDomain, 1, kCudaExecutionProvider, \ + (*KernelDefBuilder::Create()) \ + .MayInplace(0, 0) \ + .TypeConstraint("T", BuildKernelDefConstraints()) \ + .TypeConstraint("T1", BuildKernelDefConstraints()), \ + QMoE); + +REGISTER_KERNEL() + +namespace { +template +struct ToCudaTypeWrapper : public ToCudaType {}; + +template <> +struct ToCudaTypeWrapper { + using MappedType = uint8_t; +}; + +template <> +struct ToCudaTypeWrapper { + using MappedType = cutlass::uint4b_t; +}; +} // anonymous namespace + +QMoE::QMoE(const OpKernelInfo& op_kernel_info) : CudaKernel(op_kernel_info), MoEBase(op_kernel_info) {} + +Status QMoE::ComputeInternal(OpKernelContext* context) const { + const Tensor* input = context->Input(0); + const Tensor* router_probs = context->Input(1); + const Tensor* fc1_experts_weights = context->Input(2); + const Tensor* fc1_scales = context->Input(3); + const Tensor* fc1_experts_bias_optional = context->Input(4); + const Tensor* fc2_experts_weights = context->Input(5); + const Tensor* fc2_scales = context->Input(6); + const Tensor* fc2_experts_bias_optional = context->Input(7); + const Tensor* fc3_experts_weights_optional = context->Input(8); + const Tensor* fc3_scales_optional = context->Input(9); + const Tensor* fc3_experts_bias_optional = context->Input(10); + + MoEParameters moe_params; + MoEQuantType quant_type = MoEQuantType::UINT4; + ORT_RETURN_IF_ERROR(CheckInputs(moe_params, quant_type, input, router_probs, fc1_experts_weights, + fc1_experts_bias_optional, fc2_experts_weights, fc2_experts_bias_optional, + fc3_experts_weights_optional, fc3_experts_bias_optional)); + ORT_RETURN_IF_ERROR(CheckInputScales(fc1_scales, fc2_scales, fc3_scales_optional, moe_params.num_experts, + moe_params.hidden_size, moe_params.inter_size)); + + // Support int4 only at the moment. We can add uint8 if needed. + static constexpr bool use_quint4x2 = true; + using T = MLFloat16; + using CudaT = typename ToCudaType::MappedType; + using CudaWeightT = typename ToCudaTypeWrapper::MappedType; + + auto stream = context->GetComputeStream(); + + auto& device_prop = GetDeviceProp(); + const int sm = device_prop.major * 10 + device_prop.minor; + + ort_fastertransformer::CutlassMoeFCRunner moe_runner(sm, fc3_experts_weights_optional != nullptr, + normalize_routing_weights_); + + size_t ws_size = moe_runner.getWorkspaceSize( + static_cast(moe_params.num_rows), static_cast(moe_params.hidden_size), + static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), static_cast(k_)); + size_t fc2_output_size = k_ * moe_params.num_rows * moe_params.hidden_size * sizeof(CudaT); + size_t expert_scales_size = k_ * moe_params.num_rows * sizeof(CudaT); + size_t expanded_source_row_to_expanded_dest_row_size = k_ * moe_params.num_rows * sizeof(int); + size_t expert_for_source_row_size = k_ * moe_params.num_rows * sizeof(int); + + AllocatorPtr allocator; + ORT_RETURN_IF_ERROR(context->GetTempSpaceAllocator(&allocator)); + + IAllocatorUniquePtr work_space = IAllocator::MakeUniquePtr(allocator, ws_size, false, stream); + IAllocatorUniquePtr fc2_output = IAllocator::MakeUniquePtr(allocator, fc2_output_size, false, stream); + IAllocatorUniquePtr expert_scales = + IAllocator::MakeUniquePtr(allocator, expert_scales_size, false, stream); + IAllocatorUniquePtr expanded_source_row_to_expanded_dest_row = + IAllocator::MakeUniquePtr(allocator, expanded_source_row_to_expanded_dest_row_size, false, stream); + IAllocatorUniquePtr expert_for_source_row = + IAllocator::MakeUniquePtr(allocator, expert_for_source_row_size, false, stream); + + moe_runner.run_moe_fc( + reinterpret_cast(input->template Data()), + reinterpret_cast(router_probs->template Data()), + reinterpret_cast(fc1_experts_weights->DataRaw()), + fc1_scales == nullptr ? nullptr : reinterpret_cast(fc1_scales->template Data()), + fc1_experts_bias_optional == nullptr + ? nullptr + : reinterpret_cast(fc1_experts_bias_optional->template Data()), + activation_type_, + fc3_experts_weights_optional == nullptr + ? nullptr + : reinterpret_cast(fc3_experts_weights_optional->DataRaw()), + fc3_scales_optional == nullptr ? nullptr + : reinterpret_cast(fc3_scales_optional->template Data()), + fc3_experts_bias_optional == nullptr + ? nullptr + : reinterpret_cast(fc3_experts_bias_optional->template Data()), + reinterpret_cast(fc2_experts_weights->DataRaw()), + fc2_scales == nullptr ? nullptr : reinterpret_cast(fc2_scales->template Data()), + static_cast(moe_params.num_rows), static_cast(moe_params.hidden_size), + static_cast(moe_params.inter_size), static_cast(moe_params.num_experts), + static_cast(moe_params.local_num_experts), 0 /*local_experts_start_index_ used in sharded MoE*/, + static_cast(k_), reinterpret_cast(work_space.get()), reinterpret_cast(fc2_output.get()), + reinterpret_cast(expert_scales.get()), + reinterpret_cast(expanded_source_row_to_expanded_dest_row.get()), + reinterpret_cast(expert_for_source_row.get()), Stream(context)); + + Tensor* output = context->Output(0, input->Shape()); + + ort_fastertransformer::finalize_moe_routing_kernelLauncher( + reinterpret_cast(fc2_output.get()), reinterpret_cast(output->template MutableData()), + fc2_experts_bias_optional == nullptr + ? nullptr + : reinterpret_cast(fc2_experts_bias_optional->template Data()), + reinterpret_cast(expert_scales.get()), + reinterpret_cast(expanded_source_row_to_expanded_dest_row.get()), + reinterpret_cast(expert_for_source_row.get()), static_cast(moe_params.num_rows), + static_cast(moe_params.hidden_size), static_cast(k_), Stream(context)); + + return Status::OK(); +} + +} // namespace cuda +} // namespace contrib +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/cuda/quantization/moe_quantization.h b/onnxruntime/contrib_ops/cuda/quantization/moe_quantization.h new file mode 100644 index 0000000000000..7b68d2d082de8 --- /dev/null +++ b/onnxruntime/contrib_ops/cuda/quantization/moe_quantization.h @@ -0,0 +1,25 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#pragma once + +#include "contrib_ops/cuda/moe/ft_moe/moe_kernel.h" +#include "contrib_ops/cuda/moe/moe_base.h" +#include "core/common/common.h" +#include "core/providers/cuda/cuda_kernel.h" + +namespace onnxruntime { +namespace contrib { +namespace cuda { + +using namespace onnxruntime::cuda; + +class QMoE final : public CudaKernel, public MoEBase { + public: + explicit QMoE(const OpKernelInfo& op_kernel_info); + Status ComputeInternal(OpKernelContext* ctx) const override; +}; + +} // namespace cuda +} // namespace contrib +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_attention.cc b/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_attention.cc index 3cecebedae2f0..12835978536e1 100644 --- a/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_attention.cc +++ b/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_attention.cc @@ -142,7 +142,7 @@ inline void debug_print([[maybe_unused]] const T* arr, std::cout << "========" << name << std::endl; for (size_t i = 0; i < sz; i++) { if (i % w == 0) std::cout << std::endl; - if (std::is_same().value) { + if constepxr (std::is_same::value) { std::cout << (int)buf[i] << ", "; } else { std::cout << buf[i] << ", "; diff --git a/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_attention_impl.cu b/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_attention_impl.cu index f4d5a7b404a62..fd4b51f40fb4f 100644 --- a/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_attention_impl.cu +++ b/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_attention_impl.cu @@ -151,7 +151,7 @@ QOrderBatchInt8MatrixTransposeKernel(const int8_t* src, const int8_t* dst, const } } -Status QOrderBatchTransposeInt8Matrix(cudaStream_t stream, const cudaDeviceProp& device_prop, +Status QOrderBatchTransposeInt8Matrix(cudaStream_t stream, const cudaDeviceProp& /*device_prop*/, const int batch_size, const int rows, const int cols, const int8_t* input, int8_t* output) { ORT_ENFORCE(rows % 4 == 0 && cols % 4 == 0, "Matrix rows and cols must be divisible by 4!"); diff --git a/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_qdq_impl.cu b/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_qdq_impl.cu index baff8e76ec73b..e6ac0bc8a5171 100644 --- a/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_qdq_impl.cu +++ b/onnxruntime/contrib_ops/cuda/quantization/qordered_ops/qordered_qdq_impl.cu @@ -389,7 +389,7 @@ QOrderDequantizeKernel_Strict(const int8_t* __restrict__ src, const __half* __re } } -Status QOrderDequantize_Strict(cudaStream_t stream, const cudaDeviceProp& device_prop, +Status QOrderDequantize_Strict(cudaStream_t stream, const cudaDeviceProp& /*device_prop*/, const int8_t* src, __half* dst, float scale, size_t N) { ORT_RETURN_IF(N & 0x3LL, "N can not divide by 4!"); diff --git a/onnxruntime/contrib_ops/cuda/transformers/generation_cuda_impl.cu b/onnxruntime/contrib_ops/cuda/transformers/generation_cuda_impl.cu index a39abefed9cd0..eb1943b59d976 100644 --- a/onnxruntime/contrib_ops/cuda/transformers/generation_cuda_impl.cu +++ b/onnxruntime/contrib_ops/cuda/transformers/generation_cuda_impl.cu @@ -1,11 +1,22 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. + +// cub.cuh includes device/dispatch_radix_sort.cuh which has assignment in conditional expressions +#if defined(_MSC_VER) +#pragma warning(push) +#pragma warning(disable : 4706) +#endif +#include +#if defined(_MSC_VER) +#pragma warning(pop) +#endif + +#include + #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/cu_inc/common.cuh" -#include "cub/util_type.cuh" -#include -#include + #include "contrib_ops/cuda/bert/utils.cuh" #include "contrib_ops/cuda/transformers/generation_cuda_impl.h" diff --git a/onnxruntime/contrib_ops/cuda/transformers/generation_device_helper.cc b/onnxruntime/contrib_ops/cuda/transformers/generation_device_helper.cc index bba30805ae1be..7adc2fe0a67ea 100644 --- a/onnxruntime/contrib_ops/cuda/transformers/generation_device_helper.cc +++ b/onnxruntime/contrib_ops/cuda/transformers/generation_device_helper.cc @@ -424,7 +424,7 @@ Status ProcessLogits(const OrtValue& logits, // const bool is_whisper_model = (parameters->model_type == onnxruntime::contrib::transformers::IGenerationParameters::kModelTypeWhisper); if (step == 1 && is_whisper_model && parameters->no_speech_probs) { cuda::LaunchSaveNoSpeechProbs( - (T*)parameters->no_speech_probs, Y_data, batch_size, num_beams, vocab_size, parameters->no_speech_token, cuda_stream); + (T*)parameters->no_speech_probs, Y_data, batch_size, num_beams, vocab_size, parameters->no_speech_token_id, cuda_stream); } // NOTE: currently we treat extra decoding ids are same @@ -469,7 +469,15 @@ Status ProcessLogits(const OrtValue& logits, // cudaMemcpyDeviceToHost, cuda_stream)); constexpr int max_initial_timestamp_index = 50; - onnxruntime::contrib::transformers::TimestampLogitsProcessor time_logit_processor(parameters->eos_token_id, max_initial_timestamp_index); + // Token ids are passed below in the order that they appear in the tokenizer + onnxruntime::contrib::transformers::TimestampLogitsProcessor time_logit_processor(parameters->eos_token_id, + parameters->decoder_start_token_id, + parameters->translate_token_id, + parameters->transcribe_token_id, + parameters->start_of_lm_token_id, + parameters->no_timestamps_token_id, + parameters->beginning_timestamp_token_id, + max_initial_timestamp_index); onnxruntime::contrib::transformers::NextTokenScores next_token_scores_timestamp({cpu_next_token_scores_span, batch_beam_size, vocab_size}); CUDA_RETURN_IF_ERROR(cudaStreamSynchronize(cuda_stream)); diff --git a/onnxruntime/contrib_ops/js/js_contrib_kernels.cc b/onnxruntime/contrib_ops/js/js_contrib_kernels.cc index bd58dded026a6..25e7567a2e9fc 100644 --- a/onnxruntime/contrib_ops/js/js_contrib_kernels.cc +++ b/onnxruntime/contrib_ops/js/js_contrib_kernels.cc @@ -8,13 +8,14 @@ namespace contrib { namespace js { class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, Attention); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, BiasAdd); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, BiasSplitGelu); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, FastGelu); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, FusedConv); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, Gelu); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, MatMulNBits); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, MultiHeadAttention); -class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, BiasSplitGelu); -class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, BiasAdd); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, SkipLayerNormalization); -class ONNX_OPERATOR_KERNEL_CLASS_NAME(kJsExecutionProvider, kMSDomain, 1, FusedConv); template <> KernelCreateInfo BuildKernelCreateInfo() { @@ -25,14 +26,15 @@ KernelCreateInfo BuildKernelCreateInfo() { Status RegisterJsContribKernels(KernelRegistry& kernel_registry) { static const BuildKernelCreateInfoFn function_table[] = { BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, BuildKernelCreateInfo, - BuildKernelCreateInfo}; + SkipLayerNormalization)>}; for (auto& function_table_entry : function_table) { KernelCreateInfo info = function_table_entry(); diff --git a/onnxruntime/contrib_ops/js/quantization/matmul_nbits.cc b/onnxruntime/contrib_ops/js/quantization/matmul_nbits.cc new file mode 100644 index 0000000000000..888db0fd161f2 --- /dev/null +++ b/onnxruntime/contrib_ops/js/quantization/matmul_nbits.cc @@ -0,0 +1,25 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "contrib_ops/js/quantization/matmul_nbits.h" +#include "core/providers/js/js_data_types.h" + +namespace onnxruntime { +namespace contrib { +namespace js { + +using onnxruntime::js::JsepSupportedFloatTypes; + +ONNX_OPERATOR_KERNEL_EX( + MatMulNBits, + kMSDomain, + 1, + kJsExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T1", JsepSupportedFloatTypes()) + .TypeConstraint("T2", DataTypeImpl::GetTensorType()), + MatMulNBits); + +} // namespace js +} // namespace contrib +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/js/quantization/matmul_nbits.h b/onnxruntime/contrib_ops/js/quantization/matmul_nbits.h new file mode 100644 index 0000000000000..cca2c4757765b --- /dev/null +++ b/onnxruntime/contrib_ops/js/quantization/matmul_nbits.h @@ -0,0 +1,48 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "core/providers/js/js_kernel.h" + +namespace onnxruntime { +namespace contrib { +namespace js { + +using onnxruntime::js::JsKernel; + +class MatMulNBits final : public JsKernel { + public: + MatMulNBits(const OpKernelInfo& info) : JsKernel(info), + K_{narrow(info.GetAttr("K"))}, + N_{narrow(info.GetAttr("N"))}, + accuracy_level_{info.GetAttrOrDefault("accuracy_level", 0)}, + nbits_{narrow(info.GetAttr("bits"))}, + block_size_{narrow(info.GetAttr("block_size"))} { + ORT_ENFORCE(nbits_ == 4, + "Only 4b quantization is supported for MatMulNBits op, additional bits support is planned."); + ORT_ENFORCE(block_size_ >= 16 && !(block_size_ & (block_size_ - 1)), + "Block size must be a power of 2 and greater than or equal to 16."); + JSEP_INIT_KERNEL_ATTRIBUTE(MatMulNBits, ({ + "k" : $1, + "n" : $2, + "accuracyLevel" : $3, + "bits" : $4, + "blockSize" : $5 + }), + static_cast(K_), + static_cast(N_), + static_cast(accuracy_level_), + static_cast(nbits_), + static_cast(block_size_)); + } + + private: + const size_t K_; + const size_t N_; + const int64_t accuracy_level_; + const size_t nbits_; + const size_t block_size_; +}; + +} // namespace js +} // namespace contrib +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/rocm/bert/fast_gelu.cc b/onnxruntime/contrib_ops/rocm/bert/fast_gelu.cc deleted file mode 100644 index 9cb414e4e8980..0000000000000 --- a/onnxruntime/contrib_ops/rocm/bert/fast_gelu.cc +++ /dev/null @@ -1,59 +0,0 @@ -// Copyright (c) Microsoft Corporation. All rights reserved. -// Licensed under the MIT License. - -#include "contrib_ops/rocm/bert/fast_gelu.h" - -#include "core/providers/rocm/rocm_common.h" -#include "core/providers/rocm/miopen_common.h" -#include "contrib_ops/cpu/bert/bias_gelu_helper.h" -#include "contrib_ops/rocm/bert/elementwise.h" -#include "contrib_ops/rocm/bert/transformer_common.h" - -namespace onnxruntime { -namespace contrib { -namespace rocm { - -#define REGISTER_KERNEL_TYPED(T) \ - ONNX_OPERATOR_TYPED_KERNEL_EX( \ - FastGelu, \ - kMSDomain, \ - 1, \ - T, \ - kRocmExecutionProvider, \ - (*KernelDefBuilder::Create()) \ - .TypeConstraint("T", DataTypeImpl::GetTensorType()), \ - FastGelu); - -REGISTER_KERNEL_TYPED(float) -REGISTER_KERNEL_TYPED(MLFloat16) -REGISTER_KERNEL_TYPED(BFloat16) - -using namespace ONNX_NAMESPACE; - -template -Status FastGelu::ComputeInternal(OpKernelContext* context) const { - ORT_RETURN_IF_ERROR(bias_gelu_helper::CheckInputs(context)); - - const Tensor* input = context->Input(0); - const Tensor* bias = context->Input(1); - Tensor* output = context->Output(0, input->Shape()); - - int64_t input_length = input->Shape().Size(); - if (input_length == 0) { - return Status::OK(); - } - int64_t bias_length = (nullptr == bias) ? 0 : bias->Shape().Size(); - typedef typename ToHipType::MappedType HipT; - - const HipT* input_buffer = reinterpret_cast(input->Data()); - const HipT* bias_buffer = (nullptr != bias) ? reinterpret_cast(bias->Data()) : nullptr; - return LaunchElementwiseKernel( - GetTuningContext(), context->GetComputeStream(), - input_buffer, static_cast(input_length), - bias_buffer, static_cast(bias_length), - reinterpret_cast(output->MutableData())); -} - -} // namespace rocm -} // namespace contrib -} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/rocm/bert/fast_gelu.h b/onnxruntime/contrib_ops/rocm/bert/fast_gelu.h deleted file mode 100644 index 42bfe5a0b0246..0000000000000 --- a/onnxruntime/contrib_ops/rocm/bert/fast_gelu.h +++ /dev/null @@ -1,24 +0,0 @@ -// Copyright (c) Microsoft Corporation. All rights reserved. -// Licensed under the MIT License. - -#pragma once - -#include "core/common/common.h" -#include "core/providers/rocm/rocm_kernel.h" - -namespace onnxruntime { -namespace contrib { -namespace rocm { - -using namespace onnxruntime::rocm; - -template -class FastGelu final : public RocmKernel { - public: - FastGelu(const OpKernelInfo& op_kernel_info) : RocmKernel(op_kernel_info) {} - Status ComputeInternal(OpKernelContext* ctx) const override; -}; - -} // namespace rocm -} // namespace contrib -} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm.cc b/onnxruntime/contrib_ops/rocm/diffusion/group_norm.cc deleted file mode 100644 index e82e15a304f4c..0000000000000 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm.cc +++ /dev/null @@ -1,152 +0,0 @@ -// Copyright (c) Microsoft Corporation. All rights reserved. -// Licensed under the MIT License. - -#include "core/providers/rocm/rocm_common.h" -#include "contrib_ops/rocm/diffusion/group_norm.h" -#include "contrib_ops/rocm/diffusion/group_norm_impl.h" - -namespace onnxruntime { -namespace contrib { -namespace rocm { - -#define GROUP_NORM_TYPES float, MLFloat16 - -ONNX_OPERATOR_KERNEL_EX( - GroupNorm, kMSDomain, 1, kRocmExecutionProvider, - (*KernelDefBuilder::Create()).TypeConstraint("T", BuildKernelDefConstraints()), GroupNorm); - -using namespace ONNX_NAMESPACE; - -namespace { -template -struct DispatchGroupNorm { - Status operator()(RocmTuningContext* tuning_ctx, - Stream* stream, - Tensor* output, - const Tensor* input, - const Tensor* gamma, - const Tensor* beta, - void* workspace, - float epsilon, - int batch_size, - int num_channels, - int height, - int width, - int num_groups, - bool use_swish_activation) { - typedef typename ToHipType::MappedType HipT; - return LaunchGroupNormKernel( - tuning_ctx, - stream, - reinterpret_cast(output->MutableData()), - reinterpret_cast(input->Data()), - gamma->Data(), - beta->Data(), - workspace, - epsilon, - batch_size, - num_channels, - height, - width, - num_groups, - use_swish_activation); - } -}; - -} // namespace - -GroupNorm::GroupNorm(const OpKernelInfo& op_info) : RocmKernel(op_info) { - epsilon_ = op_info.GetAttrOrDefault("epsilon", 1e-5f); - ORT_ENFORCE(epsilon_ >= 0); - - int64_t num_groups; - ORT_ENFORCE(op_info.GetAttr("groups", &num_groups).IsOK()); - ORT_ENFORCE(num_groups >= 0); - num_groups_ = static_cast(num_groups); - - int64_t activation; - ORT_ENFORCE(op_info.GetAttr("activation", &activation).IsOK()); - ORT_ENFORCE(activation == 0 || activation == 1); // 0 is None, 1 is Swish - use_swish_activation_ = (activation == 1); - - channels_last_ = (op_info.GetAttrOrDefault("channels_last", static_cast(1)) != 0); -} - -Status GroupNorm::PrePack(const Tensor& /*tensor*/, int /*input_idx*/, AllocatorPtr /*alloc*/, - bool& is_packed, PrePackedWeights* /*prepacked_weights*/) { - is_packed = false; - return Status::OK(); -} - -Status GroupNorm::ComputeInternal(OpKernelContext* context) const { - const Tensor* input = context->Input(0); - const Tensor* gamma = context->Input(1); - const Tensor* beta = context->Input(2); - Tensor* output = context->Output(0, input->Shape()); - - if (!channels_last_) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "only the channels_last layout is supported"); - } - - const auto& input_dims = input->Shape().GetDims(); - if (input_dims.size() != 4) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "input is expected to have 4 dimensions, got ", input_dims.size()); - } - - const auto& gamma_dims = gamma->Shape().GetDims(); - if (gamma_dims.size() != 1) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "gamma is expected to have 1 dimension, got ", gamma_dims.size()); - } - if (gamma_dims[0] != input_dims[3]) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "Number of channels in gamma and input does not match"); - } - - const auto& beta_dims = beta->Shape().GetDims(); - if (beta_dims.size() != 1) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "beta is expected to have 1 dimension, got ", beta_dims.size()); - } - if (beta_dims[0] != input_dims[3]) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "Number of channels in beta and input does not match"); - } - - // Input and output format is NHWC - int batch_size = static_cast(input_dims[0]); - int num_channels = static_cast(input_dims[3]); - int height = static_cast(input_dims[1]); - int width = static_cast(input_dims[2]); - - if (num_channels % num_groups_ != 0) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "number of channels should be divisible by num_groups"); - } - - if (context->GetUseDeterministicCompute()) { - static std::once_flag log_warning; - std::call_once(log_warning, []() { - LOGS_DEFAULT(WARNING) << "GroupNorm has no deterministic GPU kernel, its outputs may still be nondeterministic."; - }); - } - - auto workspace = GetScratchBuffer(GetGroupNormWorkspaceSizeInBytes(), context->GetComputeStream()); - - utils::MLTypeCallDispatcher dispatcher(input->GetElementType()); - return dispatcher.InvokeRet(GetTuningContext(), context->GetComputeStream(), - output, input, gamma, beta, workspace.get(), - epsilon_, - batch_size, - num_channels, - height, - width, - num_groups_, - use_swish_activation_); -} - -} // namespace rocm -} // namespace contrib -} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck.cuh b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck.cuh index fb7091592c16e..d0a0d09fcbae3 100644 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck.cuh +++ b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck.cuh @@ -26,13 +26,18 @@ namespace rocm { using onnxruntime::rocm::CKDataTypeAdaptor; -using Swish = ck::tensor_operation::element_wise::Swish; +// The SiLU function is a special case of Swish function, +// The Swish function is parametrized by b, which is set to 1.0 for SiLU. They are defined as: +// SiLU(x) = x * sigmoid(x) +// Swish(x) = x * sigmoid(bx) +// The default value of b is 1.0 in ck::tensor_operation::element_wise::Swish function. We treat them as the same function here. +using Silu = ck::tensor_operation::element_wise::Swish; using Pass = ck::tensor_operation::element_wise::PassThrough; constexpr int Rank = 5; constexpr int NumReduceDim = 3; -template +template auto GetCKGroupNormNHWCTypeStringAndOps() { using XDataType = typename CKDataTypeAdaptor::type; using YDataType = typename CKDataTypeAdaptor::type; @@ -40,26 +45,30 @@ auto GetCKGroupNormNHWCTypeStringAndOps() { using GammaDataType = float; using BetaDataType = float; - using Activation = std::conditional_t; + using Activation = std::conditional_t; - std::vector>>> ret; + std::vector>>> ret; for (auto&& impl : internal::GetDeviceGroupNormInstances()) { - std::string swish_suffix = WithSwish ? "_Swish" : "_Pass"; - auto type_string = onnxruntime::MakeString(impl->GetTypeString()) + swish_suffix; + std::string silu_suffix = WithSilu ? "_Silu" : "_Pass"; + auto type_string = onnxruntime::MakeString(impl->GetTypeString()) + silu_suffix; auto invoker = impl->MakeInvokerPointer(); - auto ck_group_norm_op = [impl = std::move(impl), invoker = std::move(invoker)](const GroupNormNHWCParams* params) -> Status { - if constexpr (WithSwish) { + auto ck_group_norm_op = [impl = std::move(impl), invoker = std::move(invoker)]( + const GroupNormNHWCTunableParams* params) -> Status { + TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF((params->skip != nullptr || params->bias != nullptr), + "Input skip or bias is not supported by composable kernel."); + if constexpr (WithSilu) { TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF( - !params->withSwish, "Swish version only support groupnorm with swish"); + !params->use_silu, "Silu version only support groupnorm with silu"); } else { TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF( - params->withSwish, "Pass version only support groupnorm without swish"); + params->use_silu, "Pass version only support groupnorm without silu"); } - std::vector in_lengths{params->n, params->h, params->w, params->groups, params->cPerGroup}; - std::vector in_out_strides{params->h * params->w * params->c, params->w * params->c, params->c, params->cPerGroup, 1}; - std::vector gamma_beta_strides{0, 0, 0, params->cPerGroup, 1}; + std::vector in_lengths{params->n, params->h, params->w, params->groups, params->channels_per_group}; + std::vector in_out_strides{params->h * params->w * params->c, params->w * params->c, + params->c, params->channels_per_group, 1}; + std::vector gamma_beta_strides{0, 0, 0, params->channels_per_group, 1}; std::vector reduce_dims{1, 2, 4}; auto activation = Activation{}; diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck_impl/impl.cuh b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck_impl/impl.cuh index 19b081881dcec..4cb371fdcf960 100644 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck_impl/impl.cuh +++ b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck_impl/impl.cuh @@ -18,7 +18,7 @@ namespace internal { using F16 = ck::half_t; using F32 = float; -using Swish = ck::tensor_operation::element_wise::Swish; +using Silu = ck::tensor_operation::element_wise::Swish; using Pass = ck::tensor_operation::element_wise::PassThrough; using ck::tensor_operation::device::DeviceNormalizationFwd; // the interface @@ -101,9 +101,9 @@ GetDeviceGroupNormInstances() { template <> std::vector>> + F16, F32, F32, F16, F32, Silu, 5, 3>>> GetDeviceGroupNormInstances< - F16, F32, F32, F16, F32, Swish, 5, 3>(); + F16, F32, F32, F16, F32, Silu, 5, 3>(); template <> std::vector std::vector>> + F32, F32, F32, F32, F32, Silu, 5, 3>>> GetDeviceGroupNormInstances< - F32, F32, F32, F32, F32, Swish, 5, 3>(); + F32, F32, F32, F32, F32, Silu, 5, 3>(); template <> std::vector -std::vector>> -GetDeviceGroupNormInstances() { - std::vector>> instances; +std::vector>> +GetDeviceGroupNormInstances() { + std::vector>> instances; ck::tensor_operation::device::instance::add_device_operation_instances( instances, - device_normalization_f16_instances{}); + device_normalization_f16_instances{}); return instances; } diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck_impl/impl_fp32.cu b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck_impl/impl_fp32.cu index 9b0ccab17b4c1..ceb53ed442abc 100644 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck_impl/impl_fp32.cu +++ b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_ck_impl/impl_fp32.cu @@ -11,12 +11,12 @@ namespace rocm { namespace internal { template <> -std::vector>> -GetDeviceGroupNormInstances() { - std::vector>> instances; +std::vector>> +GetDeviceGroupNormInstances() { + std::vector>> instances; ck::tensor_operation::device::instance::add_device_operation_instances( instances, - device_normalization_f32_instances{}); + device_normalization_f32_instances{}); return instances; } diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_common.h b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_common.h index 008ae20b0561f..7cff640db2f34 100644 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_common.h +++ b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_common.h @@ -8,110 +8,47 @@ #include "core/providers/rocm/cu_inc/common.cuh" #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/tunable/rocm_tunable.h" +#include "contrib_ops/rocm/diffusion/group_norm_common_base.h" namespace onnxruntime { namespace contrib { namespace rocm { -using onnxruntime::rocm::CeilDiv; - -int32_t findMaxDivisor(int32_t n, int32_t maxAllowedDivisor) { - int32_t maxDivisor = -1; - for (int32_t i = 1; i <= std::sqrt(n); i++) { - if (n % i == 0) { - int32_t divisor1 = n / i; - int32_t divisor2 = i; - - if (divisor1 > maxDivisor && divisor1 < maxAllowedDivisor) { - maxDivisor = divisor1; - } - if (divisor2 > maxDivisor && divisor2 < maxAllowedDivisor) { - maxDivisor = divisor2; - } - } - } - return maxDivisor; -} - template -struct GroupNormNHWCParams : OpParams { - GroupNormNHWCParams(RocmTuningContext* tuning_ctx, onnxruntime::Stream* stream, T* dst, float* redBuffer, const T* src, const float* gamma, - const float* beta, int32_t n, int32_t h, int32_t w, int32_t c, int32_t groups, float epsilon, bool withSwish) - : OpParams(tuning_ctx, stream), dst(dst), src(src), gamma(gamma), beta(beta), redBuffer(redBuffer), epsilon(epsilon), n(n), h(h), w(w), c(c), groups(groups), withSwish(withSwish) { - int32_t maxBlocksPerHW = 1024; - switch (c) { - case 960: - case 1920: - cPerBlock = 480; - break; - case 512: - case 256: - cPerBlock = 256; - break; - case 128: - cPerBlock = 128; - break; - default: - cPerBlock = 320; - } - - hw = h * w; - const int32_t blocksPerHW = findMaxDivisor(hw, maxBlocksPerHW); - hwPerBlock = CeilDiv(hw, blocksPerHW); - cPerGroup = c / groups; - hwc = hw * c; - invHWC = 1.F / (float)(hw * cPerGroup); - groupsPerBlock = cPerBlock / cPerGroup; - } +struct GroupNormNHWCTunableParams : OpParams, GroupNormNHWCParams { + GroupNormNHWCTunableParams(RocmTuningContext* tuning_ctx, + onnxruntime::Stream* ort_stream, + T* output, + T* add_out, + const T* input, + const T* skip, + const T* bias, + const float* gamma, + const float* beta, + float* workspace, + float epsilon, + int batch_size, + int num_channels, + int height, + int width, + int num_groups, + bool use_silu, + bool broadcast_skip, + int channels_per_block) + : OpParams(tuning_ctx, ort_stream), + GroupNormNHWCParams(output, add_out, input, skip, bias, gamma, beta, workspace, epsilon, batch_size, + num_channels, height, width, num_groups, use_silu, broadcast_skip, channels_per_block) {} std::string Signature() const override { - std::string swish_suffix = withSwish ? "_Swish" : "_Pass"; - std::string sig = std::to_string(n) + "_" + std::to_string(h * w) + "_" + std::to_string(c) + "_" + std::to_string(groups) + swish_suffix; + std::string silu_suffix = this->use_silu ? "_silu" : "_pass"; + std::string skip_suffix = this->skip != nullptr ? "_skip" : "_noskip"; + std::string broadcast_suffix = this->broadcast_skip ? "_broadcast" : "_nobroadcast"; + std::string bias_suffix = this->bias != nullptr ? "_bias" : "_nobias"; + std::string sig = std::to_string(this->n) + "_" + std::to_string(this->h * this->w) + "_" + + std::to_string(this->c) + "_" + std::to_string(this->groups) + silu_suffix + + skip_suffix + broadcast_suffix + bias_suffix; return sig; } - - // The output buffer. Layout NHWC. - T* dst; - // The input buffer. Layout NHWC. - T const* src; - // The gamma scaling factor. - float const* gamma; - // The beta term to add in GN. - float const* beta; - // The temporary buffer to do the global parallel reduction. Size: - // BLOCKS_PER_BATCH x C x 2. - float* redBuffer; - float epsilon; - - // The number of instances in the batch. - int32_t n; - // The height and width of each activation map. - int32_t h; - int32_t w; - // The number of channels. - int32_t c; - // The number of groups. - int32_t groups; - // Do we apply the Swish activation function? - bool withSwish; - - // Precomputed values and parameters to control the execution of the kernels. - - // The number of activations per instance (h * w) and the number of - // activations per block. - int32_t hw; - int32_t hwPerBlock; - // The number of channels per group and blocks per activation in the C - // dimension. - int32_t cPerBlock; - int32_t cPerGroup; - - // The precomputed stride between instances. - int32_t hwc; - // The inverse of hwc in floats (to compute mean/var). - float invHWC; - // The precomputed number of groups per block. - int32_t groupsPerBlock; }; } // namespace rocm diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl.cu b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl.cu index dbd5009e63676..142aaf14e8d2d 100644 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl.cu +++ b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl.cu @@ -15,9 +15,12 @@ namespace rocm { template Status LaunchGroupNormKernel( RocmTuningContext* tuning_ctx, - Stream* stream, + Stream* ort_stream, T* output, + T* add_out, const T* input, + const T* skip, + const T* bias, const float* gamma, const float* beta, void* workspace, @@ -27,19 +30,26 @@ Status LaunchGroupNormKernel( int height, int width, int num_groups, - bool use_swish_activation) { - if (batch_size > static_cast(kMaxGroupNormBatchSize)) { - return ORT_MAKE_STATUS(ONNXRUNTIME, StatusCode::NOT_IMPLEMENTED, - "only support batch_size <= 32. Got", batch_size); - } + bool use_silu, + bool broadcast_skip, + int channels_per_block) { + GroupNormNHWCTunableParams params(tuning_ctx, ort_stream, output, add_out, input, skip, bias, gamma, beta, + reinterpret_cast(workspace), epsilon, batch_size, num_channels, + height, width, num_groups, use_silu, broadcast_skip, channels_per_block); - if (num_groups != static_cast(kGroupNormNumberOfGroups)) { - return ORT_MAKE_STATUS(ONNXRUNTIME, StatusCode::NOT_IMPLEMENTED, - "only num_groups=32 is supported. Got", num_groups); + if (params.channels_per_block % params.channels_per_group != 0 || + params.channels_per_block > kMaxSize || + (params.channels_per_group % CHANNELS_PER_THREAD != 0)) { + return ORT_MAKE_STATUS(ONNXRUNTIME, NOT_IMPLEMENTED, + "GroupNorm in ROCM does not support the input: n=", batch_size, + " h=", height, + " w=", width, + " c=", num_channels, + " groups=", num_groups); } - GroupNormNHWCParams params(tuning_ctx, stream, output, reinterpret_cast(workspace), input, gamma, beta, - batch_size, height, width, num_channels, num_groups, epsilon, use_swish_activation); + HIP_RETURN_IF_ERROR(hipMemsetAsync( + params.group_sum_buffer, 0, GetGroupNormWorkspaceSizeInBytes(batch_size, num_groups), params.StreamHandle())); if (tuning_ctx->IsTunableOpEnabled()) { static GroupNormNHWCTunableOp op; @@ -50,14 +60,17 @@ Status LaunchGroupNormKernel( } template Status LaunchGroupNormKernel(RocmTuningContext* tuning_ctx, Stream* stream, half* output, - const half* input, const float* gamma, const float* beta, void* workspace, - float epsilon, int batch_size, int num_channels, - int height, int width, int num_groups, bool swish); + half* add_out, const half* input, const half* skip, const half* bias, + const float* gamma, const float* beta, void* workspace, float epsilon, + int batch_size, int num_channels, int height, int width, int num_groups, + bool use_silu, bool broadcast_skip, int channels_per_block); template Status LaunchGroupNormKernel(RocmTuningContext* tuning_ctx, Stream* stream, float* output, - const float* input, const float* gamma, const float* beta, void* workspace, - float epsilon, int batch_size, int num_channels, - int height, int width, int num_groups, bool swish); + float* add_out, const float* input, const float* skip, const float* bias, + const float* gamma, const float* beta, void* workspace, float epsilon, + int batch_size, int num_channels, int height, int width, int num_groups, + bool use_silu, bool broadcast_skip, int channels_per_block); + } // namespace rocm } // namespace contrib } // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl.h b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl.h deleted file mode 100644 index a0f7e0aca5def..0000000000000 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl.h +++ /dev/null @@ -1,47 +0,0 @@ -// Copyright (c) Microsoft Corporation. All rights reserved. -// Licensed under the MIT License. - -#pragma once - -#include -#include - -#include "core/common/common.h" -#include "core/common/status.h" -#include "core/providers/rocm/tunable/rocm_tunable.h" - -using onnxruntime::rocm::tunable::RocmTuningContext; - -namespace onnxruntime { -namespace contrib { -namespace rocm { - -constexpr size_t kMaxGroupNormBatchSize = 32; -constexpr size_t kGroupNormNumberOfGroups = 32; - -constexpr size_t GetGroupNormWorkspaceSizeInBytes() { - // Two buffers for sum and squared sum - return (sizeof(float) * 2) * kMaxGroupNormBatchSize * kGroupNormNumberOfGroups; -} - -template -Status LaunchGroupNormKernel( - RocmTuningContext* tuning_ctx, - Stream* stream, - T* output, // normalized output tensor - const T* input, // input tensor - const float* gamma, // gamma (also known as weight or scale) - const float* beta, // beta (also known as bias) - void* workspace, // Work space - float epsilon, // epsilon used normalization - int batch_size, // N - int num_channels, // C - int height, // H - int width, // W - int num_groups, // number of groups - bool use_swish_activation // Whether there is Swish activation after group normalization -); - -} // namespace rocm -} // namespace contrib -} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl_kernel.cuh b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl_kernel.cuh deleted file mode 100644 index d6322a12a9363..0000000000000 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_impl_kernel.cuh +++ /dev/null @@ -1,213 +0,0 @@ -// Copyright (c) Microsoft Corporation. All rights reserved. -// Licensed under the MIT License. - -// The ROCm kernel is modified from TensorRT 8.5. -/* - * SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include -#include -#include -#include "core/providers/rocm/cu_inc/common.cuh" -#include "core/providers/rocm/rocm_common.h" - -namespace onnxruntime { -namespace contrib { -namespace rocm { - -static inline __device__ __host__ float sigmoid(float x) { - return 1.F / (1.F + expf(-x)); -} - -struct GroupSums { - // Is it the 1st element of the group? - int32_t flag; - // The sum. - float sum; - // The sum of squares. - float sumSq; -}; - -struct GroupSumsOp { - inline __device__ GroupSums operator()(GroupSums const& a, GroupSums const& b) { - GroupSums dst; - dst.sum = b.flag ? b.sum : (a.sum + b.sum); - dst.sumSq = b.flag ? b.sumSq : (a.sumSq + b.sumSq); - dst.flag = a.flag + b.flag; - return dst; - } -}; - -template -inline __device__ void UpdateSum(const T* src, int64_t offset, U& sum, U& sumSq) { - using VecT = onnxruntime::rocm::aligned_vector; - const VecT input_v = *reinterpret_cast(src + offset); - -#pragma unroll - for (int i = 0; i < ILP; i++) { - const U val = static_cast(input_v.val[i]); - sum += val; - sumSq += val * val; - } -} - -template -__global__ void groupNormNHWCSumKernel(const T* src, float* redBuffer, int32_t cPerBlock, int32_t hwPerBlock, int32_t hw, - int32_t hwc, int32_t c, int32_t cPerGroup, int32_t groups, int32_t groupsPerBlock) { - // The object in charge of doing the sums for the different blocks. - typedef hipcub::BlockScan BlockScan; - - // Allocate shared memory for BlockScan. - __shared__ typename BlockScan::TempStorage tempStorage; - // Allocate shared memory for the groups. We could reduce the amount of shared - // memory reserved. - __shared__ float2 smem[ThreadsPerBlock]; - - // The instance in the batch. - int32_t ni = blockIdx.z; - // The channel loaded by that thread (ILP channels per thread). - int32_t ci = blockIdx.x * cPerBlock + threadIdx.x * ILP; - - // The first activation loaded by that block. - int32_t hwBegin = blockIdx.y * hwPerBlock; - // The last activation loaded by that block. - int32_t hwEnd = min(hwBegin + hwPerBlock, hw); - - // The sums. - float sum = 0.F; - float sumSq = 0.F; - - // Iterate over the activations to compute the sums. - if (ci < c) { - for (int32_t hwi = hwBegin; hwi < hwEnd; ++hwi) { - // The offset. - int64_t offset = static_cast(ni) * hwc + static_cast(hwi) * c + ci; - UpdateSum(src, offset, sum, sumSq); - } - } - - // The group that thread works on and the channel in the group (modulus). - int32_t gi = threadIdx.x * ILP / cPerGroup; - int32_t cj = threadIdx.x * ILP - cPerGroup * gi; - - // The data for the summations. - GroupSums inp{cj == 0 ? 1 : 0, sum, sumSq}; - - // Do the segmented scan. - GroupSums out; - BlockScan(tempStorage).InclusiveScan(inp, out, GroupSumsOp()); - - // Store the results for the groups in shared memory (to produce coalesced - // stores later). - if (cj == cPerGroup - ILP) { // ILP channels per thread - smem[gi] = make_float2(out.sum, out.sumSq); - } - - // Make sure the data is in shared memory. - __syncthreads(); - - // The global group index. - int32_t gj = blockIdx.x * groupsPerBlock + threadIdx.x; - - // Threads that have nothing left to do, exit. - if (threadIdx.x >= groupsPerBlock || gj >= groups) { - return; - } - - // The first threads (those storing to global memory, load the values). - float2 sums = smem[threadIdx.x]; - - // Store to global memory. - atomicAdd(&redBuffer[(2 * ni + 0) * groups + gj], sums.x); - atomicAdd(&redBuffer[(2 * ni + 1) * groups + gj], sums.y); -} - -template -__device__ void computeGroupNorm(const T* src, T* dst, int64_t offset, U mean, U invStdDev, - const U* gamma_v, const U* beta_v, bool swish) { - using VecT = onnxruntime::rocm::aligned_vector; - const VecT input_v = *reinterpret_cast(src + offset); - VecT output_v; - -#pragma unroll - for (int i = 0; i < ILP; i++) { - U val = static_cast(input_v.val[i]); - val = (val - mean) * invStdDev; - val = gamma_v[i] * val + beta_v[i]; - - if (swish) { - val = val * sigmoid(val); - } - output_v.val[i] = static_cast(val); - } - *(reinterpret_cast(dst + offset)) = output_v; -} - -template -__global__ void groupNormNHWCScaleKernel(T* dst, const T* src, const float* gamma, const float* beta, const float* redBuffer, float epsilon, int32_t c, int32_t cPerBlock, - int32_t cPerGroup, int32_t groups, int32_t hwc, float invHWC, int32_t hw, int32_t hwPerBlock, bool withSwish) { - // The channel loaded by that thread (ILP channels per thread for F16x2). - int32_t ci = blockIdx.x * cPerBlock + threadIdx.x * ILP; - if (ci >= c) { - return; - } - - // The instance in the batch. - int32_t ni = blockIdx.z; - - // The group that thread works on and the channel in the group (modulus). - int32_t gi = ci / cPerGroup; - - // Load the sum and sum of squares for the group. - float sum = 0.F, sumSq = 0.F; - if (gi < groups) { - sum = redBuffer[(2 * ni + 0) * groups + gi]; - sumSq = redBuffer[(2 * ni + 1) * groups + gi]; - } - - using VecF = onnxruntime::rocm::aligned_vector; - - const VecF gamma_v = *reinterpret_cast(gamma + ci); - const VecF beta_v = *reinterpret_cast(beta + ci); - - // Compute the mean. - float mean = sum * invHWC; - // Compute the variance. - float var = sumSq * invHWC - (mean * mean); - // Compute the inverse of the stddev. - float invStdDev = var <= 0.F ? 1.F : rsqrtf(var + epsilon); - - // The first activation loaded by that block. - int32_t hwBegin = blockIdx.y * hwPerBlock; - // The last activation loaded by that block. - int32_t hwEnd = min(hwBegin + hwPerBlock, hw); - - // Iterate over the activations to compute the sums. - for (int32_t hwi = hwBegin; hwi < hwEnd; ++hwi) { - // The src/dst offset. - int64_t offset = (int64_t)ni * hwc + hwi * c + ci; - - // Fetch ILP channels per thread. - computeGroupNorm(src, dst, offset, mean, invStdDev, gamma_v.val, beta_v.val, withSwish); - } -} - -} // namespace rocm -} // namespace contrib -} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_triton.cuh b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_triton.cuh index b7b9441ac997d..c6ca16bfdfc80 100644 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_triton.cuh +++ b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_triton.cuh @@ -20,21 +20,21 @@ namespace rocm { namespace { -template +template std::string GetGroupNormTritonGroupName() { std::string ret = "GroupNormTriton_"; - std::string swish_suffix = WithSwish ? "Swish_" : "Pass_"; - ret += swish_suffix; + std::string silu_suffix = WithSilu ? "Silu_" : "Pass_"; + ret += silu_suffix; ret += GetDataTypeName(); return ret; } } // namespace -template +template auto GetTritonGroupNormNHWCTypeStringAndOps() { - std::vector>>> ret; - auto group_name = GetGroupNormTritonGroupName(); + std::vector>>> ret; + auto group_name = GetGroupNormTritonGroupName(); auto* kernel_list = GetOrtTritonKernelByGroup(group_name); if (kernel_list == nullptr) { return ret; @@ -45,36 +45,50 @@ auto GetTritonGroupNormNHWCTypeStringAndOps() { auto* metadata = GetOrtTritonKernelMetadata(i); auto block_size = metadata->constants.at("BLOCK_SIZE"); auto hw_size = metadata->constants.at("HW_SIZE"); - auto impl = [i, block_size, hw_size](const GroupNormNHWCParams* params) -> Status { + auto impl = [i, block_size, hw_size](const GroupNormNHWCTunableParams* params) -> Status { TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF( - params->cPerGroup > block_size || params->cPerGroup * 2 <= block_size, - "Arg block_size (", block_size, ") is not the next power of 2 of cPerGroup (", params->cPerGroup, ")."); + params->channels_per_group > block_size || params->channels_per_group * 2 <= block_size, + "Arg block_size (", block_size, ") is not the next power of 2 of channels_per_group (", + params->channels_per_group, ")."); TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF( params->hw % hw_size != 0, "Arg hw_size (", hw_size, ") is not a divisor of hw (", params->hw, ")."); - if constexpr (WithSwish) { - TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(!params->withSwish, "Swish version does not support GN w/o swish."); + if constexpr (WithSilu) { + TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(!params->use_silu, "Silu version does not support GN w/o silu."); } else { - TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(params->withSwish, "Pass version does not support GN w/ swish."); + TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(params->use_silu, "Pass version does not support GN w/ silu."); } // Construct args for launch kernel struct { - void* X; - void* Y; + const void* src; + const void* skip; + const void* bias; + void* out; + void* add_out; const void* gamma; const void* beta; int hw; int c; int c_per_group; float eps; + bool has_skip; + bool has_bias; + bool broadcast_skip; } args = { - (void*)params->src, + (const void*)params->src, + (const void*)params->skip, + (const void*)params->bias, (void*)params->dst, + (void*)params->skip_workspace, (const void*)params->gamma, (const void*)params->beta, params->hw, params->c, - params->cPerGroup, - params->epsilon}; + params->channels_per_group, + params->epsilon, + params->skip != nullptr, + params->bias != nullptr, + params->broadcast_skip, + }; // Grid dim is (batch_count, groups, 1) return LaunchTritonKernel(params->StreamHandle(), i, params->n, params->groups, 1, &args, sizeof(args)); diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_triton.py b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_triton.py index 56b3a030b289e..5ba96ebc117f0 100644 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_triton.py +++ b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_triton.py @@ -12,16 +12,22 @@ @triton.jit def group_norm_kernel( input_ptr, + skip_ptr, + bias_ptr, output_ptr, + add_out_ptr, gamma_ptr, beta_ptr, img_size, c, c_per_group, eps, + has_skip, + has_bias, + broadcast_skip, BLOCK_SIZE: tl.constexpr, HW_SIZE: tl.constexpr, - ACTIVATION_SWISH: tl.constexpr, + ACTIVATION_SILU: tl.constexpr, ): row_x = tl.program_id(0) row_y = tl.program_id(1) @@ -36,14 +42,35 @@ def group_norm_kernel( offsets = hw[:, None] * c + cols[None, :] mask = (cols < c_per_group)[None, :] + bias = tl.zeros([BLOCK_SIZE], dtype=tl.float32) + if has_skip: + add_out_ptr += row_x * stride + row_y * c_per_group + if broadcast_skip: + broadcast_skip_ptr = skip_ptr + row_x * c + row_y * c_per_group + bias += tl.load(broadcast_skip_ptr + cols, mask=cols < c_per_group, other=0.0).to(tl.float32) + else: + skip_ptr += row_x * stride + row_y * c_per_group + if has_bias: + bias_ptr += row_y * c_per_group + bias += tl.load(bias_ptr + cols, mask=cols < c_per_group, other=0.0).to(tl.float32) + # Calculate mean and variance _sum = tl.zeros([HW_SIZE, BLOCK_SIZE], dtype=tl.float32) _square_sum = tl.zeros([HW_SIZE, BLOCK_SIZE], dtype=tl.float32) for i in range(tl.cdiv(img_size, HW_SIZE)): x_ptr = input_ptr + i * HW_SIZE * c a = tl.load(x_ptr + offsets, mask=mask, other=0.0).to(tl.float32) + if has_skip and not broadcast_skip: + s_ptr = skip_ptr + i * HW_SIZE * c + s = tl.load(s_ptr + offsets, mask=mask, other=0.0).to(tl.float32) + a += s + if has_bias or broadcast_skip: + a += bias _sum += a _square_sum += a * a + if has_skip: + add_y_ptr = add_out_ptr + i * HW_SIZE * c + tl.store(add_y_ptr + offsets, a, mask=mask) # Set axis=None (or leave it unspecified) to reduce all axes. # TODO: In older Triton we have to reduce an axis at a time, but in our case @@ -57,12 +84,16 @@ def group_norm_kernel( gamma = tl.load(gamma_ptr + cols, mask=cols < c_per_group).to(tl.float32) beta = tl.load(beta_ptr + cols, mask=cols < c_per_group).to(tl.float32) for i in range(tl.cdiv(img_size, HW_SIZE)): - x_ptr = input_ptr + i * HW_SIZE * c y_ptr = output_ptr + i * HW_SIZE * c - x = tl.load(x_ptr + offsets, mask=mask, other=0.0).to(tl.float32) + if has_skip: + add_y_ptr = add_out_ptr + i * HW_SIZE * c + x = tl.load(add_y_ptr + offsets, mask=mask, other=0.0).to(tl.float32) + else: + x_ptr = input_ptr + i * HW_SIZE * c + x = tl.load(x_ptr + offsets, mask=mask, other=0.0).to(tl.float32) x_hat = (x - group_mean) * rstd y = x_hat * gamma + beta - if ACTIVATION_SWISH: + if ACTIVATION_SILU: y *= tl.sigmoid(y) tl.store(y_ptr + offsets, y, mask=mask) @@ -71,27 +102,27 @@ def group_norm_kernel( # blocks = [16, 32, 64, 128, 256, 512] # hw_sizes = [8, 16, 32, 64, 128, 256, 512] # but this will result in too many functions and slow down the compilation. -with_swish = [True, False] +with_silu = [True, False] dtypes = ["fp32", "fp16"] blocks = [16, 32, 64, 128] hw_sizes = [8, 16, 32, 64, 128, 256] warps = [1, 2, 4, 8, 16] name_pattern = "GroupNormTriton_{}_{}_b{}_hw{}_w{}" -sig_pattern = "*{},*{},*fp32,*fp32,i32,i32,i32,fp32" +sig_pattern = "*{},*{},*{},*{},*{},*fp32,*fp32,i32,i32,i32,fp32,i1,i1,i1" group_pattern = "GroupNormTriton_{}_{}" def get_function_table(): func_table = [] - for swish, dtype, hw_size, warp, b in product(with_swish, dtypes, hw_sizes, warps, blocks): - swish_suffix = "Swish" if swish else "Pass" - name = name_pattern.format(swish_suffix, dtype, b, hw_size, warp) - group = group_pattern.format(swish_suffix, dtype) - sig = sig_pattern.format(dtype, dtype) + for silu, dtype, hw_size, warp, b in product(with_silu, dtypes, hw_sizes, warps, blocks): + silu_suffix = "Silu" if silu else "Pass" + name = name_pattern.format(silu_suffix, dtype, b, hw_size, warp) + group = group_pattern.format(silu_suffix, dtype) + sig = sig_pattern.format(dtype, dtype, dtype, dtype, dtype) kwargs = { "num_warps": warp, - "constants": {"BLOCK_SIZE": b, "HW_SIZE": hw_size, "ACTIVATION_SWISH": int(swish)}, + "constants": {"BLOCK_SIZE": b, "HW_SIZE": hw_size, "ACTIVATION_SILU": int(silu)}, } func_desc = {"name": name, "group": group, "func": group_norm_kernel, "sig": sig, "kwargs": kwargs} func_table.append(func_desc) diff --git a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_tunable_op.h b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_tunable_op.h index 25d820f7ed326..e6831f764b418 100644 --- a/onnxruntime/contrib_ops/rocm/diffusion/group_norm_tunable_op.h +++ b/onnxruntime/contrib_ops/rocm/diffusion/group_norm_tunable_op.h @@ -20,115 +20,117 @@ namespace rocm { using onnxruntime::rocm::GPU_WARP_SIZE; template -void groupNormNHWCSum(const GroupNormNHWCParams* params) { - // Make sure the values are as we expect. - ORT_ENFORCE(params->c % params->cPerBlock == 0 && params->hw % params->hwPerBlock == 0); - // Make sure a group does not span multiple blocks. - ORT_ENFORCE(params->cPerBlock % params->cPerGroup == 0); - +void GroupNormNHWCSum(const GroupNormNHWCTunableParams* params) { dim3 grid; // The number of blocks to compute all the channels. - grid.x = params->c / params->cPerBlock; + grid.x = DivUp(params->c, params->channels_per_block); // The number of blocks to compute all the activations in a given instance. - grid.y = CeilDiv(params->hw, params->hwPerBlock); + grid.y = DivUp(params->hw, params->hw_per_block); // The number of instances. grid.z = params->n; -#define LAUNCH_GROUPNORM_SUM(ThreadsPerBlock, VecSize) \ - groupNormNHWCSumKernel \ - <<StreamHandle()>>>( \ - params->src, params->redBuffer, params->cPerBlock, \ - params->hwPerBlock, params->hw, params->hwc, params->c, \ - params->cPerGroup, params->groups, params->groupsPerBlock); \ +#define LAUNCH_GROUPNORM_SUM(ThreadsPerBlock, VecSize) \ + GroupNormNHWCSumKernel \ + <<StreamHandle()>>>( \ + params->skip_workspace, params->group_sum_buffer, params->src, params->skip, params->bias, \ + params->channels_per_block, params->hw_per_block, params->hw, params->hwc, params->c, \ + params->channels_per_group, params->groups, params->groups_per_block, params->broadcast_skip); \ break; - switch (params->cPerBlock) { - case 320: - LAUNCH_GROUPNORM_SUM(256, 2) - case 480: - LAUNCH_GROUPNORM_SUM(256, 2) + // Threads_per_block is half of values in kSizes since CHANNELS_PER_THREAD = 2. + switch (params->threads_per_block) { case 256: - LAUNCH_GROUPNORM_SUM(128, 2) + LAUNCH_GROUPNORM_SUM(256, CHANNELS_PER_THREAD) + case 192: + LAUNCH_GROUPNORM_SUM(192, CHANNELS_PER_THREAD) + case 160: + LAUNCH_GROUPNORM_SUM(160, CHANNELS_PER_THREAD) case 128: - LAUNCH_GROUPNORM_SUM(64, 2) + LAUNCH_GROUPNORM_SUM(128, CHANNELS_PER_THREAD) + case 64: + LAUNCH_GROUPNORM_SUM(64, CHANNELS_PER_THREAD) default: ORT_NOT_IMPLEMENTED("Not implemented"); } } template -Status GroupNormNHWCSumOp(const GroupNormNHWCParams* params) { +Status GroupNormNHWCSumOp(const GroupNormNHWCTunableParams* params) { dim3 grid; - grid.x = params->c / params->cPerBlock; - grid.y = CeilDiv(params->hw, params->hwPerBlock); + grid.x = DivUp(params->c, params->channels_per_block); + grid.y = DivUp(params->hw, params->hw_per_block); grid.z = params->n; - groupNormNHWCSumKernel + GroupNormNHWCSumKernel <<StreamHandle()>>>( - params->src, params->redBuffer, params->cPerBlock, params->hwPerBlock, - params->hw, params->hwc, params->c, params->cPerGroup, params->groups, params->groupsPerBlock); + params->skip_workspace, params->group_sum_buffer, params->src, params->skip, params->bias, + params->channels_per_block, params->hw_per_block, params->hw, params->hwc, params->c, + params->channels_per_group, params->groups, params->groups_per_block, params->broadcast_skip); return HIP_CALL(hipGetLastError()); } template -void groupNormNHWCScale(const GroupNormNHWCParams* params) { - // Make sure the dimensions are aligned with what we expect. - ORT_ENFORCE(params->c % params->cPerBlock == 0); - // Make sure a group does not span multiple blocks. - ORT_ENFORCE(params->cPerBlock % params->cPerGroup == 0); - +void GroupNormNHWCScale(const GroupNormNHWCTunableParams* params) { dim3 grid; // The number of blocks to compute all the channels. - grid.x = params->c / params->cPerBlock; + grid.x = DivUp(params->c, params->channels_per_block); // The number of blocks to compute all the activations in a given instance. - grid.y = CeilDiv(params->hw, params->hwPerBlock); + grid.y = DivUp(params->hw, params->hw_per_block); // The number of instances. grid.z = params->n; -#define LAUNCH_GROUPNORM_SCALE(ThreadsPerBlock, VecSize) \ - groupNormNHWCScaleKernel \ - <<StreamHandle()>>>( \ - params->dst, params->src, params->gamma, params->beta, \ - params->redBuffer, params->epsilon, params->c, params->cPerBlock, \ - params->cPerGroup, params->groups, params->hwc, params->invHWC, \ - params->hw, params->hwPerBlock, params->withSwish); \ +#define LAUNCH_GROUPNORM_SCALE(ThreadsPerBlock, VecSize) \ + GroupNormNHWCScaleKernel \ + <<StreamHandle()>>>( \ + params->dst, params->src, params->skip, params->gamma, params->beta, params->skip_workspace, \ + params->group_sum_buffer, params->epsilon, params->c, params->channels_per_block, \ + params->channels_per_group, params->groups, params->hwc, params->inv_hw_channels_per_group, \ + params->hw, params->hw_per_block, params->use_silu); \ break; - switch (params->cPerBlock) { - case 320: - LAUNCH_GROUPNORM_SCALE(256, 2) - case 480: - LAUNCH_GROUPNORM_SCALE(256, 2) + // Threads_per_block is half of values in kSizes since CHANNELS_PER_THREAD = 2. + switch (params->threads_per_block) { case 256: - LAUNCH_GROUPNORM_SCALE(128, 2) + LAUNCH_GROUPNORM_SCALE(256, CHANNELS_PER_THREAD) + case 192: + LAUNCH_GROUPNORM_SCALE(192, CHANNELS_PER_THREAD) + case 160: + LAUNCH_GROUPNORM_SCALE(160, CHANNELS_PER_THREAD) case 128: - LAUNCH_GROUPNORM_SCALE(64, 2) + LAUNCH_GROUPNORM_SCALE(128, CHANNELS_PER_THREAD) + case 64: + LAUNCH_GROUPNORM_SCALE(64, CHANNELS_PER_THREAD) default: ORT_NOT_IMPLEMENTED("Not implemented"); } } template -Status GroupNormNHWCScaleOp(const GroupNormNHWCParams* params) { +Status GroupNormNHWCScaleOp(const GroupNormNHWCTunableParams* params) { dim3 grid; - grid.x = params->c / params->cPerBlock; - grid.y = CeilDiv(params->hw, params->hwPerBlock); + grid.x = DivUp(params->c, params->channels_per_block); + grid.y = DivUp(params->hw, params->hw_per_block); grid.z = params->n; - groupNormNHWCScaleKernel + GroupNormNHWCScaleKernel <<StreamHandle()>>>( - params->dst, params->src, params->gamma, params->beta, params->redBuffer, params->epsilon, params->c, params->cPerBlock, - params->cPerGroup, params->groups, params->hwc, params->invHWC, params->hw, params->hwPerBlock, params->withSwish); + params->dst, params->src, params->skip, params->gamma, params->beta, params->skip_workspace, + params->group_sum_buffer, params->epsilon, params->c, params->channels_per_block, params->channels_per_group, + params->groups, params->hwc, params->inv_hw_channels_per_group, params->hw, params->hw_per_block, + params->use_silu); return HIP_CALL(hipGetLastError()); } template class GroupNormNHWCOp { public: - Status operator()(const GroupNormNHWCParams* params) { - HIP_RETURN_IF_ERROR(hipMemsetAsync(params->redBuffer, 0, GetGroupNormWorkspaceSizeInBytes(), params->StreamHandle())); + Status operator()(const GroupNormNHWCTunableParams* params) { + HIP_RETURN_IF_ERROR(hipMemsetAsync(params->group_sum_buffer, + 0, + GetGroupNormWorkspaceSizeInBytes(params->n, params->groups), + params->StreamHandle())); auto status = GroupNormNHWCSumOp(params); ORT_RETURN_IF_ERROR(status); HIP_RETURN_IF_ERROR(hipGetLastError()); @@ -138,29 +140,30 @@ class GroupNormNHWCOp { return Status::OK(); } - Status IsSupported(const GroupNormNHWCParams* params) { + Status IsSupported(const GroupNormNHWCTunableParams* params) { TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF( - !(params->c % VecSize == 0 && params->cPerGroup % VecSize == 0), - "The number of channels (", params->c, ") or the number of channels per group (", params->cPerGroup, + !(params->c % VecSize == 0 && params->channels_per_group % VecSize == 0), + "The number of channels (", params->c, ") or the number of channels per group (", params->channels_per_group, ") isn't divisible by the number of vector size: ", VecSize); - TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(!(params->cPerBlock % params->cPerGroup == 0 && - params->c % params->cPerBlock == 0 && params->hw % params->hwPerBlock == 0), - "The value of attributes don't meet the requirements."); - TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(!(params->cPerBlock <= ThreadsPerBlock * VecSize && - params->cPerBlock > (ThreadsPerBlock - GPU_WARP_SIZE) * VecSize), + TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(!(params->channels_per_block <= ThreadsPerBlock * VecSize && + params->channels_per_block > (ThreadsPerBlock - GPU_WARP_SIZE) * VecSize), "Configuration: Threads (", ThreadsPerBlock, "), vector size (", - VecSize, ") is redundant for the number of channels per group: ", params->cPerBlock); + VecSize, ") is redundant for the number of channels per group: ", + params->channels_per_block); return Status::OK(); } }; template -Status GroupNormNHWCStaticSelection(const GroupNormNHWCParams* params) { - HIP_RETURN_IF_ERROR(hipMemsetAsync(params->redBuffer, 0, GetGroupNormWorkspaceSizeInBytes(), params->StreamHandle())); - groupNormNHWCSum(params); +Status GroupNormNHWCStaticSelection(const GroupNormNHWCTunableParams* params) { + HIP_RETURN_IF_ERROR(hipMemsetAsync(params->group_sum_buffer, + 0, + GetGroupNormWorkspaceSizeInBytes(params->n, params->groups), + params->StreamHandle())); + GroupNormNHWCSum(params); HIP_RETURN_IF_ERROR(hipGetLastError()); - groupNormNHWCScale(params); + GroupNormNHWCScale(params); HIP_RETURN_IF_ERROR(hipGetLastError()); return Status::OK(); } @@ -178,30 +181,30 @@ Status GroupNormNHWCStaticSelection(const GroupNormNHWCParams* params) { ADD_OP_FOR_ALL_VEC_SIZE(name, 320) template -class GroupNormNHWCTunableOp : public TunableOp> { +class GroupNormNHWCTunableOp : public TunableOp> { public: GroupNormNHWCTunableOp() { this->RegisterOp(GroupNormNHWCStaticSelection); ADD_OP_FOR_ALL_THREADS_PER_BLOCK_ALL_VEC_SIZE(GroupNormNHWCOp) #ifdef USE_COMPOSABLE_KERNEL - for (auto&& [_, op] : GetCKGroupNormNHWCTypeStringAndOps()) { + for (auto&& [_, op] : GetCKGroupNormNHWCTypeStringAndOps()) { ORT_UNUSED_PARAMETER(_); this->RegisterOp(std::move(op)); } - for (auto&& [_, op] : GetCKGroupNormNHWCTypeStringAndOps()) { + for (auto&& [_, op] : GetCKGroupNormNHWCTypeStringAndOps()) { ORT_UNUSED_PARAMETER(_); this->RegisterOp(std::move(op)); } #endif // USE_COMPOSABLE_KERNEL #ifdef USE_TRITON_KERNEL - for (auto&& [_, op] : GetTritonGroupNormNHWCTypeStringAndOps()) { + for (auto&& [_, op] : GetTritonGroupNormNHWCTypeStringAndOps()) { ORT_UNUSED_PARAMETER(_); this->RegisterOp(std::move(op)); } - for (auto&& [_, op] : GetTritonGroupNormNHWCTypeStringAndOps()) { + for (auto&& [_, op] : GetTritonGroupNormNHWCTypeStringAndOps()) { ORT_UNUSED_PARAMETER(_); this->RegisterOp(std::move(op)); } diff --git a/onnxruntime/contrib_ops/rocm/rocm_contrib_kernels.cc b/onnxruntime/contrib_ops/rocm/rocm_contrib_kernels.cc index 55cd6a1d112f5..e19a976f3141c 100644 --- a/onnxruntime/contrib_ops/rocm/rocm_contrib_kernels.cc +++ b/onnxruntime/contrib_ops/rocm/rocm_contrib_kernels.cc @@ -93,6 +93,7 @@ class ONNX_OPERATOR_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, Samp class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kRocmExecutionProvider, kOnnxDomain, 1, float, ScaledTanh); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kRocmExecutionProvider, kOnnxDomain, 1, double, ScaledTanh); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kRocmExecutionProvider, kOnnxDomain, 1, MLFloat16, ScaledTanh); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, SkipGroupNorm); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, float, SkipLayerNormalization); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, MLFloat16, SkipLayerNormalization); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, float, SkipSimplifiedLayerNormalization); @@ -150,7 +151,7 @@ class ONNX_OPERATOR_KERNEL_CLASS_NAME(kRocmExecutionProvider, kPytorchAtenDomain class ONNX_OPERATOR_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, ShrunkenGather); #endif -#if defined(USE_MPI) && defined(ORT_USE_NCCL) +#ifdef ORT_USE_NCCL class ONNX_OPERATOR_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, AllReduce); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, AllGather); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kRocmExecutionProvider, kMSDomain, 1, AllToAll); @@ -246,6 +247,7 @@ Status RegisterRocmContribKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, @@ -309,7 +311,7 @@ Status RegisterRocmContribKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, #endif -#if defined(USE_MPI) && defined(ORT_USE_NCCL) +#ifdef ORT_USE_NCCL BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, diff --git a/onnxruntime/core/common/cpuid_info.cc b/onnxruntime/core/common/cpuid_info.cc index 711fd595e90fd..be881f6bc4bc2 100644 --- a/onnxruntime/core/common/cpuid_info.cc +++ b/onnxruntime/core/common/cpuid_info.cc @@ -52,6 +52,13 @@ #if defined(CPUINFO_SUPPORTED) #include +#if defined(CPUIDINFO_ARCH_ARM) +namespace onnxruntime { +// The following function is declared in "core/common/cpuid_uarch.h" but we cannot include the whole header file because +// some of its symbols are conflict with +void decodeMIDR(uint32_t midr, uint32_t uarch[1]); +} // namespace onnxruntime +#endif #else #include "core/common/cpuid_uarch.h" #endif // CPUINFO_SUPPORTED @@ -142,11 +149,6 @@ void CPUIDInfo::ArmLinuxInit() { // Pytorch CPUINFO only works on ARM linux or android // Assuming no hyper-threading, no NUMA groups #ifdef CPUINFO_SUPPORTED - pytorch_cpuinfo_init_ = cpuinfo_initialize(); - if (!pytorch_cpuinfo_init_) { - LOGS_DEFAULT(WARNING) << "Failed to init pytorch cpuinfo library, may cause CPU EP performance degradation due to undetected CPU features."; - return; - } is_hybrid_ = cpuinfo_get_uarchs_count() > 1; has_arm_neon_dot_ = cpuinfo_has_arm_neon_dot(); has_fp16_ = cpuinfo_has_arm_neon_fp16_arith(); @@ -239,52 +241,24 @@ void CPUIDInfo::ArmWindowsInit() { lastUarch = uarch; } } - - switch (lastUarch) { - case cpuinfo_uarch_cortex_a55: - case cpuinfo_uarch_cortex_a55r0: - case cpuinfo_uarch_cortex_a76: - case cpuinfo_uarch_neoverse_n1: - case cpuinfo_uarch_cortex_a77: - case cpuinfo_uarch_exynos_m4: - case cpuinfo_uarch_exynos_m5: - has_fp16_ = true; - break; - default: - break; - } - if (!has_fp16_) { - /* - * Detecting fp16 support. Different cores should have the same instruction set. - * So we just check the first ID_AA64PFR0_EL1 - * Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0100), Op2(0b000), - */ - uint64_t ID_AA64PFR0_EL1; - unsigned long valsize = sizeof(uint64_t); - auto retCode = ::RegGetValueA( - HKEY_LOCAL_MACHINE, - "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", - "CP 4020", RRF_RT_REG_QWORD, nullptr, - &ID_AA64PFR0_EL1, &valsize); - if (retCode == ERROR_SUCCESS) { - // AdvSIMD, bits [23:20] - auto advSimd = ID_AA64PFR0_EL1 >> 20; - if ((advSimd & 0xfULL) == 1) { - has_fp16_ = true; - } - } - } #endif /* Application Family or OneCore Family */ has_arm_neon_dot_ = (IsProcessorFeaturePresent(PF_ARM_V82_DP_INSTRUCTIONS_AVAILABLE) != 0); #else has_arm_neon_dot_ = false; #endif - has_fp16_ |= has_arm_neon_dot_; - /* TODO: implement them when hw+sw is available for testing these features */ - has_arm_neon_i8mm_ = false; - has_arm_sve_i8mm_ = false; - has_arm_neon_bf16_ = false; + + if (pytorch_cpuinfo_init_) { + has_fp16_ = cpuinfo_has_arm_neon_fp16_arith(); + has_arm_neon_i8mm_ = cpuinfo_has_arm_i8mm(); + has_arm_sve_i8mm_ = cpuinfo_has_arm_sve() && cpuinfo_has_arm_i8mm(); + has_arm_neon_bf16_ = cpuinfo_has_arm_neon_bf16(); + } else { + has_fp16_ = false; + has_arm_neon_i8mm_ = false; + has_arm_sve_i8mm_ = false; + has_arm_neon_bf16_ = false; + } } #endif /* (arm or arm64) and windows */ @@ -304,5 +278,21 @@ uint32_t CPUIDInfo::GetCurrentCoreIdx() const { return 0xFFFFFFFF; // don't know how to get core index #endif } - +CPUIDInfo::CPUIDInfo() { +#ifdef CPUIDINFO_ARCH_X86 + X86Init(); +#elif defined(CPUIDINFO_ARCH_ARM) +#if CPUINFO_SUPPORTED + pytorch_cpuinfo_init_ = cpuinfo_initialize(); + if (!pytorch_cpuinfo_init_) { + LOGS_DEFAULT(WARNING) << "Failed to init pytorch cpuinfo library, may cause CPU EP performance degradation due to undetected CPU features."; + } +#endif +#ifdef __linux__ + ArmLinuxInit(); +#elif defined(_WIN32) + ArmWindowsInit(); +#endif /* (arm or arm64) and windows */ +#endif +} } // namespace onnxruntime diff --git a/onnxruntime/core/common/cpuid_info.h b/onnxruntime/core/common/cpuid_info.h index 2f8041e39f680..a3936b4bd11a6 100644 --- a/onnxruntime/core/common/cpuid_info.h +++ b/onnxruntime/core/common/cpuid_info.h @@ -93,17 +93,7 @@ class CPUIDInfo { } private: - CPUIDInfo() { -#ifdef CPUIDINFO_ARCH_X86 - X86Init(); -#elif defined(CPUIDINFO_ARCH_ARM) -#ifdef __linux__ - ArmLinuxInit(); -#elif defined(_WIN32) - ArmWindowsInit(); -#endif /* (arm or arm64) and windows */ -#endif - } + CPUIDInfo(); bool has_amx_bf16_{false}; bool has_avx_{false}; bool has_avx2_{false}; @@ -131,11 +121,13 @@ class CPUIDInfo { #ifdef CPUIDINFO_ARCH_X86 void X86Init(); - #elif defined(CPUIDINFO_ARCH_ARM) + // Now the following var is only used in ARM build, but later one we may expand the usage. + bool pytorch_cpuinfo_init_{false}; +#endif + #ifdef __linux__ - bool pytorch_cpuinfo_init_{false}; void ArmLinuxInit(); #elif defined(_WIN32) @@ -143,7 +135,6 @@ class CPUIDInfo { void ArmWindowsInit(); #endif /* (arm or arm64) and windows */ -#endif }; } // namespace onnxruntime diff --git a/onnxruntime/core/common/flatbuffers.h b/onnxruntime/core/common/flatbuffers.h new file mode 100644 index 0000000000000..0d61e1038a82c --- /dev/null +++ b/onnxruntime/core/common/flatbuffers.h @@ -0,0 +1,18 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#pragma once +#if defined(__GNUC__) +#include "onnxruntime_config.h" +#pragma GCC diagnostic push + +#ifdef HAS_SHORTEN_64_TO_32 +#pragma GCC diagnostic ignored "-Wshorten-64-to-32" +#endif +#endif + +#include "flatbuffers/flatbuffers.h" + +#if defined(__GNUC__) +#pragma GCC diagnostic pop +#endif \ No newline at end of file diff --git a/onnxruntime/core/common/string_utils.h b/onnxruntime/core/common/string_utils.h index eca1221e84cb8..716eed1afec51 100644 --- a/onnxruntime/core/common/string_utils.h +++ b/onnxruntime/core/common/string_utils.h @@ -65,5 +65,24 @@ inline std::string TrimString(std::string s) { return s; } +/** + * @brief A consistent way to construct the full qualified op name. + */ +inline std::string GetFullQualifiedOpName(const std::string& op_type, const std::string& domain) { + return MakeString(domain, "::", op_type); +} + +/** + * Use this simple hash to generate unique int by given string input. + */ +inline uint32_t GetHashFromString(const std::string& str_value) { + uint32_t hash = 0; + for (char const& c : str_value) { + hash = hash * 101 + c; + } + + return hash; +} + } // namespace utils } // namespace onnxruntime diff --git a/onnxruntime/core/flatbuffers/flatbuffers_utils.h b/onnxruntime/core/flatbuffers/flatbuffers_utils.h index 55bde0b2df806..76860d6ab1db8 100644 --- a/onnxruntime/core/flatbuffers/flatbuffers_utils.h +++ b/onnxruntime/core/flatbuffers/flatbuffers_utils.h @@ -5,7 +5,7 @@ #include -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/common/common.h" #include "core/common/path_string.h" diff --git a/onnxruntime/core/flatbuffers/schema/README.md b/onnxruntime/core/flatbuffers/schema/README.md index 932478111ee68..96a2936c196ae 100644 --- a/onnxruntime/core/flatbuffers/schema/README.md +++ b/onnxruntime/core/flatbuffers/schema/README.md @@ -21,7 +21,7 @@ e.g. - /build/Linux/Debug/_deps/flatbuffers-build/flatc It is possible to use another flatc as well, e.g., from a separate installation. Note that ONNX Runtime uses -FlatBuffers 1.12. +FlatBuffers 23.5.26. To update the flatbuffers schemas and generated files: 1. Modify [the ORT file format schema](ort.fbs) or [training checkpoint schema](ort_training_checkpoint.fbs). diff --git a/onnxruntime/core/flatbuffers/schema/ort.fbs.h b/onnxruntime/core/flatbuffers/schema/ort.fbs.h index e0f5342c29621..dc8a471f2d81f 100644 --- a/onnxruntime/core/flatbuffers/schema/ort.fbs.h +++ b/onnxruntime/core/flatbuffers/schema/ort.fbs.h @@ -4,7 +4,7 @@ #ifndef FLATBUFFERS_GENERATED_ORT_ONNXRUNTIME_FBS_H_ #define FLATBUFFERS_GENERATED_ORT_ONNXRUNTIME_FBS_H_ -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" namespace onnxruntime { namespace fbs { @@ -562,8 +562,8 @@ struct DimensionValue FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { } bool Verify(flatbuffers::Verifier &verifier) const { return VerifyTableStart(verifier) && - VerifyField(verifier, VT_DIM_TYPE) && - VerifyField(verifier, VT_DIM_VALUE) && + VerifyField(verifier, VT_DIM_TYPE, 1) && + VerifyField(verifier, VT_DIM_VALUE, 8) && VerifyOffset(verifier, VT_DIM_PARAM) && verifier.VerifyString(dim_param()) && verifier.EndTable(); @@ -634,7 +634,7 @@ struct TensorTypeAndShape FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { } bool Verify(flatbuffers::Verifier &verifier) const { return VerifyTableStart(verifier) && - VerifyField(verifier, VT_ELEM_TYPE) && + VerifyField(verifier, VT_ELEM_TYPE, 4) && VerifyOffset(verifier, VT_SHAPE) && verifier.VerifyTable(shape()) && verifier.EndTable(); @@ -687,7 +687,7 @@ struct MapType FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { } bool Verify(flatbuffers::Verifier &verifier) const { return VerifyTableStart(verifier) && - VerifyField(verifier, VT_KEY_TYPE) && + VerifyField(verifier, VT_KEY_TYPE, 4) && VerifyOffset(verifier, VT_VALUE_TYPE) && verifier.VerifyTable(value_type()) && verifier.EndTable(); @@ -787,7 +787,7 @@ struct NodeEdge FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { } bool Verify(flatbuffers::Verifier &verifier) const { return VerifyTableStart(verifier) && - VerifyField(verifier, VT_NODE_INDEX) && + VerifyField(verifier, VT_NODE_INDEX, 4) && VerifyOffset(verifier, VT_INPUT_EDGES) && verifier.VerifyVector(input_edges()) && VerifyOffset(verifier, VT_OUTPUT_EDGES) && @@ -911,11 +911,11 @@ struct Node FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { verifier.VerifyString(doc_string()) && VerifyOffset(verifier, VT_DOMAIN) && verifier.VerifyString(domain()) && - VerifyField(verifier, VT_SINCE_VERSION) && - VerifyField(verifier, VT_INDEX) && + VerifyField(verifier, VT_SINCE_VERSION, 4) && + VerifyField(verifier, VT_INDEX, 4) && VerifyOffset(verifier, VT_OP_TYPE) && verifier.VerifyString(op_type()) && - VerifyField(verifier, VT_TYPE) && + VerifyField(verifier, VT_TYPE, 4) && VerifyOffset(verifier, VT_EXECUTION_PROVIDER_TYPE) && verifier.VerifyString(execution_provider_type()) && VerifyOffset(verifier, VT_INPUTS) && @@ -1174,7 +1174,7 @@ struct TypeInfo FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { return VerifyTableStart(verifier) && VerifyOffset(verifier, VT_DENOTATION) && verifier.VerifyString(denotation()) && - VerifyField(verifier, VT_VALUE_TYPE) && + VerifyField(verifier, VT_VALUE_TYPE, 1) && VerifyOffset(verifier, VT_VALUE) && VerifyTypeInfoValue(verifier, value(), value_type()) && verifier.EndTable(); @@ -1259,7 +1259,7 @@ struct OperatorSetId FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { return VerifyTableStart(verifier) && VerifyOffset(verifier, VT_DOMAIN) && verifier.VerifyString(domain()) && - VerifyField(verifier, VT_VERSION) && + VerifyField(verifier, VT_VERSION, 8) && verifier.EndTable(); } }; @@ -1343,7 +1343,7 @@ struct Tensor FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { verifier.VerifyString(doc_string()) && VerifyOffset(verifier, VT_DIMS) && verifier.VerifyVector(dims()) && - VerifyField(verifier, VT_DATA_TYPE) && + VerifyField(verifier, VT_DATA_TYPE, 4) && VerifyOffset(verifier, VT_RAW_DATA) && verifier.VerifyVector(raw_data()) && VerifyOffset(verifier, VT_STRING_DATA) && @@ -1568,9 +1568,9 @@ struct Attribute FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { verifier.VerifyString(name()) && VerifyOffset(verifier, VT_DOC_STRING) && verifier.VerifyString(doc_string()) && - VerifyField(verifier, VT_TYPE) && - VerifyField(verifier, VT_F) && - VerifyField(verifier, VT_I) && + VerifyField(verifier, VT_TYPE, 4) && + VerifyField(verifier, VT_F, 4) && + VerifyField(verifier, VT_I, 8) && VerifyOffset(verifier, VT_S) && verifier.VerifyString(s()) && VerifyOffset(verifier, VT_T) && @@ -1759,12 +1759,12 @@ struct NodesToOptimizeIndices FLATBUFFERS_FINAL_CLASS : private flatbuffers::Tab return VerifyTableStart(verifier) && VerifyOffset(verifier, VT_NODE_INDICES) && verifier.VerifyVector(node_indices()) && - VerifyField(verifier, VT_NUM_INPUTS) && - VerifyField(verifier, VT_NUM_OUTPUTS) && - VerifyField(verifier, VT_HAS_VARIADIC_INPUT) && - VerifyField(verifier, VT_HAS_VARIADIC_OUTPUT) && - VerifyField(verifier, VT_NUM_VARIADIC_INPUTS) && - VerifyField(verifier, VT_NUM_VARIADIC_OUTPUTS) && + VerifyField(verifier, VT_NUM_INPUTS, 4) && + VerifyField(verifier, VT_NUM_OUTPUTS, 4) && + VerifyField(verifier, VT_HAS_VARIADIC_INPUT, 1) && + VerifyField(verifier, VT_HAS_VARIADIC_OUTPUT, 1) && + VerifyField(verifier, VT_NUM_VARIADIC_INPUTS, 4) && + VerifyField(verifier, VT_NUM_VARIADIC_OUTPUTS, 4) && verifier.EndTable(); } }; @@ -1862,8 +1862,8 @@ struct DeprecatedNodeIndexAndKernelDefHash FLATBUFFERS_FINAL_CLASS : private fla } bool Verify(flatbuffers::Verifier &verifier) const { return VerifyTableStart(verifier) && - VerifyField(verifier, VT_NODE_INDEX) && - VerifyField(verifier, VT_KERNEL_DEF_HASH) && + VerifyField(verifier, VT_NODE_INDEX, 4) && + VerifyField(verifier, VT_KERNEL_DEF_HASH, 8) && verifier.EndTable(); } }; @@ -2161,7 +2161,7 @@ struct Graph FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { VerifyOffset(verifier, VT_NODES) && verifier.VerifyVector(nodes()) && verifier.VerifyVectorOfTables(nodes()) && - VerifyField(verifier, VT_MAX_NODE_INDEX) && + VerifyField(verifier, VT_MAX_NODE_INDEX, 4) && VerifyOffset(verifier, VT_NODE_EDGES) && verifier.VerifyVector(node_edges()) && verifier.VerifyVectorOfTables(node_edges()) && @@ -2390,7 +2390,7 @@ struct Model FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { } bool Verify(flatbuffers::Verifier &verifier) const { return VerifyTableStart(verifier) && - VerifyField(verifier, VT_IR_VERSION) && + VerifyField(verifier, VT_IR_VERSION, 8) && VerifyOffset(verifier, VT_OPSET_IMPORT) && verifier.VerifyVector(opset_import()) && verifier.VerifyVectorOfTables(opset_import()) && @@ -2400,7 +2400,7 @@ struct Model FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { verifier.VerifyString(producer_version()) && VerifyOffset(verifier, VT_DOMAIN) && verifier.VerifyString(domain()) && - VerifyField(verifier, VT_MODEL_VERSION) && + VerifyField(verifier, VT_MODEL_VERSION, 8) && VerifyOffset(verifier, VT_DOC_STRING) && verifier.VerifyString(doc_string()) && VerifyOffset(verifier, VT_GRAPH) && @@ -2740,8 +2740,8 @@ struct ArgTypeAndIndex FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { } bool Verify(flatbuffers::Verifier &verifier) const { return VerifyTableStart(verifier) && - VerifyField(verifier, VT_ARG_TYPE) && - VerifyField(verifier, VT_INDEX) && + VerifyField(verifier, VT_ARG_TYPE, 1) && + VerifyField(verifier, VT_INDEX, 4) && verifier.EndTable(); } }; diff --git a/onnxruntime/core/flatbuffers/schema/ort_training_checkpoint.fbs.h b/onnxruntime/core/flatbuffers/schema/ort_training_checkpoint.fbs.h index d205c5eb8f409..62e6cf74394e5 100644 --- a/onnxruntime/core/flatbuffers/schema/ort_training_checkpoint.fbs.h +++ b/onnxruntime/core/flatbuffers/schema/ort_training_checkpoint.fbs.h @@ -4,7 +4,7 @@ #ifndef FLATBUFFERS_GENERATED_ORTTRAININGCHECKPOINT_ONNXRUNTIME_FBS_H_ #define FLATBUFFERS_GENERATED_ORTTRAININGCHECKPOINT_ONNXRUNTIME_FBS_H_ -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "ort.fbs.h" @@ -59,7 +59,7 @@ struct ModuleState FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { VerifyOffset(verifier, VT_FROZEN_PARAMS) && verifier.VerifyVector(frozen_params()) && verifier.VerifyVectorOfTables(frozen_params()) && - VerifyField(verifier, VT_IS_NOMINAL_STATE) && + VerifyField(verifier, VT_IS_NOMINAL_STATE, 1) && verifier.EndTable(); } }; @@ -206,8 +206,8 @@ struct OptimizerGroup FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { return VerifyTableStart(verifier) && VerifyOffset(verifier, VT_GROUP_NAME) && verifier.VerifyString(group_name()) && - VerifyField(verifier, VT_STEP) && - VerifyField(verifier, VT_INITIAL_LEARNING_RATE) && + VerifyField(verifier, VT_STEP, 8) && + VerifyField(verifier, VT_INITIAL_LEARNING_RATE, 4) && VerifyOffset(verifier, VT_OPTIMIZER_STATES) && verifier.VerifyVector(optimizer_states()) && verifier.VerifyVectorOfTables(optimizer_states()) && @@ -289,7 +289,7 @@ struct IntProperty FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { return VerifyTableStart(verifier) && VerifyOffset(verifier, VT_NAME) && verifier.VerifyString(name()) && - VerifyField(verifier, VT_VALUE) && + VerifyField(verifier, VT_VALUE, 8) && verifier.EndTable(); } }; @@ -353,7 +353,7 @@ struct FloatProperty FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { return VerifyTableStart(verifier) && VerifyOffset(verifier, VT_NAME) && verifier.VerifyString(name()) && - VerifyField(verifier, VT_VALUE) && + VerifyField(verifier, VT_VALUE, 4) && verifier.EndTable(); } }; @@ -572,7 +572,7 @@ struct Checkpoint FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { } bool Verify(flatbuffers::Verifier &verifier) const { return VerifyTableStart(verifier) && - VerifyField(verifier, VT_VERSION) && + VerifyField(verifier, VT_VERSION, 4) && VerifyOffset(verifier, VT_MODULE_STATE) && verifier.VerifyTable(module_state()) && VerifyOffset(verifier, VT_OPTIMIZER_GROUPS) && diff --git a/onnxruntime/core/framework/allocation_planner.cc b/onnxruntime/core/framework/allocation_planner.cc index ea7a6432a7507..95e5380675df2 100644 --- a/onnxruntime/core/framework/allocation_planner.cc +++ b/onnxruntime/core/framework/allocation_planner.cc @@ -175,14 +175,12 @@ class PlannerImpl { size_t num_logic_streams_{0}; std::vector> stream_nodes_; - InlinedVector node_stream_map_; // dependence_graph_ keeps the dependencies combining model graph and logic streams // e.g. dependence_graph_[downstream_node] = [upstream_node_0, upstream_node_1, upstream_node_2 ...] // upstream_node_0 and upstream_node_1 are the immmediate upstream nodes of downstream_node // upstream_node_2 is the immediate nodes ahead of downstream_node in the same logic stream InlinedHashMap> dependence_graph_; - InlinedHashMap> value_consumer_map_; InlinedHashMap value_node_map_; // OrtValueInfo: Auxiliary information about an OrtValue used only during plan-generation: @@ -295,7 +293,7 @@ class PlannerImpl { } #endif - // Find if there exists some input tensor that we can use in-place for output_arg_num-th input in the node. + // Find if there exists some input tensor that we can use in-place for output_arg_num-th output in the node. bool FindReusableInput(const onnxruntime::Node& node, int output_arg_num, OrtValueIndex* reusable_input, bool* is_strided_tensor) { *is_strided_tensor = false; @@ -530,6 +528,7 @@ class PlannerImpl { // Initialize allocation plan: plan_.allocation_plan.resize(num_ml_values); + for (int i = 0; static_cast(i) < num_ml_values; i++) AllocPlan(i).reused_buffer = i; } bool HasExternalOutputs(const Node& node) const { @@ -1065,7 +1064,8 @@ class PlannerImpl { // build the consumer list for each value int num_ml_values = ort_value_name_idx_map_.MaxIdx() + 1; - value_consumer_map_.reserve(num_ml_values); + InlinedHashMap> value_consumer_map; + value_consumer_map.reserve(num_ml_values); // iterate each stream from back, so the first element is the last consumer in single stream case for (auto& stream : stream_nodes_) { @@ -1078,10 +1078,10 @@ class PlannerImpl { const auto& name = input.Name(); int value_idx; ORT_RETURN_IF_ERROR(ort_value_name_idx_map_.GetIdx(name, value_idx)); - auto origin = Buffer(value_idx); - if (origin != -1 && plan_.allocation_plan[origin].alloc_kind == AllocKind::kAllocate) { + auto origin = AllocPlan(value_idx).reused_buffer; + if (AllocPlan(origin).alloc_kind == AllocKind::kAllocate) { // add current node as consumer for origin buffer - value_consumer_map_[origin].insert(node_index); + value_consumer_map[origin].insert(node_index); } } return Status::OK(); @@ -1138,8 +1138,8 @@ class PlannerImpl { std::cout << p_input_arg->Name() << " reused by " << p_output_arg->Name() << " as input" << std::endl; allocation_plan[output_idx_global].alloc_kind = AllocKind::kReuse; allocation_plan[output_idx_global].reused_buffer = reusable_input; - value_consumer_map_[reusable_input].insert(value_consumer_map_[output_idx_global].begin(), - value_consumer_map_[output_idx_global].end()); + value_consumer_map[reusable_input].insert(value_consumer_map[output_idx_global].begin(), + value_consumer_map[output_idx_global].end()); reused.insert(reusable_input); found_reusable = true; break; @@ -1168,8 +1168,8 @@ class PlannerImpl { allocation_plan[reusable_input].alloc_kind == AllocKind::kAllocate) { allocation_plan[output_idx_global].alloc_kind = AllocKind::kReuse; allocation_plan[output_idx_global].reused_buffer = reusable_input; - value_consumer_map_[reusable_input].insert(value_consumer_map_[output_idx_global].begin(), - value_consumer_map_[output_idx_global].end()); + value_consumer_map[reusable_input].insert(value_consumer_map[output_idx_global].begin(), + value_consumer_map[output_idx_global].end()); reused.insert(reusable_input); continue; } // if @@ -1187,11 +1187,11 @@ class PlannerImpl { OrtValueIndex input_arg_index{}; if (value_map.GetIdx(p_input_arg->Name(), input_arg_index).IsOK() && allocation_plan[input_arg_index].alloc_kind == AllocKind::kAllocate) { - if (value_consumer_map_[input_arg_index].size() == 1 && SameSize(*p_input_arg, *p_output_arg)) { + if (value_consumer_map[input_arg_index].size() == 1 && SameSize(*p_input_arg, *p_output_arg)) { allocation_plan[output_idx_global].alloc_kind = AllocKind::kReuse; allocation_plan[output_idx_global].reused_buffer = input_arg_index; - value_consumer_map_[input_arg_index].insert(value_consumer_map_[output_idx_global].begin(), - value_consumer_map_[output_idx_global].end()); + value_consumer_map[input_arg_index].insert(value_consumer_map[output_idx_global].begin(), + value_consumer_map[output_idx_global].end()); reused.insert(input_arg_index); } } @@ -1266,7 +1266,7 @@ class PlannerImpl { } bool all_covered = true; - for (auto consumer : value_consumer_map_[output_idx_global]) { + for (auto consumer : value_consumer_map[output_idx_global]) { if (deps->find(consumer) == deps->end()) { all_covered = false; break; @@ -1277,9 +1277,9 @@ class PlannerImpl { allocation_plan[downstream_value].reused_buffer = output_idx_global; get_reused = true; // add new consumer for the value to be reused - value_consumer_map_[output_idx_global].insert(value_node_map_[downstream_value]); - value_consumer_map_[output_idx_global].insert(value_consumer_map_[downstream_value].begin(), - value_consumer_map_[downstream_value].end()); + value_consumer_map[output_idx_global].insert(value_node_map_[downstream_value]); + value_consumer_map[output_idx_global].insert(value_consumer_map[downstream_value].begin(), + value_consumer_map[downstream_value].end()); node_iter = size_iter->second.erase(node_iter); if (size_iter->second.empty()) { local_iter->second.erase(size_iter); @@ -1342,8 +1342,9 @@ class PlannerImpl { ort_value_usecount.reserve(ort_value_info_.size()); #endif for (size_t i = 0; i < stream_nodes_.size(); ++i) { - // compute use count first + // compute use count first. TODO(leca): call ComputeReuseCount() only once is enough! ORT_RETURN_IF_ERROR(ComputeReuseCount()); + for (int j = 0; static_cast(j) < ort_value_info_.size(); j++) Buffer(j) = j; #if !defined(ORT_MINIMAL_BUILD) && defined(ORT_MEMORY_PROFILE) if (i == 0) { for (auto ort_value_info : ort_value_info_) { @@ -1693,8 +1694,8 @@ class PlannerImpl { const auto& name = input.Name(); int value_idx; ORT_RETURN_IF_ERROR(ort_value_name_idx_map_.GetIdx(name, value_idx)); - auto origin = Buffer(value_idx); - if (origin != -1 && plan_.allocation_plan[origin].alloc_kind == AllocKind::kAllocate) { + auto origin = AllocPlan(value_idx).reused_buffer; + if (AllocPlan(origin).alloc_kind == AllocKind::kAllocate) { // add current node as consumer for origin buffer value_consumers[origin].push_back(node_index); } @@ -1721,9 +1722,9 @@ class PlannerImpl { // we actually can do better if all the consumers depends on the last consumer. // will optimize it later bool is_all_consumer_same_stream = true; - auto stream_idx = node_stream_map_[value_consumers[i][0]]; + auto stream_idx = plan_.node_stream_map_[value_consumers[i][0]]; for (size_t j = 1; j < value_consumers[i].size(); ++j) { - if (node_stream_map_[value_consumers[i][j]] != stream_idx) { + if (plan_.node_stream_map_[value_consumers[i][j]] != stream_idx) { is_all_consumer_same_stream = false; break; } @@ -1748,10 +1749,10 @@ class PlannerImpl { const PathString& /*partition_config_file*/) { if (graph_viewer_.NumberOfNodes() > 0) { stream_nodes_.push_back({}); - node_stream_map_.resize(SafeInt(graph_viewer_.MaxNodeIndex()) + 1); + plan_.node_stream_map_.resize(SafeInt(graph_viewer_.MaxNodeIndex()) + 1); for (auto node_index : graph_viewer_.GetNodesInTopologicalOrder()) { stream_nodes_[0].push_back(node_index); - node_stream_map_[node_index] = 0; + plan_.node_stream_map_[node_index] = 0; } num_logic_streams_ = 1; } @@ -1773,7 +1774,12 @@ class PlannerImpl { execution_plan.emplace_back(std::make_unique(node_device_mem_location)); // 2. add steps to the execution plan for (auto node_index : stream_nodes_[0]) { +#if defined(ORT_MINIMAL_BUILD) execution_plan[0]->steps_.emplace_back(std::make_unique(node_index)); +#else + execution_plan[0]->steps_.emplace_back(std::make_unique(node_index, + graph_viewer_.GetNode(node_index)->Name())); +#endif } } else { // graph with no nodes. e.g. subgraph of If might return the input as-is or a constant value from an initializer @@ -1790,10 +1796,10 @@ class PlannerImpl { auto partitioner = IGraphPartitioner::CreateGraphPartitioner(logger, partition_config_file); auto status = partitioner->PartitionGraph(graph_viewer_, execution_providers, stream_nodes_, context_->GetExecutionOrder()); ORT_ENFORCE(status.IsOK(), status.ErrorMessage()); - node_stream_map_.resize(SafeInt(graph_viewer_.MaxNodeIndex()) + 1); + plan_.node_stream_map_.resize(SafeInt(graph_viewer_.MaxNodeIndex()) + 1); for (size_t i = 0; i < stream_nodes_.size(); ++i) { for (auto node_index : stream_nodes_[i]) { - node_stream_map_[node_index] = i; + plan_.node_stream_map_[node_index] = i; } } num_logic_streams_ = stream_nodes_.size(); @@ -1856,7 +1862,7 @@ class PlannerImpl { auto* node = graph_viewer_.GetNode(node_index); for (auto it = node->OutputNodesBegin(); it != node->OutputNodesEnd(); ++it) { // if the output node is not in the same stream, generate a trigger point - if (node_stream_map_[it->Index()] != i + if (plan_.node_stream_map_[it->Index()] != i #ifdef ENABLE_TRAINING // Do not insert Barrier/TriggerDownStream step if the producer and consumer are in different sides of yieldOp // As in this case producer will surely be ready before the consumer is running. @@ -1889,9 +1895,9 @@ class PlannerImpl { // 2. the consumer is in the same stream(non-cpu device), but it consumes a CPU tensor from an non-shape op. // for example, a resize cuda kernel consumer a tensor from MemCpyToHost cuda kernel on the same stream. // in this case, the FIFO can't guarantee the cpu tensor is ready when resize kernel is launching - OrtDevice::DeviceType output_arg_device = plan_.allocation_plan[output_arg_idx].location.Type(); + OrtDevice::DeviceType output_arg_device = AllocPlan(output_arg_idx).location.Type(); WaitNotificationFn wait_handle = stream_handle_registry.GetWaitHandle(stream_device, output_arg_device); - if ((node_stream_map_[it->Index()] != i || output_arg_device == OrtDevice::CPU) && wait_handle != nullptr) { + if ((plan_.node_stream_map_[it->Index()] != i || output_arg_device == OrtDevice::CPU) && wait_handle != nullptr) { if (node_to_notification.find(node_index) == node_to_notification.end()) { node_to_notification[node_index] = plan_.notification_owners.size(); plan_.notification_owners.push_back(i); @@ -1903,7 +1909,7 @@ class PlannerImpl { } // output->Exists } // for each output if (output_consumed_in_subgraph) { - const auto downstream = node_stream_map_[it->Index()]; + const auto downstream = plan_.node_stream_map_[it->Index()]; if (downstream != i) { auto downstream_device = execution_plan[downstream]->device_.Type(); WaitNotificationFn wait_handle = stream_handle_registry.GetWaitHandle(stream_device, downstream_device); @@ -1929,7 +1935,7 @@ class PlannerImpl { onnxruntime::ProviderType exec_provider_name = node->GetExecutionProviderType(); const IExecutionProvider* ep = execution_providers.Get(exec_provider_name); auto node_device_mem_location = ep->GetOrtDeviceByMemType(OrtMemType::OrtMemTypeDefault); - ORT_ENFORCE(execution_plan[node_stream_map_[node_index]]->device_.Type() == node_device_mem_location.Type()); + ORT_ENFORCE(execution_plan[plan_.node_stream_map_[node_index]]->device_.Type() == node_device_mem_location.Type()); } } @@ -1978,8 +1984,12 @@ class PlannerImpl { // add dependency for model graph dependence_graph_[it->Index()].insert(node_index); } - // push launch kernel command +// push launch kernel command +#if defined(ORT_MINIMAL_BUILD) execution_plan[i]->steps_.emplace_back(std::make_unique(node_index)); +#else + execution_plan[i]->steps_.emplace_back(std::make_unique(node_index, graph_viewer_.GetNode(node_index)->Name())); +#endif // check if any notification generated by this node, if yes, push a activate auto notification_it = node_to_notification.find(node_index); if (notification_it != node_to_notification.end()) { @@ -2003,7 +2013,7 @@ class PlannerImpl { if (!node_output->Exists()) continue; OrtValueIndex output_idx_global; ORT_THROW_IF_ERROR(ort_value_name_idx_map_.GetIdx(node_output->Name(), output_idx_global)); - plan_.value_to_stream_map[output_idx_global] = node_stream_map_[node_index]; + plan_.value_to_stream_map[output_idx_global] = plan_.node_stream_map_[node_index]; value_node_map_[output_idx_global] = node_index; } } @@ -2079,7 +2089,7 @@ class PlannerImpl { } // trigger downstream for (auto it = node->OutputNodesBegin(); it != node->OutputNodesEnd(); ++it) { - auto stream_idx = node_stream_map_[it->Index()]; + auto stream_idx = plan_.node_stream_map_[it->Index()]; if (stream_idx != i) { auto node_it = std::find(stream_nodes_[stream_idx].begin(), stream_nodes_[stream_idx].end(), it->Index()); int offset = static_cast(std::distance(stream_nodes_[stream_idx].begin(), node_it)); diff --git a/onnxruntime/core/framework/execution_frame.cc b/onnxruntime/core/framework/execution_frame.cc index 8c08152986cf6..32a5f749af084 100644 --- a/onnxruntime/core/framework/execution_frame.cc +++ b/onnxruntime/core/framework/execution_frame.cc @@ -204,6 +204,14 @@ AllocatorPtr IExecutionFrame::GetAllocator(const OrtDevice& info) const { Status IExecutionFrame::ReleaseMLValue(int ort_value_idx) { return ReleaseMLValueImpl(ort_value_idx); } +#ifdef ENABLE_TRAINING +void IExecutionFrame::ReleaseAllMLValues() { + for (size_t ort_value_idx = 0; ort_value_idx < all_values_.size(); ort_value_idx++) { + all_values_[ort_value_idx] = OrtValue(); + } +} +#endif + Status IExecutionFrame::ReleaseMLValueImpl(int ort_value_idx) { if (ort_value_idx == NodeIndexInfo::kInvalidEntry || static_cast(ort_value_idx) >= all_values_size_) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "invalid index ", ort_value_idx); @@ -831,7 +839,20 @@ AllocatorPtr ExecutionFrame::GetAllocatorImpl(const OrtDevice& info) const { // This method is not thread safe! // Return S_OK and nullptr if index map to a value that is an unused optional input/output Status ExecutionFrame::CreateNodeOutputMLValueImpl(OrtValue& ort_value, int ort_value_idx, const TensorShape* shape) { +#ifdef ENABLE_TRAINING + try { + auto status = AllocateAsPerAllocationPlan(ort_value, ort_value_idx, shape); + return status; + } catch (const std::exception& e) { + LOGS(session_state_.Logger(), WARNING) + << "Exception caught when allocating memory for ort_value with index: " << ort_value_idx + << "so clean up all OrtValues"; + ReleaseAllMLValues(); + return Status(ONNXRUNTIME, FAIL, e.what()); + } +#else return AllocateAsPerAllocationPlan(ort_value, ort_value_idx, shape); +#endif } void ExecutionFrame::VerifyOutputSizes(int output_index, const Node& node, const TensorShape& output_shape) { diff --git a/onnxruntime/core/framework/execution_frame.h b/onnxruntime/core/framework/execution_frame.h index 1576c16684faa..18d210ffd48f7 100644 --- a/onnxruntime/core/framework/execution_frame.h +++ b/onnxruntime/core/framework/execution_frame.h @@ -67,6 +67,8 @@ class IExecutionFrame { const std::unordered_map& initializers); Status GetOutputs(gsl::span fetch_mlvalue_idxs, std::vector& fetches); + // if OOM happens, then release all values, so session can run next batch. + void ReleaseAllMLValues(); #endif // TO DO: make it thread safe diff --git a/onnxruntime/core/framework/execution_steps.cc b/onnxruntime/core/framework/execution_steps.cc index df19236d037c0..b647833cfd373 100644 --- a/onnxruntime/core/framework/execution_steps.cc +++ b/onnxruntime/core/framework/execution_steps.cc @@ -1,8 +1,11 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. + #include "core/framework/execution_steps.h" #include "core/framework/sequential_executor.h" + namespace onnxruntime { + BarrierStep::BarrierStep(size_t id, NodeIndex node_index) : SequentialExecutionPlan::ExecutionStep(node_index), barrier_id_{id} {} @@ -16,8 +19,8 @@ Status BarrierStep::Execute(StreamExecutionContext& ctx, } std::string BarrierStep::ToString() const { - return ::onnxruntime::MakeString("Set a barrier with id: ", - barrier_id_, ", count: ", 2, "."); + // Set a barrier with id: barrier_id_, count: 2. + return MakeString("Barrier - BarrierId: ", barrier_id_, ", Count: ", 2); } WaitOnEPStep::WaitOnEPStep(WaitNotificationFn handle, @@ -42,11 +45,17 @@ Status WaitOnEPStep::Execute(StreamExecutionContext& ctx, } std::string WaitOnEPStep::ToString() const { - return ::onnxruntime::MakeString("WaitOnEPStep: wait on notification with id: ", - notification_idx_, ". "); + // Wait on notification with notification_idx_ + return MakeString("WaitOnEP - NotificationId: ", notification_idx_); } -LaunchKernelStep::LaunchKernelStep(NodeIndex index) : SequentialExecutionPlan::ExecutionStep(index) {} +#if defined(ORT_MINIMAL_BUILD) +LaunchKernelStep::LaunchKernelStep(NodeIndex index) + : SequentialExecutionPlan::ExecutionStep(index) {} +#else +LaunchKernelStep::LaunchKernelStep(NodeIndex index, std::string_view node_name) + : SequentialExecutionPlan::ExecutionStep(index), node_name_(node_name) {} +#endif Status LaunchKernelStep::Execute(StreamExecutionContext& ctx, size_t stream_idx, @@ -61,13 +70,17 @@ Status LaunchKernelStep::Execute(StreamExecutionContext& ctx, return Status::OK(); } #endif - onnxruntime::Status status = ExecuteKernel(ctx, node_index_, stream_idx, terminate_flag, session_scope); + Status status = ExecuteKernel(ctx, node_index_, stream_idx, terminate_flag, session_scope); continue_flag = status.IsOK(); return status; } std::string LaunchKernelStep::ToString() const { - return ::onnxruntime::MakeString("Launch kernel with node id: ", node_index_, ". "); +#if defined(ORT_MINIMAL_BUILD) + return MakeString("LaunchKernel - ", "NodeIndex: ", node_index_); +#else + return MakeString("LaunchKernel - ", "NodeIndex: ", node_index_, ", Name: ", node_name_); +#endif } ActivateNotificationStep::ActivateNotificationStep( @@ -89,12 +102,12 @@ Status ActivateNotificationStep::Execute(StreamExecutionContext& ctx, } std::string ActivateNotificationStep::ToString() const { - return ::onnxruntime::MakeString("ActivateNotificationStep: activate notification with id: ", - notification_idx_, ". "); + // Activate notification with id: notification_idx_ + return MakeString("ActivateNotification - NotificationId: ", notification_idx_); } -TriggerDownstreamStep::TriggerDownstreamStep(size_t trigger_point_index, NodeIndex node_index) : SequentialExecutionPlan::ExecutionStep(node_index), - trigger_point_index_(trigger_point_index) {} +TriggerDownstreamStep::TriggerDownstreamStep(size_t trigger_point_index, NodeIndex node_index) + : SequentialExecutionPlan::ExecutionStep(node_index), trigger_point_index_(trigger_point_index) {} Status TriggerDownstreamStep::Execute(StreamExecutionContext& ctx, size_t /*stream_idx*/, @@ -107,7 +120,8 @@ Status TriggerDownstreamStep::Execute(StreamExecutionContext& ctx, } std::string TriggerDownstreamStep::ToString() const { - return ::onnxruntime::MakeString("TriggerDownstreamStep: trigger downstream of trigger point: ", - trigger_point_index_, "."); + // Trigger downstream of trigger point: trigger_point_index_. + return MakeString("TriggerDownstream - TriggerPointIndex: ", trigger_point_index_); } + } // namespace onnxruntime diff --git a/onnxruntime/core/framework/execution_steps.h b/onnxruntime/core/framework/execution_steps.h index b67b583900824..545dabc56b272 100644 --- a/onnxruntime/core/framework/execution_steps.h +++ b/onnxruntime/core/framework/execution_steps.h @@ -44,7 +44,11 @@ class WaitOnEPStep : public SequentialExecutionPlan::ExecutionStep { class LaunchKernelStep : public SequentialExecutionPlan::ExecutionStep { public: +#if defined(ORT_MINIMAL_BUILD) LaunchKernelStep(NodeIndex index); +#else + LaunchKernelStep(NodeIndex index, std::string_view node_name); +#endif Status Execute(StreamExecutionContext& ctx, size_t stream_idx, @@ -53,6 +57,11 @@ class LaunchKernelStep : public SequentialExecutionPlan::ExecutionStep { bool& continue_flag) override; std::string ToString() const override; + +#if !defined(ORT_MINIMAL_BUILD) + private: + std::string node_name_; +#endif }; class ActivateNotificationStep : public SequentialExecutionPlan::ExecutionStep { diff --git a/onnxruntime/core/framework/feeds_fetches_manager.h b/onnxruntime/core/framework/feeds_fetches_manager.h index 75cb7485a6e38..c2c1be64f3e1d 100644 --- a/onnxruntime/core/framework/feeds_fetches_manager.h +++ b/onnxruntime/core/framework/feeds_fetches_manager.h @@ -25,7 +25,7 @@ enum class DeviceCopyCheck { }; struct DeviceCopyChecks { - DeviceCopyCheck status = DeviceCopyCheck::Unknown; ///< Overall status. If NoCopy no input or output copies are needed + DeviceCopyCheck status = DeviceCopyCheck::Unknown; ///< Overall status. NoCopy means input_copy_needed and output_copy_needed are both NoCopy DeviceCopyCheck input_copy_needed = DeviceCopyCheck::Unknown; DeviceCopyCheck output_copy_needed = DeviceCopyCheck::Unknown; }; @@ -73,6 +73,9 @@ struct FeedsFetchesInfo { struct MLValueCopyInfo { OrtDevice source_device{}; OrtDevice target_device{}; // default is CPU + + // if all the consume ops are from the same stream, this variable is the stream index; otherwise -1 + int unique_stream_index_consumes_it = -1; }; class FeedsFetchesManager { diff --git a/onnxruntime/core/framework/kernel_type_str_resolver.h b/onnxruntime/core/framework/kernel_type_str_resolver.h index 31a806dd52291..fea2a6ef3a439 100644 --- a/onnxruntime/core/framework/kernel_type_str_resolver.h +++ b/onnxruntime/core/framework/kernel_type_str_resolver.h @@ -7,7 +7,7 @@ #include #include -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #if !defined(ORT_MINIMAL_BUILD) #include "core/graph/onnx_protobuf.h" diff --git a/onnxruntime/core/framework/kernel_type_str_resolver_utils.cc b/onnxruntime/core/framework/kernel_type_str_resolver_utils.cc index 4f5fa9910b5df..473e78c3f5e25 100644 --- a/onnxruntime/core/framework/kernel_type_str_resolver_utils.cc +++ b/onnxruntime/core/framework/kernel_type_str_resolver_utils.cc @@ -5,7 +5,7 @@ #include "core/framework/kernel_type_str_resolver_utils.h" -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/common/common.h" #include "core/flatbuffers/schema/ort.fbs.h" diff --git a/onnxruntime/core/framework/node_unit.cc b/onnxruntime/core/framework/node_unit.cc new file mode 100644 index 0000000000000..4dee1c14b3761 --- /dev/null +++ b/onnxruntime/core/framework/node_unit.cc @@ -0,0 +1,351 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#if !defined(ORT_MINIMAL_BUILD) || defined(ORT_EXTENDED_MINIMAL_BUILD) + +#include "node_unit.h" +#include "core/graph/graph_viewer.h" + +namespace onnxruntime { + +namespace { + +enum class QLinearOpType : uint8_t { + Unknown, // Unknown or not a linear quantized op + DequantizeLinear, + QuantizeLinear, + QLinearConv, + QLinearMatMul, + QLinearAdd, + QLinearSigmoid, + QLinearAveragePool, + QLinearMul, + QLinearReduceMean, + QLinearConcat, + QLinearGlobalAveragePool, + QLinearLeakyRelu, +}; + +QLinearOpType GetQLinearOpType(const onnxruntime::Node& node) { + const auto& op_type = node.OpType(); + if (op_type == "DequantizeLinear") + return QLinearOpType::DequantizeLinear; + else if (op_type == "QuantizeLinear") + return QLinearOpType::QuantizeLinear; + else if (op_type == "QLinearConv") + return QLinearOpType::QLinearConv; + else if (op_type == "QLinearMatMul") + return QLinearOpType::QLinearMatMul; + else if (op_type == "QLinearAdd") + return QLinearOpType::QLinearAdd; + else if (op_type == "QLinearSigmoid") + return QLinearOpType::QLinearSigmoid; + else if (op_type == "QLinearAveragePool") + return QLinearOpType::QLinearAveragePool; + else if (op_type == "QLinearMul") + return QLinearOpType::QLinearMul; + else if (op_type == "QLinearReduceMean") + return QLinearOpType::QLinearReduceMean; + else if (op_type == "QLinearConcat") + return QLinearOpType::QLinearConcat; + else if (op_type == "QLinearGlobalAveragePool") + return QLinearOpType::QLinearGlobalAveragePool; + else if (op_type == "QLinearLeakyRelu") + return QLinearOpType::QLinearLeakyRelu; + + return QLinearOpType::Unknown; +} + +// Ops have 1 input +bool IsUnaryQLinearOp(QLinearOpType type) { + return type == QLinearOpType::QLinearSigmoid || + type == QLinearOpType::QLinearAveragePool || + type == QLinearOpType::QLinearGlobalAveragePool || + type == QLinearOpType::QLinearLeakyRelu || + type == QLinearOpType::QLinearReduceMean; +} + +// Ops have 2 inputs +bool IsBinaryQLinearOp(QLinearOpType type) { + return type == QLinearOpType::QLinearConv || + type == QLinearOpType::QLinearMatMul || + type == QLinearOpType::QLinearAdd || + type == QLinearOpType::QLinearMul; +} + +// Ops have 1 or more inputs +bool IsVariadicQLinearOp(QLinearOpType type) { + return type == QLinearOpType::QLinearConcat; +} + +const std::vector GetQDQIONodes(const GraphViewer& graph_viewer, + const QDQ::NodeGroup& node_group, bool is_input) { + std::vector io_nodes; + const auto& src_nodes = is_input ? node_group.dq_nodes : node_group.q_nodes; + io_nodes.reserve(src_nodes.size()); + for (const auto& node_idx : src_nodes) { + io_nodes.push_back(graph_viewer.GetNode(node_idx)); + } + + return io_nodes; +} + +// Get the input or output NodeUnitIODef(s) for the given QDQ NodeGroup +std::vector GetQDQIODefs(const Node& target_node, const QDQ::NodeGroup& node_group, bool is_input) { + const auto& dq_or_q_nodes = is_input ? node_group.dq_nodes : node_group.q_nodes; + const auto target_node_io_defs = is_input ? target_node.InputDefs() : target_node.OutputDefs(); + const size_t target_node_io_defs_size = target_node_io_defs.size(); + + // Find all the quantized IO defs and indices (for the input/output of the target node) + std::unordered_map quantized_io_defs; + quantized_io_defs.reserve(target_node_io_defs_size); + + auto cur = is_input ? target_node.InputEdgesBegin() : target_node.OutputEdgesBegin(); + auto end = is_input ? target_node.InputEdgesEnd() : target_node.OutputEdgesEnd(); + + for (; cur != end; ++cur) { + const Node& node = cur->GetNode(); + + // If we can find the node index in the dq or q nodes this is a quantized input/output + if (std::find(dq_or_q_nodes.cbegin(), dq_or_q_nodes.cend(), node.Index()) != dq_or_q_nodes.cend()) { + const auto node_inputs = node.InputDefs(); + // quantization scale and zp are always the input[1, 2] + NodeUnitIODef::QuantParam quant_param{*node_inputs[1], node_inputs.size() == 3 ? node_inputs[2] : nullptr}; + + if (is_input) { + // DQ is input to the target node, use the DstArgIndex + auto idx = cur->GetDstArgIndex(); + // This is a DQ node, we are using x, x_scale, x_zp (input[0, 1, 2]) + quantized_io_defs.insert({idx, NodeUnitIODef{*node_inputs[0], quant_param}}); + } else { + // Q is output of the target node, use the SrcArgIndex + auto idx = cur->GetSrcArgIndex(); + // This is a Q node, we are using y (output[0]), y_scale, y_zp (input[1, 2]) + const auto node_outputs = node.OutputDefs(); + quantized_io_defs.insert({idx, NodeUnitIODef{*node_outputs[0], quant_param}}); + } + } + } + + // Construct the IODefs for this QDQ NodeGroup + std::vector io_defs; + io_defs.reserve(target_node_io_defs_size); + for (size_t i = 0; i < target_node_io_defs_size; i++) { + // If we can find the NodeUnitIODef for this index, this is a quantized input/output + if (quantized_io_defs.find(i) != quantized_io_defs.cend()) { + io_defs.push_back(std::move(quantized_io_defs.at(i))); + } else { + // This is a regular input + io_defs.push_back({*target_node_io_defs[i], std::nullopt}); + } + } + + return io_defs; +} + +} // namespace + +Status QDQ::NodeGroup::CanCreateNodeGroup(const GraphViewer& graph_viewer, + const Node& target_node, + gsl::span dq_nodes, + gsl::span q_nodes) { + // Within a QDQ node group, a target node input is the only consumer of each DQ. + // This should have been ensured by the EnsureUniqueDQForNodeUnit graph transformer, but other graph modifications + // may have happened since. Verify that this is still true. + for (const auto* dq_node : dq_nodes) { + const bool dq_produces_graph_output = graph_viewer.NodeProducesGraphOutput(*dq_node); + ORT_RETURN_IF(dq_produces_graph_output, + "QDQ node group cannot have DQ node that produces a graph output. DQ node: ", dq_node->Name(), + ", target node: ", target_node.Name()); + + const bool dq_has_single_output_edge_to_target = + dq_node->GetOutputEdgesCount() == 1 && + dq_node->OutputEdgesBegin()->GetNode().Index() == target_node.Index(); + ORT_RETURN_IF_NOT(dq_has_single_output_edge_to_target, + "QDQ node group cannot have DQ that doesn't have a single output edge to the target node. " + "DQ node: ", + dq_node->Name(), ", target node: ", target_node.Name()); + } + + // an output from the target node can have either Q consumers or direct consumers. it cannot have both. + // this must be checked on a per output basis. + // e.g. TopK produces values and indices. The indices output won't be quantized, so even if we replace the TopK QDQ + // node group with a quantized TopK, an int64_t indices value will be produced and can provide a graph output. + if (!q_nodes.empty()) { + auto cur_edge = target_node.OutputEdgesBegin(); + auto end_edge = target_node.OutputEdgesEnd(); + std::vector output_consumers(target_node.OutputDefs().size(), nullptr); + + for (; cur_edge != end_edge; ++cur_edge) { + auto output_idx = cur_edge->GetSrcArgIndex(); + const Node& this_consumer = cur_edge->GetNode(); + const Node* existing_consumer = output_consumers[output_idx]; + + if (existing_consumer != nullptr) { + // another edge for this output. either both are Q or both are not. + bool valid = true; + if (existing_consumer->OpType() == "QuantizeLinear") { + valid = this_consumer.OpType() == "QuantizeLinear"; + } else { + valid = this_consumer.OpType() != "QuantizeLinear"; + } + + ORT_RETURN_IF_NOT(valid, + "QDQ node group cannot have an output from the target node being consumed by a Q node and " + "a non-Q node. target node: ", + target_node.Name()); + } else { + output_consumers[output_idx] = &this_consumer; + } + } + + const auto& graph_outputs = graph_viewer.GetOutputs(); + for (size_t idx = 0, end = output_consumers.size(); idx < end; ++idx) { + // any output with a Q cannot be a graph output as it will disappear if the QDQ node unit is converted to + // a quantized op. + if (output_consumers[idx] != nullptr && output_consumers[idx]->OpType() == "QuantizeLinear") { + const auto& output_name = target_node.OutputDefs()[idx]->Name(); + bool is_graph_output = std::any_of(graph_outputs.begin(), graph_outputs.end(), + [&output_name](const NodeArg* node_arg) { + return node_arg->Name() == output_name; + }); + ORT_RETURN_IF(is_graph_output, + "QDQ node group cannot have an output from the target node that is consumed by a Q node and " + "a graph output. target node: ", + target_node.Name(), " output idx:", idx); + } + } + } + + return Status::OK(); +} +NodeUnit::NodeUnit(const Node& node) + : target_node_(node), + type_(Type::SingleNode), + input_edge_count_(node.GetInputEdgesCount()) { + InitForSingleNode(); +} + +NodeUnit::NodeUnit(const GraphViewer& graph_viewer, const QDQ::NodeGroup& node_group) + : dq_nodes_{GetQDQIONodes(graph_viewer, node_group, true /* is_input */)}, + target_node_(*graph_viewer.GetNode(node_group.target_node)), + q_nodes_{GetQDQIONodes(graph_viewer, node_group, false /* is_input */)}, + type_(Type::QDQGroup), + inputs_{GetQDQIODefs(target_node_, node_group, true /* is_input */)}, + outputs_{GetQDQIODefs(target_node_, node_group, false /* is_input */)} { + ORT_THROW_IF_ERROR(QDQ::NodeGroup::CanCreateNodeGroup(graph_viewer, target_node_, dq_nodes_, q_nodes_)); + + input_edge_count_ = std::accumulate(dq_nodes_.cbegin(), dq_nodes_.cend(), size_t(0), + [](size_t acc, const Node* node) { return acc + node->GetInputEdgesCount(); }); + + // add edges for inputs that are not from DQ nodes. there is one edge to each DQ node. + // other inputs could come from initializers or graph inputs (no edges) or other nodes (edge). + input_edge_count_ += target_node_.GetInputEdgesCount() - dq_nodes_.size(); + + // create output edges. each target node output either goes to Q node/s or non-Q node/s. + // ValidateNodeGroupQDQNodes ensures this. + auto cur_edge = target_node_.OutputEdgesBegin(); + auto end_edge = target_node_.OutputEdgesEnd(); + for (; cur_edge != end_edge; ++cur_edge) { + const Node& node = cur_edge->GetNode(); + + // if node is in q_nodes we hide the Q node. + if (std::find(q_nodes_.cbegin(), q_nodes_.cend(), &node) != q_nodes_.cend()) { + auto src_idx = cur_edge->GetSrcArgIndex(); + auto q_cur_edge = node.OutputEdgesBegin(); + auto q_end_edge = node.OutputEdgesEnd(); + for (; q_cur_edge != q_end_edge; ++q_cur_edge) { + output_edges_.insert(Node::EdgeEnd{q_cur_edge->GetNode(), src_idx, q_cur_edge->GetDstArgIndex()}); + } + } else { + // non-Q node, or Q node that isn't in the QDQ node group (unexpected but may be possible). add as-is. + output_edges_.insert(*cur_edge); + } + } +} + +const std::string& NodeUnit::Domain() const noexcept { return target_node_.Domain(); } +const std::string& NodeUnit::OpType() const noexcept { return target_node_.OpType(); } +const std::string& NodeUnit::Name() const noexcept { return target_node_.Name(); } +int NodeUnit::SinceVersion() const noexcept { return target_node_.SinceVersion(); } +NodeIndex NodeUnit::Index() const noexcept { return target_node_.Index(); } +const Path& NodeUnit::ModelPath() const noexcept { return target_node_.ModelPath(); } +ProviderType NodeUnit::GetExecutionProviderType() const noexcept { return target_node_.GetExecutionProviderType(); } + +void NodeUnit::InitForSingleNode() { + const auto& input_defs = target_node_.InputDefs(); + const auto& output_defs = target_node_.OutputDefs(); + auto qlinear_type = GetQLinearOpType(target_node_); + if (qlinear_type == QLinearOpType::Unknown || IsVariadicQLinearOp(qlinear_type)) { // TODO, add variadic support + // Not a Qlinear op, add all inputs / outputs + auto add_all_io = [](std::vector& defs, + const ConstPointerContainer>& node_defs) { + defs.reserve(node_defs.size()); + + for (const auto def : node_defs) { + defs.push_back(NodeUnitIODef{*def, std::nullopt}); + } + }; + + add_all_io(inputs_, input_defs); + add_all_io(outputs_, output_defs); + } else if (IsUnaryQLinearOp(qlinear_type)) { + // Unary QLinear Op has 5 inputs + // x, x_scale, x_zp, y_scale, y_zp (optional) + inputs_.push_back(NodeUnitIODef{*input_defs[0], NodeUnitIODef::QuantParam{*input_defs[1], input_defs[2]}}); + outputs_.push_back(NodeUnitIODef{*output_defs[0], + NodeUnitIODef::QuantParam{*input_defs[3], + input_defs.size() > 4 ? input_defs[4] : nullptr}}); + + } else if (IsBinaryQLinearOp(qlinear_type)) { + // Binary QLinear Op has 9 inputs + // x1, x1_scale, x1_zp, x2/w, x2_scale, x2_zp, y_scale , y_zp, B + inputs_.push_back(NodeUnitIODef{*input_defs[0], NodeUnitIODef::QuantParam{*input_defs[1], input_defs[2]}}); + inputs_.push_back(NodeUnitIODef{*input_defs[3], NodeUnitIODef::QuantParam{*input_defs[4], input_defs[5]}}); + + if (input_defs.size() == 9) { // has Bias + inputs_.push_back(NodeUnitIODef{*input_defs[8], std::nullopt}); // for Bias the scale and zp are optional + } + + outputs_.push_back(NodeUnitIODef{*output_defs[0], NodeUnitIODef::QuantParam{*input_defs[6], input_defs[7]}}); + + } else if (qlinear_type == QLinearOpType::DequantizeLinear) { + // DequantizeLinear has 3 inputs + // x, x_scale, x_zp + // output is not quantized + inputs_.push_back(NodeUnitIODef{*input_defs[0], NodeUnitIODef::QuantParam{*input_defs[1], input_defs.size() == 3 + ? input_defs[2] + : nullptr}}); + outputs_.push_back(NodeUnitIODef{*output_defs[0], std::nullopt}); + + } else if (qlinear_type == QLinearOpType::QuantizeLinear) { + // QuantizeLinear the input is not quantized and has 3 inputs + // x, y_scale, y_zp (optional) + // The output is quantized + inputs_.push_back(NodeUnitIODef{*input_defs[0], std::nullopt}); + outputs_.push_back(NodeUnitIODef{*output_defs[0], NodeUnitIODef::QuantParam{*input_defs[1], input_defs.size() == 3 + ? input_defs[2] + : nullptr}}); + } else { + ORT_THROW("The QLinear op [", static_cast(qlinear_type), "] is not supported"); + } +} + +Node::EdgeConstIterator NodeUnit::OutputEdgesBegin() const { + return (type_ == Type::SingleNode) ? target_node_.OutputEdgesBegin() : output_edges_.begin(); +} + +Node::EdgeConstIterator NodeUnit::OutputEdgesEnd() const { + return (type_ == Type::SingleNode) ? target_node_.OutputEdgesEnd() : output_edges_.end(); +} + +std::vector NodeUnit::GetAllNodesInGroup() const noexcept { + std::vector all_nodes = dq_nodes_; + all_nodes.push_back(&target_node_); + all_nodes.insert(all_nodes.end(), q_nodes_.begin(), q_nodes_.end()); + return all_nodes; +} + +} // namespace onnxruntime + +#endif // !defined(ORT_MINIMAL_BUILD) || defined(ORT_EXTENDED_MINIMAL_BUILD) diff --git a/onnxruntime/core/providers/shared/node_unit/node_unit.h b/onnxruntime/core/framework/node_unit.h similarity index 54% rename from onnxruntime/core/providers/shared/node_unit/node_unit.h rename to onnxruntime/core/framework/node_unit.h index b47204ca3c42d..66afaec8ee1e2 100644 --- a/onnxruntime/core/providers/shared/node_unit/node_unit.h +++ b/onnxruntime/core/framework/node_unit.h @@ -3,6 +3,9 @@ #pragma once +// QDQ models require graph modification at runtime, so we know this infrastructure is not used in a minimal build +#if !defined(ORT_MINIMAL_BUILD) || defined(ORT_EXTENDED_MINIMAL_BUILD) + #include #include #include @@ -18,8 +21,21 @@ class NodeArg; class Path; namespace QDQ { -struct NodeGroup; -} +// Struct to represent a DequantizeLinear -> Op -> QuantizeLinear node group +struct NodeGroup { + std::vector dq_nodes; + std::vector q_nodes; + NodeIndex target_node; + + // Validator to check if the set of nodes can form a valid QDQ NodeGroup. + // Checks target node is only consumer of each DQ, and that the outputs remain valid if the QDQ node group was to + // be converted into a single node with a quantized operator. + static Status CanCreateNodeGroup(const GraphViewer& graph_viewer, + const Node& target_node, + gsl::span dq_nodes, + gsl::span q_nodes); +}; +} // namespace QDQ // Definition of one input or output // If the optional quant_param is present, then this is a quantized input, @@ -69,26 +85,33 @@ class NodeUnit { const std::vector& GetQNodes() const noexcept { return q_nodes_; } std::vector GetAllNodesInGroup() const noexcept; - Node::EdgeConstIterator OutputEdgesBegin(size_t index) const; - Node::EdgeConstIterator OutputEdgesEnd(size_t index) const; + /// Number of input edges to the logical node. For a QDQ node this is the count of input edges to the DQ nodes + /// plus any other edges to the target node for inputs that are not via a DQ node. + size_t InputEdgeCount() const { return input_edge_count_; } + + // output edges. src index is for outputs of the target node. dest index and node is for consumer of node unit + // output. any Q nodes are hidden. + Node::EdgeConstIterator OutputEdgesBegin() const; + Node::EdgeConstIterator OutputEdgesEnd() const; private: - const std::vector q_nodes_; // q-nodes for this NodeUnit - const std::vector dq_nodes_; // dq nodes for this NodeUnit, not all inputs + // Initialization for a NodeUnit that contains a single node + void InitForSingleNode(); + + const std::vector dq_nodes_; // dq nodes for this NodeUnit, not necessarily all inputs const Node& target_node_; + const std::vector q_nodes_; // q-nodes for this NodeUnit. not necessarily all outputs const Type type_; std::vector inputs_; std::vector outputs_; - // Initializing for a single Node - void InitForSingleNode(); -}; + size_t input_edge_count_; // total number of input edges -// Get all the nodes in the given graph_viewer as NodeUnits (SingleNode or QDQGroup) -// And return a map to quick query the NodeUnit which contains the given Node, -// Note, the value of the map is owned by the vector of std::unique_ptr -std::pair>, std::unordered_map> -GetAllNodeUnits(const GraphViewer& graph_viewer); + // output edges, hiding any Q nodes involved. src_idx will be value from target node. only used for QDQ node group. + Node::EdgeSet output_edges_; +}; } // namespace onnxruntime + +#endif // !defined(ORT_MINIMAL_BUILD) || defined(ORT_EXTENDED_MINIMAL_BUILD) diff --git a/onnxruntime/core/framework/sequential_execution_plan.h b/onnxruntime/core/framework/sequential_execution_plan.h index 3152154e52d7e..62c66bc6f336c 100644 --- a/onnxruntime/core/framework/sequential_execution_plan.h +++ b/onnxruntime/core/framework/sequential_execution_plan.h @@ -203,6 +203,8 @@ struct SequentialExecutionPlan : public ExecutionPlanBase { } return count; } + + InlinedVector node_stream_map_; }; // Output details of an execution plan: diff --git a/onnxruntime/core/framework/sequential_executor.cc b/onnxruntime/core/framework/sequential_executor.cc index ea7f1397c961b..0cc7294a46495 100644 --- a/onnxruntime/core/framework/sequential_executor.cc +++ b/onnxruntime/core/framework/sequential_executor.cc @@ -306,18 +306,20 @@ class KernelScope { #endif #ifdef ENABLE_NVTX_PROFILE - auto& node = kernel_.Node(); - profile::NvtxRangeCreator& forward_range = session_scope_.forward_range_; - profile::NvtxRangeCreator& backward_range = session_scope_.backward_range_; - if (node.Description() != "Backward pass" && !forward_range.IsBeginCalled()) { - // Start timing forward pass when encountering the first forward node. - forward_range.Begin(); - } else if (node.Description() == "Backward pass" && !backward_range.IsBeginCalled() && - forward_range.IsBeginCalled()) { - // Start timing backward pass when encountering the first backward node. - // In the meanwhile, forward range ends. - forward_range.End(); - backward_range.Begin(); + { + auto& node = kernel_.Node(); + profile::NvtxRangeCreator& forward_range = session_scope_.forward_range_; + profile::NvtxRangeCreator& backward_range = session_scope_.backward_range_; + if (node.Description() != "Backward pass" && !forward_range.IsBeginCalled()) { + // Start timing forward pass when encountering the first forward node. + forward_range.Begin(); + } else if (node.Description() == "Backward pass" && !backward_range.IsBeginCalled() && + forward_range.IsBeginCalled()) { + // Start timing backward pass when encountering the first backward node. + // In the meanwhile, forward range ends. + forward_range.End(); + backward_range.Begin(); + } } #endif diff --git a/onnxruntime/core/framework/session_state.h b/onnxruntime/core/framework/session_state.h index 51bb02918d82f..e318c9a8238c7 100644 --- a/onnxruntime/core/framework/session_state.h +++ b/onnxruntime/core/framework/session_state.h @@ -8,7 +8,7 @@ #include #include -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/common/gsl.h" @@ -259,8 +259,8 @@ class SessionState { * \param p_node0 Nullable * \param kci0 Nullable */ - NodeInfo(size_t index0, const onnxruntime::Node* p_node0, const KernelCreateInfo* kci0, const OrtDevice& device0) - : index(index0), p_node(p_node0), kci(kci0), device(&device0) {} + NodeInfo(size_t index0, const onnxruntime::Node* p_node0, const KernelCreateInfo* kci0, const OrtDevice& device0, int stream_index0 = -1) + : index(index0), p_node(p_node0), kci(kci0), device(&device0), stream_index(stream_index0) {} size_t index; // Nullable @@ -268,6 +268,7 @@ class SessionState { // Nullable const KernelCreateInfo* kci = nullptr; const OrtDevice* device = nullptr; + int stream_index; }; using NameNodeInfoMapType = InlinedHashMap>; diff --git a/onnxruntime/core/framework/session_state_utils.cc b/onnxruntime/core/framework/session_state_utils.cc index df11fe8302aef..692ca08772535 100644 --- a/onnxruntime/core/framework/session_state_utils.cc +++ b/onnxruntime/core/framework/session_state_utils.cc @@ -367,6 +367,7 @@ common::Status SaveInputOutputNamesToNodeMapping(const onnxruntime::GraphViewer& for (auto& node : graph.Nodes()) { const KernelCreateInfo& kci = session_state.GetNodeKernelCreateInfo(node.Index()); + int stream_index = static_cast(exec_plan->node_stream_map_[node.Index()]); ORT_RETURN_IF_ERROR( onnxruntime::Node::ForEachWithIndex( @@ -379,8 +380,7 @@ common::Status SaveInputOutputNamesToNodeMapping(const onnxruntime::GraphViewer& int arg_index; ORT_RETURN_IF_ERROR(name_to_id.GetIdx(arg.Name(), arg_index)); const auto& device = exec_plan->GetLocation(arg_index); - - SessionState::NodeInfo node_info(index, &node, &kci, device); + SessionState::NodeInfo node_info(index, &node, &kci, device, stream_index); if (IsArgNameInInputsOutputs(arg.Name(), graph_inputs)) { ORT_RETURN_IF_ERROR(session_state.AddInputNameToNodeInfoMapping(arg.Name(), node_info)); @@ -419,7 +419,7 @@ common::Status SaveInputOutputNamesToNodeMapping(const onnxruntime::GraphViewer& int arg_index; ORT_RETURN_IF_ERROR(name_to_id.GetIdx(input_def->Name(), arg_index)); auto& device = exec_plan->GetLocation(arg_index); - SessionState::NodeInfo node_info(std::numeric_limits::max(), &node, &kci, device); + SessionState::NodeInfo node_info(std::numeric_limits::max(), &node, &kci, device, stream_index); ORT_RETURN_IF_ERROR(session_state.AddInputNameToNodeInfoMapping(input_def->Name(), node_info)); } } diff --git a/onnxruntime/core/framework/stream_execution_context.cc b/onnxruntime/core/framework/stream_execution_context.cc index 875e7f395bfa8..dd7f4d35b34bd 100644 --- a/onnxruntime/core/framework/stream_execution_context.cc +++ b/onnxruntime/core/framework/stream_execution_context.cc @@ -181,11 +181,13 @@ void RunSince(size_t stream_idx, StreamExecutionContext& ctx, SessionScope& sess } #ifdef USE_CANN + // Leave it to CANN EP to fill the gap if they want to use run_options + static onnxruntime::RunOptions run_options; // For CANN EP, it is necessary to explicitly create a corresponding Context for each thread in the thread pool, // which is different from CUDA Runtime API, but similar to CUDA Driver API. auto& execution_providers = ctx.GetSessionState().GetExecutionProviders(); for (auto& xp : execution_providers) { - auto status = xp->OnRunStart(); + auto status = xp->OnRunStart(run_options); if (!status.IsOK()) { ctx.SetStatus(status); return; diff --git a/onnxruntime/core/framework/utils.cc b/onnxruntime/core/framework/utils.cc index 23fe5e1cd3d96..0c4d498fae9e0 100644 --- a/onnxruntime/core/framework/utils.cc +++ b/onnxruntime/core/framework/utils.cc @@ -270,6 +270,15 @@ static common::Status CalculateStaticCopyInfoForFeed(const SessionState& session } copy_info.target_device = *node_info.device; + copy_info.unique_stream_index_consumes_it = node_info.stream_index; + ORT_RETURN_IF(node_info.stream_index < 0, "node_info.stream_index < 0"); + for (size_t i = 1; i < node_info_vec.size(); i++) { + ORT_RETURN_IF(node_info_vec[i].stream_index < 0, "node_info_vec[i].stream_index < 0"); + if (node_info_vec[i].stream_index != node_info.stream_index) { + copy_info.unique_stream_index_consumes_it = -1; + break; + } + } #ifdef ENABLE_TRAINING } else { @@ -441,11 +450,12 @@ static void FinalizeFeedFetchCopyInfo(FeedsFetchesManager& feeds_fetches_manager static common::Status CopyInputsAcrossDevices(const SessionState& session_state, gsl::span orig_feeds, std::vector& new_feeds, - gsl::span copy_info, - gsl::span feed_streams) { +#ifdef ORT_ENABLE_STREAM + DeviceStreamCollection* device_stream_collection, +#endif + gsl::span copy_info) { size_t num_feeds = orig_feeds.size(); ORT_ENFORCE(copy_info.size() == num_feeds); - ORT_ENFORCE(feed_streams.size() == num_feeds); new_feeds.resize(num_feeds); std::vector batched_data_transfers; @@ -453,14 +463,32 @@ static common::Status CopyInputsAcrossDevices(const SessionState& session_state, std::vector batched_sparse_data_transfers; #endif + std::unordered_set stream_to_flush; for (size_t idx = 0; idx < num_feeds; ++idx) { + Stream* copy_this_feed = nullptr; +#ifdef ORT_ENABLE_STREAM + if (device_stream_collection) { + if (copy_info[idx].unique_stream_index_consumes_it < 0) { + for (size_t i = 0; i < device_stream_collection->NumStreams(); i++) { + Stream* stream = device_stream_collection->GetStream(i); + if (stream && stream->GetDevice().Type() == copy_info[idx].target_device.Type()) { + copy_this_feed = stream; + stream_to_flush.insert(stream); + break; + } + } + } else { + copy_this_feed = device_stream_collection->GetStream(copy_info[idx].unique_stream_index_consumes_it); + } + } +#endif #if !defined(DISABLE_SPARSE_TENSORS) ORT_RETURN_IF_ERROR(BatchOrCopyMLValue(session_state, copy_info[idx], orig_feeds[idx], new_feeds[idx], - feed_streams[idx], + copy_this_feed, &batched_data_transfers, &batched_sparse_data_transfers)); #else ORT_RETURN_IF_ERROR(BatchOrCopyMLValue(session_state, copy_info[idx], orig_feeds[idx], new_feeds[idx], - feed_streams[idx], + copy_this_feed, &batched_data_transfers)); #endif } @@ -479,10 +507,7 @@ static common::Status CopyInputsAcrossDevices(const SessionState& session_state, // TODO: this sync is because the graph inputs can be consumed by multiple stream, // but we can only place the MemCpyAsync on one of the stream. Ideally we should make // other stream wait on the event of the memory copy stream, instead of host sync stream. - std::unordered_set visited; - for (auto* stream : feed_streams) { - if (stream && visited.insert(stream).second) stream->Flush(); - } + for (const auto& stream : stream_to_flush) stream->Flush(); return Status::OK(); } @@ -640,33 +665,12 @@ ExecuteGraphImpl(const SessionState& session_state, if (device_copy_checks.input_copy_needed == DeviceCopyCheck::Copy) { const auto& feed_copy_info = feeds_fetches_manager.GetFeedsDeviceCopyInfo(); - InlinedVector feed_streams; - feed_streams.reserve(feed_copy_info.size()); - // TODO: we can pre-calculate the stream index for graph inputs in execution plan + auto status = CopyInputsAcrossDevices(session_state, feeds, device_feeds, #ifdef ORT_ENABLE_STREAM - for (auto& copy_info : feed_copy_info) { - auto& device = copy_info.target_device; - bool found = false; - if (device_stream_collection) { - size_t num_streams = device_stream_collection->NumStreams(); - for (size_t i = 0; i < num_streams; i++) { - Stream* stream = device_stream_collection->GetStream(i); - if (stream && stream->GetDevice().Type() == device.Type()) { - feed_streams.push_back(stream); - found = true; - break; - } - } - } - if (!found) - feed_streams.push_back(nullptr); - } -#else - for (size_t i = 0; i < feed_copy_info.size(); ++i) { - feed_streams.push_back(nullptr); - } + device_stream_collection, #endif - ORT_RETURN_IF_ERROR(CopyInputsAcrossDevices(session_state, feeds, device_feeds, feed_copy_info, feed_streams)); + feed_copy_info); + ORT_RETURN_IF_ERROR(status); feeds_to_use = device_feeds; } @@ -819,27 +823,7 @@ common::Status ExecutePartialGraphImpl(const SessionState& session_state, FeedsF if (device_copy_checks.input_copy_needed == DeviceCopyCheck::Copy) { const auto& feed_copy_info = feeds_fetches_manager.GetFeedsDeviceCopyInfo(); - InlinedVector feed_streams; - feed_streams.reserve(feed_copy_info.size()); - // TODO: we can pre-calculate the stream index for graph inputs in execution plan - for (auto& copy_info : feed_copy_info) { - auto& device = copy_info.target_device; - bool found = false; - if (device_stream_collection) { - size_t num_streams = device_stream_collection->NumStreams(); - for (size_t i = 0; i < num_streams; i++) { - Stream* stream = device_stream_collection->GetStream(i); - if (stream && stream->GetDevice().Type() == device.Type()) { - feed_streams.push_back(stream); - found = true; - break; - } - } - } - if (!found) - feed_streams.push_back(nullptr); - } - ORT_RETURN_IF_ERROR(CopyInputsAcrossDevices(session_state, feeds, device_feeds, feed_copy_info, feed_streams)); + ORT_RETURN_IF_ERROR(CopyInputsAcrossDevices(session_state, feeds, device_feeds, device_stream_collection, feed_copy_info)); p_feeds = device_feeds; } @@ -1015,9 +999,19 @@ bool IsInputOnCpu(const Node& node, const KernelCreateInfo* p_kci, size_t index) } #ifdef ENABLE_ATEN + // For ATen node, we assume that all tensor inputs are on device, all non-tensor inputs are on CPU, + // except those specified in attribute cpu_input_args; if (node.GetExecutionProviderType() == kCudaExecutionProvider && node.OpType() == "ATen" && node.Domain() == kPytorchAtenDomain) { const auto& attrs = node.GetAttributes(); + if (auto entry = attrs.find("cpu_input_args"); entry != attrs.end()) { + const auto& attr = entry->second; + if (utils::HasInts(attr) && std::any_of(attr.ints().cbegin(), attr.ints().cend(), + [index](int64_t arg) { return static_cast(index) == arg; })) { + return true; + } + } + ORT_ENFORCE(utils::HasString(attrs.at("operator"))); std::string op_name = attrs.at("operator").s(); std::string overload_name = ""; @@ -1025,7 +1019,7 @@ bool IsInputOnCpu(const Node& node, const KernelCreateInfo* p_kci, size_t index) overload_name = attrs.at("overload_name").s(); } - return contrib::aten_ops::ATenOperatorExecutor::Instance().IsCpuArgument(op_name, overload_name, index, true); + return !contrib::aten_ops::ATenOperatorExecutor::Instance().IsTensorArgument(op_name, overload_name, index, true); } #else ORT_UNUSED_PARAMETER(node); @@ -1040,9 +1034,19 @@ bool IsOutputOnCpu(const Node& node, const KernelCreateInfo* p_kci, size_t index } #ifdef ENABLE_ATEN + // For ATen node, we assume that all tensor outputs are on device, all non-tensor outputs are on CPU, + // except those specified in attribute cpu_output_args; if (node.GetExecutionProviderType() == kCudaExecutionProvider && node.OpType() == "ATen" && node.Domain() == kPytorchAtenDomain) { const auto& attrs = node.GetAttributes(); + if (auto entry = attrs.find("cpu_output_args"); entry != attrs.end()) { + const auto& attr = entry->second; + if (utils::HasInts(attr) && std::any_of(attr.ints().cbegin(), attr.ints().cend(), + [index](int64_t arg) { return static_cast(index) == arg; })) { + return true; + } + } + ORT_ENFORCE(utils::HasString(attrs.at("operator"))); std::string op_name = attrs.at("operator").s(); std::string overload_name = ""; @@ -1050,7 +1054,7 @@ bool IsOutputOnCpu(const Node& node, const KernelCreateInfo* p_kci, size_t index overload_name = attrs.at("overload_name").s(); } - return contrib::aten_ops::ATenOperatorExecutor::Instance().IsCpuArgument(op_name, overload_name, index, false); + return !contrib::aten_ops::ATenOperatorExecutor::Instance().IsTensorArgument(op_name, overload_name, index, false); } #else ORT_UNUSED_PARAMETER(node); diff --git a/onnxruntime/core/graph/contrib_ops/collective_defs.cc b/onnxruntime/core/graph/contrib_ops/collective_defs.cc index 4aa43f5de1cd5..a0ca2e45f153a 100644 --- a/onnxruntime/core/graph/contrib_ops/collective_defs.cc +++ b/onnxruntime/core/graph/contrib_ops/collective_defs.cc @@ -91,10 +91,18 @@ void RegisterCollectiveOps() { "Number of top experts to select from expert pool", AttributeProto::INT, static_cast(1)) + .Attr("normalize_routing_weights", + "Whether to normalize routing weights", + AttributeProto::INT, + static_cast(0)) .Attr("local_experts_start_index", "The start index of local experts", AttributeProto::INT, - static_cast(-1)) + static_cast(0)) + .Attr("tensor_shards", + "Tensor parallelism config. The number of shards for each expert weight and bias", + AttributeProto::INT, + static_cast(1)) .Input(0, "input", "2D input tensor with shape (num_rows, hidden_size) or " @@ -106,22 +114,32 @@ void RegisterCollectiveOps() { "T") .Input(2, "fc1_experts_weights", - "3D input tensor with shape (local_num_experts, hidden_size, inter_size)", + "3D input tensor with shape (local_num_experts, hidden_size, local_inter_size)", "T") .Input(3, - "fc2_experts_weights", - "3D input tensor with shape (local_num_experts, inter_size, hidden_size)", - "T") - .Input(4, "fc1_experts_bias", - "2D optional input tensor with shape (local_num_experts, inter_size)", + "2D optional input tensor with shape (local_num_experts, local_inter_size)", "T", OpSchema::Optional) + .Input(4, + "fc2_experts_weights", + "3D input tensor with shape (local_num_experts, local_inter_size, hidden_size)", + "T") .Input(5, "fc2_experts_bias", "2D optional input tensor with shape (num_experts, hidden_size)", "T", OpSchema::Optional) + .Input(6, + "fc3_experts_weights", + "3D optional input tensor with shape (local_num_experts, hidden_size, local_inter_size)", + "T", + OpSchema::Optional) + .Input(7, + "fc3_experts_bias", + "2D optional input tensor with shape (local_num_experts, local_inter_size)", + "T", + OpSchema::Optional) .Output(0, "output", "2D input tensor with shape (num_rows, hidden_size) or " diff --git a/onnxruntime/core/graph/contrib_ops/contrib_defs.cc b/onnxruntime/core/graph/contrib_ops/contrib_defs.cc index 27c968a59eb91..f4d990540ed51 100644 --- a/onnxruntime/core/graph/contrib_ops/contrib_defs.cc +++ b/onnxruntime/core/graph/contrib_ops/contrib_defs.cc @@ -1163,7 +1163,7 @@ ONNX_MS_OPERATOR_SET_SCHEMA(BeamSearch, 1, "Shape is (1,)", "T", OpSchema::Optional) .Input(6, "repetition_penalty", "The parameter for repetition penalty. Default value 1.0 means no penalty. Accepts value > 0.0. Shape is (1)", "T", OpSchema::Optional) - .Input(7, "vocab_mask", "Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vacab_size)", "M", OpSchema::Optional) + .Input(7, "vocab_mask", "Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vocab_size)", "M", OpSchema::Optional) .Input(8, "prefix_vocab_mask", "Mask of vocabulary for first step. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (batch_size, vocab_size)", "M", OpSchema::Optional) .Input(9, "attention_mask", "Custom attention mask. Shape is (batch_size, sequence_length)", "I", OpSchema::Optional) .Input(10, "decoder_input_ids", "The forced input id sequence for the decoder subgraph. Shape is (batch_size, initial_sequence_length)", "I", OpSchema::Optional) @@ -1188,7 +1188,15 @@ ONNX_MS_OPERATOR_SET_SCHEMA(WhisperBeamSearch, 1, .SetDoc("Beam Search for whisper model, especiall with cross_qk features etc.") .Attr("eos_token_id", "The id of the end-of-sequence token", AttributeProto::INT) .Attr("pad_token_id", "The id of the padding token", AttributeProto::INT) - .Attr("decoder_start_token_id", "The id of the token that indicates decoding starts.", AttributeProto::INT, static_cast(-1)) + .Attr("decoder_start_token_id", "The id of the token that indicates decoding starts (i.e. the start of transcription token id)", AttributeProto::INT, static_cast(-1)) + .Attr("translate_token_id", "The id of the translate task", AttributeProto::INT, OPTIONAL_VALUE) + .Attr("transcribe_token_id", "The id of the transcribe task", AttributeProto::INT, OPTIONAL_VALUE) + .Attr("start_of_lm_token_id", "The id of the token that indicates LM starts", AttributeProto::INT, OPTIONAL_VALUE) + .Attr("no_speech_token_id", + "The token in whisper model that marks all sequence empty. With this model, whisper could output no_speech_prob after. Default -1.", + AttributeProto::INT, OPTIONAL_VALUE) + .Attr("no_timestamps_token_id", "The id of the token that indicates no timestamps", AttributeProto::INT, OPTIONAL_VALUE) + .Attr("beginning_timestamp_token_id", "The id of the first timestamp", AttributeProto::INT, OPTIONAL_VALUE) .Attr("no_repeat_ngram_size", "no repeat ngrams size", AttributeProto::INT, static_cast(0)) .Attr("early_stopping", "early stop or not", AttributeProto::INT, static_cast(0)) .Attr("model_type", "Must be 2 for whisper", AttributeProto::INT, static_cast(2)) @@ -1203,27 +1211,24 @@ ONNX_MS_OPERATOR_SET_SCHEMA(WhisperBeamSearch, 1, "If not provided, it will be inferred from the decoder subgraph's output shape", AttributeProto::INT, static_cast(-1)) .Attr("decoder_output_cross_qk", "If nozero, decoder subgraph contains output Q*K from cross attentions. Default 0.", AttributeProto::INT, OPTIONAL_VALUE) - .Attr("no_speech_token", - "The token in whisper model that marks all sequence empty. With this model, whisper could output no_speech_prob after. Default -1.", - AttributeProto::INT, OPTIONAL_VALUE) .Input(0, "input_ids", "The sequence used as a prompt for the generation in the encoder subgraph. Shape is (batch_size, sequence_length)", "F") .Input(1, "max_length", "The maximum length of the sequence to be generated. Shape is (1)", "I") .Input(2, "min_length", "The minimum length below which the score of eos_token_id is set to -Inf. Shape is (1)", "I", OpSchema::Optional) .Input(3, "num_beams", "Number of beams for beam search. 1 means no beam search. Shape is (1)", "I") .Input(4, "num_return_sequences", "The number of returned sequences in the batch. Shape is (1)", "I") .Input(5, "length_penalty", - "Exponential penalty to the length. Default value 1.0 means no penalty." - "Value > 1.0 encourages longer sequences, while values < 1.0 produces shorter sequences." + "Exponential penalty to the length. Default value 1.0 means no penalty. " + "Value > 1.0 encourages longer sequences, while values < 1.0 produces shorter sequences. " "Shape is (1,)", "T", OpSchema::Optional) .Input(6, "repetition_penalty", "The parameter for repetition penalty. Default value 1.0 means no penalty. Accepts value > 0.0. Shape is (1)", "T", OpSchema::Optional) - .Input(7, "vocab_mask", "Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vacab_size)", "M", OpSchema::Optional) + .Input(7, "vocab_mask", "Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vocab_size)", "M", OpSchema::Optional) .Input(8, "prefix_vocab_mask", "Mask of vocabulary for first step. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (batch_size, vocab_size)", "M", OpSchema::Optional) .Input(9, "attention_mask", "Custom attention mask. Shape is (batch_size, sequence_length)", "I", OpSchema::Optional) .Input(10, "decoder_input_ids", "The forced input id sequence for the decoder subgraph. Shape is (batch_size, initial_sequence_length)", "I", OpSchema::Optional) .Input(11, "logits_processor", "Specific logits processor for different types of beamsearch models. Default value 0 means no specific logit processor. Accepts value >= 0. Shape is (1)", "I", OpSchema::Optional) .Input(12, "cross_qk_layer_head", - "Only keep this list of (layer, head) of QK in the final cross_qk output when use_cross_qk is set. Default collect all" + "Only keep this list of (layer, head) of QK in the final cross_qk output when use_cross_qk is set. Default collect all " "its shape is (number of (layer, head) to keep, 2), i.e., [[layer_id1, head_id1], [layer_id2, head_id2]......]", "I", OpSchema::Optional) .Input(13, "extra_decoding_ids", @@ -1235,20 +1240,19 @@ ONNX_MS_OPERATOR_SET_SCHEMA(WhisperBeamSearch, 1, .Output(0, "sequences", "Word IDs of generated sequences. Shape is (batch_size, num_return_sequences, max_sequence_length)", "I") .Output(1, "sequences_scores", "Final beam score of the generated sequences. Shape is (batch_size, num_return_sequences)", "T", OpSchema::Optional) .Output(2, "scores", - "Processed beam scores for each vocabulary token at each generation step." - "Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam." + "Processed beam scores for each vocabulary token at each generation step. " + "Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. " "Shape is (max_length - sequence_length, batch_size, num_beams, vocab_size)", "T", OpSchema::Optional) .Output(3, "cross_qk", "Output the accumulated stacked Q*K in cross attentions. Let H = number of Head of cross attention, " - "F = the frames or kv-seq-len of the cross attention input, T = real decoded token length, L = number of layers," - "B = batch size, R = num_return_sequences. It then should return tensor of shape [B, R, L*H, T, F]." + "F = the frames or kv-seq-len of the cross attention input, T = real decoded token length, L = number of layers, " + "B = batch size, R = num_return_sequences. It then should return tensor of shape [B, R, L*H, T, F]. " "If cross_qk_layer_head is given, shape is [B, R, cross_qk_layer_head.shape[0], T, F]", "V", OpSchema::Optional) .Output(4, "non_speech_probs", - "For whisper model, output the probabilities from logits after encoder and context decoding for the no_speech_token." - "Currently we treat the last token's logits is what we need, in future extra graph logic may be add to the encoder/context-decoder subgraph." - "The prob is save before logits may be updated by extra-decoding-ids. The shape of non_speech_probs is [B]", + "For whisper model, output the probabilities from logits after encoder and context decoding for the no_speech_token_id. " + "The shape of non_speech_probs is [B]", "T", OpSchema::Optional) .TypeConstraint("T", {"tensor(float)", "tensor(float16)"}, "Constrain to float tensors.") .TypeConstraint("F", {"tensor(float)", "tensor(int32)", "tensor(float16)"}, "Constrain input type to float or int tensors.") @@ -1322,7 +1326,7 @@ ONNX_MS_OPERATOR_SET_SCHEMA(GreedySearch, 1, .Input(1, "max_length", "The maximum length of the sequence to be generated. Shape is (1)", "I") .Input(2, "min_length", "The minimum length below which the score of eos_token_id is set to -Inf. Shape is (1)", "I", OpSchema::Optional) .Input(3, "repetition_penalty", "The parameter for repetition penalty. Default value 1.0 means no penalty. Accepts value > 0.0. Shape is (1)", "T", OpSchema::Optional) - .Input(4, "vocab_mask", "Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vacab_size)", "I", OpSchema::Optional) + .Input(4, "vocab_mask", "Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vocab_size)", "I", OpSchema::Optional) .Input(5, "prefix_vocab_mask", "Mask of vocabulary for first step. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (batch_size, vocab_size)", "I", OpSchema::Optional) .Input(6, "attention_mask", "Custom attention mask. Shape is (batch_size, sequence_length)", "I", OpSchema::Optional) .Output(0, "sequences", "Word IDs of generated sequences. Shape is (batch_size, max_sequence_length)", "I") @@ -1363,7 +1367,7 @@ ONNX_MS_OPERATOR_SET_SCHEMA(Sampling, 1, .Input(1, "max_length", "The maximum length of the sequence to be generated. Shape is (1)", "I") .Input(2, "min_length", "The minimum length below which the score of eos_token_id is set to -Inf. Shape is (1)", "I", OpSchema::Optional) .Input(3, "repetition_penalty", "The parameter for repetition penalty. Default value 1.0 means no penalty. Accepts value > 0.0. Shape is (1)", "T", OpSchema::Optional) - .Input(4, "vocab_mask", "Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vacab_size)", "I", OpSchema::Optional) + .Input(4, "vocab_mask", "Mask of vocabulary. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (vocab_size)", "I", OpSchema::Optional) .Input(5, "prefix_vocab_mask", "Mask of vocabulary for first step. Words that masked with 0 are not allowed to be generated, and 1 is allowed. Shape is (batch_size, vocab_size)", "I", OpSchema::Optional) .Input(6, "attention_mask", "Custom attention mask. Shape is (batch_size, sequence_length)", "I", OpSchema::Optional) .Input(7, "presence_mask", "Presence penalty mask. Shape is (batch_size, vocab_size)", "I", OpSchema::Optional) @@ -1378,8 +1382,8 @@ ONNX_MS_OPERATOR_SET_SCHEMA(Sampling, 1, constexpr const char* MoE_ver1_doc = R"DOC( Mixture of experts. Examples: Switch transformer(https://arxiv.org/pdf/2101.03961.pdf) use top 1, - GLaM(https://arxiv.org/abs/2112.06905) activates top 2 FFN, and Vision MOE(https://arxiv.org/pdf/2106.05974.pdf) - usually uses top 32 experts. + GLaM(https://arxiv.org/abs/2112.06905) activates top 2 FFN, Vision MOE(https://arxiv.org/pdf/2106.05974.pdf) + usually uses top 32 experts and Mixtral(https://huggingface.co/blog/mixtral). )DOC"; ONNX_MS_OPERATOR_SET_SCHEMA(MoE, 1, @@ -1387,16 +1391,77 @@ ONNX_MS_OPERATOR_SET_SCHEMA(MoE, 1, .SetDoc(MoE_ver1_doc) .Attr("activation_type", "Activation function to use. Choose from relu, gelu, silu and identity. Default is relu", AttributeProto::STRING, std::string("relu")) .Attr("k", "Number of top experts to select from expert pool", AttributeProto::INT, static_cast(1)) + .Attr("normalize_routing_weights", "Whether to normalize routing weights", AttributeProto::INT, static_cast(0)) .Input(0, "input", "2D input tensor with shape (num_rows, hidden_size) or 3D input tensor with shape (batch_size, sequence_length, hidden_size)", "T") .Input(1, "router_probs", "2D input tensor with shape (num_rows, num_experts)", "T") .Input(2, "fc1_experts_weights", "3D input tensor with shape (num_experts, hidden_size, inter_size)", "T") - .Input(3, "fc2_experts_weights", "3D input tensor with shape (num_experts, inter_size, hidden_size)", "T") - .Input(4, "fc1_experts_bias", "2D optional input tensor with shape (num_experts, inter_size)", "T", OpSchema::Optional) + .Input(3, "fc1_experts_bias", "2D optional input tensor with shape (num_experts, inter_size)", "T", OpSchema::Optional) + .Input(4, "fc2_experts_weights", "3D input tensor with shape (num_experts, inter_size, hidden_size)", "T") .Input(5, "fc2_experts_bias", "2D optional input tensor with shape (num_experts, hidden_size)", "T", OpSchema::Optional) + .Input(6, "fc3_experts_weights", "3D optional input tensor with shape (num_experts, hidden_size, inter_size)", "T", OpSchema::Optional) + .Input(7, "fc3_experts_bias", "2D optional input tensor with shape (num_experts, inter_size)", "T", OpSchema::Optional) .Output(0, "output", "2D input tensor with shape (num_rows, hidden_size) or 3D input tensor with shape (batch_size, sequence_length, hidden_size)", "T") .TypeConstraint("T", {"tensor(float)", "tensor(float16)"}, "Constrain input and output types to float or float16 tensors.") .TypeAndShapeInferenceFunction(ONNX_NAMESPACE::propagateShapeAndTypeFromFirstInput)); +ONNX_MS_OPERATOR_SET_SCHEMA( + QMoE, 1, + OpSchema() + .SetDoc("Int4 MoE") + .Attr("activation_type", + "Activation function to use. Choose from relu, gelu, silu and identity. Default is relu", + AttributeProto::STRING, + std::string("relu")) + .Attr("k", + "Number of top experts to select from expert pool", + AttributeProto::INT, + static_cast(1)) + .Attr("normalize_routing_weights", + "Whether to normalize routing weights", + AttributeProto::INT, + static_cast(0)) + .Input(0, + "input", + "2D input tensor with shape (num_rows, hidden_size) or 3D input tensor with shape " + "(batch_size, sequence_length, hidden_size)", + "T") + .Input(1, "router_probs", "2D input tensor with shape (num_rows, num_experts)", "T") + .Input(2, "fc1_experts_weights", "3D input tensor with shape (num_experts, hidden_size, inter_size / 2)", "T1") + .Input(3, "fc1_scales", "2D input tensor with shape (num_experts, inter_size)", "T") + .Input(4, + "fc1_experts_bias", + "2D optional input tensor with shape (num_experts, inter_size)", "T", OpSchema::Optional) + .Input(5, "fc2_experts_weights", "3D input tensor with shape (num_experts, inter_size, hidden_size / 2)", "T1") + .Input(6, "fc2_scales", "2D input tensor with shape (num_experts, hidden_size)", "T") + .Input(7, + "fc2_experts_bias", + "2D optional input tensor with shape (num_experts, hidden_size)", + "T", + OpSchema::Optional) + .Input(8, + "fc3_experts_weights", + "3D optional input tensor with shape (num_experts, hidden_size, inter_size / 2)", + "T1", + OpSchema::Optional) + .Input(9, + "fc3_scales", + "2D optional input tensor with shape (num_experts, inter_size)", + "T", + OpSchema::Optional) + .Input(10, + "fc3_experts_bias", + "2D optional input tensor with shape (num_experts, inter_size)", + "T", + OpSchema::Optional) + .Output(0, + "output", + "2D input tensor with shape (num_rows, hidden_size) or 3D input tensor with shape " + "(batch_size, sequence_length, hidden_size)", + "T") + .TypeConstraint("T", {"tensor(float16)"}, "Constrain input and output types to float or float16 tensors.") + .TypeConstraint("T1", {"tensor(uint8)"}, "Constrain weights type to uint8 tensors.") + .TypeAndShapeInferenceFunction(ONNX_NAMESPACE::propagateShapeAndTypeFromFirstInput)); + ONNX_MS_OPERATOR_SET_SCHEMA(SampleOp, 1, OpSchema() .Input(0, "X", "input", "T") @@ -3339,22 +3404,23 @@ MatMulNBits is a MatMul with weight quantized with N bits(e.g., 2, 3, 4, 5, 6, 7 And block_size is not an arbitrary number and must be a power of 2 and not smaller than 16, like 16, 32, 64, 128,.. 3. Input B's scale and zero point are specified by input scales and zero_points. -Input B is stored as uint8_t with shape: [N][n_blocks_per_col][blob_size] in which: -- n_blocks_per_col = (K + block_size - 1) / block_size -- blob_size = block_size / 8 * bits + Input is stored as uint8_t with shape: [N][n_blocks_per_col][blob_size] in which: + - n_blocks_per_col = (K + block_size - 1) / block_size + - blob_size = CeilDiv(block_size * bits, bitsof(uint8_t)<8>) + For all bits from 2-8, a row of data is stored squeezely and represented by uint8_t. + - for 2,4,8 bits, 4x2bit,2x4bit,1x8bit are stored in one uint8_t. + 4bit example: + |.|.|.|.| .|.|.|.| =uint8_t (2x4bit) + - for 3,5,6,7 bits, 32x3bit,32x5bit,16x6bit,32x7bit are stored in 12xuint8_t,20xuint8_t,12xuint8_t,28xuint8_t separately. no bits are wasted. + 3bit example: + |.|.|. |.|.|. |.|.|. = 9bit, which across 2 uint8_t, the highest bit for the second uint8_t is used. + The last uint_8 may have some bits unused. - For a block blob. It is stored in format: - struct Blob { - uint8 one_bits[(bits & 0x1) * 1 * block_size / 8]; // highest 1 bit for 3, 5, 7 bits quantization - uint8 two_bits[(bits & 0x2) * 2 * block_size / 8]; // high 2 bits for 2, 6, 7 bits quantization - uint8 four_bits[(bits & 0x4) * 4 * block_size / 8]; // low 4 bits for 4, 5, 6 bits quantization - } Input scales is stored in same type as original type of B(float32, float16) with shape like: [N * n_blocks_per_col] -Input zero_points is stored as uint8_t. If bits <= 4, two zero points are stored as one unit8_t. If bits > 4, one zero point is stored with one unit8_t. Thus, its shape is: - - [(N * n_blocks_per_col + 1) / 2] if bits <=4 - - [N * n_blocks_per_col] if bits > 4 - +Input zero_points is stored as uint8_t or same as type(A). It has the same packing method as input B. + - [CeilDiv((N * n_blocks_per_col + 1) *bits, 8)] + If zero_points has same type as A, it's not packed and has the same shape as Scales. )DOC"; ONNX_CONTRIB_OPERATOR_SCHEMA(MatMulNBits) @@ -3373,12 +3439,15 @@ Input zero_points is stored as uint8_t. If bits <= 4, two zero points are stored "type T1.", AttributeProto::INT, static_cast(0)) .Input(0, "A", "The input tensor, not quantized", "T1") - .Input(1, "B", "1-dimensional data blob", "T2") + .Input(1, "B", "1 or 2 dimensional data blob", "T2") .Input(2, "scales", "quantization scale", "T1") - .Input(3, "zero_points", "quantization zero points", "T2", OpSchema::Optional) + .Input(3, "zero_points", "quantization zero points", "T3", OpSchema::Optional) + .Input(4, "g_idx", "group_idx", "T4", OpSchema::Optional) .Output(0, "Y", "tensor. The output tensor has the same rank as the input. ", "T1") .TypeConstraint("T1", {"tensor(float)", "tensor(float16)"}, "Constrain input and output types to float/half_float tensors.") - .TypeConstraint("T2", {"tensor(uint8)"}, "Constrain quantized weight types to uint8.") + .TypeConstraint("T2", {"tensor(uint8)", "tensor(int32)"}, "Constrain quantized weight types to uint8/int32.") + .TypeConstraint("T3", {"tensor(uint8)", "tensor(int32)", "tensor(float16)", "tensor(float)"}, "Constrain quantized zero point types to uint8/int32/float16/float.") + .TypeConstraint("T4", {"tensor(int32)"}, "the index tensor.") .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { // Type inference propagateElemTypeFromInputToOutput(ctx, 0, 0); @@ -3466,6 +3535,8 @@ MatMulBnb4 is a MatMul with weight quantized with 4 bits using either FP4 or NF4 /*min_arity*/ 1) .Attr("operator", "Name of ATen operator.", AttributeProto::STRING) .Attr("overload_name", "Overload name of ATen operator.", AttributeProto::STRING, false) + .Attr("cpu_input_args", "CPU input argument indices.", AttributeProto::INTS, false) + .Attr("cpu_output_args", "CPU output argument indices.", AttributeProto::INTS, false) .TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Allow inputs and outputs to be any kind of tensor."); #endif diff --git a/onnxruntime/core/graph/contrib_ops/internal_nhwc_onnx_schemas.cc b/onnxruntime/core/graph/contrib_ops/internal_nhwc_onnx_schemas.cc index c8960578f9e3d..6bf19654a3ce9 100644 --- a/onnxruntime/core/graph/contrib_ops/internal_nhwc_onnx_schemas.cc +++ b/onnxruntime/core/graph/contrib_ops/internal_nhwc_onnx_schemas.cc @@ -106,6 +106,7 @@ void OpSet_Internal_NHWC_ONNX::ForEachSchema(const std::function()); fn(GetOpSchema()); + fn(GetOpSchema()); fn(GetOpSchema()); fn(GetOpSchema()); fn(GetOpSchema()); diff --git a/onnxruntime/core/graph/contrib_ops/quantization_defs.cc b/onnxruntime/core/graph/contrib_ops/quantization_defs.cc index 4313fae767fe5..22a79ef652515 100644 --- a/onnxruntime/core/graph/contrib_ops/quantization_defs.cc +++ b/onnxruntime/core/graph/contrib_ops/quantization_defs.cc @@ -434,7 +434,7 @@ ONNX_MS_OPERATOR_SET_SCHEMA( .Output(0, "Y", "Matrix multiply results from A * B", "T3") .TypeConstraint("T1", {"tensor(int8)", "tensor(uint8)"}, "Constrain input A data type to 8-bit integer tensor.") .TypeConstraint("T2", {"tensor(int8)", "tensor(uint8)"}, "Constrain input B data type to 8-bit integer tensor.") - .TypeConstraint("T3", {"tensor(float)"}, + .TypeConstraint("T3", {"tensor(float)", "tensor(float16)"}, "Constrain input a_scale, b_scale and output Y data type as float tensor.") .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { propagateElemTypeFromInputToOutput(ctx, 2, 0); diff --git a/onnxruntime/core/graph/graph.cc b/onnxruntime/core/graph/graph.cc index 902839bee04ba..305122c56b865 100644 --- a/onnxruntime/core/graph/graph.cc +++ b/onnxruntime/core/graph/graph.cc @@ -1818,16 +1818,36 @@ void Graph::ReverseDFSFrom(gsl::span from, } } +template +struct VisitorPriorityQueue { + using ComparatorType = std::function; + std::list list_; + const ComparatorType comparator_ = nullptr; + VisitorPriorityQueue(const ComparatorType& comp) : comparator_(comp) {} + + void push(T node) { + list_.insert( + std::upper_bound(list_.begin(), list_.end(), node, comparator_), + node); + } + bool empty() { return list_.empty(); } + T top() { return list_.back(); } + void pop() { list_.pop_back(); } +}; + #if !defined(ORT_MINIMAL_BUILD) void Graph::KahnsTopologicalSort(const std::function& enter, const std::function& comp) const { - std::unordered_map in_degree; - std::priority_queue, decltype(comp)> to_visit(comp); - std::vector topo_order; + InlinedVector in_degree(MaxNodeIndex(), 0); + InlinedVector topo_order; + VisitorPriorityQueue to_visit(comp); + + auto number_of_nodes = NumberOfNodes(); + topo_order.reserve(number_of_nodes); for (auto& node : Nodes()) { size_t input_edge_count = node.GetInputEdgesCount(); - in_degree.insert({node.Index(), input_edge_count}); + in_degree[node.Index()] = input_edge_count; if (input_edge_count == 0) { to_visit.push(&node); } @@ -1844,16 +1864,17 @@ void Graph::KahnsTopologicalSort(const std::function& enter, } for (auto node_it = current->OutputNodesBegin(); node_it != current->OutputNodesEnd(); ++node_it) { - in_degree[node_it->Index()]--; + auto& node_in_degree = in_degree[node_it->Index()]; + node_in_degree--; - if (in_degree[node_it->Index()] == 0) { + if (node_in_degree == 0) { to_visit.push(&*node_it); } } topo_order.push_back(current->Index()); } - if (NumberOfNodes() != static_cast(topo_order.size())) { + if (number_of_nodes != static_cast(topo_order.size())) { ORT_THROW("Some nodes are not included in the topological sort, graph have a cycle."); } } @@ -2843,7 +2864,7 @@ void Graph::AddInitializedTensor(const TensorProto& tensor) { const gsl::not_null tensor_added{graph_proto_->add_initializer()}; *(tensor_added) = tensor; - name_to_initial_tensor_[tensor.name()] = tensor_added; + name_to_initial_tensor_.emplace(tensor.name(), tensor_added); SetGraphResolveNeeded(); if (!is_loaded_from_model_file_ && GetNodeArg(tensor.name()) == nullptr) { // make sure there is a NodeArg for the initializer as SetGraphInputsOutputs may add it to the graph inputs. diff --git a/onnxruntime/core/graph/graph_flatbuffers_utils.cc b/onnxruntime/core/graph/graph_flatbuffers_utils.cc index 6d7ed94b2956d..2314a5228f83c 100644 --- a/onnxruntime/core/graph/graph_flatbuffers_utils.cc +++ b/onnxruntime/core/graph/graph_flatbuffers_utils.cc @@ -3,7 +3,7 @@ #include "graph_flatbuffers_utils.h" -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/common/narrow.h" #include "core/flatbuffers/flatbuffers_utils.h" diff --git a/onnxruntime/core/graph/graph_flatbuffers_utils.h b/onnxruntime/core/graph/graph_flatbuffers_utils.h index b625cbf3ca492..9c55dad3c41ef 100644 --- a/onnxruntime/core/graph/graph_flatbuffers_utils.h +++ b/onnxruntime/core/graph/graph_flatbuffers_utils.h @@ -5,7 +5,7 @@ #include -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/common/status.h" #include "core/graph/ort_format_load_options.h" diff --git a/onnxruntime/core/graph/graph_viewer.cc b/onnxruntime/core/graph/graph_viewer.cc index acf7b3a16541f..119d420066a84 100644 --- a/onnxruntime/core/graph/graph_viewer.cc +++ b/onnxruntime/core/graph/graph_viewer.cc @@ -14,8 +14,8 @@ bool NodeCompare::operator()(const Node* n1, const Node* n2) const { struct PriorityNodeCompare { inline bool IsHighPri(const Node* n) const { // local statics so we can compare std::strings in the checks - static const std::string shape_op("Shape"); - static const std::string size_op("Size"); + static constexpr std::string_view shape_op("Shape"); + static constexpr std::string_view size_op("Size"); const auto& op_type = n->OpType(); return op_type == shape_op || op_type == size_op; @@ -26,15 +26,20 @@ struct PriorityNodeCompare { // If return true, n2 will be output first bool operator()(const Node* n1, const Node* n2) const { // nodes in global high priority list will be output first - if (IsHighPri(n1) != IsHighPri(n2)) { - return IsHighPri(n2); + const bool isN1HighPri = IsHighPri(n1); + const bool isN2HighPri = IsHighPri(n2); + if (isN1HighPri != isN2HighPri) { + return isN2HighPri; } // nodes with lower priority value will be output first - if (n1->Priority() != n2->Priority()) { - return n1->Priority() > n2->Priority(); + const auto n1_priority = n1->Priority(); + const auto n2_priority = n2->Priority(); + if (n1_priority != n2_priority) { + return n1_priority > n2_priority; } +#ifdef ENABLE_TRAINING // nodes of forward pass will be output first auto n1_attrs = n1->GetAttributes(); auto n2_attrs = n2->GetAttributes(); @@ -45,6 +50,7 @@ struct PriorityNodeCompare { if (n1_is_forward != n2_is_forward) { return n2_is_forward > n1_is_forward; } +#endif // otherwise, nodes with lower index will be output first return n1->Index() > n2->Index(); diff --git a/onnxruntime/core/graph/model.h b/onnxruntime/core/graph/model.h index 4ce6660b794bc..a774d5fe34461 100644 --- a/onnxruntime/core/graph/model.h +++ b/onnxruntime/core/graph/model.h @@ -8,7 +8,7 @@ #include #include -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/common/path.h" #include "core/graph/graph_viewer.h" diff --git a/onnxruntime/core/graph/op_identifier_utils.h b/onnxruntime/core/graph/op_identifier_utils.h index 8a9351a2d0ddc..f7b1198c31972 100644 --- a/onnxruntime/core/graph/op_identifier_utils.h +++ b/onnxruntime/core/graph/op_identifier_utils.h @@ -3,7 +3,7 @@ #pragma once -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/graph/op_identifier.h" diff --git a/onnxruntime/core/graph/runtime_optimization_record_container.h b/onnxruntime/core/graph/runtime_optimization_record_container.h index a28b19e786de0..75750c2b96987 100644 --- a/onnxruntime/core/graph/runtime_optimization_record_container.h +++ b/onnxruntime/core/graph/runtime_optimization_record_container.h @@ -9,7 +9,7 @@ #include #include -#include "flatbuffers/flatbuffers.h" +#include "core/common/flatbuffers.h" #include "core/common/common.h" #include "core/graph/runtime_optimization_record.h" diff --git a/onnxruntime/core/mickey/README.md b/onnxruntime/core/mickey/README.md index 7e8d30cd1805b..735ec4b80daf3 100644 --- a/onnxruntime/core/mickey/README.md +++ b/onnxruntime/core/mickey/README.md @@ -4,3 +4,7 @@ Playful name for a template library of high performance cuda code that are often shared by various AI operators. The intention is to make this header files only, with no binary impact unless it is instantiated where it is needed. + +Currently cuda code are scattered in multiple locations in the repo. +Hopefully this can be the starting point of consolidating all cuda +code. diff --git a/onnxruntime/core/mickey/blk_q4/f16_gemm_sm80.h b/onnxruntime/core/mickey/blk_q4/f16_gemm_sm80.h new file mode 100644 index 0000000000000..52bff7e40dbe3 --- /dev/null +++ b/onnxruntime/core/mickey/blk_q4/f16_gemm_sm80.h @@ -0,0 +1,208 @@ +/** + * Copyright (c) Microsoft Corporation. All rights reserved. + * Licensed under the MIT License. + * + * Module Name: + * blk_q4/f16_gemm_sm80.h + * + * Abstract: + * Entry point for Q4F16 GEMM kernel for SM80 devices. + */ + +#pragma once + +#include "cutlass/cutlass.h" +#include "cutlass_ext/q4gemm/device/quantb_gemm.h" + +namespace onnxruntime { +namespace cuda { + +// +// This is the implementation of the quantized GEMM kernel for 16b float x blocked quantized 4b data type +// +template < + typename ElementDequant_, // <- data type of dequantized elements for gemm, fp16 or bf16 + typename QuantBlocking_, // <- weights block per scale, cutlass::MatrixShape + bool SmallM, // <- true if M <= 16 + bool kHasQuantOffset> +struct BlkQ4F16GemmImpl { + // + // Type definitions + // + + using ElementDequant = ElementDequant_; + using QuantBlocking = QuantBlocking_; + + static_assert(sizeof(ElementDequant) == 2, "q4f16gemm kerenl only support 16b operands!"); + + // Data types that are fixed for this kernel + using ElementAccumulator = float; + using ElementComputeEpilogue = ElementAccumulator; + using ElementInputA = ElementDequant; + using ElementOutput = ElementDequant; + + using ElementW = uint8_t; // <- Weight is int4, uint8 for two of them + + // We pack 4 weights into one 16b element, so as to leverage cutlass tile iterators + // for async shared memory loading and minimize bank conflict + using ElementWPack = ElementDequant; + + using ElementQScale = ElementDequant; // <- data type of quantization scale + using ElementQOffset = uint8_t; + + using LayoutInputA = cutlass::layout::RowMajor; + using LayoutInputWPack = cutlass::layout::ColumnMajor; + using LayoutOutput = cutlass::layout::RowMajor; + + // Layout of quantization scale and offset, oriented to be loaded using less instructions + // in a warp tile + using LayoutInputQScale = + typename std::conditional::type; // <- layout of quantization scale + + using ShapeMMAThreadBlock = + typename std::conditional, + cutlass::gemm::GemmShape<128, 256, 64>>::type; + + static constexpr int MinN = QuantBlocking::kColumn > 32 ? QuantBlocking::kColumn : 32; + using ShapeMMAWarp = + typename std::conditional, + cutlass::gemm::GemmShape<64, 64, 64>>::type; + + using ShapeMMAOp = cutlass::gemm::GemmShape<16, 8, 16>; + + // This code section describes how threadblocks are scheduled on GPU + using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ?? + + // This code section describes the epilogue part of the kernel + using EpilogueOp = cutlass::epilogue::thread::LinearCombination< + ElementOutput, // <- data type of output matrix + 128 / cutlass::sizeof_bits::value, // <- the number of elements per vectorized + // memory access. For a byte, it's 16 + // elements. This becomes the vector width of + // math instructions in the epilogue too + ElementAccumulator, // <- data type of accumulator + ElementComputeEpilogue>; // <- data type for alpha/beta in linear combination function + + // Number of pipelines you want to use + static constexpr int NumStages = 3; + + using Gemm = cutlass::gemm::device::QuantBGemm< + ElementInputA, + LayoutInputA, + ElementWPack, + LayoutInputWPack, + ElementQScale, + typename std::conditional::type, + LayoutInputQScale, + QuantBlocking, + ElementOutput, + LayoutOutput, + ElementAccumulator, + cutlass::arch::OpClassTensorOp, + cutlass::arch::Sm80, + ShapeMMAThreadBlock, + ShapeMMAWarp, + ShapeMMAOp, + EpilogueOp, + SwizzleThreadBlock, + NumStages>; + + using Arguments = typename Gemm::Arguments; + + // Invoke gemm kernel (the version with quantization offset) + static cutlass::Status run( + cudaStream_t stream, + const cutlass::gemm::GemmCoord& problem_size_, + cutlass::TensorRef ref_A_, + cutlass::TensorRef ref_B_, + cutlass::TensorRef ref_Qscale_, + cutlass::TensorRef ref_Qoffset_, + cutlass::TensorRef ref_C_, + cutlass::TensorRef ref_D_, + typename EpilogueOp::Params epilogue_ = typename EpilogueOp::Params()) { + if constexpr (!kHasQuantOffset) { + return cutlass::Status::kErrorNotSupported; + } else { + if constexpr (ShapeMMAThreadBlock::kM == 16) { + if (problem_size_.m() > 16) { + // For M > 16, the caller should have picked the + // kernel with bigger M + return cutlass::Status::kErrorNotSupported; + } + } + + // Construct Gemm arguments + Arguments args{ + problem_size_, + ref_A_, + ref_B_, + ref_Qscale_, + ref_Qoffset_, + ref_C_, + ref_D_, + epilogue_}; + + Gemm gemm_op; + + // Check if this GEMM can be run or not + cutlass::Status status = gemm_op.can_implement(args); + if (status != cutlass::Status::kSuccess) { + return status; + } + + // Launch the CUTLASS GEMM kernel. + return gemm_op(args, nullptr, stream); + } + } + + // Invoke gemm kernel (the version without quantization offset) + static cutlass::Status run( + cudaStream_t stream, + const cutlass::gemm::GemmCoord& problem_size_, + cutlass::TensorRef ref_A_, + cutlass::TensorRef ref_B_, + cutlass::TensorRef ref_Qscale_, + cutlass::TensorRef ref_C_, + cutlass::TensorRef ref_D_, + typename EpilogueOp::Params epilogue_ = typename EpilogueOp::Params()) { + if constexpr (kHasQuantOffset) { + return cutlass::Status::kErrorNotSupported; + } else { + if constexpr (ShapeMMAThreadBlock::kM == 16) { + if (problem_size_.m() > 16) { + // For M > 16, the caller should have picked the + // kernel with bigger M + return cutlass::Status::kErrorNotSupported; + } + } + + // Construct Gemm arguments + Arguments args{ + problem_size_, + ref_A_, + ref_B_, + ref_Qscale_, + ref_C_, + ref_D_, + epilogue_}; + + Gemm gemm_op; + + // Check if this GEMM can be run or not + cutlass::Status status = gemm_op.can_implement(args); + if (status != cutlass::Status::kSuccess) { + return status; + } + + // Launch the CUTLASS GEMM kernel. + return gemm_op(args, nullptr, stream); + } + } +}; + +} // namespace cuda +} // namespace onnxruntime diff --git a/onnxruntime/core/mickey/blk_q4/prepack_sm80.h b/onnxruntime/core/mickey/blk_q4/f16_prepack_sm80.h similarity index 94% rename from onnxruntime/core/mickey/blk_q4/prepack_sm80.h rename to onnxruntime/core/mickey/blk_q4/f16_prepack_sm80.h index e291ab39e8aa3..c81b4967d2719 100644 --- a/onnxruntime/core/mickey/blk_q4/prepack_sm80.h +++ b/onnxruntime/core/mickey/blk_q4/f16_prepack_sm80.h @@ -3,7 +3,7 @@ * Licensed under the MIT License. * * Module Name: - * prepack_sm80.h + * blk_q4/f16_prepack_sm80.h * * Abstract: * Prepack weights and quantization parameters (scales and offsets) for @@ -110,8 +110,8 @@ struct BlockwiseQuantization { static void prepack_weights( int rows, int columns, - const gsl::span& weights, // <- int4 weights, column major - const gsl::span& weights_prepacked // <- int4 prepacked weights tensor, same size buffer + gsl::span weights, // <- int4 weights, column major + gsl::span weights_prepacked // <- int4 prepacked weights tensor, same size buffer ) { ORT_ENFORCE((rows % 16) == 0 && (columns % 16) == 0 && (rows % QuantBlocking::kRow) == 0 && @@ -171,10 +171,10 @@ struct BlockwiseQuantization { static void prepack_quant_scales( size_t rows, size_t columns, - const gsl::span& scales, // <- quant scales, column major layout - const gsl::span& scales_prepacked // <- quant scales prepacked, same size buffer + gsl::span scales, // <- quant scales, column major layout + gsl::span scales_prepacked // <- quant scales prepacked, same size buffer ) { - auto meta_shape = get_quant_meta_shape(rows, columns); + auto meta_shape = get_quant_meta_shape(static_cast(rows), static_cast(columns)); ORT_ENFORCE(scales.size() == size_t(meta_shape.product()), "Quantization scale tensor shape mismatch!"); ORT_ENFORCE(scales_prepacked.size() == size_t(meta_shape.product()), @@ -241,10 +241,10 @@ struct BlockwiseQuantization { static void prepack_quant_offsets( size_t rows, size_t columns, - const gsl::span& offsets, // <- quant offsets, int4, column major layout - const gsl::span& offsets_prepacked // <- quant offsets prepacked, double size buffer + gsl::span offsets, // <- quant offsets, int4, column major layout + gsl::span offsets_prepacked // <- quant offsets prepacked, double size buffer ) { - auto meta_shape = get_quant_meta_shape(rows, columns); + auto meta_shape = get_quant_meta_shape(static_cast(rows), static_cast(columns)); ORT_ENFORCE((rows % 16) == 0 && (columns % 16) == 0, "Does not support odd number of rows or columns!"); diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/device/quantb_gemm.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/device/quantb_gemm.h new file mode 100644 index 0000000000000..38795291b0328 --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/device/quantb_gemm.h @@ -0,0 +1,481 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/** + * Modifications Copyright (c) Microsoft. + * Licensed under the MIT license. + * + * @file quantb_gemm.h + * @brief Modified from cutlass/gemm/device/gemm.h, boilerplate code passing input pointers to the kernel. +*/ + +#pragma once + +#include "cutlass/cutlass.h" +#include "cutlass/numeric_types.h" +#include "cutlass/arch/arch.h" +#include "cutlass/device_kernel.h" + +#include "cutlass/gemm/threadblock/threadblock_swizzle.h" +#include "cutlass/gemm/kernel/gemm.h" + +#include "cutlass_ext/q4gemm/kernel/default_quantb_gemm.h" +#include "cutlass/gemm/device/default_gemm_configuration.h" + +#include "cutlass/layout/permute.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace device { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/*! A specialized GEMM operator for quantized B GEMM. + + It is modified from cutlass::gemm::device::Gemm. Both this class and the original Gemm class + are pretty much boilerplate code that construct the Gemm kernel class, and pass parameters + and controls to it. The only difference is that this class has a few more template parameters + to support quantization. + + This implementation pretty much follows the design of cutlass. But this class seems to be + just a wrapper of the Gemm kernel class. Consider combining them in future iterations. + +*/ +template < + /// Element type for A matrix operand + typename ElementA_, + /// Layout type for A matrix operand + typename LayoutA_, + /// Element type for B matrix operand + typename ElementB_, + /// Layout type for B matrix operand + typename LayoutB_, + /// Element type for quant scales + typename ElementQScale_, + /// Element type for quant offsets + typename ElementQOffset_, + /// Layout type for quant scales and offsets + typename LayoutQMeta_, + /// Blocking dimensions for quantization + typename QuantBlocking_, + /// Element type for C and D matrix operands + typename ElementC_, + /// Layout type for C and D matrix operands + typename LayoutC_, + /// Element type for internal accumulation + typename ElementAccumulator_ = ElementC_, + /// Operator class tag + typename OperatorClass_ = arch::OpClassSimt, + /// Tag indicating architecture to tune for + typename ArchTag_ = arch::Sm80, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape_ = typename DefaultGemmConfiguration< + OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, + ElementAccumulator_>::ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape_ = typename DefaultGemmConfiguration< + OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, + ElementAccumulator_>::WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape_ = typename DefaultGemmConfiguration< + OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, + ElementAccumulator_>::InstructionShape, + /// Epilogue output operator + typename EpilogueOutputOp_ = typename DefaultGemmConfiguration< + OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, + ElementAccumulator_>::EpilogueOutputOp, + /// Threadblock-level swizzling operator + typename ThreadblockSwizzle_ = + typename threadblock::GemmIdentityThreadblockSwizzle<>, + /// Number of stages used in the pipelined mainloop + int Stages = + DefaultGemmConfiguration::kStages, + /// Access granularity of A matrix in units of elements + int AlignmentA = + DefaultGemmConfiguration::kAlignmentA, + /// Access granularity of B matrix in units of elements + int AlignmentB = + DefaultGemmConfiguration::kAlignmentB, + /// If true, kernel supports split-K with serial reduction + bool SplitKSerial = false, + /// Operation performed by GEMM + typename Operator_ = typename DefaultGemmConfiguration< + OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, + ElementAccumulator_>::Operator, + /// Gather operand A by using an index array + bool GatherA = false, + /// Gather operand B by using an index array + bool GatherB = false, + /// Scatter result D by using an index array + bool ScatterD = false, + /// Permute result D + typename PermuteDLayout = layout::NoPermute> +class QuantBGemm { + public: + + using ElementA = ElementA_; + using LayoutA = LayoutA_; + using TensorRefA = TensorRef; + using ElementB = ElementB_; + using LayoutB = LayoutB_; + using TensorRefB = TensorRef; + using ElementC = ElementC_; + using LayoutC = LayoutC_; + using TensorRefC = TensorRef; + using TensorRefD = TensorRef; + using ElementAccumulator = ElementAccumulator_; + using OperatorClass = OperatorClass_; + using ArchTag = ArchTag_; + using ThreadblockShape = ThreadblockShape_; + using WarpShape = WarpShape_; + using InstructionShape = InstructionShape_; + using EpilogueOutputOp = EpilogueOutputOp_; + using ThreadblockSwizzle = ThreadblockSwizzle_; + using Operator = Operator_; + static int const kStages = Stages; + static int const kAlignmentA = AlignmentA; + static int const kAlignmentB = AlignmentB; + static int const kAlignmentC = EpilogueOutputOp::kCount; + static bool const kSplitKSerial = SplitKSerial; + static ComplexTransform const kTransformA = ComplexTransform::kNone; + static ComplexTransform const kTransformB = ComplexTransform::kNone; + + // Quantization Parameters + static_assert(std::is_same::value, + "LayoutB, i.e. packed weights must appear ColumnMajor."); + static_assert(InstructionShape::kK == 16, + "InstructionShape::kK must be a multiple of 16 (2 tiles), required by 4b weight packing layout."); + using ElementQScale = ElementQScale_; + using ElementQOffset = ElementQOffset_; + using LayoutQMeta = LayoutQMeta_; + using QuantBlocking = QuantBlocking_; + static constexpr bool kHasQOffset = !(std::is_same::value); + + // TODO(chenfucn): consider moving to uint4_t or smaller for QOffset + static_assert(!kHasQOffset || std::is_same::value, "QOffset must be uint8_t"); + + /// Define the kernel + using GemmKernel = typename kernel::DefaultQuantBGemm< + ElementA, + LayoutA, + kAlignmentA, + ElementB, + LayoutB, + kAlignmentB, + ElementQScale, + ElementQOffset, + LayoutQMeta, + QuantBlocking, + ElementC, + LayoutC, + ElementAccumulator, + OperatorClass, + ArchTag, + ThreadblockShape, + WarpShape, + InstructionShape, + EpilogueOutputOp, + ThreadblockSwizzle, + kStages, + kSplitKSerial, + Operator, + GatherA, + GatherB, + ScatterD, + PermuteDLayout + >::GemmKernel; + + /// Argument structure + struct Arguments { + // + // Data members + // + + GemmCoord problem_size; + TensorRef ref_A; + TensorRef ref_B; + TensorRef ref_C; + TensorRef ref_D; + TensorRef ref_Qscale; + TensorRef ref_Qoffset; + + typename EpilogueOutputOp::Params epilogue; + + // split-K parallelism (etc.) are not yet supported, keeping this for future extension + int split_k_slices{1}; + // For gather+scatter operations + int const *gather_A_indices{nullptr}; + int const *gather_B_indices{nullptr}; + int const *scatter_D_indices{nullptr}; + + // + // Methods + // + + /// Default ctor + CUTLASS_HOST_DEVICE + Arguments(): problem_size(0, 0, 0) {} + + /// Constructs an Arguments structure + CUTLASS_HOST_DEVICE + Arguments( + GemmCoord problem_size_, + TensorRef ref_A_, + TensorRef ref_B_, + TensorRef ref_Qscale_, + TensorRef ref_C_, + TensorRef ref_D_, + typename EpilogueOutputOp::Params epilogue_ = + typename EpilogueOutputOp::Params()): + problem_size(problem_size_), + ref_A(ref_A_), + ref_B(ref_B_), + ref_Qscale(ref_Qscale_), + ref_C(ref_C_), + ref_D(ref_D_), + epilogue(epilogue_) { + assert(!kHasQOffset); + } + + CUTLASS_HOST_DEVICE + Arguments( + GemmCoord problem_size_, + TensorRef ref_A_, + TensorRef ref_B_, + TensorRef ref_Qscale_, + TensorRef ref_Qoffset_, + TensorRef ref_C_, + TensorRef ref_D_, + typename EpilogueOutputOp::Params epilogue_ = + typename EpilogueOutputOp::Params()): + problem_size(problem_size_), + ref_A(ref_A_), + ref_B(ref_B_), + ref_Qscale(ref_Qscale_), + ref_Qoffset(ref_Qoffset_), + ref_C(ref_C_), + ref_D(ref_D_), + epilogue(epilogue_) { + assert(kHasQOffset); + } + }; + + private: + /// Kernel parameters object + typename GemmKernel::Params params_; + + public: + /// Constructs the GEMM. + QuantBGemm() { } + + /// Determines whether the GEMM can execute the given problem. + static Status can_implement(Arguments const &args) { + + if (!kSplitKSerial && args.split_k_slices > 1) { + return Status::kErrorInvalidProblem; + } + + Status status = GemmKernel::can_implement( + args.problem_size, + args.ref_A.non_const_ref(), + args.ref_B.non_const_ref(), + args.ref_Qscale.non_const_ref(), + args.ref_Qoffset.non_const_ref(), + args.ref_C.non_const_ref(), + args.ref_D + ); + + if (status != Status::kSuccess) { + return status; + } + + return Status::kSuccess; + } + + /// Gets the workspace size + static size_t get_workspace_size(Arguments const &args) { + + size_t bytes = 0; + + // Determine grid shape + ThreadblockSwizzle threadblock_swizzle; + + cutlass::gemm::GemmCoord tiled_shape = threadblock_swizzle.get_tiled_shape( + args.problem_size, + {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK}, + args.split_k_slices); + + if (kSplitKSerial && args.split_k_slices > 1) { + + bytes += sizeof(int) * size_t(tiled_shape.m()) * size_t(tiled_shape.n()); + } + + return bytes; + } + + /// Initializes GEMM state from arguments. + Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) { + + // Determine grid shape + ThreadblockSwizzle threadblock_swizzle; + + cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape( + args.problem_size, + {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK}, + args.split_k_slices); + + if (kSplitKSerial) { + if (args.split_k_slices > 1) { + if (!workspace) { + return Status::kErrorWorkspaceNull; + } + + size_t bytes = get_workspace_size(args); + + cudaError_t result = cudaMemsetAsync(workspace, 0, bytes, stream); + + if (result != cudaSuccess) { + return Status::kErrorInternal; + } + } + } else { + + if (args.split_k_slices > 1) { + return Status::kErrorInvalidProblem; + } + } + + // Initialize the Params structure + params_ = typename GemmKernel::Params{ + args.problem_size, + grid_shape, + args.ref_A.non_const_ref(), + args.ref_B.non_const_ref(), + args.ref_Qscale.non_const_ref(), + args.ref_Qoffset.non_const_ref(), + args.ref_C.non_const_ref(), + args.ref_D, + args.epilogue, + static_cast(workspace), + args.gather_A_indices, + args.gather_B_indices, + args.scatter_D_indices + }; + + return Status::kSuccess; + } + + /// Lightweight update given a subset of arguments + Status update(Arguments const &args, void *workspace = nullptr) { + + if (kSplitKSerial && args.split_k_slices > 1) { + if (!workspace) { + return Status::kErrorWorkspaceNull; + } + } + + params_.ref_A.reset(args.ref_A.non_const_ref().data()); + params_.ref_B.reset(args.ref_B.non_const_ref().data()); + params_.ref_Qscale.reset(args.ref_Qscale.non_const_ref().data()); + params_.ref_Qoffset.reset(args.ref_Qoffset.non_const_ref().data()); + params_.ref_C.reset(args.ref_C.non_const_ref().data()); + params_.ref_D.reset(args.ref_D.data()); + params_.output_op = args.epilogue; + params_.semaphore = static_cast(workspace); + + return Status::kSuccess; + } + + /// Runs the kernel using initialized state. + Status run(cudaStream_t stream = nullptr) { + + ThreadblockSwizzle threadblock_swizzle; + + dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape); + dim3 block(GemmKernel::kThreadCount, 1, 1); + + cudaError_t result; + + int smem_size = int(sizeof(typename GemmKernel::SharedStorage)); + + if (smem_size >= (48 << 10)) { + result = cudaFuncSetAttribute(Kernel, + cudaFuncAttributeMaxDynamicSharedMemorySize, + smem_size); + + if (result != cudaSuccess) { + std::cerr << "Failed to obtain maximum shared memory size " << smem_size << " for kernel: " + << cudaGetErrorString(result) << "\n"; + return Status::kErrorInternal; + } + } + + cutlass::Kernel<<>>(params_); + + result = cudaGetLastError(); + + return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal; + } + + /// Runs the kernel using initialized state. + Status operator()(cudaStream_t stream = nullptr) { + return run(stream); + } + + /// Runs the kernel using initialized state. + Status operator()( + Arguments const &args, + void *workspace = nullptr, + cudaStream_t stream = nullptr) { + + Status status = initialize(args, workspace, stream); + + if (status == Status::kSuccess) { + status = run(stream); + } + + return status; + } +}; + + +//////////////////////////////////////////////////////////////////////////////// + +} // namespace device +} // namespace gemm +} // namespace cutlass + +//////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/kernel/default_quantb_gemm.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/kernel/default_quantb_gemm.h new file mode 100644 index 0000000000000..2f4460bb59e9f --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/kernel/default_quantb_gemm.h @@ -0,0 +1,255 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/** + * Modifications Copyright (c) Microsoft. + * Licensed under the MIT license. + * + * @file default_quantb_gemm.h + * @brief Modified from cutlass/gemm/kernel/default_gemm.h. templates for combining + * threadblock-scoped matrix multiply-add with the appropriate + * threadblock-scoped epilogue. + */ + +#pragma once + +#include "cutlass/cutlass.h" + +#include "cutlass/layout/matrix.h" +#include "cutlass/numeric_types.h" +#include "cutlass/arch/wmma.h" + +#include "cutlass/epilogue/threadblock/epilogue.h" +#include "cutlass/epilogue/thread/linear_combination.h" + +#include "cutlass/gemm/gemm.h" +#include "cutlass_ext/q4gemm/kernel/quantb_gemm.h" +#include "cutlass/gemm/kernel/gemm_pipelined.h" +#include "cutlass/gemm/threadblock/default_mma_core_sm75.h" +#include "cutlass/gemm/threadblock/default_mma_core_sm70.h" +#include "cutlass/gemm/threadblock/default_mma_core_sm80.h" +#include "cutlass_ext/q4gemm/threadblock/default_quantb_mma.h" +#include "cutlass/gemm/threadblock/default_mma_core_simt.h" +#include "cutlass/gemm/threadblock/threadblock_swizzle.h" + +#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h" +#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h" +#include "cutlass/epilogue/threadblock/default_epilogue_simt.h" +#include "cutlass/transform/threadblock/predicated_tile_iterator.h" + +#include "cutlass/layout/permute.h" + +#if defined(CUTLASS_ARCH_WMMA_ENABLED) +#include "cutlass/epilogue/threadblock/default_epilogue_wmma_tensor_op.h" +#endif //CUTLASS_ARCH_WMMA_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +namespace cutlass { +namespace gemm { +namespace kernel { + +//////////////////////////////////////////////////////////////////////////////// + +template < + /// Element type for A matrix operand + typename ElementA_, + /// Layout type for A matrix operand + typename LayoutA_, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Element type for B matrix operand + typename ElementB_, + /// Layout type for B matrix operand + typename LayoutB_, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for quant scales + typename ElementQScale_, + /// Element type for quant offsets + typename ElementQOffset_, + /// Layout type for quant scales and offsets + typename LayoutQMeta_, + /// Blocking dimensions for quantization + typename QuantBlocking_, + /// Access granularity of quant scales in units of elements + typename ElementC_, + /// Layout type for C and D matrix operands + typename LayoutC_, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Operator class tag + typename OperatorClass, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Warp-level tile size (concept: GemmShape) + typename InstructionShape, + /// Epilogue output operator + typename EpilogueOutputOp, + /// Threadblock-level swizzling operator + typename ThreadblockSwizzle, + /// Number of stages used in the pipelined mainloop + int Stages, + /// If true, kernel is configured to support serial reduction in the + /// epilogue + bool SplitKSerial, + /// Operation performed by GEMM + typename Operator, + /// Gather operand A by using an index array + bool GatherA = false, + /// Gather operand B by using an index array + bool GatherB = false, + /// Scatter result D by using an index array + bool ScatterD = false, + /// Permute result D + typename PermuteDLayout = layout::NoPermute, + /// Permute operand A + typename PermuteALayout = layout::NoPermute, + /// Permute operand B + typename PermuteBLayout = layout::NoPermute, + /// + typename Enable = void +> +struct DefaultQuantBGemm; + +//////////////////////////////////////////////////////////////////////////////// + + +//////////////////////////////////////////////////////////////////////////////// + +/// Partial specialization for Ampere Architecture +template < + /// Element type for A matrix operand + typename ElementA, + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Element type for B matrix operand + typename ElementB, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of A matrix in units of elements + int kAlignmentB, + /// Element type for quant scales + typename ElementQScale, + /// Element type for quant offsets + typename ElementQOffset, + /// Layout type for quant scales + typename LayoutQMeta, + /// Blocking dimensions for quantization + typename QuantBlocking, + /// Access granularity of quant scales in units of elements + typename ElementC, + /// Layout type for C and D matrix operand + typename LayoutC, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Warp-level tile size (concept: GemmShape) + typename InstructionShape, + /// Epilogue output operator + typename EpilogueOutputOp, + /// Threadblock-level swizzling operator + typename ThreadblockSwizzle, + /// Number of stages used in the pipelined mainloop + int Stages, + /// If true, kernel is configured to support serial reduction in the + /// epilogue + bool SplitKSerial, + /// Operation performed by GEMM + typename Operator, + /// Gather operand A by using an index array + bool GatherA, + /// Gather operand B by using an index array + bool GatherB, + /// Scatter result D by using an index array + bool ScatterD, + /// Permute result D + typename PermuteDLayout, + /// Permute operand A + typename PermuteALayout, + /// Permute operand B + typename PermuteBLayout +> +struct DefaultQuantBGemm { + + static_assert((platform::is_same::value + || platform::is_same>::value), + "Epilogue in the kernel level must be row major"); + + /// Define the threadblock-scoped matrix multiply-accumulate + using Mma = typename cutlass::gemm::threadblock::DefaultQuantBMma< + ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, + ElementQScale, ElementQOffset, LayoutQMeta, QuantBlocking, + ElementAccumulator, LayoutC, arch::OpClassTensorOp, arch::Sm80, + ThreadblockShape, WarpShape, InstructionShape, Stages, + Operator, false, GatherA, GatherB, + PermuteALayout, PermuteBLayout>::ThreadblockMma; + + static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK; + + /// Define the epilogue + using RegularEpilogue = + typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< + ThreadblockShape, typename Mma::Operator, kPartitionsK, EpilogueOutputOp, + EpilogueOutputOp::kCount, ScatterD, PermuteDLayout>::Epilogue; + + using Affine2Epilogue = + typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOpAffineRankN< + 2, ThreadblockShape, typename Mma::Operator, kPartitionsK, EpilogueOutputOp, + EpilogueOutputOp::kCount>::Epilogue; + + using Epilogue = typename platform::conditional::value, + RegularEpilogue, + Affine2Epilogue>::type; + + /// Define the kernel-level GEMM operator. + using GemmKernel = kernel::QuantBGemm; +}; + +//////////////////////////////////////////////////////////////////////////////// + +} // namespace kernel +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/kernel/quantb_gemm.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/kernel/quantb_gemm.h new file mode 100644 index 0000000000000..6e5ad8f406147 --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/kernel/quantb_gemm.h @@ -0,0 +1,462 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/** + * Modifications Copyright (c) Microsoft. + * Licensed under the MIT license. + * + * @file quantb_gemm.h + * @brief Modified from cutlass/gemm/kernel/gemm.h. + * Template for a pipelined GEMM kernel. Does not compute batching or support split-K. + */ + +#pragma once + +#include "cutlass/cutlass.h" + +#include "cutlass/gemm/gemm.h" +#include "cutlass/matrix_coord.h" +#include "cutlass/semaphore.h" +#include "cutlass/arch/arch.h" + +#include "cutlass/util/debug.h" +#include "cutlass/util/device_dump.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace kernel { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +template < + typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate + typename Epilogue_, ///! Epilogue + typename ThreadblockSwizzle_, ///! Threadblock swizzling function + bool SplitKSerial ///! If true, code supporting split-K via serial reduction is enabled. +> +struct QuantBGemm { + + using Mma = Mma_; + using Epilogue = Epilogue_; + using OutputOp = typename Epilogue::OutputOp; + using ThreadblockSwizzle = ThreadblockSwizzle_; + static bool const kSplitKSerial = SplitKSerial; + + static constexpr bool kHasQOffset = Mma::kHasQOffset; + + /// Warp count (concept: GemmShape) + using WarpCount = typename Mma::WarpCount; + static int const kThreadCount = 32 * WarpCount::kCount; + + /// Parameters structure + struct Params { + cutlass::gemm::GemmCoord problem_size; + cutlass::gemm::GemmCoord grid_tiled_shape; + int swizzle_log_tile; + typename Mma::IteratorA::Params params_A; + typename Mma::IteratorA::TensorRef ref_A; + typename Mma::IteratorB::Params params_B; + typename Mma::IteratorB::TensorRef ref_B; + typename Mma::IteratorQScale::Params params_QScale; + typename Mma::IteratorQScale::TensorRef ref_QScale; + typename Mma::IteratorQOffset::Params params_QOffset; + typename Mma::IteratorQOffset::TensorRef ref_QOffset; + typename Epilogue::OutputTileIterator::Params params_C; + typename Epilogue::OutputTileIterator::TensorRef ref_C; + typename Epilogue::OutputTileIterator::Params params_D; + typename Epilogue::OutputTileIterator::TensorRef ref_D; + typename OutputOp::Params output_op; + int *semaphore; + int gemm_k_size; // how many k vectors are processed by this threadblock + // For gather+scatter operations + int const *gather_A_indices; + int const *gather_B_indices; + int const *scatter_D_indices; + + // + // Methods + // + + CUTLASS_HOST_DEVICE + Params(): swizzle_log_tile(0), semaphore(0), gemm_k_size(0) { } + + CUTLASS_HOST_DEVICE + Params( + cutlass::gemm::GemmCoord const & problem_size, + cutlass::gemm::GemmCoord const & grid_tiled_shape, + typename Mma::IteratorA::TensorRef ref_A, + typename Mma::IteratorB::TensorRef ref_B, + typename Mma::IteratorQScale::TensorRef ref_QScale, + typename Mma::IteratorQOffset::TensorRef ref_QOffset, + typename Epilogue::OutputTileIterator::TensorRef ref_C, + typename Epilogue::OutputTileIterator::TensorRef ref_D, + typename OutputOp::Params output_op = typename OutputOp::Params(), + int *workspace = nullptr, + int const *gather_A_indices = nullptr, + int const *gather_B_indices = nullptr, + int const *scatter_D_indices = nullptr + ): + problem_size(problem_size), + grid_tiled_shape(grid_tiled_shape), + swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)), + params_A(ref_A.layout()), + ref_A(ref_A), + params_B(ref_B.layout()), + ref_B(ref_B), + params_QScale(ref_QScale.layout()), + ref_QScale(ref_QScale), + params_QOffset(ref_QOffset.layout()), + ref_QOffset(ref_QOffset), + params_C(ref_C.layout()), + ref_C(ref_C), + params_D(ref_D.layout()), + ref_D(ref_D), + output_op(output_op), + gather_A_indices(gather_A_indices), + gather_B_indices(gather_B_indices), + scatter_D_indices(scatter_D_indices) { + int total_gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK; + int gemm_k_iterations = (total_gemm_k_iterations + grid_tiled_shape.k() - 1) / grid_tiled_shape.k(); + + gemm_k_size = gemm_k_iterations * Mma::Shape::kK; + + semaphore = workspace; + } + }; + + /// Shared memory storage structure + union SharedStorage { + typename Mma::SharedStorage main_loop; + typename Epilogue::SharedStorage epilogue; + }; + + // + // Methods + // + + CUTLASS_HOST_DEVICE + QuantBGemm() { } + + /// Determines whether kernel satisfies alignment + CUTLASS_HOST_DEVICE + static Status can_implement( + cutlass::gemm::GemmCoord const & problem_size, + typename Mma::IteratorA::TensorRef ref_A, + typename Mma::IteratorB::TensorRef ref_B, + typename Mma::IteratorQScale::TensorRef ref_QScale, + typename Mma::IteratorQOffset::TensorRef ref_QOffset, + typename Epilogue::OutputTileIterator::TensorRef ref_C, + typename Epilogue::OutputTileIterator::TensorRef ref_D) { + + // TODO check problem_size K, N must be multiple of QuantBlocking + + static int const kAlignmentA = (platform::is_same>::value) + ? 32 + : (platform::is_same>::value) + ? 64 + : Mma::IteratorA::AccessType::kElements; + static int const kAlignmentB = (platform::is_same>::value) + ? 32 + : (platform::is_same>::value) + ? 64 + : Mma::IteratorB::AccessType::kElements; + static int const kAlignmentC = (platform::is_same>::value) + ? 32 + : (platform::is_same>::value) + ? 64 + : Epilogue::OutputTileIterator::kElementsPerAccess; + + if (!TensorRef_aligned(ref_A, kAlignmentA)) { + return Status::kErrorMisalignedOperand; + } + + if (!TensorRef_aligned(ref_B, kAlignmentB)) { + return Status::kErrorMisalignedOperand; + } + + if (problem_size.k() % Mma::Shape::kK != 0) { + // Currently we don't support this case due to the way + // predicate iterator works, it loads the partial tile + // in the first iteration and then the full tile in the + // remaining iterations. This will cause the blockwise + // quantization parameters to go out of step with the + // weights. We can fix this by adding a predicate iterator + // that loads the full tile in the first iterations and + // then the partial tile in the last iteration. + return Status::kErrorInvalidProblem; + } + + int qscale_k = problem_size.k() / Mma::QuantBlocking::kRow; + int qscale_n = problem_size.n() / Mma::QuantBlocking::kColumn; + if ((qscale_k == 0) || (qscale_k * Mma::QuantBlocking::kRow != problem_size.k())) { + // partial block not supported + return Status::kErrorInvalidProblem; + } + if ((qscale_n == 0) || (qscale_n * Mma::QuantBlocking::kColumn != problem_size.n())) { + // partial block not supported + return Status::kErrorInvalidProblem; + } + + if (!TensorRef_aligned(ref_QScale, Mma::IteratorQScale::AccessType::kElements)) { + return Status::kErrorMisalignedOperand; + } + + if constexpr(kHasQOffset) { + if (!TensorRef_aligned(ref_QOffset, Mma::IteratorQOffset::AccessType::kElements)) { + return Status::kErrorMisalignedOperand; + } + } + + if (!TensorRef_aligned(ref_C, kAlignmentC)) { + return Status::kErrorMisalignedOperand; + } + + if (!TensorRef_aligned(ref_D, kAlignmentC)) { + return Status::kErrorMisalignedOperand; + } + + return Status::kSuccess; + } + + /// Executes one GEMM + CUTLASS_DEVICE + void operator()(Params const ¶ms, SharedStorage &shared_storage) { + + // Compute threadblock location + ThreadblockSwizzle threadblock_swizzle; + + cutlass::gemm::GemmCoord threadblock_tile_offset = + threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); + + // Early exit if CTA is out of range + if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() || + params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) { + + return; + } + + // Compute initial location in logical coordinates + cutlass::MatrixCoord tb_offset_A{ + threadblock_tile_offset.m() * Mma::Shape::kM, + threadblock_tile_offset.k() * params.gemm_k_size, + }; + + cutlass::MatrixCoord tb_offset_B{ + (threadblock_tile_offset.k() * params.gemm_k_size) / 2, + (threadblock_tile_offset.n() * Mma::Shape::kN) / 2 + }; + + // Problem size is a function of threadblock index in the K dimension + int problem_size_k = min( + params.problem_size.k(), + (threadblock_tile_offset.k() + 1) * params.gemm_k_size); + + // Compute threadblock-scoped matrix multiply-add + int gemm_k_iterations = (problem_size_k - tb_offset_A.column() + Mma::Shape::kK - 1) / Mma::Shape::kK; + + // Compute position within threadblock + int thread_idx = threadIdx.x; + + // Construct iterators to A and B operands + typename Mma::IteratorA iterator_A( + params.params_A, + params.ref_A.data(), + {params.problem_size.m(), problem_size_k}, + thread_idx, + tb_offset_A, + params.gather_A_indices); + + typename Mma::IteratorB iterator_B( + params.params_B, + params.ref_B.data(), + {problem_size_k/2, params.problem_size.n()/2}, + thread_idx, + tb_offset_B, + params.gather_B_indices); + + const int qscale_k = problem_size_k / Mma::QuantBlocking::kRow; + const int qscale_n = params.problem_size.n() / Mma::QuantBlocking::kColumn; + + // should have been verified by can_implement() + assert((qscale_k > 0) && (qscale_k * Mma::QuantBlocking::kRow == problem_size_k)); + assert((qscale_n > 0) && (qscale_n * Mma::QuantBlocking::kColumn == params.problem_size.n())); + + cutlass::MatrixCoord tb_offset_QScale{ + threadblock_tile_offset.k() * (params.gemm_k_size/Mma::QuantBlocking::kRow), + threadblock_tile_offset.n() * (Mma::Shape::kN/Mma::QuantBlocking::kColumn) + }; + + typename Mma::IteratorQScale iterator_QScale( + params.params_QScale, + params.ref_QScale.data(), + {qscale_k, qscale_n}, + thread_idx, + tb_offset_QScale, + nullptr); + + typename Mma::IteratorQOffset iterator_QOffset( + params.params_QOffset, + params.ref_QOffset.data(), + {qscale_k, qscale_n}, + thread_idx, + tb_offset_QScale); + + // Broadcast the warp_id computed by lane 0 to ensure dependent code + // is compiled as warp-uniform. + const int warp_idx = canonical_warp_idx(); + const int lane_idx = threadIdx.x % 32; + + // + // Main loop + // + + // Construct thread-scoped matrix multiply + Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); + + typename Mma::FragmentC accumulators; + + accumulators.clear(); + + if (!kSplitKSerial || gemm_k_iterations > 0) { + // Compute threadblock-scoped matrix multiply-add + mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, iterator_QScale, iterator_QOffset, accumulators); + } + + // + // Epilogue + // + + OutputOp output_op(params.output_op); + + // + // Masked tile iterators constructed from members + // + + threadblock_tile_offset = + threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); + + //assume identity swizzle + MatrixCoord threadblock_offset( + threadblock_tile_offset.m() * Mma::Shape::kM, + threadblock_tile_offset.n() * Mma::Shape::kN + ); + + int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m(); + + // Construct the semaphore. + Semaphore semaphore(params.semaphore + block_idx, thread_idx); + + // If performing a reduction via split-K, fetch the initial synchronization + if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { + + // Fetch the synchronization lock initially but do not block. + semaphore.fetch(); + + // Indicate which position in a serial reduction the output operator is currently updating + output_op.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k()); + } + + // Tile iterator loading from source tensor. + typename Epilogue::OutputTileIterator iterator_C( + params.params_C, + params.ref_C.data(), + params.problem_size.mn(), + thread_idx, + threadblock_offset, + params.scatter_D_indices + ); + + // Tile iterator writing to destination tensor. + typename Epilogue::OutputTileIterator iterator_D( + params.params_D, + params.ref_D.data(), + params.problem_size.mn(), + thread_idx, + threadblock_offset, + params.scatter_D_indices + ); + + Epilogue epilogue( + shared_storage.epilogue, + thread_idx, + warp_idx, + lane_idx); + + // Wait on the semaphore - this latency may have been covered by iterator construction + if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { + + // For subsequent threadblocks, the source matrix is held in the 'D' tensor. + if (threadblock_tile_offset.k()) { + iterator_C = iterator_D; + } + + semaphore.wait(threadblock_tile_offset.k()); + + } + + // Execute the epilogue operator to update the destination tensor. + epilogue(output_op, iterator_D, accumulators, iterator_C); + + // + // Release the semaphore + // + + if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { + + int lock = 0; + if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) { + + // The final threadblock resets the semaphore for subsequent grids. + lock = 0; + } + else { + // Otherwise, the semaphore is incremented + lock = threadblock_tile_offset.k() + 1; + } + + semaphore.release(lock); + } + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace kernel +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/default_quantb_mma.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/default_quantb_mma.h new file mode 100644 index 0000000000000..0af604f090e1f --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/default_quantb_mma.h @@ -0,0 +1,248 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/** + * Modifications Copyright (c) Microsoft. + * Licensed under the MIT license. + * + * @file default_quantb_mma.h + * @brief Modified from cutlass/gemm/threadblock/default_mma.h. + * Defining global memory data layout and iterators, combinging with mma core and + * pipelined GEMM kernel. + */ + +#pragma once + +#include "cutlass/cutlass.h" +#include "cutlass/numeric_types.h" +#include "cutlass/arch/arch.h" +#include "cutlass/arch/wmma.h" + +#include "cutlass/layout/matrix.h" +#include "cutlass/layout/permute.h" +#include "cutlass/transform/threadblock/predicated_tile_iterator.h" +#include "cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h" +#include "cutlass_ext/q4gemm/threadblock/optional_predicated_tile_access_iter.h" + +#include "cutlass/gemm/gemm.h" +#include "cutlass_ext/q4gemm/threadblock/default_quantb_mma_core.h" +#include "cutlass_ext/q4gemm/threadblock/quantb_mma_multistage.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +template < + /// Element type for A matrix operand + typename ElementA_, + /// Layout type for A matrix operand + typename LayoutA_, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Element type for B matrix operand + typename ElementB_, + /// Layout type for B matrix operand + typename LayoutB_, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for quant scales + typename ElementQScale_, + /// Element type for quant offsets + typename ElementQOffset_, + /// Layout for quant scales and offsets + typename LayoutQMeta_, + /// Blocking size for quantization + typename QuantBlocking_, + /// Element type for internal accumulation + typename ElementAccumulator_, + /// Layout type for C and D matrix operands + typename LayoutC_, + /// Operator class tag + typename OperatorClass_, + /// Tag indicating architecture to tune for + typename ArchTag_, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape_, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape_, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape_, + /// Number of stages used in the pipelined mainloop + int Stages, + /// Operation perfomed by GEMM + typename Operator, + /// Store the accumulators in row major or column major. Row major is used + /// when output layout is interleaved. + bool AccumulatorsInRowMajor = false, + /// Gather operand A by using an index array + bool GatherA = false, + /// Gather operand B by using an index array + bool GatherB = false, + /// Permute operand A + typename PermuteALayout = layout::NoPermute, + /// Permute operand B + typename PermuteBLayout = layout::NoPermute + > +struct DefaultQuantBMma; + +//////////////////////////////////////////////////////////////////////////////// + +/// Specialization for row-major output (OperatorClass TensorOp) +template < + /// Element type for A matrix operand + typename ElementA, + /// Layout type for A matrix operand + typename LayoutA, + /// Access granularity of A matrix in units of elements + int kAlignmentA, + /// Element type for B matrix operand + typename ElementB, + /// Layout type for B matrix operand + typename LayoutB, + /// Access granularity of B matrix in units of elements + int kAlignmentB, + /// Element type for quant scales + typename ElementQScale, + /// Element type for quant offsets + typename ElementQOffset, + /// Layout for quant scales and offsets + typename LayoutQMeta, + /// Blocking size for quantization + typename QuantBlocking, + /// Element type for internal accumulation + typename ElementAccumulator, + /// Layout type for C and D matrix operand + typename LayoutC, + /// Tag indicating architecture to tune for + typename ArchTag, + /// Threadblock-level tile size (concept: GemmShape) + typename ThreadblockShape, + /// Warp-level tile size (concept: GemmShape) + typename WarpShape, + /// Instruction-level tile size (concept: GemmShape) + typename InstructionShape, + /// Number of stages used in the multistage mainloop + int Stages, + /// Operation perfomed by GEMM + typename Operator, + /// Gather operand A by using an index array + bool GatherA, + /// Gather operand B by using an index array + bool GatherB, + /// Permute operand A + typename PermuteALayout, + /// Permute operand B + typename PermuteBLayout + > +struct DefaultQuantBMma { + + static_assert(platform::is_same::value + || platform::is_same>::value, + "simt epilogue must be row major"); + + static cutlass::arch::CacheOperation::Kind const CacheOpA = + ((sizeof_bits::value * kAlignmentA) == 128) + ? cutlass::arch::CacheOperation::Global + : cutlass::arch::CacheOperation::Always; + + static cutlass::arch::CacheOperation::Kind const CacheOpB = + ((sizeof_bits::value * kAlignmentB) == 128) + ? cutlass::arch::CacheOperation::Global + : cutlass::arch::CacheOperation::Always; + + // Define the MmaCore components + using MmaCore = typename cutlass::gemm::threadblock::DefaultQuantBMmaCore< + ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, + ElementB, LayoutB, ElementQScale, ElementQOffset, LayoutQMeta, QuantBlocking, + ElementAccumulator, LayoutC, arch::OpClassTensorOp, + Stages, Operator, false, CacheOpA, CacheOpB>; + + // Define iterators over tiles from the A operand + using ThreadMapA = typename MmaCore::IteratorThreadMapA; + using AccessTypeA = cutlass::Array; + using IteratorA = + cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, + ElementA, LayoutA, 1, ThreadMapA, AccessTypeA, GatherA, PermuteALayout>; + + // Define iterators over tiles from the B operand + using ThreadMapB = typename MmaCore::IteratorThreadMapB; + using AccessTypeB = cutlass::Array; + using IteratorB = + cutlass::transform::threadblock::PredicatedTileAccessIterator< + cutlass::MatrixShape, + ElementB, LayoutB, 0, ThreadMapB, AccessTypeB, GatherB, PermuteBLayout>; + + // Define iterators over tiles from the quant scales + using ThreadMapQScale = typename MmaCore::IteratorThreadMapQScale; + using AccessTypeQScale = + cutlass::Array; + using IteratorQScale = + cutlass::transform::threadblock::PredicatedTileAccessIterator< + typename MmaCore::ThreadblockQShape, + ElementQScale, LayoutQMeta, 0, ThreadMapQScale, AccessTypeQScale>; + + using ThreadMapQOffset = typename MmaCore::IteratorThreadMapQOffset; + using AccessTypeQOffset = + cutlass::Array; + using IteratorQOffset = + cutlass::transform::threadblock::OptionalPredicatedTileAccessIterator< + typename MmaCore::ThreadblockQShape, ElementQOffset, LayoutQMeta, + 0, ThreadMapQOffset, AccessTypeQOffset, MmaCore::kThreads>; + + // Define the threadblock-scoped multistage matrix multiply + using ThreadblockMma = cutlass::gemm::threadblock::QuantBMmaMultistage< + typename MmaCore::Shape, IteratorA, typename MmaCore::SmemIteratorA, + MmaCore::kCacheOpA, IteratorB, typename MmaCore::SmemIteratorB, + MmaCore::kCacheOpB, IteratorQScale, typename MmaCore::SmemIteratorQScale, + cutlass::arch::CacheOperation::Global, IteratorQOffset, + typename MmaCore::SmemIteratorQOffset, cutlass::arch::CacheOperation::Global, + ElementAccumulator, LayoutC, + typename MmaCore::MmaPolicy, Stages>; +}; + +//////////////////////////////////////////////////////////////////////////////// + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass + +//////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/default_quantb_mma_core.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/default_quantb_mma_core.h new file mode 100644 index 0000000000000..ad322f6505200 --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/default_quantb_mma_core.h @@ -0,0 +1,340 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/** + * Modifications Copyright (c) Microsoft. + * Licensed under the MIT license. + * + * @file default_quantb_mma_core.h + * @brief Modified from cutlass/gemm/threadblock/default_mma_core.h. + * Defining data layout in shared memory, and its iterators. + */ + +#pragma once + +#include "cutlass/array.h" +#include "cutlass/cutlass.h" + +#include "cutlass/layout/tensor_op_multiplicand_sm75.h" +#include "cutlass/layout/tensor_op_multiplicand_sm80.h" + +#include "cutlass/gemm/warp/mma_simt_policy.h" +#include "cutlass/gemm/warp/mma_simt.h" +#include "cutlass_ext/q4gemm/warp/default_quantb_mma_tensor_op.h" +#include "cutlass/gemm/warp/mma_tensor_op_tile_iterator_sm80.h" + +#include "cutlass/gemm/threadblock/default_multistage_mma_complex_core.h" +#include "cutlass/gemm/threadblock/default_multistage_mma_complex_core_sm80.h" + +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_types.h" +#include "cutlass/transform/pitch_linear_thread_map.h" +#include "cutlass/transform/threadblock/regular_tile_access_iterator_tensor_op.h" +#include "cutlass/transform/threadblock/regular_tile_access_iterator_tensor_op_sm80.h" +#include "cutlass/transform/threadblock/regular_tile_access_iterator_pitch_linear.h" +#include "cutlass_ext/q4gemm/threadblock/optional_regular_tile_access_iter.h" + +#include "cutlass/util/debug.h" +#include "cutlass/util/device_dump.h" +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace threadblock { +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Template defininng default matrix multiply operators inferred from threadblock tile size, +/// global memory data layout, and target math instruction. +template < + /// Shape of threadblock-scoped matrix multiply operator + typename Shape, + /// Shape of warp-level matrix multiply operator + typename WarpShape, + /// Shape of one matrix production operation (concept: GemmShape) + typename InstructionShape, + /// Element data type of A operand + typename ElementA, + /// Layout of operand A + typename LayoutA, + /// Element data type of B operand + typename ElementB, + /// Layout of operand B + typename LayoutB, + /// Element data type of quant scale + typename ElementQScale, + /// Element data type of quant offset + typename ElementQOffset, + /// Layout of quant scale + typename LayoutQMeta, + /// Blocking dimensions for quantization + typename QuantBlocking, + /// Data type of accumulator + typename ElementC, + /// Layout of accumulator + typename LayoutC, + /// Indicates type of math operator (arch::OpClassSimt or arch::OpClassTensorOp) + typename OperatorClass, + /// Number of stages + int Stages = 2, + /// Operation performed by MMA + typename Operator = typename platform::conditional< + (platform::is_same::value) && + (platform::is_same::value || + platform::is_same::value || + platform::is_same::value || + platform::is_same::value), + cutlass::arch::OpMultiplyAddSaturate, + cutlass::arch::OpMultiplyAdd>::type, + /// Store the accumulators in row major or column major. Row major is used + /// when output layout is interleaved. + bool AccumulatorsInRowMajor = false, + /// Cache operation of operand A + cutlass::arch::CacheOperation::Kind CacheOpA = + cutlass::arch::CacheOperation::Global, + /// Cache operation of operand B + cutlass::arch::CacheOperation::Kind CacheOpB = + cutlass::arch::CacheOperation::Global, + /// per-element transformation for elements of A + ComplexTransform TransformA = ComplexTransform::kNone, + /// per-element transformation for elements of B + ComplexTransform TransformB = ComplexTransform::kNone, + bool IsComplex = false // (is_complex::value || is_complex::value) +> +struct DefaultQuantBMmaCore; + +//////////////////////////////////////////////////////////////////////////////// + +/// Partial specialization: +/// +/// A: row-major +/// B: column-major +/// Operator: tensor op class +/// +/// This uses the default warp-level operator given tile sizes +template < + /// Shape of threadblock-scoped matrix multiply operator (concept: + /// GemmShape) + typename Shape_, + /// Shape of warp-level matrix multiply operator (concept: GemmShape) + typename WarpShape_, + /// Shape of one matrix production operation (concept: GemmShape) + typename InstructionShape_, + /// Data type of A operand + typename ElementA_, + /// Data type of B operand + typename ElementB_, + /// Element data type of quant scale + typename ElementQScale_, + /// Element data type of quant offset + typename ElementQOffset_, + /// Layout of quant scale + typename LayoutQMeta_, + /// Blocking dimensions for quantization + typename QuantBlocking_, + /// Data type of accumulator + typename ElementC_, + /// Layout of accumulator + typename LayoutC_, + /// Number of stages + int Stages, + /// Operation performed by MMA + typename Operator_, + /// Cache operation of operand A + cutlass::arch::CacheOperation::Kind CacheOpA, + /// Cache operation of operand B + cutlass::arch::CacheOperation::Kind CacheOpB> +struct DefaultQuantBMmaCore { + using Shape = Shape_; + using WarpShape = WarpShape_; + using InstructionShape = InstructionShape_; + using ElementA = ElementA_; + using LayoutA = layout::RowMajor; + using ElementB = ElementB_; + using LayoutB = layout::ColumnMajor; + + using ElementQScale = ElementQScale_; + using ElementQOffset = ElementQOffset_; + using LayoutQMeta = LayoutQMeta_; + using QuantBlocking = QuantBlocking_; + + using ElementC = ElementC_; + using LayoutC = LayoutC_; + static int const kStages = Stages; + static cutlass::arch::CacheOperation::Kind const kCacheOpA = CacheOpA; + static cutlass::arch::CacheOperation::Kind const kCacheOpB = CacheOpB; + + /// Number of warps present + using WarpCount = GemmShape; + + // Divisility requirements + static_assert( + !(Shape::kM % WarpShape::kM) && !(Shape::kN % WarpShape::kN), + "Threadblock-scoped GEMM should be divisible by warp-scoped GEMM size."); + + /// Number of threads per warp + static int const kWarpSize = warp::WarpSize::value; + + /// Number of threads total + static int const kThreads = WarpCount::kCount * kWarpSize; + + /// Size of a threadblock-scoped access + static int const kAccessSizeInBits = 128; + + /// Default Operator + using Operator = Operator_; + + // Warp thread arrangement + static int const kWarpThreadArrangementContiguousA = + Shape::kK / (kAccessSizeInBits / sizeof_bits::value); + + static int const kWarpThreadArrangementStridedA = + kWarpSize / kWarpThreadArrangementContiguousA; + + static int const kWarpThreadArrangementContiguousB = + (Shape::kK / 2) / (kAccessSizeInBits / sizeof_bits::value); + + static int const kWarpThreadArrangementStridedB = + kWarpSize / kWarpThreadArrangementContiguousB; + + // + // Shared memory layouts + // + + using SmemLayoutA = layout::RowMajorTensorOpMultiplicandCrosswise< + sizeof_bits::value, Shape::kK>; + + using SmemLayoutB = layout::ColumnMajorTensorOpMultiplicandCrosswise< + sizeof_bits::value, Shape::kK/2>; + + // + // Iterators to write to shared memory + // + + /// ThreadMap of iterator A + using IteratorThreadMapA = transform::PitchLinearWarpRakedThreadMap< + layout::PitchLinearShape, kThreads, + layout::PitchLinearShape, + kAccessSizeInBits / sizeof_bits::value>; + + /// Shared memory iterator to A operand + using SmemIteratorA = transform::threadblock::RegularTileAccessIterator< + MatrixShape, ElementA, SmemLayoutA, 0, + IteratorThreadMapA>; + + /// ThreadMap of iterator B + using IteratorThreadMapB = transform::PitchLinearWarpRakedThreadMap< + layout::PitchLinearShape, kThreads, + layout::PitchLinearShape, + kAccessSizeInBits / sizeof_bits::value>; + + /// Shared memory iterator to B operand + using SmemIteratorB = transform::threadblock::RegularTileAccessIterator< + MatrixShape, ElementB, SmemLayoutB, 1, + IteratorThreadMapB>; + + using SmemLayoutQScale = LayoutQMeta; + using SmemLayoutQOffset = LayoutQMeta; + + /// Threadblock-level quantization meta data shape + using ThreadblockQShape = MatrixShape; + static_assert(Shape::kK % QuantBlocking::kRow == 0, "K must be multiple of QuantBlocking::kRow"); + static_assert(Shape::kN % QuantBlocking::kColumn == 0, "N must be multiple of QuantBlocking::kColumn"); + static_assert(ThreadblockQShape::kCount > 0, "QuantBlocking too big to fit in a thread block!"); + static_assert(QuantBlocking::kRow == 1 || QuantBlocking::kColumn == 1, + "Only support single column or row quantize blocking!"); + static_assert(QuantBlocking::kColumn != 1 || std::is_same::value, + "Quant scale matrix's major dimension must have more elements, to facilitate fast loading!"); + + /// Threadblock-level quantization meta data shape in pitch-linear layout + using TBQPitchLinearShape = typename std::conditional< + std::is_same::value, + layout::PitchLinearShape, + layout::PitchLinearShape>::type; + + /// By default we would like to use 128b load. However, we can't load more than + /// a column at a time in a column major layout. + static int const kElementsPerAccessQScale = + (kAccessSizeInBits / sizeof_bits::value) > TBQPitchLinearShape::kContiguous + ? TBQPitchLinearShape::kContiguous + : (kAccessSizeInBits / sizeof_bits::value); + + /// quant scale is tiny. Not all threads are needed. + static int const kAccessCntQScale = ThreadblockQShape::kCount / kElementsPerAccessQScale; + static int const kThreadsQScale = (kAccessCntQScale > kThreads) ? kThreads : kAccessCntQScale; + + using IteratorThreadMapQScale = transform::PitchLinearStripminedThreadMap< + TBQPitchLinearShape, kThreadsQScale, kElementsPerAccessQScale>; + + using SmemIteratorQScale = transform::threadblock::RegularTileAccessIterator< + ThreadblockQShape, ElementQScale, SmemLayoutQScale, 1, IteratorThreadMapQScale>; + + static int const kElementsPerAccessQOffset = + (kAccessSizeInBits / sizeof_bits::value) > TBQPitchLinearShape::kContiguous + ? TBQPitchLinearShape::kContiguous + : (kAccessSizeInBits / sizeof_bits::value); + static int const kAccessCntQOffset = ThreadblockQShape::kCount / kElementsPerAccessQOffset; + static int const kThreadsQOffset = (kAccessCntQOffset > kThreads) ? kThreads : kAccessCntQOffset; + + using IteratorThreadMapQOffset = transform::PitchLinearStripminedThreadMap< + TBQPitchLinearShape, kThreadsQOffset, kElementsPerAccessQOffset>; + + using SmemIteratorQOffset = transform::threadblock::OptionalRegularTileAccessIterator< + ThreadblockQShape, ElementQOffset, SmemLayoutQOffset, 1, IteratorThreadMapQOffset, kThreads>; + + // + // Warp-level matrix multiply operator + // + + // Define the warp-level tensor op + using MmaTensorOp = typename cutlass::gemm::warp::DefaultQuantBMmaTensorOp< + WarpShape, InstructionShape, ElementA, SmemLayoutA, ElementB, SmemLayoutB, + ElementQScale, SmemLayoutQScale, ElementQOffset, SmemLayoutQScale, QuantBlocking, + ElementC, LayoutC, Operator, WarpCount::kK>::Type; + + /// Policy used to define MmaPipelined + using MmaPolicy = MmaPolicy, + MatrixShape<0, 0>, WarpCount::kK>; +}; + +//////////////////////////////////////////////////////////////////////////////// + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/optional_predicated_tile_access_iter.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/optional_predicated_tile_access_iter.h new file mode 100644 index 0000000000000..6f27a692a3a2e --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/optional_predicated_tile_access_iter.h @@ -0,0 +1,314 @@ +/** + * Copyright (c) Microsoft Corporation. All rights reserved. + * Licensed under the MIT license. + * + * @file optional_predicated_tile_access_iter.h + * @brief Templates for loading and storing optional tiles of matrix data. + * This iterator is just a wrapper of PredicatedTileAccessIterator, with + * the option to turn it off at compile time and minimize its runtime + * footprint. Also, it utilize the higher numbered threads in the + * threadblock when the iterator can not utilize all the threads. + */ + +#pragma once + +#include + +#include "cutlass/transform/threadblock/predicated_tile_access_iterator.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace transform { +namespace threadblock { + + +//////////////////////////////////////////////////////////////////////////////// + +/// Optional 2-D matrix data loader, when element is std::monostate, the +/// iterator becomes no-op with minimal runtime footprint. Also, it utilize the +/// higher numbered threads in the threadblock when the iterator can not utilize +/// all the threads. +/// +template < + /// Tile shape of the iterator + typename Shape_, + /// Element data type of the iterator, no-op when it is std::monostate + typename Element_, + /// Layout of the source matrix + typename Layout_, + int AdvanceRank_, + typename ThreadMap_, + typename AccessType_, + /// Number of threads in the threadblock, when provided, the iterator + /// will utilize the higher numbered threads + int kThreadBlockSize_ = -1> +class OptionalPredicatedTileAccessIterator{ + public: + + using Shape = Shape_; + using Element = Element_; + using Layout = Layout_; + using ThreadMap = ThreadMap_; + using AccessType = AccessType_; + + static constexpr int kAdvanceRank = AdvanceRank_; + static constexpr int kThreadblockSize = kThreadBlockSize_; + + static_assert(!std::is_same::value, + "Disabled Iterator failed to match the specialized version below."); + static_assert(kThreadblockSize == -1 || kThreadblockSize >= ThreadMap::kThreads, + "kThreadblockSize must be no smaller than ThreadMap::kThreads"); + + using Base = PredicatedTileAccessIterator; + + using LongIndex = typename Base::LongIndex; + using Mask = typename Base::Mask; + using TensorCoord = typename Base::TensorCoord; + using TensorRef = typename Base::TensorRef; + using Params = typename Base::Params; + using Pointer = typename Base::Pointer; + + static constexpr int kAccessesPerVector = Base::kAccessesPerVector; + + CUTLASS_HOST_DEVICE + static int flip_thread_id(int thread_id){ + if constexpr (kThreadblockSize > 0) { + return kThreadblockSize - 1 - thread_id; + } + return thread_id; + } + + public: + Base base_; + + /// Default constructor + OptionalPredicatedTileAccessIterator(): base_() {}; + + /// Constructs a TileIterator from its precomputed state, threadblock offset, + /// and thread ID + CUTLASS_HOST_DEVICE + OptionalPredicatedTileAccessIterator( + /// Precomputed parameters object + Params const ¶ms, + /// Pointer to start of tensor + Pointer pointer, + /// Extent of tensor + TensorCoord extent, + /// ID of each participating thread + int thread_id, + /// Initial offset of threadblock + TensorCoord const &threadblock_offset) + : base_(params, pointer, extent, flip_thread_id(thread_id), threadblock_offset) {} + + /// Construct a PredicatedTileAccessIterator with zero threadblock offset + CUTLASS_HOST_DEVICE + OptionalPredicatedTileAccessIterator( + /// Precomputed parameters object + Params const ¶ms, + /// Pointer to start of tensor + Pointer pointer, + /// Extent of tensor + TensorCoord extent, + ///< ID of each participating thread + int thread_id) + : OptionalPredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} + + /// Overrides the internal iteration index + CUTLASS_HOST_DEVICE + void set_iteration_index(int index) { + base_.set_iteration_index(index); + } + + /// Adds a pointer offset in units of Element + CUTLASS_HOST_DEVICE + void add_pointer_offset(LongIndex pointer_offset) { + base_.add_pointer_offset(pointer_offset); + } + + /// Advances an iterator along logical dimensions of matrix in units of whole tiles + CUTLASS_DEVICE + void add_tile_offset( + TensorCoord const &tile_offset) { + base_.add_tile_offset(tile_offset); + } + + /// Returns a pointer + CUTLASS_HOST_DEVICE + AccessType *get() const { + return base_.get(); + } + + /// Increment and return an instance to self. + CUTLASS_HOST_DEVICE + OptionalPredicatedTileAccessIterator &operator++() { + ++base_; + return *this; + } + + /// Increment and return an instance to self. + CUTLASS_HOST_DEVICE + OptionalPredicatedTileAccessIterator operator++(int) { + OptionalPredicatedTileAccessIterator self(*this); + operator++(); + return self; + } + + /// Clears the predicate set efficiently + CUTLASS_HOST_DEVICE + void clear_mask(bool enable = true) { + base_.clear_mask(enable); + } + + /// Clears the predicate set efficiently + CUTLASS_HOST_DEVICE + void enable_mask() { + base_.enable_mask(); + } + + /// Sets the predicate mask, overriding value stored in predicate iterator + CUTLASS_HOST_DEVICE + void set_mask(Mask const &mask) { + base_.set_mask(mask); + } + + /// Gets the mask + CUTLASS_HOST_DEVICE + void get_mask(Mask &mask) { + base_.get_mask(mask); + } + + /// Returns whether access is valid or not + CUTLASS_HOST_DEVICE + bool valid() { + return base_.valid(); + } +}; + +//////////////////////////////////////////////////////////////////////////////// + +/// Specialization for the disabled version +/// Reduce runtime overhead +/// +template < + /// Tile shape of the iterator + typename Shape_, + typename Layout_, + int AdvanceRank_, + typename ThreadMap_, + typename AccessType_, + int kThreadBlockSize_> +class OptionalPredicatedTileAccessIterator{ + public: + + using Shape = Shape_; + using Element = std::monostate; + using Layout = Layout_; + static int const kAdvanceRank = AdvanceRank_; + using ThreadMap = ThreadMap_; + using AccessType = AccessType_; + + static constexpr int kThreadblockSize = kThreadBlockSize_; + + using Base = PredicatedTileAccessIterator; + + using LongIndex = typename Base::LongIndex; + using Mask = typename Base::Mask; + using TensorCoord = typename Base::TensorCoord; + using TensorRef = typename Base::TensorRef; + using Params = typename Base::Params; + using Pointer = typename Base::Pointer; + + static constexpr int kAccessesPerVector = Base::kAccessesPerVector; + + public: + std::monostate base_; + + /// Default constructor + OptionalPredicatedTileAccessIterator(): base_() {}; + + /// Constructs a TileIterator from its precomputed state, threadblock offset, + /// and thread ID + CUTLASS_HOST_DEVICE + OptionalPredicatedTileAccessIterator( + /// Precomputed parameters object + Params const ¶ms, + /// Pointer to start of tensor + Pointer pointer, + /// Extent of tensor + TensorCoord extent, + /// ID of each participating thread + int thread_id, + /// Initial offset of threadblock + TensorCoord const &threadblock_offset) + : base_() {} + + /// Construct a PredicatedTileAccessIterator with zero threadblock offset + CUTLASS_HOST_DEVICE + OptionalPredicatedTileAccessIterator( + /// Precomputed parameters object + Params const ¶ms, + /// Pointer to start of tensor + Pointer pointer, + /// Extent of tensor + TensorCoord extent, + ///< ID of each participating thread + int thread_id) + : base_() {} + + /// Overrides the internal iteration index + CUTLASS_HOST_DEVICE + void set_iteration_index(int index) {} + + /// Adds a pointer offset in units of Element + CUTLASS_HOST_DEVICE + void add_pointer_offset(LongIndex pointer_offset) {} + + /// Advances an iterator along logical dimensions of matrix in units of whole tiles + CUTLASS_DEVICE + void add_tile_offset( + TensorCoord const &tile_offset) {} + + /// Returns a pointer + CUTLASS_HOST_DEVICE + AccessType *get() const { + return nullptr; + } + + /// Increment and return an instance to self. + CUTLASS_HOST_DEVICE + OptionalPredicatedTileAccessIterator &operator++() { + return *this; + } + + /// Increment and return an instance to self. + CUTLASS_HOST_DEVICE + OptionalPredicatedTileAccessIterator operator++(int) { + return *this; + } + + /// Clears the predicate set efficiently + CUTLASS_HOST_DEVICE + void clear_mask(bool enable = true) {} + + /// Clears the predicate set efficiently + CUTLASS_HOST_DEVICE + void enable_mask() {} + + /// Sets the predicate mask, overriding value stored in predicate iterator + CUTLASS_HOST_DEVICE + void set_mask(Mask const &mask) {} + + /// Gets the mask + CUTLASS_HOST_DEVICE + void get_mask(Mask &mask) {} + + /// Returns whether access is valid or not + CUTLASS_HOST_DEVICE + bool valid() const { return false; } +}; + +//////////////////////////////////////////////////////////////////////////////// +} // namespace threadblock +} // namespace transform +} // namespace cutlass diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/optional_regular_tile_access_iter.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/optional_regular_tile_access_iter.h new file mode 100644 index 0000000000000..4b0ae5317f8bb --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/optional_regular_tile_access_iter.h @@ -0,0 +1,224 @@ +/** + * Copyright (c) Microsoft Corporation. All rights reserved. + * Licensed under the MIT license. + * + * @file optional_regular_tile_access_iter.h + * @brief Templates implementing the address computation of storing of tiles + * from pitch-linear rank=2 tensors. + * + * This iterator is just a wrapper of RegularTileAccessIterator, with the + * option to turn it off at compile time and minimize its runtime footprint. + * Also, it utilize the higher numbered threads in the threadblock when the + * iterator can not utilize all the threads. + * + * Must be used in conjunction with OptionalPredicatedTileAccessIterator, + * with the same template parameters. + */ + +#pragma once + +#include + +#include "cutlass/cutlass.h" +#include "cutlass/numeric_types.h" +#include "cutlass/transform/threadblock/regular_tile_access_iterator.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace transform { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +/// Optional 2-D tile iterator, when element is std::monostate, the iterator +/// becomes no-op with minimal runtime footprint. Also, it utilize the higher +/// numbered threads in the threadblock when the iterator can not utilize all +/// the threads. +/// +template < + /// Tile shape of the iterator + typename Shape_, + typename Element_, + typename Layout_, + int AdvanceRank, + typename ThreadMap_, + /// Number of threads in the threadblock, when not -1, the iterator + /// will utilize the higher numbered threads + int ThreadblockSize_ = -1, + int Alignment = + sizeof_bits::value * ThreadMap_::kElementsPerAccess / 8> +class OptionalRegularTileAccessIterator{ + public: + + using Shape = Shape_; + using Element = Element_; + using Layout = Layout_; + using ThreadMap = ThreadMap_; + static constexpr int kAlignment = Alignment; + static constexpr int kThreadblockSize = ThreadblockSize_; + + static_assert(!std::is_same::value, + "Disabled Iterator failed to match the specialized template"); + static_assert(kThreadblockSize == -1 || kThreadblockSize >= ThreadMap::kThreads, + "kThreadblockSize must be no smaller than ThreadMap::kThreads"); + + using Base = RegularTileAccessIterator; + + using LongIndex = typename Base::LongIndex; + using TensorRef = typename Base::TensorRef; + using TensorCoord = typename Base::TensorCoord; + using AccessType = typename Base::AccessType; + + CUTLASS_HOST_DEVICE + static int flip_thread_id(int thread_id){ + if constexpr (kThreadblockSize > 0) { + return kThreadblockSize - 1 - thread_id; + } + return thread_id; + } + + private: + + Base base_; + + public: + /// Construct a TileIterator with zero threadblock offset + CUTLASS_HOST_DEVICE + OptionalRegularTileAccessIterator(TensorRef ref, ///< Pointer to start of tensor + int thread_id ///< ID of each participating thread + ) + : base_(ref, flip_thread_id(thread_id)) {} + + /// Overrides the internal iteration index + CUTLASS_HOST_DEVICE + void set_iteration_index(int index) { + base_.set_iteration_index(index); + } + + /// Adds a pointer offset in units of Element + CUTLASS_HOST_DEVICE + void add_pointer_offset(LongIndex pointer_offset) { + base_.add_pointer_offset(pointer_offset); + } + + /// Returns a pointer + CUTLASS_DEVICE + AccessType *get() const { + return base_.get(); + } + + /// Advances to the next tile in memory. + CUTLASS_HOST_DEVICE + OptionalRegularTileAccessIterator &operator++() { + ++base_; + return *this; + } + + /// Advances to the next tile in memory. + CUTLASS_HOST_DEVICE + OptionalRegularTileAccessIterator operator++(int) { + RegularTileAccessIterator prev(*this); + this->operator++(); + + return prev; + } + + /// Adds a tile offset in the unit of tile. + /// In GEMM/Conv implementation, this is used to move in the k dimension in the shared memory. + /// Below layouts are the shared memory layouts. Current SM50 SIMT kernels only use col major A and row major B. + /// For row major A operand, k dimension is contiguous dimension; + /// For col major A operand, k dimension is strided dimension; + /// For row major B operand, k dimension is strided dimension; + /// For col major B operand, k dimension is contiguous dimension. + /// Below two classes map col/row major to the pitch linear coordinates used + /// in this base class. + CUTLASS_DEVICE + void add_tile_offset(TensorCoord const &coord) { + base_.add_tile_offset(coord); + } +}; + +//////////////////////////////////////////////////////////////////////////////// + +/// Specialization when Element is std::monostate, the iterator becomes no-op +/// +template < + typename Shape_, + typename Layout_, + int AdvanceRank, + typename ThreadMap_, + int ThreadblockSize_, + int Alignment> +class OptionalRegularTileAccessIterator{ + public: + + using Shape = Shape_; + using Element = std::monostate; + using Layout = Layout_; + using ThreadMap = ThreadMap_; + static constexpr int kAlignment = Alignment; + static constexpr int kThreadblockSize = ThreadblockSize_; + + using Base = RegularTileAccessIterator; + + using LongIndex = typename Base::LongIndex; + using TensorRef = typename Base::TensorRef; + using TensorCoord = typename Base::TensorCoord; + using AccessType = typename Base::AccessType; + + private: + + std::monostate base_; + + public: + /// Construct a TileIterator with zero threadblock offset + CUTLASS_HOST_DEVICE + OptionalRegularTileAccessIterator(TensorRef ref, ///< Pointer to start of tensor + int thread_id ///< ID of each participating thread + ) + : base_() {} + + /// Overrides the internal iteration index + CUTLASS_HOST_DEVICE + void set_iteration_index(int index) {} + + /// Adds a pointer offset in units of Element + CUTLASS_HOST_DEVICE + void add_pointer_offset(LongIndex pointer_offset) {} + + /// Returns a pointer + CUTLASS_DEVICE + AccessType *get() const { + return nullptr; + } + + /// Advances to the next tile in memory. + CUTLASS_HOST_DEVICE + OptionalRegularTileAccessIterator &operator++() { + return *this; + } + + /// Advances to the next tile in memory. + CUTLASS_HOST_DEVICE + OptionalRegularTileAccessIterator operator++(int) { + return *this; + } + + /// Adds a tile offset in the unit of tile. + /// In GEMM/Conv implementation, this is used to move in the k dimension in the shared memory. + /// Below layouts are the shared memory layouts. Current SM50 SIMT kernels only use col major A and row major B. + /// For row major A operand, k dimension is contiguous dimension; + /// For col major A operand, k dimension is strided dimension; + /// For row major B operand, k dimension is strided dimension; + /// For col major B operand, k dimension is contiguous dimension. + /// Below two classes map col/row major to the pitch linear coordinates used + /// in this base class. + CUTLASS_DEVICE + void add_tile_offset(TensorCoord const &coord) {} +}; + +} // namespace threadblock +} // namespace transform +} // namespace cutlass diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/quantb_mma_multistage.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/quantb_mma_multistage.h new file mode 100644 index 0000000000000..28364cc34f2d7 --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/threadblock/quantb_mma_multistage.h @@ -0,0 +1,1290 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/** + * Modifications Copyright (c) Microsoft. + * Licensed under the MIT license. + * + * @file quantb_mma_multistage.h + * @brief Modified from cutlass/gemm/threadblock/mma_multistage.h. + * Added the quantized data memory pipeline, dequantization, and feeding + * to tensor cores. Mainloop pipeline is heavily modified. + */ + +#pragma once + +#include "cutlass/aligned_buffer.h" +#include "cutlass/arch/memory.h" +#include "cutlass/array.h" +#include "cutlass/cutlass.h" +#include "cutlass/gemm/gemm.h" +#include "cutlass/matrix_shape.h" +#include "cutlass/numeric_types.h" + +#include "cutlass/gemm/threadblock/mma_base.h" + +#include "cutlass/util/debug.h" +#include "cutlass/util/device_dump.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// +namespace{ + +///////////////////////////////////////////////////////////////////////////////////////////////// +/// Utilities for printing layout for the prepacked weights and quantization parameters +/// +template< + /// Data type of the prepacked weights + typename ElementWeight, + /// Data type of the quant scales + typename ElementQScale, + /// Data type of the quant offsets + typename ElementQOffset> +struct QuantBLayoutDebug{ + static constexpr bool debug_smem = true; + static constexpr bool debug_fragment = true; + ElementWeight* smem_b_ptr_; + ElementQScale* smem_qscale_ptr_; + ElementQOffset* smem_qoffset_ptr_; + int warp_id_; + int lane_id_; + int block_id_; + + template + CUTLASS_DEVICE + static void print_fragment(cutlass::Array const& frag, char label, int block_id, int warp_id, int lane_id){ + static_assert(Size % 4 == 0, "Size must be multiple of 4"); + if constexpr (debug_fragment){ + if (block_id == 1 && warp_id == 0){ + const Element* ptr = reinterpret_cast(&frag); + for (int i = 0; i < Size/4; i++, ptr+=4){ + if constexpr(std::is_integral::value){ + printf("T%.2d%c%d, %3d, %3d, %3d, %3d\n", + threadIdx.x, label, i, + ptr[0], ptr[1], ptr[2], ptr[3]); + } else { + printf("T%.2d%c%d, %.3f, %.3f, %.3f, %.3f\n", + threadIdx.x, label, i, + float(ptr[0]), float(ptr[1]), float(ptr[2]), float(ptr[3])); + } + } + } + } + } + + template + CUTLASS_DEVICE + static void print_as_int4(cutlass::Array const& frag, char label, int block_id, int warp_id, int lane_id){ + constexpr int I8Size = Size * cutlass::sizeof_bits::value / 8; + static_assert(I8Size % 2 == 0, "Size must be multiple of 4"); + if constexpr (debug_fragment){ + if (block_id == 1 && warp_id == 0){ + const uint8_t* ptr = reinterpret_cast(&frag); + for (int i = 0; i < I8Size/2; i++, ptr+=2){ + printf("T%.2dW%d, %d, %d, %d, %d\n", threadIdx.x, i, ptr[0] & 0x0f, ptr[0] >> 4, ptr[1] & 0x0f, ptr[1] >> 4); + } + } + } + } + +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Dummy type when quant offset is not used, to avoid compilation error, +/// and reduce runtime footprint +/// +struct DummyType{ + std::monostate dummy_; + public: + DummyType() = default; + + CUTLASS_HOST_DEVICE + void* data() const { + return nullptr; + } + + CUTLASS_HOST_DEVICE + std::monostate& operator[](int /*idx */) { + return dummy_; + } +}; + +} + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace threadblock { + +//////////////////////////////////////////////////////////////////////////////// + +/// Structure to compute the matrix product targeting CUDA cores and SIMT math +/// instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Policy describing tuning details (concept: MmaPolicy) + typename Policy_, + /// Number of stages, + int Stages, + /// Used for partial specialization + typename Enable = bool> +class QuantBMmaBase { + public: + ///< Size of the Gemm problem - concept: gemm::GemmShape<> + using Shape = Shape_; + + ///< Policy describing tuning details + using Policy = Policy_; + + // + // Dependent types + // + + /// Warp-level Mma + using Operator = typename Policy::Operator; + + /// Shape describing the overall GEMM computed from shared memory + /// by each warp. + using WarpGemm = typename Policy::Operator::Shape; + + /// Shape describing the number of warps filling the CTA + using WarpCount = GemmShape; + + /// Number of warp-level GEMM oeprations + static int const kWarpGemmIterations = + (WarpGemm::kK / Operator::Policy::MmaShape::kK); + + /// Number of stages + static int const kStages = Stages; + + static constexpr bool kHasQOffset = !std::is_same::value; + + /// Tensor reference to the A operand + using TensorRefA = TensorRef; + + /// Tensor reference to the prepacked weights + using TensorRefB = TensorRef; + + static_assert(kWarpGemmIterations > 1, + "The pipelined structure requires at least two warp-level " + "GEMM operations."); + + static_assert((kWarpGemmIterations % 2) == 0, + "Inner loop iteration must be an even number."); + + // Tensor reference to the quantization scales + using TensorRefQScale = TensorRef; + using TensorRefQOffset = TensorRef; + + // Block size of the quantization (one set of quantization parameters per block of weights) + using QuantBlocking = typename Operator::QuantBlocking; + + // + // Nested structs + // + + /// Shared storage object needed by threadblock-scoped GEMM + class SharedStorage { + public: + // + // Type definitions + // + + /// Shape of the A matrix operand in shared memory + using ShapeA = MatrixShape; + + /// Shape of the prepacked weights in shared memory + using ShapeB = + MatrixShape; + + /// Shape of the quantization parameter matrix in shared memory + /// Validation done in mma core class ThreadblockQShape + using ShapeQScale = + MatrixShape<(Shape::kK / QuantBlocking::kRow) * kStages, + Shape::kN / QuantBlocking::kColumn>; + + using BufTypeQOffset = std::conditional_t, + DummyType>; + public: + // + // Data members + // + + /// Buffer for A operand + AlignedBuffer operand_A; + + /// Buffer for prepacked weights + AlignedBuffer operand_B; + + /// Buffer for quantization scales + AlignedBuffer operand_QScale; + + /// Buffer for quantization offsets + BufTypeQOffset operand_QOffset; + + public: + + // + // Methods + // + + /// Returns a layout object for the A matrix + CUTLASS_DEVICE + static typename Operator::LayoutA LayoutA() { + return Operator::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn}); + } + + /// Returns a layout object for the B matrix + CUTLASS_HOST_DEVICE + static typename Operator::LayoutB LayoutB() { + return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn}); + } + + CUTLASS_HOST_DEVICE + static typename Operator::SmemLayoutQScale LayoutQMeta() { + return Operator::SmemLayoutQScale::packed({ShapeQScale::kRow, ShapeQScale::kColumn}); + } + + CUTLASS_HOST_DEVICE + static typename Operator::SmemLayoutQOffset LayoutQOffset() { + return Operator::SmemLayoutQOffset::packed({ShapeQScale::kRow, ShapeQScale::kColumn}); + } + + /// Returns a TensorRef to the A operand + CUTLASS_HOST_DEVICE + TensorRefA operand_A_ref() { + return TensorRefA{operand_A.data(), LayoutA()}; + } + + /// Returns a TensorRef to the prepacked weights + CUTLASS_HOST_DEVICE + TensorRefB operand_B_ref() { + return TensorRefB{operand_B.data(), LayoutB()}; + } + + /// Returns a TensorRef to the quantization scales + CUTLASS_HOST_DEVICE + TensorRefQScale operand_QScale_ref() { + return TensorRefQScale{operand_QScale.data(), LayoutQMeta()}; + } + + CUTLASS_HOST_DEVICE + TensorRefQOffset operand_QOffset_ref() { + if constexpr (!kHasQOffset){ + return TensorRefQOffset(); + } else { + return TensorRefQOffset{operand_QOffset.data(), LayoutQOffset()}; + } + } + }; + + protected: + + // + // Data members + // + + /// Iterator to load a warp-scoped tile of A operand from shared memory + typename Operator::IteratorA warp_tile_iterator_A_; + + /// Iterator to load a warp-scoped tile of B operand from shared memory + typename Operator::IteratorB warp_tile_iterator_B_; + + /// Iterator to load a warp-scoped tile of quant scales from shared memory + typename Operator::IteratorQMeta warp_tile_iterator_QScale_; + +public: + + /// Construct from tensor references + CUTLASS_DEVICE + QuantBMmaBase( + ///< Shared storage needed for internal use by threadblock-scoped GEMM + SharedStorage &shared_storage, + ///< ID within the threadblock + int thread_idx, + ///< ID of warp + int warp_idx, + ///< ID of each thread within a warp + int lane_idx + ): + warp_tile_iterator_A_(shared_storage.operand_A_ref(), lane_idx), + warp_tile_iterator_B_(shared_storage.operand_B_ref(), lane_idx), + warp_tile_iterator_QScale_(shared_storage.operand_QScale_ref(), + shared_storage.operand_QOffset_ref(), lane_idx) + {} +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Structure to compute the matrix product targeting CUDA cores and SIMT math +/// instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Iterates over tiles of A operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | + // MaskedTileIterator) + typename IteratorA_, + /// Iterates over tiles of A operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorA_, + /// Cache operation for operand A + cutlass::arch::CacheOperation::Kind CacheOpA, + /// Iterates over tiles of B operand in global memory + // (concept: ReadableTileIterator | ForwardTileIterator | + // MaskedTileIterator) + typename IteratorB_, + /// Iterates over tiles of B operand in shared memory + /// (concept: WriteableTileIterator | RandomAccessTileIterator) + typename SmemIteratorB_, + /// Cache operation for operand B + cutlass::arch::CacheOperation::Kind CacheOpB, + /// Iterators over tiles of quant scales in global memory + typename IteratorQScale_, + /// Iterators over tiles of quant scales in shared memory + typename SmemIteratorQScale_, + /// Cache operation for quant scales + cutlass::arch::CacheOperation::Kind CacheOpQScale, + /// Iterators over tiles of quant scales in global memory + typename IteratorQOffset_, + /// Iterators over tiles of quant scales in shared memory + typename SmemIteratorQOffset_, + /// Cache operation for quant scales + cutlass::arch::CacheOperation::Kind CacheOpQOffset, + /// Data type of accumulator matrix + typename ElementC_, + /// Data type of accumulator matrix + typename LayoutC_, + /// Policy describing tuning details (concept: MmaPolicy) + typename Policy_, + /// Number of stages, + int Stages, + /// Used for partial specialization + typename Enable = bool> +class QuantBMmaMultistage : + public QuantBMmaBase { +public: + ///< Base class + using Base = QuantBMmaBase; + ///< Size of the Gemm problem - concept: gemm::GemmShape<> + using Shape = Shape_; + ///< Iterates over tiles of A operand in global memory + using IteratorA = IteratorA_; + ///< Iterates over tiles of B operand in global memory + using IteratorB = IteratorB_; + ///< Data type of accumulator matrix + using ElementC = ElementC_; + ///< Layout of accumulator matrix + using LayoutC = LayoutC_; + ///< Policy describing tuning details + using Policy = Policy_; + + using SmemIteratorA = SmemIteratorA_; + using SmemIteratorB = SmemIteratorB_; + + static cutlass::arch::CacheOperation::Kind const kCacheOpA = CacheOpA; + static cutlass::arch::CacheOperation::Kind const kCacheOpB = CacheOpB; + + using IteratorQScale = IteratorQScale_; + using IteratorQOffset = IteratorQOffset_; + using SmemIteratorQScale = SmemIteratorQScale_; + using SmemIteratorQOffset = SmemIteratorQOffset_; + using QuantBlocking = typename Base::QuantBlocking; + + static cutlass::arch::CacheOperation::Kind const kCacheOpQScale = CacheOpQScale; + static cutlass::arch::CacheOperation::Kind const kCacheOpQOffset = CacheOpQOffset; + static constexpr bool kHasQOffset = Base::kHasQOffset; + + // + // Dependent types + // + + /// Fragment of accumulator tile + using FragmentC = typename Policy::Operator::FragmentC; + + /// Warp-level Mma + using Operator = typename Policy::Operator; + + /// Minimum architecture is Sm80 to support cp.async + using ArchTag = arch::Sm80; + + /// Complex transform on A operand + static ComplexTransform const kTransformA = Operator::kTransformA; + + /// Complex transform on B operand + static ComplexTransform const kTransformB = Operator::kTransformB; + + /// Internal structure exposed for introspection. + struct Detail { + + /// Number of cp.async instructions to load one stage of operand A + static int const AsyncCopyIterationsPerStageA = + IteratorA::ThreadMap::Iterations::kCount; + + /// Number of cp.async instructions to load one stage of packed weights + static int const AsyncCopyIterationsPerStageB = + IteratorB::ThreadMap::Iterations::kCount; + + /// Number of stages + static int const kStages = Stages; + + /// Number of cp.async instructions to load on group of operand A + static int const kAccessesPerGroupA = + (AsyncCopyIterationsPerStageA + Base::kWarpGemmIterations - 1) / Base::kWarpGemmIterations; + + /// Number of cp.async instructions to load on group of operand B + static int const kAccessesPerGroupB = + (AsyncCopyIterationsPerStageB + Base::kWarpGemmIterations - 1) / Base::kWarpGemmIterations; + + static int const AsyncCopyIterationsPerStageQScale = + IteratorQScale::ThreadMap::Iterations::kCount; + + /// Number of cp.async instructions to load one stage of quant scale + static int const kAccessesPerGroupQScale = + (AsyncCopyIterationsPerStageQScale + Base::kWarpGemmIterations - 1) / Base::kWarpGemmIterations; + + static int const AsyncCopyIterationsPerStageQOffset = + IteratorQOffset::ThreadMap::Iterations::kCount; + + /// Number of cp.async instructions to load one stage of quant offset + static int const kAccessesPerGroupQOffset = + (AsyncCopyIterationsPerStageQOffset + Base::kWarpGemmIterations - 1) / Base::kWarpGemmIterations; + + // Optional staged-accumulation (e.g., tf32x3 kernels) for improved numerical + // accuracy, where each mainloop iteration first accumulates into a temporary + // set of freshly-cleared accumulators, which are subsequently added to the + // final accumulator set. + static bool const kStagedAccumulation = arch::UseStagedAccumulation::value; + }; + + private: + + + // Structure encapsulating pipeline state live from one iteration to the next + struct PipeState { + + using WarpLoadedFragmentA = typename Operator::FragmentA; + using WarpLoadedFragmentB = typename Operator::FragmentB; + using WarpTransformedFragmentA = typename Operator::TransformedFragmentA; + using WarpTransformedFragmentB = typename Operator::TransformedFragmentB; + + /// Temporary accumulator to facilitate staged-accumulation + FragmentC tmp_accum_; + + /// Pair of A fragments used to overlap shared memory loads and math instructions + WarpLoadedFragmentA warp_loaded_frag_A_[2]; + + /// Pair of B fragments used to overlap shared memory loads and math instructions + WarpLoadedFragmentB warp_loaded_frag_B_; + WarpTransformedFragmentB warp_transformed_frag_B_[2]; + + using WarpLoadedFragmentQScale = typename Operator::FragmentQScale; + WarpLoadedFragmentQScale warp_loaded_frag_QScale_; + + using WarpLoadedFragmentQOffset = typename std::conditional::type; + WarpLoadedFragmentQOffset warp_loaded_frag_QOffset_; + }; + + + private: + + // + // Data members + // + + /// Warp-level MMA operator + Operator warp_mma_; + + /// Iterator to write threadblock-scoped tile of A operand to shared memory + SmemIteratorA smem_iterator_A_; + + /// Iterator to write threadblock-scoped tile of B operand to shared memory + SmemIteratorB smem_iterator_B_; + + /// Iterator to write threadblock-scoped tile of quant meta data to shared memory + SmemIteratorQScale smem_iterator_QScale_; + SmemIteratorQOffset smem_iterator_QOffset_; + + /// Shared memory write stage index + int smem_write_stage_idx_; + + /// Shared memory read stage index + int smem_read_stage_idx_; + + /// very small meta data tensor require less threads to load + bool const should_load_qscale_; + bool const should_load_qoffset_; + + /// Shared memory pointers for debug dumping + static constexpr bool debug_layout = false; + using LayoutDebugType = typename std::conditional, + std::monostate>::type; + LayoutDebugType layout_debug_; + +public: + + /// Construct from tensor references + CUTLASS_DEVICE + QuantBMmaMultistage( + ///< Shared storage needed for internal use by threadblock-scoped GEMM + typename Base::SharedStorage &shared_storage, + ///< ID within the threadblock + int thread_idx, + ///< ID of warp + int warp_idx, + ///< ID of each thread within a warp + int lane_idx + ): + Base(shared_storage, thread_idx, warp_idx, lane_idx), + smem_iterator_A_(shared_storage.operand_A_ref(), thread_idx), + smem_iterator_B_(shared_storage.operand_B_ref(), thread_idx), + smem_iterator_QScale_(shared_storage.operand_QScale_ref(), thread_idx), + smem_iterator_QOffset_(shared_storage.operand_QOffset_ref(), thread_idx), + should_load_qscale_(thread_idx < IteratorQScale::ThreadMap::kThreads), + should_load_qoffset_(thread_idx >= IteratorQOffset::kThreadblockSize - IteratorQOffset::ThreadMap::kThreads), + smem_write_stage_idx_(0), + smem_read_stage_idx_(0) + { + // Compute warp location within threadblock tile by mapping the warp_id to + // three coordinates: + // _m: the warp's position within the threadblock along the M dimension + // _n: the warp's position within the threadblock along the N dimension + // _k: the warp's position within the threadblock along the K dimension + if constexpr(debug_layout){ + layout_debug_.smem_b_ptr_ = shared_storage.operand_B_ref().data(); + layout_debug_.smem_qscale_ptr_ = shared_storage.operand_QScale_ref().data(); + if constexpr(kHasQOffset){ + layout_debug_.smem_qoffset_ptr_ = shared_storage.operand_QOffset_ref().data(); + } else { + layout_debug_.smem_qoffset_ptr_ = nullptr; + } + layout_debug_.warp_id_ = warp_idx; + layout_debug_.lane_id_ = lane_idx; + layout_debug_.block_id_ = blockIdx.x + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z; + } + + int warp_idx_mn = warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN); + int warp_idx_k = warp_idx / (Base::WarpCount::kM * Base::WarpCount::kN); + + int warp_idx_m = warp_idx_mn % Base::WarpCount::kM; + int warp_idx_n = warp_idx_mn / Base::WarpCount::kM; + + // Add per-warp offsets in units of warp-level tiles + this->warp_tile_iterator_A_.add_tile_offset( + {warp_idx_m, Base::kWarpGemmIterations * warp_idx_k}); + this->warp_tile_iterator_B_.add_tile_offset( + {Base::kWarpGemmIterations * warp_idx_k, warp_idx_n}); + this->warp_tile_iterator_QScale_.add_tile_offset( + {Base::kWarpGemmIterations * warp_idx_k, warp_idx_n}); + } + + /// Advance shared memory read-iterators to the next stage + CUTLASS_DEVICE + void advance_smem_read_stage() + { + ++smem_read_stage_idx_; + + if (smem_read_stage_idx_ == Base::kStages) { + // Wrap back around to the 'start' of the circular buffer in shared memory + this->warp_tile_iterator_A_.add_tile_offset({0, -Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations}); + this->warp_tile_iterator_B_.add_tile_offset({-Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations, 0}); + this->warp_tile_iterator_QScale_.add_tile_offset({-Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations, 0}); + + smem_read_stage_idx_ = 0; + } + } + + /// Advance global memory read-iterators and shared memory write-iterators to the stage + CUTLASS_DEVICE + void advance_smem_write_stage( + IteratorA &iterator_A, + IteratorB &iterator_B, + IteratorQScale &iterator_QScale, + IteratorQOffset &iterator_QOffset) + { + // Advance global iterators + iterator_A.add_tile_offset({0, 1}); + iterator_B.add_tile_offset({1, 0}); + iterator_QScale.add_tile_offset({1, 0}); + + // Advance shared iterators + smem_iterator_A_.add_tile_offset({0, 1}); + smem_iterator_B_.add_tile_offset({1, 0}); + smem_iterator_QScale_.add_tile_offset({1, 0}); + + if constexpr (kHasQOffset) { + iterator_QOffset.add_tile_offset({1, 0}); + smem_iterator_QOffset_.add_tile_offset({1, 0}); + } + + // Increment shared memory write stage index + ++smem_write_stage_idx_; + + if (smem_write_stage_idx_ == Base::kStages) { + // Wrap back around to the 'start' of the circular buffer in shared memory + smem_iterator_A_.add_tile_offset({0, -Base::kStages}); + smem_iterator_B_.add_tile_offset({-Base::kStages, 0}); + smem_iterator_QScale_.add_tile_offset({-Base::kStages, 0}); + if constexpr (kHasQOffset) { + smem_iterator_QOffset_.add_tile_offset({-Base::kStages, 0}); + } + smem_write_stage_idx_ = 0; + } + } + + CUTLASS_DEVICE + void copy_qscale_tiles(IteratorQScale &iterator_QScale){ + // Quant scale matrix is 1/block_size of the B matrix, for a 64x64 warp tile, + // it's only 64x64/block_size elements. For blocking size 16 ~ 64, it only + // takes 4 ~ 16 cp.async instructions to load. One warp has 32 threads, so + // it should be loaded in less than one cp.async instruction per thread. + // Even less for quant offset matrix. + static_assert(Detail::AsyncCopyIterationsPerStageQScale == 1, + "Quant scale should be loaded in one shot!"); + static_assert(IteratorQScale::kAccessesPerVector == 1, + "Quant scale should 1 access per vector!"); + + // Async Copy for quantization scale + typename IteratorQScale::AccessType *dst_ptr = + reinterpret_cast( + this->smem_iterator_QScale_.get()); + + constexpr int kSrcBytes = + sizeof_bits::value * + IteratorQScale::ThreadMap::kElementsPerAccess / 8; + + cutlass::arch::cp_async( + dst_ptr, iterator_QScale.get(), iterator_QScale.valid()); + } + + CUTLASS_DEVICE + void copy_qoffset_tiles(IteratorQOffset & iterator_QOffset) { + static_assert(Detail::AsyncCopyIterationsPerStageQOffset == 1, + "Quant offset should be loaded in one shot!"); + static_assert(IteratorQOffset::kAccessesPerVector == 1, + "Quant offset should 1 access per vector!"); + + if constexpr(kHasQOffset) { + // Async Copy for quantization offset + typename IteratorQOffset::AccessType *dst_ptr = + reinterpret_cast( + this->smem_iterator_QOffset_.get()); + + constexpr int kSrcBytes = sizeof_bits::value * + IteratorQOffset::ThreadMap::kElementsPerAccess / 8; + + cutlass::arch::cp_async( + dst_ptr, iterator_QOffset.get(), iterator_QOffset.valid()); + } + } + + CUTLASS_DEVICE + void copy_tiles_and_advance(IteratorA &iterator_A, IteratorB &iterator_B, + int group_start = 0) { + auto group_start_A = group_start * Detail::kAccessesPerGroupA; + iterator_A.set_iteration_index(group_start_A * + IteratorA::kAccessesPerVector); + this->smem_iterator_A_.set_iteration_index(group_start_A); + + // Async Copy for operand A + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::kAccessesPerGroupA; ++j) { + if (group_start_A + j < Detail::AsyncCopyIterationsPerStageA) { + typename IteratorA::AccessType *dst_ptr = + reinterpret_cast( + this->smem_iterator_A_.get()); + + int const kSrcBytes = sizeof_bits::value * + IteratorA::ThreadMap::kElementsPerAccess / + IteratorA::kAccessesPerVector / 8; + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorA::kAccessesPerVector; ++v) { + auto gmem_ptr = iterator_A.get(); + + cutlass::arch::cp_async( + dst_ptr + v, gmem_ptr, iterator_A.valid()); + + ++iterator_A; + } + + ++this->smem_iterator_A_; + } + } + + auto group_start_B = group_start * Detail::kAccessesPerGroupB; + iterator_B.set_iteration_index(group_start_B * + IteratorB::kAccessesPerVector); + this->smem_iterator_B_.set_iteration_index(group_start_B); + + // Async Copy for operand B + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::kAccessesPerGroupB; ++j) { + if (group_start_B + j < Detail::AsyncCopyIterationsPerStageB) { + typename IteratorB::AccessType *dst_ptr = + reinterpret_cast( + this->smem_iterator_B_.get()); + + int const kSrcBytes = sizeof_bits::value * + IteratorB::ThreadMap::kElementsPerAccess / + IteratorB::kAccessesPerVector / 8; + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorB::kAccessesPerVector; ++v) { + auto gmem_ptr = iterator_B.get(); + + cutlass::arch::cp_async( + dst_ptr + v, gmem_ptr, iterator_B.valid()); + + ++iterator_B; + } + ++this->smem_iterator_B_; + } + } + } + + /// GEMM prologue. Bootstrap the global->shared memory pipeline by fetching + /// the global fragments needed by the first kStages-1 threadblock mainloop iterations + CUTLASS_DEVICE + void prologue( + IteratorA &iterator_A, ///< [in|out] iterator over A operand in global memory + IteratorB &iterator_B, ///< [in|out] iterator over B operand in global memory + IteratorQScale &iterator_QScale, ///< [in|out] iterator over quant scales in global memory + IteratorQOffset &iterator_QOffset, ///< [in|out] iterator over quant offsets in global memory + int &gemm_k_iterations) ///< [in|out] number of threadblock mainloop iterations remaining + { + // Issue several complete stages + CUTLASS_PRAGMA_UNROLL + for (int stage = 0; stage < Base::kStages - 1; ++stage, --gemm_k_iterations) { + + // Disable global fetching if done with global fetch iterations + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + iterator_QScale.clear_mask(gemm_k_iterations == 0 || !should_load_qscale_); + + iterator_A.set_iteration_index(0); + this->smem_iterator_A_.set_iteration_index(0); + + // Async Copy for operand A + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA; ++j) { + typename IteratorA::AccessType *dst_ptr = + reinterpret_cast( + this->smem_iterator_A_.get()); + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorA::kAccessesPerVector; ++v) { + int const kSrcBytes = + sizeof_bits::value * + IteratorA::ThreadMap::kElementsPerAccess / + IteratorA::kAccessesPerVector / 8; + + int src_bytes = (iterator_A.valid() ? kSrcBytes : 0); + + cutlass::arch::cp_async_zfill( + dst_ptr + v, iterator_A.get(), iterator_A.valid()); + + ++iterator_A; + } + + ++this->smem_iterator_A_; + } + + iterator_B.set_iteration_index(0); + this->smem_iterator_B_.set_iteration_index(0); + + // Async Copy for operand B + CUTLASS_PRAGMA_UNROLL + for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB; ++j) { + typename IteratorB::AccessType *dst_ptr = + reinterpret_cast( + this->smem_iterator_B_.get()); + + CUTLASS_PRAGMA_UNROLL + for (int v = 0; v < IteratorB::kAccessesPerVector; ++v) { + int const kSrcBytes = + sizeof_bits::value * + IteratorB::ThreadMap::kElementsPerAccess / + IteratorB::kAccessesPerVector / 8; + + cutlass::arch::cp_async_zfill( + dst_ptr + v, iterator_B.get(), iterator_B.valid()); + + ++iterator_B; + } + + ++this->smem_iterator_B_; + } + + // Async Copy for quantization scale + static_assert(Detail::AsyncCopyIterationsPerStageQScale == 1, "Quant scale should be loaded in one shot!"); + static_assert(IteratorQScale::kAccessesPerVector == 1, "Quant scale should 1 access per vector!"); + + typename IteratorQScale::AccessType *dst_ptr = + reinterpret_cast( + this->smem_iterator_QScale_.get()); + + constexpr int kSrcBytes = + sizeof_bits::value * + IteratorQScale::ThreadMap::kElementsPerAccess / 8; + + auto gmem_ptr = iterator_QScale.get(); + + cutlass::arch::cp_async( + dst_ptr, gmem_ptr, iterator_QScale.valid()); + + if constexpr (kHasQOffset) { + iterator_QOffset.clear_mask(gemm_k_iterations == 0 || !should_load_qoffset_); + + // Async Copy for quantization offset + static_assert(Detail::AsyncCopyIterationsPerStageQOffset == 1, "Quant offset should be loaded in one shot!"); + static_assert(IteratorQOffset::kAccessesPerVector == 1, "Quant offset should 1 access per vector!"); + typename IteratorQOffset::AccessType *dst_ptr = + reinterpret_cast( + this->smem_iterator_QOffset_.get()); + + constexpr int kSrcBytes = + sizeof_bits::value * + IteratorQOffset::ThreadMap::kElementsPerAccess / 8; + + cutlass::arch::cp_async( + dst_ptr, iterator_QOffset.get(), iterator_QOffset.valid()); + } + + // Move to the next write stage + advance_smem_write_stage(iterator_A, iterator_B, iterator_QScale, iterator_QOffset); + + // Defines the boundary of a stage of cp.async. + cutlass::arch::cp_async_fence(); + } + } + + + /// Wait until we have at least one completed global fetch stage + CUTLASS_DEVICE + void gmem_wait() + { + // Wait until we have at least one committed global fetch stage. (#uncommitted = Base::kStages - 1 - #committed) + cutlass::arch::cp_async_wait(); + __syncthreads(); + + if constexpr(debug_layout) { + if (LayoutDebugType::debug_smem && layout_debug_.block_id_ == 1) { + if (threadIdx.x == 0){ + printf("stage: %d\n", smem_write_stage_idx_); + } + cutlass::debug::dump_shmem(layout_debug_.smem_qscale_ptr_, Base::SharedStorage::ShapeQScale::kCount); + if constexpr(kHasQOffset){ + cutlass::debug::dump_shmem(layout_debug_.smem_qoffset_ptr_, Base::SharedStorage::ShapeQScale::kCount); + } + } + } + } + + /// Perform a threadblock mainloop iteration of matrix multiply-accumulate + CUTLASS_DEVICE + void mac_loop_iter( + PipeState &pipe_state, ///< [in|out] loop-carried pipeline state + FragmentC &accum, ///< [in|out] destination accumulator tile + IteratorA &iterator_A, ///< [in|out] iterator over A operand in global memory + IteratorB &iterator_B, ///< [in|out] iterator over B operand in global memory + IteratorQScale &iterator_QScale, ///< [in|out] iterator over quant scales in global memory + IteratorQOffset &iterator_QOffset, ///< [in|out] iterator over quant offsets in global memory + int &gemm_k_iterations) ///< [in|out] number of threadblock mainloop iterations remaining + { + // Unroll the warp-level MMA tiles of a threadblock's mainloop iteration + CUTLASS_PRAGMA_UNROLL + for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations; ++warp_mma_k) { + // Loading next warp-level tiles from shared memory. This can be skipped on the very + // last iteration where: + // (gemm_k_iterations == (1 - Base::kStages)) && (warp_mma_k == (Base::kWarpGemmIterations - 1)) + // However, evaluating this condition seems more expensive than simply loading the tiles + this->warp_tile_iterator_QScale_.load( + pipe_state.warp_loaded_frag_QScale_, + pipe_state.warp_loaded_frag_QOffset_); + ++this->warp_tile_iterator_QScale_; + + this->warp_tile_iterator_B_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations); + this->warp_tile_iterator_B_.load(pipe_state.warp_loaded_frag_B_); + ++this->warp_tile_iterator_B_; + + this->warp_tile_iterator_A_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations); + this->warp_tile_iterator_A_.load(pipe_state.warp_loaded_frag_A_[(warp_mma_k + 1) % 2]); + ++this->warp_tile_iterator_A_; + + // All warp-tiles issue their share of global->shared fragment copies + copy_tiles_and_advance( + iterator_A, + iterator_B, + (warp_mma_k + 1) % Base::kWarpGemmIterations); + + if constexpr(debug_layout) { + if (LayoutDebugType::debug_fragment && layout_debug_.block_id_ == 1 && layout_debug_.warp_id_ == 0 && layout_debug_.lane_id_ == 0){ + printf("LINE %d, warp_tile_B kgroup %d\n", __LINE__, warp_mma_k % Base::kWarpGemmIterations); + } + LayoutDebugType::print_as_int4(pipe_state.warp_loaded_frag_B_, 'W', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + LayoutDebugType::print_fragment(Operator::IteratorQScale::debug_expand(pipe_state.warp_loaded_frag_QScale_), 'Q', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + if constexpr(kHasQOffset){ + LayoutDebugType::print_fragment(Operator::IteratorQScale::debug_expand(pipe_state.warp_loaded_frag_QOffset_), 'O', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + } + } + + warp_mma_.transform( + pipe_state.warp_transformed_frag_B_[(warp_mma_k + 1) % 2], + pipe_state.warp_loaded_frag_B_, + pipe_state.warp_loaded_frag_QScale_, + pipe_state.warp_loaded_frag_QOffset_); + + if constexpr(debug_layout) { + LayoutDebugType::print_fragment(pipe_state.warp_transformed_frag_B_[(warp_mma_k + 1) % 2], 'B', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + } + + // Execute the current warp-tile of MMA operations + if (Detail::kStagedAccumulation) { + warp_mma_( + pipe_state.tmp_accum_, + pipe_state.warp_loaded_frag_A_[warp_mma_k % 2], + pipe_state.warp_transformed_frag_B_[warp_mma_k % 2], + pipe_state.tmp_accum_ + ); + + if (warp_mma_k == 0) { + plus plus_accum; + accum = plus_accum(accum, pipe_state.tmp_accum_); + pipe_state.tmp_accum_.clear(); + } + } else { + warp_mma_( + accum, + pipe_state.warp_loaded_frag_A_[warp_mma_k % 2], + pipe_state.warp_transformed_frag_B_[warp_mma_k % 2], + accum + ); + } + + if (warp_mma_k == 0) { + copy_qscale_tiles(iterator_QScale); + } + if (warp_mma_k == 1) { + copy_qoffset_tiles(iterator_QOffset); + } + + // The second-to-last warp-tile also moves to the next global fetch stage + if (warp_mma_k == Base::kWarpGemmIterations - 2) { + // Inserts a memory fence between stages of cp.async instructions. + cutlass::arch::cp_async_fence(); + + // Move to the next global fetch stage + advance_smem_write_stage(iterator_A, iterator_B, iterator_QScale, iterator_QOffset); + advance_smem_read_stage(); + + // Disable global fetching when done with global fetch iterations + --gemm_k_iterations; + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + iterator_QScale.clear_mask(gemm_k_iterations == 0 || !should_load_qscale_); + if constexpr(kHasQOffset){ + iterator_QOffset.clear_mask(gemm_k_iterations == 0 || !should_load_qoffset_); + } + + // Wait until we have at least one completed global fetch stage + gmem_wait(); + } + + } + } + + /// Specialized mainloop iteration of matrix multiply-accumulate, for small M + CUTLASS_DEVICE + void mac_loop_iter_small_m( + PipeState &pipe_state, ///< [in|out] loop-carried pipeline state + FragmentC &accum, ///< [in|out] destination accumulator tile + IteratorA &iterator_A, ///< [in|out] iterator over A operand in global memory + IteratorB &iterator_B, ///< [in|out] iterator over B operand in global memory + IteratorQScale &iterator_QScale, ///< [in|out] iterator over quant scales in global memory + IteratorQOffset &iterator_QOffset, ///< [in|out] iterator over quant offsets in global memory + int &gemm_k_iterations) ///< [in|out] number of threadblock mainloop iterations remaining + { + // Unroll the warp-level MMA tiles of a threadblock's mainloop iteration + CUTLASS_PRAGMA_UNROLL + for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations; ++warp_mma_k) { + // In the case of small M, memory latency dominates. We try to move uses far + // from their definitions to hide latency. + if constexpr(debug_layout) { + if (LayoutDebugType::debug_fragment && layout_debug_.block_id_ == 1 && layout_debug_.warp_id_ == 0 && layout_debug_.lane_id_ == 0){ + printf("LINE %d, warp_tile_B kgroup %d\n", __LINE__, warp_mma_k % Base::kWarpGemmIterations); + } + LayoutDebugType::print_as_int4(pipe_state.warp_loaded_frag_B_, 'W', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + LayoutDebugType::print_fragment(Operator::IteratorQScale::debug_expand(pipe_state.warp_loaded_frag_QScale_), 'Q', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + if constexpr(kHasQOffset){ + LayoutDebugType::print_fragment(Operator::IteratorQScale::debug_expand(pipe_state.warp_loaded_frag_QOffset_), 'O', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + } + } + + warp_mma_.transform( + pipe_state.warp_transformed_frag_B_[(warp_mma_k) % 2], + pipe_state.warp_loaded_frag_B_, + pipe_state.warp_loaded_frag_QScale_, + pipe_state.warp_loaded_frag_QOffset_); + + if constexpr(debug_layout) { + LayoutDebugType::print_fragment(pipe_state.warp_transformed_frag_B_[(warp_mma_k) % 2], 'B', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + } + + // Loading next warp-level tiles from shared memory. + this->warp_tile_iterator_B_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations); + this->warp_tile_iterator_B_.load(pipe_state.warp_loaded_frag_B_); + ++this->warp_tile_iterator_B_; + + this->warp_tile_iterator_QScale_.load( + pipe_state.warp_loaded_frag_QScale_, + pipe_state.warp_loaded_frag_QOffset_); + ++this->warp_tile_iterator_QScale_; + + this->warp_tile_iterator_A_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations); + this->warp_tile_iterator_A_.load(pipe_state.warp_loaded_frag_A_[(warp_mma_k + 1) % 2]); + ++this->warp_tile_iterator_A_; + + // All warp-tiles issue their share of global->shared fragment copies + copy_tiles_and_advance( + iterator_A, + iterator_B, + (warp_mma_k + 1) % Base::kWarpGemmIterations); + + // Execute the current warp-tile of MMA operations + if (Detail::kStagedAccumulation) { + warp_mma_( + pipe_state.tmp_accum_, + pipe_state.warp_loaded_frag_A_[warp_mma_k % 2], + pipe_state.warp_transformed_frag_B_[warp_mma_k % 2], + pipe_state.tmp_accum_ + ); + + if (warp_mma_k == 0) { + plus plus_accum; + accum = plus_accum(accum, pipe_state.tmp_accum_); + pipe_state.tmp_accum_.clear(); + } + } else { + warp_mma_( + accum, + pipe_state.warp_loaded_frag_A_[warp_mma_k % 2], + pipe_state.warp_transformed_frag_B_[warp_mma_k % 2], + accum + ); + } + + // The second-to-last warp-tile also moves to the next global fetch stage + if (warp_mma_k == Base::kWarpGemmIterations - 2) { + // Inserts a memory fence between stages of cp.async instructions. + cutlass::arch::cp_async_fence(); + + // Move to the next global fetch stage + advance_smem_write_stage(iterator_A, iterator_B, iterator_QScale, iterator_QOffset); + advance_smem_read_stage(); + + // Disable global fetching when done with global fetch iterations + --gemm_k_iterations; + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + iterator_QScale.clear_mask(gemm_k_iterations == 0 || !should_load_qscale_); + if constexpr(kHasQOffset){ + iterator_QOffset.clear_mask(gemm_k_iterations == 0 || !should_load_qoffset_); + } + + copy_qscale_tiles(iterator_QScale); + copy_qoffset_tiles(iterator_QOffset); + + // Wait until we have at least one completed global fetch stage + gmem_wait(); + } + + } + } + + + /// Perform the specified number of threadblock mainloop iterations of matrix + /// multiply-accumulate. Assumes prologue has been initiated. + CUTLASS_DEVICE + void gemm_iters( + int gemm_k_iterations, ///< number of threadblock mainloop iterations + FragmentC &accum, ///< [in|out] accumulator tile + IteratorA &iterator_A, ///< [in|out] iterator over A operand in global memory + IteratorB &iterator_B, ///< [in|out] iterator over B operand in global memory + IteratorQScale &iterator_QScale, ///< [in|out] iterator over QScale operand in global memory + IteratorQOffset &iterator_QOffset) ///< [in|out] iterator over QOffset operand in global memory + { + PipeState pipe_state; + + // Disable global fetching if done with global fetch iterations + iterator_A.clear_mask(gemm_k_iterations == 0); + iterator_B.clear_mask(gemm_k_iterations == 0); + iterator_QScale.clear_mask(gemm_k_iterations == 0 || !should_load_qscale_); + if constexpr(kHasQOffset) { + iterator_QOffset.clear_mask(gemm_k_iterations == 0 || !should_load_qoffset_); + } + + // Load first warp-tile's B fragment from shared memory + this->warp_tile_iterator_QScale_.load( + pipe_state.warp_loaded_frag_QScale_, + pipe_state.warp_loaded_frag_QOffset_); + ++this->warp_tile_iterator_QScale_; + + this->warp_tile_iterator_B_.set_kgroup_index(0); + this->warp_tile_iterator_B_.load(pipe_state.warp_loaded_frag_B_); + ++this->warp_tile_iterator_B_; + + // Load first warp-tile's A fragment from shared memory + this->warp_tile_iterator_A_.set_kgroup_index(0); + this->warp_tile_iterator_A_.load(pipe_state.warp_loaded_frag_A_[0]); + ++this->warp_tile_iterator_A_; + + copy_tiles_and_advance(iterator_A, iterator_B, 0); + + if constexpr(Shape::kM > 32) { + // the case of bigger m + if constexpr(debug_layout) { + if (LayoutDebugType::debug_fragment && layout_debug_.block_id_ == 1 && layout_debug_.warp_id_ == 0 && layout_debug_.lane_id_ == 0){ + printf("LINE %d, warp_tile_B kgroup %d\n", __LINE__, 0); + } + LayoutDebugType::print_as_int4(pipe_state.warp_loaded_frag_B_, 'W', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + LayoutDebugType::print_fragment(Operator::IteratorQScale::debug_expand(pipe_state.warp_loaded_frag_QScale_), 'Q', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + if constexpr(kHasQOffset){ + LayoutDebugType::print_fragment(Operator::IteratorQScale::debug_expand(pipe_state.warp_loaded_frag_QOffset_), 'O', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + } + } + + warp_mma_.transform( + pipe_state.warp_transformed_frag_B_[0], + pipe_state.warp_loaded_frag_B_, + pipe_state.warp_loaded_frag_QScale_, + pipe_state.warp_loaded_frag_QOffset_); + + if constexpr(debug_layout) { + LayoutDebugType::print_fragment(pipe_state.warp_transformed_frag_B_[0], 'B', layout_debug_.block_id_, layout_debug_.warp_id_, layout_debug_.lane_id_); + } + } else { + // the case of small m + copy_qscale_tiles(iterator_QScale); + copy_qoffset_tiles(iterator_QOffset); + } + + if (Detail::kStagedAccumulation) { + pipe_state.tmp_accum_.clear(); + } + + // Mainloop + CUTLASS_GEMM_LOOP + for (; gemm_k_iterations > (-Base::kStages + 1);) { + if constexpr(Shape::kM > 32) { + mac_loop_iter( + pipe_state, + accum, + iterator_A, + iterator_B, + iterator_QScale, + iterator_QOffset, + gemm_k_iterations); + } else { + mac_loop_iter_small_m( + pipe_state, + accum, + iterator_A, + iterator_B, + iterator_QScale, + iterator_QOffset, + gemm_k_iterations); + } + } + + if (Detail::kStagedAccumulation) { + plus plus_accum; + accum = plus_accum(accum, pipe_state.tmp_accum_); + } + + // Commit and drain all pending and predicated cp.async pnz from the GEMM mainloop + cutlass::arch::cp_async_fence(); + cutlass::arch::cp_async_wait<0>(); + __syncthreads(); + + } + + + /// Perform a threadblock-scoped matrix multiply-accumulate + CUTLASS_DEVICE + void operator()( + ///< problem size of GEMM + int gemm_k_iterations, + ///< destination accumulator tile + FragmentC &accum, + ///< iterator over A operand in global memory + IteratorA iterator_A, + ///< iterator over B operand in global memory + IteratorB iterator_B, + ///< iterator over quant scales in global memory + IteratorQScale iterator_QScale, + ///< Iterator over quant offsets in global memory + IteratorQOffset iterator_QOffset, + ///< initial value of accumulator + FragmentC const &src_accum) { + + // Prologue (start fetching iterations of global fragments into shared memory) + prologue(iterator_A, iterator_B, iterator_QScale, iterator_QOffset, gemm_k_iterations); + + // Wait until we have at least one completed global fetch stage + gmem_wait(); + + // Initialize destination accumulators with source accumulators + accum = src_accum; + + // Perform the MAC-iterations + gemm_iters(gemm_k_iterations, accum, iterator_A, iterator_B, iterator_QScale, iterator_QOffset); + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace threadblock +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/default_quantb_mma_tensor_op.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/default_quantb_mma_tensor_op.h new file mode 100644 index 0000000000000..2c49888c94504 --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/default_quantb_mma_tensor_op.h @@ -0,0 +1,112 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/** + * Modifications Copyright (c) Microsoft. + * Licensed under the MIT license. + * + * @file default_quantb_mma_tensor_op.h + * @brief Modified from cutlass/gemm/warp/default_mma_tensor_op.h + * Default warp-level GEMM operators selected by data type, size, and layouts of operands. + */ + +#pragma once + +#include "cutlass/cutlass.h" +#include "cutlass_ext/q4gemm/warp/quantb_mma_tensor_op.h" + +namespace cutlass { +namespace gemm { +namespace warp { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Partial specialization for m-by-n-by-kgroup +template < + /// Shape of one matrix production operation (concept: GemmShape) + typename WarpShape_, + /// Shape of one matrix production operation (concept: GemmShape) + typename InstructionShape_, + /// Data type of A elements + typename ElementA, + /// Layout of A matrix (concept: MatrixLayout) + typename LayoutA, + /// Data type of B elements + typename ElementB, + /// Layout of B matrix (concept: MatrixLayout) + typename LayoutB, + /// Data type of quant scales + typename ElementQScale, + /// Layout of quant scales (concept: MatrixLayout) + typename SmemLayoutQScale, + /// Data type of quant offsets + typename ElementQOffset, + /// Layout of quant offsets (concept: MatrixLayout) + typename SmemLayoutQOffset, + /// Blocking size of quantization + typename QuantBlocking, + /// Element type of C matrix + typename ElementC, + /// Layout of C matrix (concept: MatrixLayout) + typename LayoutC, + /// Operator describing the tensor operation + typename Operator_ = arch::OpMultiplyAdd, + /// Number of partitions along K dimension + int PartitionsK = 1, + /// Store the accumulators in row major or column major. Row major is used + /// when output layout is interleaved. + bool AccumulatorsInRowMajor = false> +struct DefaultQuantBMmaTensorOp { + using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< + cutlass::arch::Mma, + cutlass::MatrixShape<1, 1> >; + + // Define the warp-level tensor op + using Type = cutlass::gemm::warp::QuantBMmaTensorOp< + WarpShape_, ElementA, LayoutA, ElementB, LayoutB, ElementQScale, SmemLayoutQScale, + ElementQOffset, SmemLayoutQOffset, QuantBlocking, ElementC, LayoutC, + Policy, PartitionsK, AccumulatorsInRowMajor>; +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace warp +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// + +#include "cutlass/gemm/warp/mma_complex_tensor_op_tile_iterator_sm80.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/quantb_meta_mma_tensor_op_tile_iterator.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/quantb_meta_mma_tensor_op_tile_iterator.h new file mode 100644 index 0000000000000..26239161cf8a3 --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/quantb_meta_mma_tensor_op_tile_iterator.h @@ -0,0 +1,882 @@ +/** + * Copyright (c) Microsoft Corporation. All rights reserved. + * Licensed under the MIT license. + * + * @file quantb_meta_mma_tensor_op_tile_iterator.h + * @brief Templates for loading quantization meta data for operand B + * from shared memory to fragments. This is meant to be used in + * lock step with the operand B tile iterator. Containing logic + * to figure out the operand B layout in the tensor core, + * and deliver each meta data element to its corresponding + * operand B element for dequantization. + */ + +#pragma once + +#include "cutlass/cutlass.h" + +#include "cutlass/array.h" +#include "cutlass/numeric_types.h" +#include "cutlass/tensor_ref.h" +#include "cutlass/matrix_shape.h" + +#include "cutlass/arch/memory_sm75.h" +#include "cutlass/gemm/gemm.h" + +#include "cutlass/layout/matrix.h" +#include "cutlass/layout/tensor.h" +#include "cutlass/layout/pitch_linear.h" +#include "cutlass/layout/tensor_op_multiplicand_sm75.h" + +#include "cutlass/platform/platform.h" +#include "cutlass/fast_math.h" + +//////////////////////////////////////////////////////////////////////////////// + +namespace{ + +struct b32_pair{ + uint32_t a; + uint32_t b; +}; + +struct fp16_quad{ + cutlass::half_t a; + cutlass::half_t b; + cutlass::half_t c; + cutlass::half_t d; +}; + +struct b16_quad{ + int16_t a; + int16_t b; + int16_t c; + int16_t d; +}; + +union b64 { + uint64_t single; + b32_pair pair; + b16_quad quard; + fp16_quad fp16_quad; +}; + +static_assert(sizeof(b64) == 8, "b64 should be 64 bits"); + +/// Convert packed 4b weights into fp16(weight + 16) +/// Current bit hacking only supports fp16, need to add bf16 later. +/// +template +CUTLASS_DEVICE +void weights2Half(cutlass::Array const &weights, + cutlass::Array& dest) +{ + static_assert(Size % 8 == 0, "Weights should have been prepacked by 2x2 tiles, 2 weights per tile."); + uint32_t* dest_pair = reinterpret_cast(dest.data()); + const uint32_t* w_oct = reinterpret_cast(weights.data()); + + CUTLASS_PRAGMA_UNROLL + for (int oct_idx = 0; oct_idx < Size/8; oct_idx++, w_oct++, dest_pair += 4){ +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + + // static_cast(16 + weight) + // 4b weights are prepacked into [0, 2, 4, 6, 1, 3, 5, 7], so that adjacent weights + // are in different 16b half words, making it easier to convert to fp16. + asm volatile( + "{\n\t" + " shl.b32 %0, %4, 6;\n" + " shl.b32 %1, %4, 2;\n" + " shr.u32 %2, %4, 2;\n" + " shr.u32 %3, %4, 6;\n" + " lop3.b32 %0, %0, 0x03c003c0, 0x4c004c00, 0xea;\n" // a & 0x03c0 | 0x4c00 + " lop3.b32 %1, %1, 0x03c003c0, 0x4c004c00, 0xea;\n" + " lop3.b32 %2, %2, 0x03c003c0, 0x4c004c00, 0xea;\n" + " lop3.b32 %3, %3, 0x03c003c0, 0x4c004c00, 0xea;\n" + "}\n" + : "=r"(dest_pair[0]), "=r"(dest_pair[1]), + "=r"(dest_pair[2]), "=r"(dest_pair[3]) + : "r"(*w_oct)); +#else + assert(0); +#endif + } + +} + +} // namespace + +//////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace warp { + +//////////////////////////////////////////////////////////////////////////////// + +// Traits to describe the layout of quantization meta data layout in a MMA fragment +// Since operand B is quantized on a per block basis, it's one meta data per block. + +template < + /// Shape of the operand B matrix to load in a warp (concept: MatrixShape) + typename WarpShapeB_, + /// Block dimensions of the blockwise quantization. So the actual meta data + /// warp shape is WarpShapeB_ / BlockingShape_ + typename BlockingShape_, + /// Underlying matrix multiply operator (concept: arch::Mma) + typename ArchMmaOperator_, + /// Number of threads participating in one matrix operation + int Threads> +class QuantBMetaMmaTile{ +public: + + using WarpShapeB = WarpShapeB_; + using BlockingShape = BlockingShape_; + using ArchMmaOperator = ArchMmaOperator_; + + static_assert(Threads == 32, "This iterator should work in a warp only."); + + /// Shape of the curresponding operand B tile iterator + using TileShapeB = MatrixShape; + + // Tensor core operand B layout is a column major 4x8 tile, divided + // into 32 threads (T0 ~ T31) as shown below. Each element of the tile is 32b, + // so for fp16 it becomes 8 x 8, and int8 it becomes 16 x 8. + // T0 | T4 | T8 | T12 | T16 | T20 | T24 | T28 + // T1 | T5 | T9 | T13 | T17 | T21 | T25 | T29 + // T2 | T6 | T10 | T14 | T18 | T22 | T26 | T30 + // T3 | T7 | T11 | T15 | T19 | T23 | T27 | T31 + using CoreTile = layout::PitchLinearShape<4, 8>; + + /// Each thread holds a 32b fragment per tile: for half precision, it's 2 elements, 4 elements for int8 + static int const kNumBsPerCoreTileFragement = 32 / sizeof_bits::value; + + /// Each mma instruction can process either 1 or 2 tensor core operand B tiles (stacked on the k dimension) + static int const kBTilesPerMma = + sizeof_bits::value * ArchMmaOperator::FragmentB::kElements / 32; + static_assert(kBTilesPerMma == 1 || kBTilesPerMma == 2, "Only support 1 or 2 operand B tiles per mma."); + + /// Each operand B tile iterator load covers a number of mma instructions + static int const kMmaIterationsB = WarpShapeB::kColumn / ArchMmaOperator::Shape::kN; + + /// Number of B elements a fragment of meta data should cover + static int const kExpandedSize = kNumBsPerCoreTileFragement * kBTilesPerMma * kMmaIterationsB; + + // Now we figure out how many meta data elements to load for each TileShapeB + + /// Number of meta elements per CoreTile. + static int const kCoreTileFragementSize = (kNumBsPerCoreTileFragement + BlockingShape::kRow - 1) / BlockingShape::kRow; + + /// Number of core tiles per mma instruction, different from kBTilesPerMma when blocking size on K dimension + /// exceeds the tile depth, so two tiles share the same meta data + static int const kTilesPerMma = ((kBTilesPerMma == 2) && + (BlockingShape::kRow <= kNumBsPerCoreTileFragement * CoreTile::kContiguous)) + ? 2 : 1; + + /// stride to reach the meta data for the next CoreTile on the K dimension + static int const kKTileStride = (kNumBsPerCoreTileFragement * CoreTile::kContiguous + BlockingShape::kRow - 1) / BlockingShape::kRow; + + /// Stride on N dimension should be the tile width, shrunk by blocking size on this dimension. + static int const kNStride = (CoreTile::kStrided + BlockingShape::kColumn - 1) / BlockingShape::kColumn; + + /// On N dimension, how many tiles share the same meta data + static int const kNRepeats = (BlockingShape::kColumn + CoreTile::kStrided - 1) / CoreTile::kStrided; + + /// Each fragment should cover kMmaIterationsB number of mma intructions on the N dimension. + /// When blocking size on this dimension exceeds the tile width, multiple iterations + /// would share the same data. + static int const kMmaIterations = (kMmaIterationsB + kNRepeats - 1) / kNRepeats; + + static int const kFragementSize = kCoreTileFragementSize * kTilesPerMma * kMmaIterations; + + CUTLASS_DEVICE + static MatrixCoord lane_position(int lane_id) { + if constexpr(kNumBsPerCoreTileFragement == 2 + && kBTilesPerMma == 2 + && BlockingShape::kRow == 1){ + // Optimize for a special case of: + // 16b gemm (kNumBsPerCoreTileFragement == 2) + // 2 B operand tiles per mma (kBTilesPerMma == 2) + // (1,n) quantization blocking + // The scale and offset tensors are prepacked to reduce the number of load instructions. + return make_Coord((lane_id % CoreTile::kContiguous) * 4, + lane_id / CoreTile::kContiguous); + } else { + return make_Coord((lane_id % CoreTile::kContiguous) * kNumBsPerCoreTileFragement, + lane_id / CoreTile::kContiguous); + } + } +}; + + +//////////////////////////////////////////////////////////////////////////////// + +/// This tile iterator is to load quantization meta data for operand B from +/// shared memory to fragments (hopefully allocated to registers by compilers). +/// Examples of meta data include scale or offsets. The operand B matrix is +/// quantized on a per block basis, meaning one element of meta data per block. +/// +/// This is meant to be used in lock step with the operand B tile iterator. +/// So all parameters are logical positions in the operand B tiles. +/// The goal here is to deliver each meta data element to its corresponding +/// operand B element for dequantization. As a result, we need to figure +/// out the operand B layout in the tensor core. +/// +template < + /// Shape of the operand B matrix to load in a warp (concept: MatrixShape) + typename WarpShapeB_, + /// Block dimensions of the blockwise quantization. So the actual meta data + /// warp shape is WarpShapeB_ / BlockingShape_ + typename BlockingShape_, + /// Data type of the quant scales + typename ElementScale_, + /// Layout of the quant scales + typename LayoutScale_, + /// Data type of quant offsets + typename ElementOffset_, + /// Layout of quant offsets + typename LayoutOffset_, + /// Underlying matrix multiply operator (concept: arch::Mma) + typename ArchMmaOperator_, + /// Number of threads participating in one matrix operation + int Threads, + /// Number of partitions along K dimension + int PartitionsK_ = 1> +class QuantBMetaMmaTensorOpTileIterator; + +//////////////////////////////////////////////////////////////////////////////// + +/// Specialization for column major layout + +template < + /// Shape of the operand B matrix to load in a warp (concept: MatrixShape) + typename WarpShapeB_, + /// Block dimensions of the blockwise quantization. So the actual meta data + /// warp shape is WarpShapeB_ / BlockingShape_ + typename BlockingShape_, + /// Data type of the meta data elements + typename ElementScale_, + /// Data type of quant offsets + typename ElementOffset_, + /// Underlying matrix multiply operator (concept: arch::Mma) + typename ArchMmaOperator_, + /// Number of threads participating in one matrix operation + int Threads> +class QuantBMetaMmaTensorOpTileIterator{ +public: + + using WarpShapeB = WarpShapeB_; + using BlockingShape = BlockingShape_; + using ElementScale = ElementScale_; + using Layout = cutlass::layout::ColumnMajor; + using ElementOffset = ElementOffset_; + using ArchMmaOperator = ArchMmaOperator_; + + static constexpr bool kHasOffset = !(std::is_same::value); + + static_assert(BlockingShape::kRow == 1 && BlockingShape::kColumn > 1, + "Only support row blocking for column major layout"); + + using MetaTile = QuantBMetaMmaTile; + + /// Number of MMA instructions for this tile + static constexpr int kMmaIterationsB = MetaTile::kMmaIterationsB; + + /// Number of B elements per mma tile fragment (32b), 2 for half precision, 4 for int8 + static constexpr int kNumBsPerCoreTileFragement = MetaTile::kNumBsPerCoreTileFragement; + + /// Each mma instruction can process either 1 or 2 operand B tiles (stacked on the k dimension) + static constexpr int kBTilesPerMma = MetaTile::kBTilesPerMma; + + /// Number of B elements a fragment of meta data should cover + static constexpr int kExpandedSize = MetaTile::kExpandedSize; + + /// Number of meta elements per core tile fragment + static constexpr int kCoreTileFragementSize = MetaTile::kCoreTileFragementSize; + + /// stride for reaching the next core tile (if there is one) on the K dimension + static constexpr int kKTileStride = MetaTile::kKTileStride; + + /// do we need to load meta data for the next core tile on the K dimension? + static constexpr int kTilesPerMma = MetaTile::kTilesPerMma; + + static constexpr int kNStride = MetaTile::kNStride; + static constexpr int kNRepeats = MetaTile::kNRepeats; + static constexpr int kMmaIterations = MetaTile::kMmaIterations; + + using TensorRefScale = TensorRef; + using TensorRefOffset = TensorRef; + using TensorCoord = typename Layout::TensorCoord; + + using Index = typename Layout::Index; + using LongIndex = typename Layout::LongIndex; + using StrideIndex = typename Layout::Stride::Index; + + using FragmentScale = Array; + using FragmentOffset = typename std::conditional, + std::monostate>::type; + + using AccessTypeScale = Array; + using AccessTypeOffset = Array; + +private: + + ElementScale *pointer_; + Layout layout_; + + ElementOffset *pointer_offset_; + Layout layout_offset_; + + TensorCoord lane_position_; + +public: + + CUTLASS_DEVICE + QuantBMetaMmaTensorOpTileIterator() { } + + CUTLASS_DEVICE + QuantBMetaMmaTensorOpTileIterator( + TensorRefScale const &ref, + TensorRefOffset const &ref_offset, + int lane_idx + ): + pointer_(ref.data()), + layout_(ref.layout()), + pointer_offset_(ref_offset.data()), + layout_offset_(ref_offset.layout()), + lane_position_(MetaTile::lane_position(lane_idx)){} + + /// Loads a fragment + CUTLASS_HOST_DEVICE + void load(FragmentScale &frag, FragmentOffset &frag_offset) { + if constexpr(kNumBsPerCoreTileFragement == 2 + && kBTilesPerMma == 2){ + // Optimize for a special case of: + // 16b gemm (kNumBsPerCoreTileFragement == 2) + // 2 B operand tiles per mma (kBTilesPerMma == 2) + // (1,n) quantization blocking (BlockingShape::kRow == 1) + // The scale and offset tensors are prepacked to reduce the number of load instructions needed + const int row = lane_position_.row(); + const int column = lane_position_.column() / BlockingShape::kColumn; + + Array *dst_ptr = reinterpret_cast*>(frag.data()); + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0, c = column; n_idx < kMmaIterations; n_idx++, c += kNStride){ + Array *src_ptr = reinterpret_cast*>(pointer_ + layout_({row, c})); + *dst_ptr = *src_ptr; + dst_ptr++; + } + + if constexpr(kHasOffset){ + Array *dst_ptr_offset = reinterpret_cast*>(frag_offset.data()); + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0, c = column; n_idx < kMmaIterations; n_idx++, c += kNStride){ + Array *src_ptr_offset = reinterpret_cast*>(pointer_offset_ + layout_offset_({row, c})); + *dst_ptr_offset = *src_ptr_offset; + dst_ptr_offset++; + } + } + + } else { + // Other cases, offsets and scales are not prepacked. + + const int row = lane_position_.row() / BlockingShape::kRow; + const int column = lane_position_.column() / BlockingShape::kColumn; + + AccessTypeScale* dst_ptr = reinterpret_cast(frag.data()); + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0, c = column; n_idx < kMmaIterations; n_idx++, c += kNStride){ + CUTLASS_PRAGMA_UNROLL + for (int mma_tile_idx = 0, r = row; mma_tile_idx < kTilesPerMma; mma_tile_idx++, r += kKTileStride){ + AccessTypeScale* src_ptr = reinterpret_cast(pointer_ + layout_({r, c})); + *dst_ptr = *src_ptr; + dst_ptr++; + } + } + + if constexpr(kHasOffset){ + AccessTypeOffset* dst_ptr = reinterpret_cast(frag_offset.data()); + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0, c = column; n_idx < kMmaIterations; n_idx++, c += kNStride){ + CUTLASS_PRAGMA_UNROLL + for (int mma_tile_idx = 0, r = row; mma_tile_idx < kTilesPerMma; mma_tile_idx++, r += kKTileStride){ + AccessTypeOffset* src_ptr = reinterpret_cast(pointer_offset_ + layout_offset_({r, c})); + *dst_ptr = *src_ptr; + dst_ptr++; + } + } + } + } + } + + template + CUTLASS_HOST_DEVICE + static Array debug_expand(Array const &frag){ + Array ret; + int out_idx = 0; + CUTLASS_PRAGMA_UNROLL + for (int n_out = 0; n_out < kMmaIterationsB; n_out++){ + int n_idx = n_out / kNRepeats; + CUTLASS_PRAGMA_UNROLL + for (int mma_tile_out_idx = 0; mma_tile_out_idx < kBTilesPerMma; mma_tile_out_idx++){ + int mma_tile_idx = mma_tile_out_idx / (kBTilesPerMma / kTilesPerMma); + CUTLASS_PRAGMA_UNROLL + for (int elem_out_idx = 0; elem_out_idx < kNumBsPerCoreTileFragement; elem_out_idx++){ + int elem_idx = elem_out_idx / BlockingShape::kRow; + int idx = elem_idx + mma_tile_idx * kCoreTileFragementSize + n_idx * kCoreTileFragementSize * kTilesPerMma; + ret[out_idx] = frag[idx]; + out_idx++; + } + } + } + return ret; + } + + CUTLASS_HOST_DEVICE + static void dequant(FragmentScale const &scales, + FragmentOffset const &fragment_offsets, + Array const &weights, + Array& dest){ + static_assert(kNumBsPerCoreTileFragement == 2, "Only for 16b gemm."); + static_assert(kExpandedSize % 8 == 0, "Weights should have been prepacked by 2x2 tiles, 2 weights per tile."); + + // First convert 4b weight into fp16(weight + 16) + weights2Half(weights, dest); + + if constexpr(kBTilesPerMma == 2){ + // Optimize for a special case of: + // 2 B operand tiles per mma (kBTilesPerMma == 2) + // (1,n) quantization blocking (BlockingShape::kRow == 1) + + uint32_t* dest_pair = reinterpret_cast(dest.data()); + const b64* scales_ptr = reinterpret_cast(scales.data()); + [[maybe_unused]] const ElementOffset* fragment_offsets_ptr = nullptr; + if constexpr(kHasOffset) { fragment_offsets_ptr = fragment_offsets.data(); } + + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0; n_idx < kMmaIterations; n_idx++){ + // dequantize: d = scale * (weight - offset) + // to use FMA, d = scale * weight + (scale * (-offset)) + + [[maybe_unused]] b64 offsets{0}; + if constexpr(kHasOffset) { +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + const uint32_t* p = reinterpret_cast(fragment_offsets_ptr); + asm volatile( + "{\n\t" + " .reg .b32 rb0, rb1;\n" // b32 regs for fp16x2 mul operands + + // static_cast(-16 - offset) + // input [d, b, c, a], + " shl.b32 rb0, %4, 6;\n" // rb0 = [x, b, x, a] << 6 + " shr.u32 rb1, %4, 2;\n" // rb1 = [x, d, x, c] << 6 + " lop3.b32 rb0, rb0, 0x03c003c0, 0xcc00cc00, 0xea;\n" // a & 0x03c0 | 0xcc00 + " lop3.b32 rb1, rb1, 0x03c003c0, 0xcc00cc00, 0xea;\n" + " mul.rn.f16x2 %0, %2, rb0;\n" // offset = scale * (-16 - offset) + " mul.rn.f16x2 %1, %3, rb1;\n" + "}\n" + : "=r"(offsets.pair.a), "=r"(offsets.pair.b) + : "r"(scales_ptr->pair.a), "r"(scales_ptr->pair.b), + "r"(p[0])); +#else + assert(0); +#endif + + fragment_offsets_ptr += 4; + } else { +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + asm volatile( + "{\n\t" + " .reg .b32 rb0;\n" + " mov.u32 rb0, 0xce00ce00;\n" + " mul.rn.f16x2 %0, %2, rb0;\n" // offset = scale * (-16 - 8) + " mul.rn.f16x2 %1, %3, rb0;\n" + "}\n" + : "=r"(offsets.pair.a), "=r"(offsets.pair.b) + : "r"(scales_ptr->pair.a), "r"(scales_ptr->pair.b)); +#else + offsets.fp16_quad.a = scales_ptr->fp16_quad.a * static_cast(-16-8); + offsets.fp16_quad.b = scales_ptr->fp16_quad.b * static_cast(-16-8); + offsets.fp16_quad.c = scales_ptr->fp16_quad.c * static_cast(-16-8); + offsets.fp16_quad.d = scales_ptr->fp16_quad.d * static_cast(-16-8); +#endif + } + + CUTLASS_PRAGMA_UNROLL + for (int n_r = 0; n_r < kNRepeats; n_r++){ +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + asm volatile( + "{\n\t" + " fma.rn.f16x2 %0, %2, %0, %4;\n" // dest = scale * (16 + weight) + (scale * (-16 - offset)) + " fma.rn.f16x2 %1, %3, %1, %5;\n" + "}\n" + : "+r"(dest_pair[0]), "+r"(dest_pair[1]) + : "r"(scales_ptr->pair.a), "r"(scales_ptr->pair.b), + "r"(offsets.pair.a), "r"(offsets.pair.b)); +#else + assert(0); +#endif + dest_pair += 2; + } + scales_ptr++; + } + + } else { + // unoptiomized path for other cases, very slow + int out_idx = 0; + ElementScale offset; + CUTLASS_PRAGMA_UNROLL + for (int n_out = 0; n_out < kMmaIterationsB; n_out++){ + int n_idx = n_out / kNRepeats; + CUTLASS_PRAGMA_UNROLL + for (int mma_tile_out_idx = 0; mma_tile_out_idx < kBTilesPerMma; mma_tile_out_idx++){ + int mma_tile_idx = mma_tile_out_idx / (kBTilesPerMma / kTilesPerMma); + CUTLASS_PRAGMA_UNROLL + for (int elem_out_idx = 0; elem_out_idx < kNumBsPerCoreTileFragement; elem_out_idx++){ + int elem_idx = elem_out_idx / BlockingShape::kRow; + int idx = elem_idx + mma_tile_idx * kCoreTileFragementSize + n_idx * kCoreTileFragementSize * kTilesPerMma; + ElementScale s = scales[idx]; + if constexpr(kHasOffset){ + offset = s * static_cast(-16 - static_cast(fragment_offsets[idx])); + } else { + offset = s * static_cast(-16-8); + } + dest[out_idx] = s * dest[out_idx] + offset; + out_idx++; + } + } + } + + } + + } + + /// Advances the pointer + CUTLASS_HOST_DEVICE + QuantBMetaMmaTensorOpTileIterator &operator++() { + // This is for operand B, so advance on the K dimension + lane_position_ += make_Coord(MetaTile::TileShapeB::kRow, 0); + return *this; + } + + CUTLASS_DEVICE + QuantBMetaMmaTensorOpTileIterator &add_tile_offset( + TensorCoord const &tile_offset) { + int rows = tile_offset.row() * MetaTile::TileShapeB::kRow; + int columns = tile_offset.column() * MetaTile::TileShapeB::kColumn; + lane_position_ += TensorCoord(rows, columns); + return *this; + } + +}; + + +//////////////////////////////////////////////////////////////////////////////// + +/// Specialization for row major layout + +template < + /// Shape of the operand B matrix to load in a warp (concept: MatrixShape) + typename WarpShapeB_, + /// Block dimensions of the blockwise quantization. So the actual meta data + /// warp shape is WarpShapeB_ / BlockingShape_ + typename BlockingShape_, + /// Data type of the meta data elements + typename ElementScale_, + /// Data type of quant offsets + typename ElementOffset_, + /// Underlying matrix multiply operator (concept: arch::Mma) + typename ArchMmaOperator_, + /// Number of threads participating in one matrix operation + int Threads> +class QuantBMetaMmaTensorOpTileIterator{ +public: + + using WarpShapeB = WarpShapeB_; + using BlockingShape = BlockingShape_; + using ElementScale = ElementScale_; + using ElementOffset = ElementOffset_; + using Layout = cutlass::layout::RowMajor; + using ArchMmaOperator = ArchMmaOperator_; + + static constexpr bool kHasOffset = !(std::is_same::value); + + static_assert(BlockingShape::kColumn == 1 && BlockingShape::kRow > 1, + "Only support column blocking for row major layout"); + + using MetaTile = QuantBMetaMmaTile; + + /// Number of MMA instructions for this tile + static constexpr int kMmaIterationsB = MetaTile::kMmaIterationsB; + + /// Number of B elements per mma tile fragment (32b), 2 for half precision, 4 for int8 + static constexpr int kNumBsPerCoreTileFragement = MetaTile::kNumBsPerCoreTileFragement; + + /// Each mma instruction can process either 1 or 2 operand B tiles (stacked on the k dimension) + static constexpr int kBTilesPerMma = MetaTile::kBTilesPerMma; + + /// Number of B elements a fragment of meta data should cover + static constexpr int kExpandedSize = MetaTile::kExpandedSize; + + /// Number of meta elements per core tile fragment + static constexpr int kCoreTileFragementSize = MetaTile::kCoreTileFragementSize; + + /// stride for reaching the next core tile (if there is one) on the K dimension + static constexpr int kKTileStride = MetaTile::kKTileStride; + + /// do we need to load meta data for the next core tile on the K dimension? + static constexpr int kTilesPerMma = MetaTile::kTilesPerMma; + + static constexpr int kNStride = MetaTile::kNStride; + static constexpr int kNRepeats = MetaTile::kNRepeats; + static constexpr int kMmaIterations = MetaTile::kMmaIterations; + + using TensorRefScale = TensorRef; + using TensorRefOffset = TensorRef; + using TensorCoord = typename Layout::TensorCoord; + + using Index = typename Layout::Index; + using LongIndex = typename Layout::LongIndex; + using StrideIndex = typename Layout::Stride::Index; + + using FragmentScale = Array; + using FragmentOffset = typename std::conditional, + std::monostate>::type; + +private: + + ElementScale *pointer_; + Layout layout_; + + ElementOffset *pointer_offset_; + Layout layout_offset_; + + TensorCoord lane_position_; + +public: + + CUTLASS_DEVICE + QuantBMetaMmaTensorOpTileIterator() { } + + CUTLASS_DEVICE + QuantBMetaMmaTensorOpTileIterator( + TensorRefScale const &ref, + TensorRefOffset const &ref_offset, + int lane_idx + ): + pointer_(ref.data()), + layout_(ref.layout()), + pointer_offset_(ref_offset.data()), + layout_offset_(ref_offset.layout()), + lane_position_(MetaTile::lane_position(lane_idx)) + {} + + /// Loads a fragment + CUTLASS_HOST_DEVICE + void load(FragmentScale &frag, FragmentOffset &frag_offset) { + const int row = lane_position_.row() / BlockingShape::kRow; + const int column = lane_position_.column() / BlockingShape::kColumn; + static_assert(kTilesPerMma * kCoreTileFragementSize == 1, "Only support one meta data per core tile"); + + ElementScale* src_ptr = pointer_ + layout_({row, column}); + ElementScale* dst_ptr = frag.data(); + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0; n_idx < kMmaIterations; n_idx++){ + dst_ptr[n_idx] = src_ptr[n_idx * kNStride]; + } + + if constexpr(kHasOffset){ + ElementOffset* src_ptr_offset = pointer_offset_ + layout_offset_({row, column}); + ElementOffset* dst_ptr_offset = frag_offset.data(); + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0; n_idx < kMmaIterations; n_idx++){ + dst_ptr_offset[n_idx] = src_ptr_offset[n_idx * kNStride]; + } + } + } + + template + CUTLASS_HOST_DEVICE + static Array debug_expand(Array const &frag){ + Array ret; + + int out_idx = 0; + CUTLASS_PRAGMA_UNROLL + for (int n_out = 0; n_out < kMmaIterationsB; n_out++){ + int n_idx = n_out / kNRepeats; + CUTLASS_PRAGMA_UNROLL + for (int mma_tile_out_idx = 0; mma_tile_out_idx < kBTilesPerMma; mma_tile_out_idx++){ + int mma_tile_idx = mma_tile_out_idx / (kBTilesPerMma / kTilesPerMma); + CUTLASS_PRAGMA_UNROLL + for (int elem_out_idx = 0; elem_out_idx < kNumBsPerCoreTileFragement; elem_out_idx++){ + int elem_idx = elem_out_idx / BlockingShape::kRow; + int col = elem_idx + mma_tile_idx * kCoreTileFragementSize; + int idx = col * kMmaIterations + n_idx; + ret[out_idx] = frag[idx]; + out_idx++; + } + } + } + return ret; + } + + CUTLASS_HOST_DEVICE + static void dequant(FragmentScale const &scales, + FragmentOffset const &offsets, + Array const &weights, + Array& dest){ + static_assert(kNRepeats == 1, "This is implied by BlockingShape::kColumn == 1"); + static_assert(kNumBsPerCoreTileFragement == 2, "Only for 16b gemm now."); + + // First convert 4b weight into fp16(weight + 16) + weights2Half(weights, dest); + + ElementScale addon[kMmaIterationsB]; + if constexpr (kMmaIterationsB % 4 == 0) { + const b64* scales_ptr = reinterpret_cast(scales.data()); + uint32_t* addon_ptr = reinterpret_cast(addon); + if constexpr(kHasOffset){ + const uint32_t* p = reinterpret_cast(offsets.data()); + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0; n_idx < kMmaIterationsB; n_idx += 4){ +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + asm volatile( + "{\n\t" + " .reg .b32 rb0, rb1, rb2;\n" + + // offset from [d, c, b, a] --> [d, b, c, a] + " prmt.b32 rb2, %4, rb0, 0x3120;\n" + + // static_cast(-16 - offset) + // input [d, b, c, a], + " shl.b32 rb0, rb2, 6;\n" // rb0 = [x, b, x, a] << 6 + " shr.u32 rb1, rb2, 2;\n" // rb1 = [x, d, x, c] << 6 + " lop3.b32 rb0, rb0, 0x03c003c0, 0xcc00cc00, 0xea;\n" // a & 0x03c0 | 0xcc00 + " lop3.b32 rb1, rb1, 0x03c003c0, 0xcc00cc00, 0xea;\n" + " mul.rn.f16x2 %0, %2, rb0;\n" // offset = scale * (-16 - offset) + " mul.rn.f16x2 %1, %3, rb1;\n" + "}\n" + : "=r"(addon_ptr[0]), "=r"(addon_ptr[1]) + : "r"(scales_ptr->pair.a), "r"(scales_ptr->pair.b), + "r"(p[0])); +#else + assert(0); +#endif + scales_ptr++; + p++; + addon_ptr += 2; + } + } else { + CUTLASS_PRAGMA_UNROLL + for (int n_idx = 0; n_idx < kMmaIterationsB; n_idx += 4){ +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + asm volatile( + "{\n\t" + " .reg .b32 rb0;\n" + " mov.u32 rb0, 0xce00ce00;\n" + " mul.rn.f16x2 %0, %2, rb0;\n" // offset = scale * (-16 - 8) + " mul.rn.f16x2 %1, %3, rb0;\n" + "}\n" + : "=r"(addon_ptr[0]), "=r"(addon_ptr[1]) + : "r"(scales_ptr->pair.a), "r"(scales_ptr->pair.b)); +#else + assert(0); +#endif + scales_ptr++; + addon_ptr += 2; + } + } + } else if constexpr (kMmaIterationsB % 2 == 0) { + if constexpr (kHasOffset){ +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + const uint32_t* scales_ptr = reinterpret_cast(scales.data()); + uint32_t* addon_ptr = reinterpret_cast(addon); + // possible buffer over read 2 bytes here. + const uint32_t* p = reinterpret_cast(offsets.data()); + + asm volatile( + "{\n\t" + " .reg .b32 rb0, rb1, rb2;\n" + + // offset from [?, ?, b, a] --> [?, b, ?, a] + " prmt.b32 rb2, %2, rb0, 0x3120;\n" + + // static_cast(-16 - offset) + // input [d, b, c, a], + " shl.b32 rb0, rb2, 6;\n" // rb0 = [x, b, x, a] << 6 + " lop3.b32 rb0, rb0, 0x03c003c0, 0xcc00cc00, 0xea;\n" // a & 0x03c0 | 0xcc00 + " mul.rn.f16x2 %0, %1, rb0;\n" // offset = scale * (-16 - offset) + "}\n" + : "=r"(addon_ptr[0]) + : "r"(scales_ptr[0]) + "r"(p[0])); +#else + assert(0); +#endif + } else { +#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)) + asm volatile( + "{\n\t" + " .reg .b32 rb0;\n" + " mov.u32 rb0, 0xce00ce00;\n" + " mul.rn.f16x2 %0, %1, rb0;\n" // offset = scale * (-16 - 8) + "}\n" + : "=r"(addon_ptr[0]) + : "r"(scales_ptr[0])); +#else + assert(0); +#endif + } + } else { + // kMmaIterationsB == 1 + if constexpr(kHasOffset){ + uint8_t zp = offsets[0]; + addon[0] = scales[0] * static_cast(-16 - static_cast(zp)); + } else { + addon[0] = scales[0] * static_cast(-16-8); + } + } + + int out_idx = 0; + CUTLASS_PRAGMA_UNROLL + for (int n_out = 0; n_out < kMmaIterationsB; n_out++){ + CUTLASS_PRAGMA_UNROLL + for (int mma_tile_out_idx = 0; mma_tile_out_idx < kBTilesPerMma; mma_tile_out_idx++){ + dest[out_idx] = scales[n_out] * dest[out_idx] + addon[n_out]; + dest[out_idx + 1] = scales[n_out] * dest[out_idx + 1] + addon[n_out]; + out_idx += 2; + } + } + } + + /// Advances the pointer + CUTLASS_HOST_DEVICE + QuantBMetaMmaTensorOpTileIterator &operator++() { + // This is for operand B, so advance on the K dimension + lane_position_ += make_Coord(MetaTile::TileShapeB::kRow, 0); + return *this; + } + + CUTLASS_DEVICE + QuantBMetaMmaTensorOpTileIterator &add_tile_offset( + TensorCoord const &tile_offset) { + int rows = tile_offset.row() * MetaTile::TileShapeB::kRow; + int columns = tile_offset.column() * MetaTile::TileShapeB::kColumn; + lane_position_ += TensorCoord(rows, columns); + return *this; + } + +}; + + +//////////////////////////////////////////////////////////////////////////////// +} // namespace warp +} // namespace gemm +} // namespace cutlass diff --git a/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/quantb_mma_tensor_op.h b/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/quantb_mma_tensor_op.h new file mode 100644 index 0000000000000..f29cedf326a44 --- /dev/null +++ b/onnxruntime/core/mickey/cutlass_ext/q4gemm/warp/quantb_mma_tensor_op.h @@ -0,0 +1,361 @@ +/*************************************************************************************************** + * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + **************************************************************************************************/ + +/** + * Modifications Copyright (c) Microsoft. + * Licensed under the MIT license. + * + * @file quantb_mma_tensor_op.h + * @brief Modified from cutlass/gemm/warp/mma_tensor_op.h + * Templates implementing warp-level matrix multiply-accumulate operations + * targeting tensor cores. + */ + +#pragma once + +#include "cutlass/cutlass.h" +#include "cutlass/array.h" +#include "cutlass/platform/platform.h" + +#include "cutlass/numeric_conversion.h" +#include "cutlass/numeric_types.h" +#include "cutlass/matrix_shape.h" + +#include "cutlass/arch/memory_sm75.h" +#include "cutlass/arch/mma_sm75.h" +#include "cutlass/arch/mma_sm80.h" + +#include "cutlass/gemm/gemm.h" +#include "cutlass/gemm/warp/mma.h" +#include "cutlass/gemm/warp/mma_tensor_op_policy.h" +#include "cutlass/gemm/warp/mma_tensor_op_tile_iterator_sm80.h" + +#include "cutlass_ext/q4gemm/warp/quantb_meta_mma_tensor_op_tile_iterator.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// + +namespace cutlass { +namespace gemm { +namespace warp { + +///////////////////////////////////////////////////////////////////////////////////////////////// + +/// Structure to compute the matrix product targeting CUDA cores and SIMT math instructions. +template < + /// Size of the Gemm problem - concept: gemm::GemmShape<> + typename Shape_, + /// Data type of A elements + typename ElementA_, + /// Layout of A matrix (concept: MatrixLayout) + typename LayoutA_, + /// Data type of B elements + typename ElementB_, + /// Layout of B matrix (concept: MatrixLayout) + typename LayoutB_, + /// Data type of quant scales + typename ElementQScale_, + /// Layout of quant scales (concept: MatrixLayout) + typename SmemLayoutQScale_, + /// Data type of quant offsets + typename ElementQOffset_, + /// Layout of quant offsets (concept: MatrixLayout) + typename SmemLayoutQOffset_, + /// Blocking dimensions of quantization + typename QuantBlocking_, + /// Element type of C matrix + typename ElementC_, + /// Layout of C matrix (concept: MatrixLayout) + typename LayoutC_, + /// Policy describing warp-level MmaTensorOp (concept: MmaTensorOp policy) + typename Policy_, + /// Number of partitions along K dimension + int PartitionsK_ = 1, + /// Store the accumulators in row major or column major. Row major is used + /// when output layout is interleaved. + bool AccumulatorsInRowMajor = false, + /// Used for partial specialization + typename Enable = bool +> +class QuantBMmaTensorOp { +public: + /// Shape of warp-level matrix operation (concept: GemmShape) + using Shape = Shape_; + + /// Data type of multiplicand A + using ElementA = ElementA_; + + /// Layout of multiplicand A + using LayoutA = LayoutA_; + + /// Data type of multiplicand B + using ElementB = ElementB_; + + /// Layout of multiplicand B + using LayoutB = LayoutB_; + + /// Data type of accumulator matrix C + using ElementC = ElementC_; + + /// Layout of accumulator matrix C + using LayoutC = LayoutC_; + + /// Shape of the warp in units of thread (concept: MmaLanePolicySimt) + using Policy = Policy_; + + /// Underlying matrix multiply operator (concept: arch::Mma) + using ArchMmaOperator = typename Policy::Operator; + + /// Indicates math operator + using MathOperator = typename ArchMmaOperator::Operator; + + /// Architecture tag from underlying instruction + using ArchTag = typename ArchMmaOperator::ArchTag; + + /// Indicates class of matrix operator + using OperatorClass = arch::OpClassTensorOp; + + /// Shape of underlying instruction + using InstructionShape = typename ArchMmaOperator::Shape; + + /// Complex transform on A operand + static ComplexTransform const kTransformA = ComplexTransform::kNone; + + /// Complex transform on B operand + static ComplexTransform const kTransformB = ComplexTransform::kNone; + + /// Number of threads participating in warp-level matrix product + static int const kThreadCount = 32; + + /// Number of partitions along K dimension + static int const kPartitionsK = PartitionsK_; + +public: + + /// Iterates over the A operand in memory + using IteratorA = MmaTensorOpMultiplicandTileIterator< + MatrixShape, Operand::kA, ElementA, LayoutA, + MatrixShape, + Policy::OpDelta::kRow, kThreadCount, kPartitionsK>; + + /// Storage for A tile + using FragmentA = typename IteratorA::Fragment; + + /// Storage for transformed A tile + using TransformedFragmentA = + Array; + + /// Iterates over the B operand in memory + using IteratorB = MmaTensorOpMultiplicandTileIterator< + MatrixShape, Operand::kB, ElementB, LayoutB, + MatrixShape, + Policy::OpDelta::kRow, kThreadCount, kPartitionsK>; + // warp B MatrixShape<64, 64>, + // layout B cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<16, 64>, + // instruction op shape cutlass::MatrixShape<16, 8>, + // kPartitionsK 1 + // FragmentB::kElements 32 + + /// Storage for B tile + using FragmentB = typename IteratorB::Fragment; // cutlass::Array + + /// Storage for transformed B tile + /// When loading weights, we packed 4 int4 weights into one 2-byte-element, when expanded + /// we multiply the number of elements by 4. + /// TODO: make sure ArchMmaOperator::ElementB same as dequantized ElementB + /// and change the transform function below to perform dequantization + using TransformedFragmentB = + Array; + + /// Iterates over the C operand in memory + using IteratorC = MmaTensorOpAccumulatorTileIterator< + MatrixShape, ElementC, LayoutC, + typename ArchMmaOperator::Shape, typename Policy::OpDelta>; + + /// Storage for C tile + using FragmentC = typename IteratorC::Fragment; + + using ElementQScale = ElementQScale_; + using SmemLayoutQScale = SmemLayoutQScale_; + using QuantBlocking = QuantBlocking_; + + using ElementQOffset = ElementQOffset_; + using SmemLayoutQOffset = SmemLayoutQOffset_; + + /// Iterates over the quantization parameters in memory + using WarpQScaleShape = MatrixShape<(Shape::kK / QuantBlocking::kRow), (Shape::kN / QuantBlocking::kColumn)>; + static_assert(Shape::kK % QuantBlocking::kRow == 0, "K must be multiple of QuantBlocking::kRow"); + static_assert(Shape::kN % QuantBlocking::kColumn == 0, "N must be multiple of QuantBlocking::kColumn"); + static_assert(WarpQScaleShape::kCount > 0, "QuantBlocking too big to fit in a warp block!"); + + // TODO This is an expanding iterator, it needs to replicate the quantization parameters + // to all threads in the warp. + using IteratorQMeta = QuantBMetaMmaTensorOpTileIterator< + MatrixShape, QuantBlocking, ElementQScale, SmemLayoutQScale, + ElementQOffset, SmemLayoutQOffset, + ArchMmaOperator, kThreadCount, kPartitionsK>; + + using FragmentQScale = typename IteratorQMeta::FragmentScale; + using FragmentQOffset = typename IteratorQMeta::FragmentOffset; + + /// Number of mma operations performed + using MmaIterations = MatrixShape< + (Shape::kM + ArchMmaOperator::Shape::kM - 1) / ArchMmaOperator::Shape::kM, + (Shape::kN + ArchMmaOperator::Shape::kN - 1) / ArchMmaOperator::Shape::kN + >; + +public: + + /// Underlying matrix multiply operator (concept: arch::Mma) + ArchMmaOperator mma; + +public: + + // + // Methods + // + + /// Ctor + CUTLASS_DEVICE + QuantBMmaTensorOp() {} + + /// Performs a warp-level matrix multiply-accumulate operation + CUTLASS_DEVICE + void operator()( + FragmentC &D, + TransformedFragmentA const &A, + TransformedFragmentB const &B, + FragmentC const &C + ) const { + + using MmaOperandA = typename ArchMmaOperator::FragmentA; + using MmaOperandB = typename ArchMmaOperator::FragmentB; + using MmaOperandC = typename ArchMmaOperator::FragmentC; + + D = C; + + MmaOperandA const *ptr_A = reinterpret_cast(&A); + MmaOperandB const *ptr_B = reinterpret_cast(&B); + MmaOperandC *ptr_D = reinterpret_cast(&D); + + #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800) + // Serpentine visitation order maximizing reuse of Rb + // The visitation order is like + // _ + // | | | | + // | | | | + // |_| |_| + // + // Down Up Down Up + + CUTLASS_PRAGMA_UNROLL + for (int n = 0; n < MmaIterations::kColumn; ++n) { + + CUTLASS_PRAGMA_UNROLL + for (int m = 0; m < MmaIterations::kRow; ++m) { + + int m_serpentine = ((n % 2) ? (MmaIterations::kRow - 1 - m) : m); + + if (AccumulatorsInRowMajor) { // matrix B is reordered + mma( + ptr_D[n + m_serpentine * MmaIterations::kColumn], + ptr_A[m_serpentine], + ptr_B[n], + ptr_D[n + m_serpentine * MmaIterations::kColumn]); + } else { + mma( + ptr_D[m_serpentine + n * MmaIterations::kRow], + ptr_A[m_serpentine], + ptr_B[n], + ptr_D[m_serpentine + n * MmaIterations::kRow]); + } + } + } + #elif defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) + // Serpentine visitation order maximizing reuse of Ra + // The visitation order is like + // _________ + // _________| + // |_________ + // __________| + // + // Right Left Right Left + + CUTLASS_PRAGMA_UNROLL + for (int m = 0; m < MmaIterations::kRow; ++m) { + + CUTLASS_PRAGMA_UNROLL + for (int n = 0; n < MmaIterations::kColumn; ++n) { + + int n_serpentine = ((m % 2) ? (MmaIterations::kColumn - 1 - n) : n); + + if (AccumulatorsInRowMajor) { // matrix B is reordered + mma( + ptr_D[n_serpentine + m * MmaIterations::kColumn], + ptr_A[m], + ptr_B[n_serpentine], + ptr_D[n_serpentine + m * MmaIterations::kColumn]); + } else { + mma(ptr_D[m + n_serpentine * MmaIterations::kRow], + ptr_A[m], + ptr_B[n_serpentine], + ptr_D[m + n_serpentine * MmaIterations::kRow]); + } + } + } + #else + assert(0); + #endif + } + + /// Transform the mma operands to the required types + CUTLASS_DEVICE + void transform(TransformedFragmentB &dst_B, + FragmentB const &B, + FragmentQScale const &scales, + FragmentQOffset const &offsets) const { + + Array const *ptr_B = + reinterpret_cast const *>(&B); + IteratorQMeta::dequant(scales, offsets, *ptr_B, dst_B); + } +}; + +///////////////////////////////////////////////////////////////////////////////////////////////// + +} // namespace warp +} // namespace gemm +} // namespace cutlass + +///////////////////////////////////////////////////////////////////////////////////////////////// + +//#include "cutlass/gemm/warp/mma_tensor_op_fast_f32.h" + +///////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/onnxruntime/core/mlas/lib/sqnbitgemm_kernel_neon.cpp b/onnxruntime/core/mlas/lib/sqnbitgemm_kernel_neon.cpp index c4c54a9be34d8..9d7b0ae06e220 100644 --- a/onnxruntime/core/mlas/lib/sqnbitgemm_kernel_neon.cpp +++ b/onnxruntime/core/mlas/lib/sqnbitgemm_kernel_neon.cpp @@ -687,171 +687,314 @@ QuantizeARow_CompInt8( } } -template -MLAS_FORCEINLINE void -ComputeDotProducts_BlkBitWidth4_CompInt8( - size_t BlkLen, - const std::byte* QuantARowPtr, - const std::byte* QuantBDataColPtr, - const float* QuantBScaleColPtr, - const std::byte* QuantBZeroPointColPtr, - float* SumPtr, - size_t CountK, - size_t StrideQuantBData, - size_t StrideQuantBScale, - size_t StrideQuantBZeroPoint, - const float* BiasPtr +template +void +SQ4BitGemmM1Kernel_CompInt8_Impl_BlkLen16( + const std::byte* QuantA, + const std::byte* QuantBData, + const float* QuantBScale, + const std::byte* QuantBZeroPoint, + float* C, + size_t CountN, + size_t BlockCountK, + const float* Bias ) { constexpr size_t BlkBitWidth = 4; + constexpr size_t BlkLen = 16; - static_assert(NCols == 1 || NCols == 4, "NCols must be 1 or 4"); - static_assert(SubBlkLen == 16 || SubBlkLen == 32, "SubBlkLen must be 16 or 32"); + float* CRowPtr = C; - assert(BlkLen >= SubBlkLen && BlkLen % SubBlkLen == 0); + const size_t StrideQuantBData = BlockCountK * MlasQNBitBlkDataSizeInBytes(BlkBitWidth, BlkLen); + const size_t StrideQuantBScale = BlockCountK; + const size_t StrideQuantBZeroPoint = MlasQNBitZeroPointsForBlksSizeInBytes(BlockCountK); - [[maybe_unused]] const uint8x8_t LowMaskU8x8 = vdup_n_u8(0x0F); // only used if SubBlkLen == 16 - [[maybe_unused]] const uint8x16_t LowMaskU8x16 = vdupq_n_u8(0x0F); // only used if SubBlkLen == 32 + const float* BiasPtr = Bias; - const std::byte* QuantA = QuantARowPtr; + const std::byte* QuantBDataColPtr = QuantBData; + const float* QuantBScaleColPtr = QuantBScale; + const std::byte* QuantBZeroPointColPtr = QuantBZeroPoint; - const std::byte* QuantBData = QuantBDataColPtr; - const float* QuantBScale = QuantBScaleColPtr; - [[maybe_unused]] size_t QuantBZeroPointIdx = 0; // track half byte increments with this index instead of a pointer - // only used if HasZeroPoint == true + float* SumPtr = CRowPtr; - float32x4_t acc[NCols]{}; + const uint8x16_t LowMaskU8x16 = vdupq_n_u8(0x0F); + const uint8x8_t LowMaskU8x8 = vdup_n_u8(0x0F); - for (size_t k = 0; k < CountK; k += BlkLen) { - const size_t k_blk_len = std::min(CountK - k, BlkLen); + for (size_t n = 0; n < CountN; ++n) { + const std::byte* QuantAPtr = QuantA; + const std::byte* QuantBDataPtr = QuantBDataColPtr; + const float* QuantBScalePtr = QuantBScaleColPtr; + const std::byte* QuantBZeroPointPtr = QuantBZeroPointColPtr; - const float a_scale = Q8BlkScale(QuantA); - const int8_t* a_data = Q8BlkData(QuantA); + float32x4_t acc0{}, acc1{}; - float b_scale[NCols]; - UnrolledLoop([&](size_t i) { b_scale[i] = QuantBScale[i * StrideQuantBScale]; }); + size_t k_blks_remaining = BlockCountK; + for (; k_blks_remaining > 1; k_blks_remaining -= 2) { + const std::byte* QuantABlk0 = QuantAPtr; + const std::byte* QuantABlk1 = QuantABlk0 + Q8BlkSize(BlkLen); - [[maybe_unused]] int8_t b_zp[NCols]; // only used if HasZeroPoint == true - if constexpr (HasZeroPoint) { - UnrolledLoop([&](size_t i) { - const std::byte zp_packed = - QuantBZeroPointColPtr[i * StrideQuantBZeroPoint + QuantBZeroPointIdx / 2]; - b_zp[i] = ((QuantBZeroPointIdx & 1) == 1) - ? std::to_integer(zp_packed >> 4) - : std::to_integer(zp_packed & std::byte{0x0F}); - }); - } + // compute combined scale + const float32x4_t scale0 = vdupq_n_f32(Q8BlkScale(QuantABlk0) * QuantBScalePtr[0]); + const float32x4_t scale1 = vdupq_n_f32(Q8BlkScale(QuantABlk1) * QuantBScalePtr[1]); - for (size_t k_idx_in_blk = 0; k_idx_in_blk < k_blk_len; k_idx_in_blk += SubBlkLen) { - // load A row vector - int8x16_t av[SubBlkLen / 16]; - UnrolledLoop([&](size_t i) { - av[i] = vld1q_s8(a_data + k_idx_in_blk + i * 16); - }); + // load B zero point + const int8x16_t bzp0 = vdupq_n_s8( + HasZeroPoint ? std::to_integer(QuantBZeroPointPtr[0] & std::byte{0x0F}) : 8 + ); + const int8x16_t bzp1 = vdupq_n_s8( + HasZeroPoint ? std::to_integer(QuantBZeroPointPtr[0] >> 4) : 8 + ); - // load B column vectors - int8x16_t bv[NCols][SubBlkLen / 16]; + // load A + const int8x16_t av0 = vld1q_s8(Q8BlkData(QuantABlk0)); + const int8x16_t av1 = vld1q_s8(Q8BlkData(QuantABlk1)); - const size_t b_data_block_offset = k_idx_in_blk * BlkBitWidth / 8; + // load B + const uint8x16_t bv_packed01 = vld1q_u8(reinterpret_cast(QuantBDataPtr)); - if constexpr (SubBlkLen == 16) { - uint8x8_t bv_packed[NCols]; - UnrolledLoop([&](size_t i) { - bv_packed[i] = vld1_u8( - reinterpret_cast(QuantBData) + i * StrideQuantBData + b_data_block_offset - ); - }); + const uint8x16_t bv_lo01 = vandq_u8(bv_packed01, LowMaskU8x16); + const uint8x16_t bv_hi01 = vshrq_n_u8(bv_packed01, 4); - UnrolledLoop([&](size_t i) { - const int8x8_t lo = vreinterpret_s8_u8(vand_u8(bv_packed[i], LowMaskU8x8)); - const int8x8_t hi = vreinterpret_s8_u8(vshr_n_u8(bv_packed[i], 4)); - bv[i][0] = vcombine_s8(lo, hi); - }); - } else { - static_assert(SubBlkLen == 32); + int8x16_t bv0 = vreinterpretq_s8_u8(vcombine_u8(vget_low_u8(bv_lo01), vget_low_u8(bv_hi01))); + int8x16_t bv1 = vreinterpretq_s8_u8(vcombine_u8(vget_high_u8(bv_lo01), vget_high_u8(bv_hi01))); - uint8x16_t bv_packed[NCols]; - UnrolledLoop([&](size_t i) { - bv_packed[i] = vld1q_u8( - reinterpret_cast(QuantBData) + i * StrideQuantBData + b_data_block_offset - ); - }); + // subtract B zero point + bv0 = vsubq_s8(bv0, bzp0); + bv1 = vsubq_s8(bv1, bzp1); - UnrolledLoop([&](size_t i) { - bv[i][0] = vreinterpretq_s8_u8(vandq_u8(bv_packed[i], LowMaskU8x16)); - bv[i][1] = vreinterpretq_s8_u8(vshrq_n_u8(bv_packed[i], 4)); - }); + // quantized dot product + const int32x4_t dot0 = vdotq_s32(vdupq_n_s32(0), av0, bv0); + const int32x4_t dot1 = vdotq_s32(vdupq_n_s32(0), av1, bv1); + + // convert to float + const float32x4_t dot_f32_0 = vcvtq_f32_s32(dot0); + const float32x4_t dot_f32_1 = vcvtq_f32_s32(dot1); + + // multiply by scale and update accumulator + acc0 = vfmaq_f32(acc0, dot_f32_0, scale0); + acc1 = vfmaq_f32(acc1, dot_f32_1, scale1); + + // increment block pointers + + QuantAPtr += Q8BlkSize(BlkLen) * 2; + QuantBDataPtr += 8 * 2; + QuantBScalePtr += 2; + if constexpr (HasZeroPoint) { + QuantBZeroPointPtr += 1; } + } + + if (k_blks_remaining > 0) { + const std::byte* QuantABlk0 = QuantAPtr; + + // compute combined scale + const float32x4_t scale0 = vdupq_n_f32(Q8BlkScale(QuantABlk0) * (*QuantBScalePtr)); + + // load B zero point + const int8x16_t bzp0 = vdupq_n_s8( + HasZeroPoint ? std::to_integer(QuantBZeroPointPtr[0] & std::byte{0x0F}) : 8 + ); + + // load A + const int8x16_t av0 = vld1q_s8(Q8BlkData(QuantABlk0)); + + // load B + const uint8x8_t bv_packed0 = vld1_u8(reinterpret_cast(QuantBDataPtr)); + + const uint8x8_t bv_lo0 = vand_u8(bv_packed0, LowMaskU8x8); + const uint8x8_t bv_hi0 = vshr_n_u8(bv_packed0, 4); + + int8x16_t bv0 = vreinterpretq_s8_u8(vcombine_u8(bv_lo0, bv_hi0)); // subtract B zero point - if constexpr (HasZeroPoint) { - UnrolledLoop([&](size_t i) { - const int8x16_t zp_v = vdupq_n_s8(b_zp[i]); - UnrolledLoop([&](size_t j) { - bv[i][j] = vsubq_s8(bv[i][j], zp_v); - }); - }); - } else { - const int8x16_t zp_v = vdupq_n_s8(8); + bv0 = vsubq_s8(bv0, bzp0); - UnrolledLoop([&](size_t i) { - UnrolledLoop([&](size_t j) { - bv[i][j] = vsubq_s8(bv[i][j], zp_v); - }); - }); - } + // quantized dot product + const int32x4_t dot0 = vdotq_s32(vdupq_n_s32(0), av0, bv0); - // compute quantized dot product - int32x4_t dot[NCols]{}; - UnrolledLoop([&](size_t i) { - UnrolledLoop([&](size_t j) { - dot[i] = vdotq_s32(dot[i], av[j], bv[i][j]); - }); - }); + // convert to float + const float32x4_t dot_f32_0 = vcvtq_f32_s32(dot0); - // convert dot product result to float - float32x4_t dot_f32[NCols]; - UnrolledLoop([&](size_t i) { - dot_f32[i] = vcvtq_f32_s32(dot[i]); - }); + // multiply by scale and update accumulator + acc0 = vfmaq_f32(acc0, dot_f32_0, scale0); + } - // multiply dot product result by scale and update accumulator - UnrolledLoop([&](size_t i) { - const float32x4_t scale_v = vdupq_n_f32(a_scale * b_scale[i]); - acc[i] = vfmaq_f32(acc[i], dot_f32[i], scale_v); - }); + *SumPtr = vaddvq_f32(acc0) + vaddvq_f32(acc1); + if (BiasPtr) { + *SumPtr += *BiasPtr; } - // increment pointers to next block - QuantA += Q8BlkSize(BlkLen); - QuantBData += MlasQNBitBlkDataSizeInBytes(BlkBitWidth, BlkLen); - QuantBScale += 1; + // move to next column + + QuantBDataColPtr += StrideQuantBData; + QuantBScaleColPtr += StrideQuantBScale; if constexpr (HasZeroPoint) { - QuantBZeroPointIdx += 1; + QuantBZeroPointColPtr += StrideQuantBZeroPoint; } + + BiasPtr += BiasPtr != nullptr ? 1 : 0; + SumPtr += 1; } +} - if constexpr (NCols == 4) { - float32x4_t sum = FoldAccumulators(acc[0], acc[1], acc[2], acc[3]); +template +void +SQ4BitGemmM1Kernel_CompInt8_Impl_BlkLen32( + const std::byte* QuantA, + const std::byte* QuantBData, + const float* QuantBScale, + const std::byte* QuantBZeroPoint, + float* C, + size_t CountN, + size_t BlockCountK, + const float* Bias +) +{ + constexpr size_t BlkBitWidth = 4; + constexpr size_t BlkLen = 32; - if (BiasPtr != nullptr) { - sum = vaddq_f32(sum, vld1q_f32(BiasPtr)); - } + float* CRowPtr = C; - vst1q_f32(SumPtr, sum); - } else { - for (size_t i = 0; i < NCols; ++i) { - SumPtr[i] = vaddvq_f32(acc[i]); - if (BiasPtr != nullptr) { - SumPtr[i] += BiasPtr[i]; + const size_t StrideQuantBData = BlockCountK * MlasQNBitBlkDataSizeInBytes(BlkBitWidth, BlkLen); + const size_t StrideQuantBScale = BlockCountK; + const size_t StrideQuantBZeroPoint = MlasQNBitZeroPointsForBlksSizeInBytes(BlockCountK); + + const float* BiasPtr = Bias; + + const std::byte* QuantBDataColPtr = QuantBData; + const float* QuantBScaleColPtr = QuantBScale; + const std::byte* QuantBZeroPointColPtr = QuantBZeroPoint; + + float* SumPtr = CRowPtr; + + const uint8x16_t LowMaskU8x16 = vdupq_n_u8(0x0F); + + for (size_t n = 0; n < CountN; ++n) { + const std::byte* QuantAPtr = QuantA; + const std::byte* QuantBDataPtr = QuantBDataColPtr; + const float* QuantBScalePtr = QuantBScaleColPtr; + const std::byte* QuantBZeroPointPtr = QuantBZeroPointColPtr; + + float32x4_t acc0{}, acc1{}; + + size_t k_blks_remaining = BlockCountK; + for (; k_blks_remaining > 1; k_blks_remaining -= 2) { + const std::byte* QuantABlk0 = QuantAPtr; + const std::byte* QuantABlk1 = QuantABlk0 + Q8BlkSize(BlkLen); + + // compute combined scale + const float32x4_t scale0 = vdupq_n_f32(Q8BlkScale(QuantABlk0) * QuantBScalePtr[0]); + const float32x4_t scale1 = vdupq_n_f32(Q8BlkScale(QuantABlk1) * QuantBScalePtr[1]); + + // load B zero point + const int8x16_t bzp0 = vdupq_n_s8( + HasZeroPoint ? std::to_integer((*QuantBZeroPointPtr) & std::byte{0x0F}) : 8 + ); + const int8x16_t bzp1 = vdupq_n_s8( + HasZeroPoint ? std::to_integer((*QuantBZeroPointPtr) >> 4) : 8 + ); + + // load A + const int8x16_t av_lo0 = vld1q_s8(Q8BlkData(QuantABlk0)); + const int8x16_t av_hi0 = vld1q_s8(Q8BlkData(QuantABlk0) + 16); + const int8x16_t av_lo1 = vld1q_s8(Q8BlkData(QuantABlk1)); + const int8x16_t av_hi1 = vld1q_s8(Q8BlkData(QuantABlk1) + 16); + + // load B + const uint8x16_t bv_packed0 = vld1q_u8(reinterpret_cast(QuantBDataPtr)); + const uint8x16_t bv_packed1 = vld1q_u8(reinterpret_cast(QuantBDataPtr) + 16); + + int8x16_t bv_lo0 = vreinterpretq_s8_u8(vandq_u8(bv_packed0, LowMaskU8x16)); + int8x16_t bv_hi0 = vreinterpretq_s8_u8(vshrq_n_u8(bv_packed0, 4)); + int8x16_t bv_lo1 = vreinterpretq_s8_u8(vandq_u8(bv_packed1, LowMaskU8x16)); + int8x16_t bv_hi1 = vreinterpretq_s8_u8(vshrq_n_u8(bv_packed1, 4)); + + // subtract B zero point + bv_lo0 = vsubq_s8(bv_lo0, bzp0); + bv_hi0 = vsubq_s8(bv_hi0, bzp0); + bv_lo1 = vsubq_s8(bv_lo1, bzp1); + bv_hi1 = vsubq_s8(bv_hi1, bzp1); + + // quantized dot product + int32x4_t dot0{}, dot1{}; + dot0 = vdotq_s32(vdotq_s32(dot0, av_lo0, bv_lo0), av_hi0, bv_hi0); + dot1 = vdotq_s32(vdotq_s32(dot1, av_lo1, bv_lo1), av_hi1, bv_hi1); + + // convert to float + const float32x4_t dot_f32_0 = vcvtq_f32_s32(dot0); + const float32x4_t dot_f32_1 = vcvtq_f32_s32(dot1); + + // multiply by scale and update accumulator + acc0 = vfmaq_f32(acc0, dot_f32_0, scale0); + acc1 = vfmaq_f32(acc1, dot_f32_1, scale1); + + // increment block pointers + + QuantAPtr += Q8BlkSize(BlkLen) * 2; + QuantBDataPtr += 16 * 2; + QuantBScalePtr += 2; + if constexpr (HasZeroPoint) { + QuantBZeroPointPtr += 1; } } + + if (k_blks_remaining > 0) { + const std::byte* QuantABlk0 = QuantAPtr; + + // compute combined scale + const float32x4_t scale0 = vdupq_n_f32(Q8BlkScale(QuantABlk0) * (*QuantBScalePtr)); + + // load B zero point + const int8x16_t bzp0 = vdupq_n_s8( + HasZeroPoint ? std::to_integer((*QuantBZeroPoint) & std::byte{0x0F}) : 8 + ); + + // load A + const int8x16_t av_lo0 = vld1q_s8(Q8BlkData(QuantABlk0)); + const int8x16_t av_hi0 = vld1q_s8(Q8BlkData(QuantABlk0) + 16); + + // load B + const uint8x16_t bv_packed0 = vld1q_u8(reinterpret_cast(QuantBDataPtr)); + + int8x16_t bv_lo0 = vreinterpretq_s8_u8(vandq_u8(bv_packed0, LowMaskU8x16)); + int8x16_t bv_hi0 = vreinterpretq_s8_u8(vshrq_n_u8(bv_packed0, 4)); + + // subtract B zero point + bv_lo0 = vsubq_s8(bv_lo0, bzp0); + bv_hi0 = vsubq_s8(bv_hi0, bzp0); + + // quantized dot product + int32x4_t dot0{}; + dot0 = vdotq_s32(vdotq_s32(dot0, av_lo0, bv_lo0), av_hi0, bv_hi0); + + // convert to float + const float32x4_t dot_f32_0 = vcvtq_f32_s32(dot0); + + // multiply by scale and update accumulator + acc0 = vfmaq_f32(acc0, dot_f32_0, scale0); + } + + *SumPtr = vaddvq_f32(acc0) + vaddvq_f32(acc1); + if (BiasPtr) { + *SumPtr += *BiasPtr; + } + + // move to next column + + QuantBDataColPtr += StrideQuantBData; + QuantBScaleColPtr += StrideQuantBScale; + if constexpr (HasZeroPoint) { + QuantBZeroPointColPtr += StrideQuantBZeroPoint; + } + + BiasPtr += BiasPtr != nullptr ? 1 : 0; + SumPtr += 1; } } -template +template void -SQ4BitGemmM1Kernel_CompInt8_Impl( +SQ4BitGemmM1Kernel_CompInt8_Impl_BlkLenGreaterThan32( size_t BlkLen, const std::byte* QuantA, const std::byte* QuantBData, @@ -859,17 +1002,16 @@ SQ4BitGemmM1Kernel_CompInt8_Impl( const std::byte* QuantBZeroPoint, float* C, size_t CountN, - size_t CountK, - size_t BlockStrideQuantB, + size_t BlockCountK, const float* Bias ) { constexpr size_t BlkBitWidth = 4; - const std::byte* QuantARowPtr = QuantA; - float* CRowPtr = C; + assert(BlkLen > 32); + assert(BlkLen % 32 == 0); - const size_t BlockCountK = BlockStrideQuantB; + float* CRowPtr = C; const size_t StrideQuantBData = BlockCountK * MlasQNBitBlkDataSizeInBytes(BlkBitWidth, BlkLen); const size_t StrideQuantBScale = BlockCountK; @@ -883,39 +1025,91 @@ SQ4BitGemmM1Kernel_CompInt8_Impl( float* SumPtr = CRowPtr; - int64_t nblk = static_cast(CountN) - NCols; + const uint8x16_t LowMaskU8x16 = vdupq_n_u8(0x0F); - while (nblk >= 0) { - ComputeDotProducts_BlkBitWidth4_CompInt8( - BlkLen, - QuantARowPtr, QuantBDataColPtr, QuantBScaleColPtr, QuantBZeroPointColPtr, SumPtr, CountK, - StrideQuantBData, StrideQuantBScale, StrideQuantBZeroPoint, - BiasPtr - ); + // process blocks in 32-element sub-blocks + const size_t SubBlksPerBlk = BlkLen / 32; - // move to next `NCols` columns + for (size_t n = 0; n < CountN; ++n) { + const std::byte* QuantAPtr = QuantA; + const std::byte* QuantBDataPtr = QuantBDataColPtr; + const float* QuantBScalePtr = QuantBScaleColPtr; + const std::byte* QuantBZeroPointPtr = QuantBZeroPointColPtr; - QuantBDataColPtr += NCols * StrideQuantBData; - QuantBScaleColPtr += NCols * StrideQuantBScale; - if constexpr (HasZeroPoint) { - QuantBZeroPointColPtr += NCols * StrideQuantBZeroPoint; - } + float32x4_t acc0{}, acc1{}; - BiasPtr += BiasPtr != nullptr ? NCols : 0; - SumPtr += NCols; + for (size_t k_blk_idx = 0; k_blk_idx < BlockCountK; ++k_blk_idx) { + // compute combined scale + const float32x4_t scale = vdupq_n_f32(Q8BlkScale(QuantAPtr) * (*QuantBScalePtr)); - nblk -= NCols; - } + // load B zero point + const int8x16_t bzp = [&]() -> int8x16_t { + if constexpr (HasZeroPoint) { + return vdupq_n_s8( + ((k_blk_idx & 1) == 0) ? std::to_integer((*QuantBZeroPointPtr) & std::byte{0x0F}) + : std::to_integer((*QuantBZeroPointPtr) >> 4) + ); + } else { + return vdupq_n_s8(8); + } + }(); + + const int8_t* QuantADataPtr = Q8BlkData(QuantAPtr); + + for (size_t sub_blk_idx = 0; sub_blk_idx < SubBlksPerBlk; sub_blk_idx += 2) { + // load A + const int8x16_t av0 = vld1q_s8(QuantADataPtr + 0); + const int8x16_t av1 = vld1q_s8(QuantADataPtr + 16); + const int8x16_t av2 = vld1q_s8(QuantADataPtr + 32); + const int8x16_t av3 = vld1q_s8(QuantADataPtr + 48); + + // load B + const uint8x16_t bv_packed0 = vld1q_u8(reinterpret_cast(QuantBDataPtr)); + const uint8x16_t bv_packed1 = vld1q_u8(reinterpret_cast(QuantBDataPtr) + 16); + + int8x16_t bv0 = vreinterpretq_s8_u8(vandq_u8(bv_packed0, LowMaskU8x16)); + int8x16_t bv1 = vreinterpretq_s8_u8(vshrq_n_u8(bv_packed0, 4)); + int8x16_t bv2 = vreinterpretq_s8_u8(vandq_u8(bv_packed1, LowMaskU8x16)); + int8x16_t bv3 = vreinterpretq_s8_u8(vshrq_n_u8(bv_packed1, 4)); + + // subtract B zero point + bv0 = vsubq_s8(bv0, bzp); + bv1 = vsubq_s8(bv1, bzp); + bv2 = vsubq_s8(bv2, bzp); + bv3 = vsubq_s8(bv3, bzp); + + // quantized dot product + int32x4_t dot0{}, dot1{}; + dot0 = vdotq_s32(vdotq_s32(dot0, av0, bv0), av1, bv1); + dot1 = vdotq_s32(vdotq_s32(dot1, av2, bv2), av3, bv3); + + // convert to float + const float32x4_t dot_f32_0 = vcvtq_f32_s32(dot0); + const float32x4_t dot_f32_1 = vcvtq_f32_s32(dot1); + + // multiply by scale and update accumulator + acc0 = vfmaq_f32(acc0, dot_f32_0, scale); + acc1 = vfmaq_f32(acc1, dot_f32_1, scale); + + // increment block data pointers to next sub-block + QuantADataPtr += 16 * 4; + QuantBDataPtr += 16 * 2; + } - // left over columns less than `NCols`? - nblk += NCols; - for (int64_t n = 0; n < nblk; ++n) { - ComputeDotProducts_BlkBitWidth4_CompInt8<1, SubBlkLen, HasZeroPoint>( - BlkLen, - QuantARowPtr, QuantBDataColPtr, QuantBScaleColPtr, QuantBZeroPointColPtr, SumPtr, CountK, - StrideQuantBData, StrideQuantBScale, StrideQuantBZeroPoint, - BiasPtr - ); + // increment other block pointers + + QuantAPtr += Q8BlkSize(BlkLen); + QuantBScalePtr += 1; + + if constexpr (HasZeroPoint) { + QuantBZeroPointPtr += ((k_blk_idx & 1) == 0) ? 0 : 1; + } + } + + *SumPtr = vaddvq_f32(acc0) + vaddvq_f32(acc1); + if (BiasPtr) { + *SumPtr += *BiasPtr; + } // move to next column @@ -940,26 +1134,34 @@ SQ4BitGemmM1Kernel_CompInt8_DispatchOnBlkLen( const std::byte* QuantBZeroPoint, float* C, size_t CountN, - size_t CountK, size_t BlockStrideQuantB, const float* Bias ) { if (BlkLen == 16) { - SQ4BitGemmM1Kernel_CompInt8_Impl<4, 16, HasZeroPoint>( - BlkLen, + SQ4BitGemmM1Kernel_CompInt8_Impl_BlkLen16( + QuantA, + QuantBData, + QuantBScale, + QuantBZeroPoint, + C, + CountN, + BlockStrideQuantB, + Bias + ); + } else if (BlkLen == 32) { + SQ4BitGemmM1Kernel_CompInt8_Impl_BlkLen32( QuantA, QuantBData, QuantBScale, QuantBZeroPoint, C, CountN, - CountK, BlockStrideQuantB, Bias ); } else { - SQ4BitGemmM1Kernel_CompInt8_Impl<4, 32, HasZeroPoint>( + SQ4BitGemmM1Kernel_CompInt8_Impl_BlkLenGreaterThan32( BlkLen, QuantA, QuantBData, @@ -967,7 +1169,6 @@ SQ4BitGemmM1Kernel_CompInt8_DispatchOnBlkLen( QuantBZeroPoint, C, CountN, - CountK, BlockStrideQuantB, Bias ); @@ -984,7 +1185,7 @@ SQ4BitGemmM1Kernel_CompInt8( const std::byte* QuantBZeroPoint, float* C, size_t CountN, - size_t CountK, + size_t /*CountK*/, size_t BlockStrideQuantB, const float* Bias ) @@ -998,7 +1199,6 @@ SQ4BitGemmM1Kernel_CompInt8( QuantBZeroPoint, C, CountN, - CountK, BlockStrideQuantB, Bias ); @@ -1011,7 +1211,6 @@ SQ4BitGemmM1Kernel_CompInt8( QuantBZeroPoint, C, CountN, - CountK, BlockStrideQuantB, Bias ); diff --git a/onnxruntime/core/mlas/lib/wasm_simd/SgemmKernelWasmSimd.cpp b/onnxruntime/core/mlas/lib/wasm_simd/SgemmKernelWasmSimd.cpp index 955b7c5deee9a..43a12b37e4ffa 100644 --- a/onnxruntime/core/mlas/lib/wasm_simd/SgemmKernelWasmSimd.cpp +++ b/onnxruntime/core/mlas/lib/wasm_simd/SgemmKernelWasmSimd.cpp @@ -171,11 +171,9 @@ Return Value: if (k > 0) { Row0AElements0 = a[0]; - Row0AElements1 = a[1]; if (ProcessTwoRows) { Row1AElements0 = a[lda]; - Row1AElements1 = a[lda + 1]; } BElements0 = MlasLoadFloat32x4(B + 0); diff --git a/onnxruntime/core/optimizer/common_subexpression_elimination.cc b/onnxruntime/core/optimizer/common_subexpression_elimination.cc index b2e7ef0b4f558..48df511d0c672 100644 --- a/onnxruntime/core/optimizer/common_subexpression_elimination.cc +++ b/onnxruntime/core/optimizer/common_subexpression_elimination.cc @@ -4,6 +4,7 @@ #include "common_subexpression_elimination.h" #include "core/optimizer/utils.h" #include "core/graph/graph_utils.h" +#include "core/framework/tensorprotoutils.h" #include #include @@ -170,6 +171,32 @@ bool AreRangesEqual(const Range& lhs, const Range& rhs) { std::equal(lhs.begin(), lhs.end(), rhs.begin()); } +// Check if two tensor attributes are equal scalar tensors, mainly to support ConstantOfShape Op. +// Currently support float, float16 and int64 data types, and requires the data are raw data in TensorProto. +bool AreScalarTensorAttributeEqual(const ONNX_NAMESPACE::TensorProto& lhs_t, const ONNX_NAMESPACE::TensorProto& rhs_t) { + if (!(utils::HasDataType(lhs_t) && utils::HasDataType(rhs_t) && lhs_t.data_type() == rhs_t.data_type() && + (lhs_t.data_type() == onnx::TensorProto_DataType_FLOAT || + lhs_t.data_type() == onnx::TensorProto_DataType_FLOAT16 || + lhs_t.data_type() == onnx::TensorProto_DataType_INT64) && + lhs_t.dims_size() == 1 && rhs_t.dims_size() == 1 && lhs_t.dims()[0] == 1 && rhs_t.dims()[0] == 1 && + utils::HasRawData(lhs_t) && utils::HasRawData(rhs_t))) { + return false; + } + const void* lhs_value = lhs_t.raw_data().data(); + const void* rhs_value = rhs_t.raw_data().data(); + switch (lhs_t.data_type()) { + case onnx::TensorProto_DataType_FLOAT: + return *reinterpret_cast(lhs_value) == *reinterpret_cast(rhs_value); + case onnx::TensorProto_DataType_FLOAT16: + return *reinterpret_cast(lhs_value) == *reinterpret_cast(rhs_value); + case onnx::TensorProto_DataType_INT64: + return *reinterpret_cast(lhs_value) == *reinterpret_cast(rhs_value); + default: + break; + } + return false; +} + bool AreEqual(const ONNX_NAMESPACE::AttributeProto& lhs, const ONNX_NAMESPACE::AttributeProto& rhs) { if (&lhs == &rhs) { return true; @@ -193,6 +220,7 @@ bool AreEqual(const ONNX_NAMESPACE::AttributeProto& lhs, const ONNX_NAMESPACE::A case onnx::AttributeProto_AttributeType_STRINGS: return AreRangesEqual(lhs.strings(), rhs.strings()); case onnx::AttributeProto_AttributeType_TENSOR: + return AreScalarTensorAttributeEqual(lhs.t(), rhs.t()); case onnx::AttributeProto_AttributeType_GRAPH: case onnx::AttributeProto_AttributeType_SPARSE_TENSOR: case onnx::AttributeProto_AttributeType_TYPE_PROTO: @@ -207,6 +235,31 @@ bool AreEqual(const ONNX_NAMESPACE::AttributeProto& lhs, const ONNX_NAMESPACE::A return false; } +// Support scalar float/int64/fp16 tensor attribute only for now, and requires data is raw data in TensorProto. +std::size_t GetTensorAttributeHash(const ONNX_NAMESPACE::TensorProto& attr_t) { + std::size_t hash = 0; + if (utils::HasDataType(attr_t) && attr_t.dims_size() == 1 && attr_t.dims()[0] == 1 && utils::HasRawData(attr_t)) { + int data_type = attr_t.data_type(); + switch (data_type) { + case onnx::TensorProto_DataType_FLOAT: + UpdateHash(data_type, hash); + UpdateHash(*reinterpret_cast(attr_t.raw_data().data()), hash); + break; + case onnx::TensorProto_DataType_FLOAT16: + UpdateHash(data_type, hash); + UpdateHash(static_cast(*reinterpret_cast(attr_t.raw_data().data())), hash); + break; + case onnx::TensorProto_DataType_INT64: + UpdateHash(data_type, hash); + UpdateHash(*reinterpret_cast(attr_t.raw_data().data()), hash); + break; + default: + break; + } + } + return hash; +} + std::size_t GetAttributeHash(const ONNX_NAMESPACE::AttributeProto& attr) { std::size_t hash = 0; UpdateHash( @@ -233,6 +286,8 @@ std::size_t GetAttributeHash(const ONNX_NAMESPACE::AttributeProto& attr) { UpdateHashWithContainer(attr.strings(), hash); break; case onnx::AttributeProto_AttributeType_TENSOR: + UpdateHash(attr.t(), &GetTensorAttributeHash, hash); + break; case onnx::AttributeProto_AttributeType_GRAPH: case onnx::AttributeProto_AttributeType_SPARSE_TENSOR: case onnx::AttributeProto_AttributeType_TYPE_PROTO: diff --git a/onnxruntime/core/optimizer/compute_optimizer/upstream_gather.cc b/onnxruntime/core/optimizer/compute_optimizer/upstream_gather.cc index 9c98ed6d3e114..1516fb37a7e9f 100644 --- a/onnxruntime/core/optimizer/compute_optimizer/upstream_gather.cc +++ b/onnxruntime/core/optimizer/compute_optimizer/upstream_gather.cc @@ -4,6 +4,7 @@ #ifdef ENABLE_TRAINING #include +#include "core/common/string_utils.h" #include "core/graph/graph_utils.h" #include "core/optimizer/initializer.h" #include "core/optimizer/utils.h" @@ -26,38 +27,38 @@ UpStreamGatherGraphTransformer::UpStreamGatherGraphTransformer( // 2. Whether the outputs have the same dim changes if the Gather node moves before that operator. // 3. Should all inputs be allowed when tracking back further (bottom-up); // if not, add the input index restriction as MatMul did. - {GetFullQualifiedOpName("Add", kOnnxDomain), + {utils::GetFullQualifiedOpName("Add", kOnnxDomain), OpPassThroughConfig(std::make_shared>(), opset_14_13_7_6_1)}, - {GetFullQualifiedOpName("BiasGelu", kMSDomain), + {utils::GetFullQualifiedOpName("BiasGelu", kMSDomain), OpPassThroughConfig(std::make_shared>(), opset_1)}, - {GetFullQualifiedOpName("Cast", kOnnxDomain), + {utils::GetFullQualifiedOpName("Cast", kOnnxDomain), OpPassThroughConfig(std::make_shared>(), opset_19_13_9_6_1)}, - {GetFullQualifiedOpName("Div", kOnnxDomain), + {utils::GetFullQualifiedOpName("Div", kOnnxDomain), OpPassThroughConfig(std::make_shared>(), opset_14_13_7_6_1)}, - {GetFullQualifiedOpName("Dropout", kOnnxDomain), + {utils::GetFullQualifiedOpName("Dropout", kOnnxDomain), OpPassThroughConfig(std::make_shared>(), opset_13_12_10_7_6_1)}, - {GetFullQualifiedOpName("Gelu", kMSDomain), + {utils::GetFullQualifiedOpName("Gelu", kMSDomain), OpPassThroughConfig(std::make_shared>(), opset_1)}, {// Be noted, this is our own implementation of ONNX domain op. - GetFullQualifiedOpName("LayerNormalization", kOnnxDomain), + utils::GetFullQualifiedOpName("LayerNormalization", kOnnxDomain), OpPassThroughConfig(std::make_shared(), opset_1)}, - {GetFullQualifiedOpName("MatMul", kOnnxDomain), + {utils::GetFullQualifiedOpName("MatMul", kOnnxDomain), OpPassThroughConfig(std::make_shared(), opset_13_9_1)}, - {GetFullQualifiedOpName("Reshape", kOnnxDomain), + {utils::GetFullQualifiedOpName("Reshape", kOnnxDomain), OpPassThroughConfig(std::make_shared(), opset_19_14_13_5_1)}, - {GetFullQualifiedOpName("Softmax", kOnnxDomain), + {utils::GetFullQualifiedOpName("Softmax", kOnnxDomain), OpPassThroughConfig(std::make_shared(), opset_13_11_1)}, - {GetFullQualifiedOpName("Transpose", kOnnxDomain), + {utils::GetFullQualifiedOpName("Transpose", kOnnxDomain), OpPassThroughConfig(std::make_shared(), opset_13_1)}, }); @@ -69,7 +70,7 @@ bool UpStreamGatherGraphTransformer::UpStreamInternal( const OpPassThroughConfig& pass_through_config, const logging::Logger& logger) const { Node& slice_node = *info.node_ptr; - const std::string op_type = GetFullQualifiedOpName(current_node.OpType(), current_node.Domain()); + const std::string op_type = utils::GetFullQualifiedOpName(current_node.OpType(), current_node.Domain()); std::unordered_map propagate_input_indices; std::unordered_map> all_input_cmp_rets; diff --git a/onnxruntime/core/optimizer/compute_optimizer/upstream_reshape.cc b/onnxruntime/core/optimizer/compute_optimizer/upstream_reshape.cc index f7b48de2caaf5..716988e93312c 100644 --- a/onnxruntime/core/optimizer/compute_optimizer/upstream_reshape.cc +++ b/onnxruntime/core/optimizer/compute_optimizer/upstream_reshape.cc @@ -4,6 +4,7 @@ #ifdef ENABLE_TRAINING #include "core/framework/tensorprotoutils.h" +#include "core/common/string_utils.h" #include "core/graph/graph_utils.h" #include "core/optimizer/utils.h" #include "core/optimizer/compute_optimizer/upstream_reshape_actors.h" @@ -21,23 +22,23 @@ UpStreamReshapeGraphTransformer::UpStreamReshapeGraphTransformer( // If optype is not enough to guarantee the equivalence, we need to add a customized pre-check function. // 2. Should all inputs be allowed when tracking back further (bottom-up); // if not, add the input index restriction. - {GetFullQualifiedOpName("Add", kOnnxDomain), + {utils::GetFullQualifiedOpName("Add", kOnnxDomain), OpPassThroughConfig( std::make_shared>(), opset_14_13_7_6_1)}, - {GetFullQualifiedOpName("BiasGelu", kMSDomain), + {utils::GetFullQualifiedOpName("BiasGelu", kMSDomain), OpPassThroughConfig( std::make_shared>(), opset_1)}, - {GetFullQualifiedOpName("Cast", kOnnxDomain), + {utils::GetFullQualifiedOpName("Cast", kOnnxDomain), OpPassThroughConfig( std::make_shared>(), opset_19_13_9_6_1)}, - {GetFullQualifiedOpName("Dropout", kOnnxDomain), + {utils::GetFullQualifiedOpName("Dropout", kOnnxDomain), OpPassThroughConfig( std::make_shared>(), opset_13_12_10_7_6_1)}, {// Be noted, this is our own implementation of ONNX domain op. - GetFullQualifiedOpName("LayerNormalization", kOnnxDomain), + utils::GetFullQualifiedOpName("LayerNormalization", kOnnxDomain), OpPassThroughConfig( std::make_shared(), opset_1)}, - {GetFullQualifiedOpName("MatMul", kOnnxDomain), + {utils::GetFullQualifiedOpName("MatMul", kOnnxDomain), OpPassThroughConfig( std::make_shared(), opset_13_9_1)}, }); @@ -47,7 +48,7 @@ bool UpStreamReshapeGraphTransformer::UpStreamInternal( Graph& graph, std::deque& queue, Node& current_node, ReshapeInfo& info, const OpPassThroughConfig& pass_through_config, const logging::Logger& logger) const { - const std::string op_type = GetFullQualifiedOpName(current_node.OpType(), current_node.Domain()); + const std::string op_type = utils::GetFullQualifiedOpName(current_node.OpType(), current_node.Domain()); std::vector propagate_input_indices; std::unordered_map> all_input_cmp_rets; diff --git a/onnxruntime/core/optimizer/compute_optimizer/upstream_transformer_base.cc b/onnxruntime/core/optimizer/compute_optimizer/upstream_transformer_base.cc index f08e37296d259..4582f26a7dc68 100644 --- a/onnxruntime/core/optimizer/compute_optimizer/upstream_transformer_base.cc +++ b/onnxruntime/core/optimizer/compute_optimizer/upstream_transformer_base.cc @@ -5,6 +5,7 @@ #include #include "core/common/safeint.h" +#include "core/common/string_utils.h" #include "core/graph/graph_utils.h" #include "core/optimizer/initializer.h" #include "core/optimizer/utils.h" @@ -130,7 +131,7 @@ template bool UpStreamGraphTransformerBase::Upstream(Graph& graph, std::deque& queue, Node& current_node, T1& info, const logging::Logger& logger) const { - const std::string op_type = GetFullQualifiedOpName(current_node.OpType(), current_node.Domain()); + const std::string op_type = utils::GetFullQualifiedOpName(current_node.OpType(), current_node.Domain()); if (allowed_passthrough_ops_.count(op_type)) { auto& pass_through_config = allowed_passthrough_ops_.at(op_type); LOG_DEBUG_INFO(logger, "Enter reorder handle for node " + current_node.Name() + "(" + op_type + ")"); diff --git a/onnxruntime/core/optimizer/compute_optimizer/upstream_transformer_base.h b/onnxruntime/core/optimizer/compute_optimizer/upstream_transformer_base.h index 6e22fc791ade3..d848a03c555bb 100644 --- a/onnxruntime/core/optimizer/compute_optimizer/upstream_transformer_base.h +++ b/onnxruntime/core/optimizer/compute_optimizer/upstream_transformer_base.h @@ -72,13 +72,6 @@ class UpStreamGraphTransformerBase : public GraphTransformer { const OpPassThroughConfig& pass_through_config, const logging::Logger& logger) const = 0; - /** - * @brief A consistent way to construct the full qualified op name. - */ - std::string GetFullQualifiedOpName(const std::string& op_type, const std::string& domain) const { - return domain + "::" + op_type; - } - std::unordered_map> allowed_passthrough_ops_; private: diff --git a/onnxruntime/core/optimizer/gather_fusion.cc b/onnxruntime/core/optimizer/gather_fusion.cc index 4903bc1d6b961..1f2b31526c6b8 100644 --- a/onnxruntime/core/optimizer/gather_fusion.cc +++ b/onnxruntime/core/optimizer/gather_fusion.cc @@ -9,55 +9,144 @@ namespace onnxruntime { -bool GatherToSplitFusion::IsSupportedGather(const Graph& graph, const Node& node, int64_t& index, int64_t& axis, - int64_t& indices_n_dims) const { - if (!graph_utils::IsSupportedOptypeVersionAndDomain(node, "Gather", {1, 11, 13}) || +namespace { +static int64_t GetGatherAxis(const Node& node, int64_t rank) { + int64_t axis = 0; + auto& attrs = node.GetAttributes(); + if (attrs.find("axis") != attrs.end()) { + auto& axis_attr = attrs.at("axis"); + if (utils::HasInt(axis_attr)) { + axis = axis_attr.i(); + if (axis < 0) axis += rank; + } + } + return axis; +} + +static bool GetScalarInt64Initializer(const Graph& graph, const NodeArg& node_arg, int64_t& value, int64_t& rank) { + if (!optimizer_utils::IsScalar(node_arg)) return false; + const ONNX_NAMESPACE::TensorProto* tensor_proto = graph_utils::GetConstantInitializer(graph, node_arg.Name()); + if (!tensor_proto || tensor_proto->data_type() != ONNX_NAMESPACE::TensorProto::INT64) return false; + Initializer init_const{*tensor_proto, graph.ModelPath()}; + value = *(init_const.data()); + rank = tensor_proto->dims_size(); + return true; +} + +static bool GetSliceAxis(const Graph& graph, const Node& node, int64_t rank, int64_t& axis) { + if (node.InputDefs().size() < 4) return false; + int64_t unused = 0; + if (!GetScalarInt64Initializer(graph, *node.InputDefs()[3], axis, unused)) return false; + if (axis < 0) axis += rank; + return true; +} + +static bool GetAxis(const Graph& graph, const Node& node, int64_t rank, int64_t& axis) { + if (node.OpType() == "Gather") { + axis = GetGatherAxis(node, rank); + return true; + } + if (node.OpType() == "Slice") { + return GetSliceAxis(graph, node, rank, axis); + } + return false; +} + +} // namespace + +bool GatherSliceToSplitFusion::IsSupportedGather(const Graph& graph, const Node& node, int64_t rank, + int64_t target_axis, int64_t dim_size, InlinedVector& consumed, + int64_t& start, bool& need_squeeze) const { + if (!graph_utils::IsSupportedOptypeVersionAndDomain(node, "Gather", {13}) || !graph_utils::IsSupportedProvider(node, GetCompatibleExecutionProviders())) { return false; } - const NodeArg& input_arg = *(node.InputDefs()[1]); - if (!optimizer_utils::IsScalar(input_arg)) return false; - const ONNX_NAMESPACE::TensorProto* tensor_proto = graph_utils::GetConstantInitializer(graph, input_arg.Name()); - if (!tensor_proto) return false; - if (tensor_proto->data_type() != ONNX_NAMESPACE::TensorProto_DataType_INT64) return false; - Initializer init_const{*tensor_proto, graph.ModelPath()}; - index = *(init_const.data()); - axis = 0; // Default value. - auto& attrs = node.GetAttributes(); - if (attrs.find("axis") != attrs.end()) { - auto& axis_attr = attrs.at("axis"); - if (utils::HasInt(axis_attr)) axis = axis_attr.i(); + if (GetGatherAxis(node, rank) != target_axis) return false; + // Require the indices input to be a scalar tensor for now. Normally if not, the exporter will choose Slice. + // We can relax this later if needed. + int64_t indices_n_dims = 0; + if (!GetScalarInt64Initializer(graph, *(node.InputDefs()[1]), start, indices_n_dims)) return false; + if (start < 0) start += dim_size; + if (start < 0 || start >= dim_size || consumed[static_cast(start)]) return false; + consumed[static_cast(start)] = true; + need_squeeze = indices_n_dims == 0; + return true; +} + +bool GatherSliceToSplitFusion::IsSupportedSlice(const Graph& graph, const Node& node, int64_t rank, int64_t target_axis, + int64_t dim_size, InlinedVector& consumed, int64_t& start, + int64_t& end) const { + if (!graph_utils::IsSupportedOptypeVersionAndDomain(node, "Slice", {13}) || + !graph_utils::IsSupportedProvider(node, GetCompatibleExecutionProviders())) { + return false; + } + + int64_t axis = 0; + if (!GetSliceAxis(graph, node, rank, axis) || axis != target_axis) return false; + int64_t unused = 0; + if (!GetScalarInt64Initializer(graph, *node.InputDefs()[1], start, unused) || + !GetScalarInt64Initializer(graph, *node.InputDefs()[2], end, unused)) { + return false; + } + // Handling start and end according to schema definition. + if (start < 0) start += dim_size; + if (end < 0) end += dim_size; + if (start < 0) + start = 0; + else if (start > dim_size) + start = dim_size; + if (end < 0) + end = 0; + else if (end > dim_size) + end = dim_size; + if (start >= end) return false; + if (node.InputDefs().size() >= 5) { + int64_t step = 0; + if (!GetScalarInt64Initializer(graph, *node.InputDefs()[4], step, unused) || step != 1) return false; + } + for (int64_t i = start; i < end; ++i) { + if (consumed[static_cast(i)]) return false; + consumed[static_cast(i)] = true; } - indices_n_dims = tensor_proto->dims_size(); return true; } /* -GatherToSplitFusion is to fuse: -Node -> Gather(index=0, axis=axis) - |-> Gather(index=1, axis=axis) - |-> Gather(index=2, axis=axis) +GatherSliceToSplitFusion is to fuse: +Node -> Gather(indices=0, axis=axis) + |-> Gather(indices=[1], axis=axis) + |-> Slice(start=2, end=3, axes=[axis]) |... To Node -> Split -> Squeeze(axis=axis) - |-> Squeeze(axis=axis) - |-> Squeeze(axis=axis) + |-> + |-> |... So that we can use one kernel to finish the job. +The fusion requires that the indices of Gather nodes and start/end of Slice nodes are not overlapping and cover +all the elements in the target axis. Step of Slice node should be 1. */ -Status GatherToSplitFusion::ApplyImpl(Graph& graph, bool& modified, int graph_level, - const logging::Logger& logger) const { +Status GatherSliceToSplitFusion::ApplyImpl(Graph& graph, bool& modified, int graph_level, + const logging::Logger& logger) const { + // Squeeze, Gather, Slice and Split have different schemas before and after OpSet 13. + // To make code simple, support OpSet >= 13 only. + int onnx_opset_version = -1; + if (graph.DomainToVersionMap().find(kOnnxDomain) != graph.DomainToVersionMap().end()) { + onnx_opset_version = graph.DomainToVersionMap().at(kOnnxDomain); + } + if (onnx_opset_version < 13) return Status::OK(); + GraphViewer graph_viewer(graph); const auto& node_topology_list = graph_viewer.GetNodesInTopologicalOrder(); - InlinedVector node_args; + InlinedVector candidate_args; for (auto node_arg : graph.GetInputs()) { if (node_arg && graph.GetConsumerNodes(node_arg->Name()).size() > 1) { - node_args.push_back(node_arg); + candidate_args.push_back(node_arg); } } @@ -65,7 +154,7 @@ Status GatherToSplitFusion::ApplyImpl(Graph& graph, bool& modified, int graph_le if (graph.GetConsumerNodes(entry.first).size() > 1) { auto node_arg = graph.GetNodeArg(entry.first); if (node_arg) { - node_args.push_back(node_arg); + candidate_args.push_back(node_arg); } } } @@ -90,129 +179,108 @@ Status GatherToSplitFusion::ApplyImpl(Graph& graph, bool& modified, int graph_le size_t output_count = node.GetOutputEdgesCount(); if (output_count <= 1) continue; - node_args.push_back(node.OutputDefs()[0]); + candidate_args.push_back(node.OutputDefs()[0]); } - for (const NodeArg* node_arg : node_args) { + for (const NodeArg* node_arg : candidate_args) { auto shape = node_arg->Shape(); if (!shape) continue; int64_t rank = static_cast(shape->dim_size()); - - bool can_fuse = true; - bool first_edge = true; - int64_t split_axis = 0; - int64_t indices_n_dims = -1; auto consumers = graph.GetConsumerNodes(node_arg->Name()); - size_t consumer_count = consumers.size(); - InlinedVector gather_outputs(consumer_count, nullptr); - InlinedVector> nodes_to_fuse; + InlinedVector condidate_consumers; for (auto consumer : consumers) { - int64_t index, axis, dims; - if (!consumer || consumer->InputDefs()[0] != node_arg || - !IsSupportedGather(graph, *consumer, index, axis, dims)) { - can_fuse = false; - break; - } - if (indices_n_dims == -1) { - indices_n_dims = dims; - } else if (indices_n_dims != dims) { - // Not the same number of dimensions (0 or 1) for all scalar indices. - can_fuse = false; - break; + if (consumer && consumer->InputDefs()[0] == node_arg && + (consumer->OpType() == "Gather" || consumer->OpType() == "Slice")) { + condidate_consumers.emplace_back(consumer); } - if (axis < 0) axis += rank; - if (first_edge) { - auto dim = shape->dim(static_cast(axis)); - if (!utils::HasDimValue(dim) || dim.dim_value() != static_cast(consumer_count)) { - can_fuse = false; - break; - } - split_axis = axis; - first_edge = false; - } else if (axis != split_axis) { + } + if (condidate_consumers.size() < 2) continue; + int64_t axis = 0; + if (!GetAxis(graph, *condidate_consumers[0], rank, axis)) continue; + auto dim = shape->dim(static_cast(axis)); + if (!utils::HasDimValue(dim)) continue; + int64_t dim_size = dim.dim_value(); + InlinedVector consumed(static_cast(dim_size), false); + bool can_fuse = true; + InlinedVector> nodes_to_fuse; + InlinedVector starts; + InlinedHashMap> output_info_map; + for (auto consumer : condidate_consumers) { + if (!consumer || consumer->InputDefs()[0] != node_arg) { can_fuse = false; break; } - if (index < 0) index += static_cast(consumer_count); - if (index < 0 || index >= static_cast(consumer_count) || gather_outputs[static_cast(index)]) { + int64_t start = 0, end = 0; + bool need_squeeze = false; + if (IsSupportedGather(graph, *consumer, rank, axis, dim_size, consumed, start, need_squeeze)) { + Node& gather_node = *graph.GetNode(consumer->Index()); + nodes_to_fuse.emplace_back(gather_node); + starts.emplace_back(start); + output_info_map[start] = std::make_tuple(gather_node.MutableOutputDefs()[0], 1, need_squeeze); + } else if (IsSupportedSlice(graph, *consumer, rank, axis, dim_size, consumed, start, end)) { + Node& slice_node = *graph.GetNode(consumer->Index()); + nodes_to_fuse.emplace_back(slice_node); + starts.emplace_back(start); + output_info_map[start] = std::make_tuple(slice_node.MutableOutputDefs()[0], end - start, false); + } else { can_fuse = false; break; } - Node& gather_node = *graph.GetNode(consumer->Index()); - nodes_to_fuse.emplace_back(gather_node); - gather_outputs[static_cast(index)] = gather_node.MutableOutputDefs()[0]; - } - - if (!can_fuse) continue; - - ONNX_NAMESPACE::TypeProto split_output_type; - const ONNX_NAMESPACE::TensorProto_DataType element_type = - static_cast(node_arg->TypeAsProto()->tensor_type().elem_type()); - split_output_type.mutable_tensor_type()->set_elem_type(element_type); - for (int64_t i = 0; i < rank; ++i) { - if (i == split_axis) { - split_output_type.mutable_tensor_type()->mutable_shape()->add_dim()->set_dim_value(1LL); - } else { - *(split_output_type.mutable_tensor_type()->mutable_shape()->add_dim()) = shape->dim(static_cast(i)); - } } + if (!can_fuse || std::find(consumed.begin(), consumed.end(), false) != consumed.end()) continue; + std::sort(starts.begin(), starts.end()); InlinedVector split_outputs; - bool add_squeeze_node = indices_n_dims == 0; - if (add_squeeze_node) { - for (size_t i = 0; i < consumer_count; ++i) { - split_outputs.emplace_back( - &graph.GetOrCreateNodeArg(graph.GenerateNodeArgName("split" + std::to_string(i)), &split_output_type)); - } - } - - Node& split_node = - graph.AddNode(graph.GenerateNodeName("Split"), "Split", "Split for Fused Gather nodes", - {graph.GetNodeArg(node_arg->Name())}, add_squeeze_node ? split_outputs : gather_outputs); - split_node.AddAttribute("axis", split_axis); - split_node.SetExecutionProviderType(nodes_to_fuse[0].get().GetExecutionProviderType()); - - // Squeeze-11, Squeee-13, Split-13, Split-18 have different schemas. - int onnx_opset_version = -1; - if (graph.DomainToVersionMap().find(kOnnxDomain) != graph.DomainToVersionMap().end()) { - onnx_opset_version = graph.DomainToVersionMap().at(kOnnxDomain); - } - - if (onnx_opset_version < 13) { - if (add_squeeze_node) { - for (size_t i = 0; i < consumer_count; ++i) { - Node& squeeze_node = graph.AddNode(graph.GenerateNodeName("Squeeze" + std::to_string(i)), "Squeeze", - "Squeeze for Fused Gather nodes", {split_outputs[i]}, {gather_outputs[i]}); - squeeze_node.AddAttribute("axes", std::vector{split_axis}); - squeeze_node.SetExecutionProviderType(nodes_to_fuse[0].get().GetExecutionProviderType()); + InlinedVector split_values; + for (int64_t start : starts) { + auto& output_info = output_info_map[start]; + NodeArg* original_output_arg = std::get<0>(output_info); + int64_t split_value = std::get<1>(output_info); + split_values.emplace_back(split_value); + if (std::get<2>(output_info)) { + ONNX_NAMESPACE::TypeProto split_output_type; + const ONNX_NAMESPACE::TensorProto_DataType element_type = + static_cast(node_arg->TypeAsProto()->tensor_type().elem_type()); + split_output_type.mutable_tensor_type()->set_elem_type(element_type); + for (int64_t i = 0; i < rank; ++i) { + if (i == axis) { + split_output_type.mutable_tensor_type()->mutable_shape()->add_dim()->set_dim_value(split_value); + } else { + *(split_output_type.mutable_tensor_type()->mutable_shape()->add_dim()) = shape->dim(static_cast(i)); + } } - } - } else { - if (onnx_opset_version >= 18) { - split_node.AddAttribute("num_outputs", static_cast(consumer_count)); - } - - if (add_squeeze_node) { + NodeArg* split_output_arg = + &graph.GetOrCreateNodeArg(graph.GenerateNodeArgName("split_output"), &split_output_type); ONNX_NAMESPACE::TensorProto axes_initializer_proto; - axes_initializer_proto.set_name(graph.GenerateNodeName("SqueezeAxesInitializer")); + axes_initializer_proto.set_name(graph.GenerateNodeName("squeeze_axes")); axes_initializer_proto.add_dims(static_cast(1)); axes_initializer_proto.set_data_type(ONNX_NAMESPACE::TensorProto_DataType_INT64); - InlinedVector axes_value{split_axis}; - axes_initializer_proto.set_raw_data(axes_value.data(), axes_value.size() * sizeof(int64_t)); + axes_initializer_proto.add_int64_data(axis); NodeArg* axes_arg = &graph_utils::AddInitializer(graph, axes_initializer_proto); - - for (size_t i = 0; i < consumer_count; ++i) { - Node& squeeze_node = - graph.AddNode(graph.GenerateNodeName("Squeeze" + std::to_string(i)), "Squeeze", - "Squeeze for Fused Gather nodes", {split_outputs[i], axes_arg}, {gather_outputs[i]}); - squeeze_node.SetExecutionProviderType(nodes_to_fuse[0].get().GetExecutionProviderType()); - } + Node& squeeze_node = + graph.AddNode(graph.GenerateNodeName("Squeeze"), "Squeeze", "Squeeze for Fused Gather nodes", + {split_output_arg, axes_arg}, {original_output_arg}); + squeeze_node.SetExecutionProviderType(nodes_to_fuse[0].get().GetExecutionProviderType()); + split_outputs.emplace_back(split_output_arg); + } else { + split_outputs.emplace_back(original_output_arg); } } - for (Node& n : nodes_to_fuse) { - graph_utils::RemoveNodeOutputEdges(graph, n); - graph.RemoveNode(n.Index()); + ONNX_NAMESPACE::TensorProto split_initializer_proto; + split_initializer_proto.set_name(graph.GenerateNodeName("splits")); + split_initializer_proto.set_data_type(ONNX_NAMESPACE::TensorProto_DataType_INT64); + split_initializer_proto.add_dims(static_cast(split_values.size())); + split_initializer_proto.mutable_int64_data()->Add(split_values.begin(), split_values.end()); + NodeArg* split_initializer_arg = &graph_utils::AddInitializer(graph, split_initializer_proto); + Node& split_node = graph.AddNode(nodes_to_fuse[0].get().Name() + "/GatherSliceToSplitFusion/", "Split", "Split for Fused Gather nodes", + {graph.GetNodeArg(node_arg->Name()), split_initializer_arg}, split_outputs); + split_node.AddAttribute("axis", axis); + split_node.SetExecutionProviderType(nodes_to_fuse[0].get().GetExecutionProviderType()); + + for (Node& node : nodes_to_fuse) { + graph_utils::RemoveNodeOutputEdges(graph, node); + graph.RemoveNode(node.Index()); } modified = true; diff --git a/onnxruntime/core/optimizer/gather_fusion.h b/onnxruntime/core/optimizer/gather_fusion.h index 44c235915b6cc..098278a77dafe 100644 --- a/onnxruntime/core/optimizer/gather_fusion.h +++ b/onnxruntime/core/optimizer/gather_fusion.h @@ -8,19 +8,23 @@ namespace onnxruntime { /** -@Class GatherToSplitFusion +@Class GatherSliceToSplitFusion -Fuse multiple Gather nodes that comsuming one output to one Split node. +Fuse multiple Gather/Slice nodes that comsuming one output to one Split node. */ -class GatherToSplitFusion : public GraphTransformer { +class GatherSliceToSplitFusion : public GraphTransformer { public: - GatherToSplitFusion(const InlinedHashSet& compatible_execution_providers = {}) noexcept - : GraphTransformer("GatherToSplitFusion", compatible_execution_providers) {} + GatherSliceToSplitFusion(const InlinedHashSet& compatible_execution_providers = {}) noexcept + : GraphTransformer("GatherSliceToSplitFusion", compatible_execution_providers) {} Status ApplyImpl(Graph& graph, bool& modified, int graph_level, const logging::Logger& logger) const override; private: - bool IsSupportedGather(const Graph& graph, const Node& node, int64_t& index, int64_t& axis, int64_t& indices_n_dims) const; + bool IsSupportedGather(const Graph& graph, const Node& node, int64_t rank, int64_t target_axis, int64_t dim_size, + InlinedVector& consumed, int64_t& start, bool& need_squeeze) const; + + bool IsSupportedSlice(const Graph& graph, const Node& node, int64_t rank, int64_t target_axis, int64_t dim_size, + InlinedVector& consumed, int64_t& start, int64_t& end) const; }; /** diff --git a/onnxruntime/core/optimizer/gather_slice_fusion.cc b/onnxruntime/core/optimizer/gather_slice_fusion.cc deleted file mode 100644 index 21266d356a020..0000000000000 --- a/onnxruntime/core/optimizer/gather_slice_fusion.cc +++ /dev/null @@ -1,344 +0,0 @@ -// Copyright (c) Microsoft Corporation. All rights reserved. -// Licensed under the MIT License. - -#include "core/optimizer/gather_slice_fusion.h" -#include "core/graph/graph_utils.h" -#include "core/optimizer/initializer.h" -#include "core/optimizer/utils.h" - -namespace onnxruntime { - -bool GatherSliceToSplitFusion::IsSupportedGather(const Graph& graph, const Node& node, int64_t& index, - int64_t& axis, int64_t& indices_n_dims) const { - if (!graph_utils::IsSupportedOptypeVersionAndDomain(node, "Gather", {1, 11, 13}) || - !graph_utils::IsSupportedProvider(node, GetCompatibleExecutionProviders())) { - return false; - } - - const NodeArg& input_arg = *(node.InputDefs()[1]); - - if (!optimizer_utils::IsScalar(input_arg)) return false; - - const ONNX_NAMESPACE::TensorProto* indices_init = graph_utils::GetConstantInitializer(graph, input_arg.Name()); - - if (!indices_init) return false; - - if (indices_init->data_type() != ONNX_NAMESPACE::TensorProto::INT64) return false; - - // get the index value - Initializer init_const(*indices_init, graph.ModelPath()); - index = *(init_const.data()); - - // get attributes value - axis = 0; - auto& attrs = node.GetAttributes(); - if (attrs.find("axis") != attrs.end()) { - auto& axis_attr = attrs.at("axis"); - if (utils::HasInt(axis_attr)) axis = axis_attr.i(); - } - - indices_n_dims = indices_init->dims_size(); - return true; -} - -bool GatherSliceToSplitFusion::IsSupportedSlice(const Graph& graph, const Node& node, - InlinedVector& starts, - InlinedVector& ends, - InlinedVector& axes, - InlinedVector& steps) const { - // check the version of Slice ops - if (!graph_utils::IsSupportedOptypeVersionAndDomain(node, "Slice", {1, 10, 11, 13}) || - !graph_utils::IsSupportedProvider(node, GetCompatibleExecutionProviders())) { - return false; - } - - // get the opset version - int onnx_opset_version = -1; - if (graph.DomainToVersionMap().find(kOnnxDomain) != graph.DomainToVersionMap().end()) { - onnx_opset_version = graph.DomainToVersionMap().at(kOnnxDomain); - } - - // If Slice op of opset version 1 - if (onnx_opset_version == 1) { - if (!graph_utils::GetRepeatedNodeAttributeValues(node, "starts", starts) || - !graph_utils::GetRepeatedNodeAttributeValues(node, "ends", ends) || - starts.size() != ends.size()) { - return false; - } - - if (graph_utils::GetRepeatedNodeAttributeValues(node, "axes", axes) && (axes.size() != starts.size())) { - return false; - } - } - - // If Slice op of opset version >= 10 - if (onnx_opset_version >= 10) { - // node inputs include: starts - ends - axes - steps - - // return a pointer to the corresponding NodeArg if input of the node at the index exists - auto get_input_if_exists = [&node](size_t input_index) -> const NodeArg* { - const auto& input_defs = node.InputDefs(); - const NodeArg* input = (input_defs.size() > input_index) ? input_defs[input_index] : nullptr; - return (input == nullptr || !input->Exists()) ? nullptr : input; - }; - - // return a pointer to the initializer if it is constant; otherwise, a nullptr - auto get_initializer_if_constant = - [&graph, get_input_if_exists](size_t input_index) -> const ONNX_NAMESPACE::TensorProto* { - const NodeArg* input = get_input_if_exists(input_index); - return input ? graph_utils::GetConstantInitializer(graph, input->Name()) : nullptr; - }; - - // return the initialization data if it is constant - auto get_initializer_data = - [&graph](const ONNX_NAMESPACE::TensorProto* slice_initializer) -> InlinedVector { - Initializer init(*slice_initializer, graph.ModelPath()); - if (slice_initializer->data_type() == ONNX_NAMESPACE::TensorProto::INT32) { - int32_t* init_data = init.data(); - return InlinedVector(init_data, init_data + init.size()); - } - - if (slice_initializer->data_type() == ONNX_NAMESPACE::TensorProto::INT64) { - int64_t* init_data = init.data(); - return InlinedVector(init_data, init_data + init.size()); - } - return {}; - }; - - // starts and ends inputs have to exist, be constants and be of the same size. - const ONNX_NAMESPACE::TensorProto* starts_init = get_initializer_if_constant(1); - const ONNX_NAMESPACE::TensorProto* ends_init = get_initializer_if_constant(2); - const ONNX_NAMESPACE::TensorProto* axes_init = get_initializer_if_constant(3); - const ONNX_NAMESPACE::TensorProto* steps_init = get_initializer_if_constant(4); - - if (!starts_init || !ends_init || !axes_init || !steps_init) { - return false; - } - - starts = get_initializer_data(starts_init); - ends = get_initializer_data(ends_init); - axes = get_initializer_data(axes_init); - steps = get_initializer_data(steps_init); - - if (starts.size() == 0 || ends.size() == 0 || starts.size() != ends.size()) { - return false; - } - - if (axes_init->dims_size() != 1 || static_cast(axes_init->dims().Get(0)) != starts.size()) { - return false; - } - - // if steps exists, it should be constant and all value should be 1 - if (steps.size() != starts.size()) { - return false; - } - - for (int64_t step : steps) { - if (step != 1) { - return false; - } - } - } - - return true; -} - -/* -GatherToSplitFusion is to fuse: - Node - |-> Gather(index=0, axis=axis) - |-> Gather(index=1, axis=axis) - |-> Slice(index=2, axis=axis) -To - Node - |-> Split(index=0) -So that we can use one kernel to finish the job. -*/ - -Status GatherSliceToSplitFusion::ApplyImpl(Graph& graph, bool& modified, int graph_level, - const logging::Logger& logger) const { - GraphViewer graph_viewer(graph); - - const auto& node_topology_list = graph_viewer.GetNodesInTopologicalOrder(); - - InlinedVector output_args; - - // Iterate the topological order and get Reshape ops - for (auto node_index : node_topology_list) { - auto* p_node = graph.GetNode(node_index); - - if (p_node == nullptr) continue; - - Node& node = *p_node; - - ORT_RETURN_IF_ERROR(Recurse(node, modified, graph_level, logger)); - - // Currently only catch after Reshape ops, optimize in the future - if (node.OpType() != "Reshape") continue; - - size_t output_count = node.GetOutputEdgesCount(); - - // We only catch 1 scenario for Multi Query Attention for now. - // |---> Gather - // Reshape |---> Gather - // |---> Slice - // |... or (other ops) - - // Get the output into node args - if (output_count < 3) continue; - - output_args.push_back(node.OutputDefs()[0]); - } - - // iterate the children of Reshape node - for (const NodeArg* node_arg : output_args) { - auto shape = node_arg->Shape(); - if (!shape) continue; - - auto consumers = graph.GetConsumerNodes(node_arg->Name()); - size_t consumer_count = consumers.size(); - - // get the tensor rank - int64_t rank = static_cast(shape->dim_size()); - - bool can_fuse = true; - bool first_edge = true; - int64_t split_axis = 0; - int64_t indices_n_dims = -1; - - // Fuse 2 Gathers and 1 slice to Split - // Get those outputs as Split outputs - InlinedVector split_outputs(3); - - InlinedVector> nodes_to_fuse; - size_t gather_node_count = 2, slice_node_count = 0; - - // find the nodes to be merged - for (auto consumer : consumers) { - int64_t index, axis, dims; - InlinedVector starts, ends, axes, steps; - - bool IsSupportedGatherOps = IsSupportedGather(graph, *consumer, index, axis, dims); - bool IsSupportedSliceOps = IsSupportedSlice(graph, *consumer, starts, ends, axes, steps); - - if ((!consumer || consumer->InputDefs()[0] != node_arg) || - (!IsSupportedGatherOps && !IsSupportedSliceOps)) { - break; - } - - if (IsSupportedGatherOps) { - if (indices_n_dims == -1) { - indices_n_dims = dims; - } else if (indices_n_dims != dims) { - // Not the same number of dimensions (0 or 1) for all scalar indices. - can_fuse = false; - break; - } - - if (axis < 0) axis += rank; - - if (first_edge) { - auto dim = shape->dim(static_cast(axis)); - // dim.dim_value() = 73 - if (!utils::HasDimValue(dim)) { - can_fuse = false; - break; - } - split_axis = axis; - first_edge = false; - } else if (axis != split_axis) { - can_fuse = false; - break; - } - - if (index < 0) index += static_cast(consumer_count); - if (index < 0 || index >= static_cast(consumer_count)) { - can_fuse = false; - break; - } - - Node& gather_node = *graph.GetNode(consumer->Index()); - nodes_to_fuse.push_back(gather_node); - NodeArg* gather_output_args = gather_node.MutableOutputDefs()[0]; - split_outputs[gather_node_count--] = gather_output_args; - } - - // check the Slice Ops - if (IsSupportedSliceOps) { - if (axes[0] != axis && !first_edge) { - can_fuse = false; - break; - } - - Node& slice_node = *graph.GetNode(consumer->Index()); - NodeArg* slice_output_args = slice_node.MutableOutputDefs()[0]; - nodes_to_fuse.push_back(slice_node); - split_outputs[slice_node_count++] = slice_output_args; - } - } - - // condition check - if (!can_fuse || gather_node_count != 0 || slice_node_count != 1) continue; - - // generate the split node and merge the kernel - ONNX_NAMESPACE::TypeProto split_output_type; - const ONNX_NAMESPACE::TensorProto_DataType element_type = static_cast( - node_arg->TypeAsProto()->tensor_type().elem_type()); - - split_output_type.mutable_tensor_type()->set_elem_type(element_type); - - for (int64_t i = 0; i < rank; i++) { - if (i == split_axis) - split_output_type.mutable_tensor_type()->mutable_shape()->add_dim()->set_dim_value(1LL); - else - *(split_output_type.mutable_tensor_type()->mutable_shape()->add_dim()) = shape->dim(static_cast(i)); - } - - InlinedVector split_output_types; - - for (size_t i = 0; i < consumer_count; ++i) { - split_output_types.push_back( - &graph.GetOrCreateNodeArg( - graph.GenerateNodeArgName("fused_split_" + std::to_string(i)), &split_output_type)); - } - - // Generate the Split Node - ONNX_NAMESPACE::TensorProto split_initializer_proto; - split_initializer_proto.set_name(graph.GenerateNodeName("fused_Split")); - split_initializer_proto.add_dims(static_cast(3)); - split_initializer_proto.set_data_type(ONNX_NAMESPACE::TensorProto_DataType_INT64); - - auto dim_value = shape->dim(static_cast(split_axis)).dim_value(); - // Optimize 2 Gather Nodes, so Slice_dim = dim_value - 2 - int64_t slice_dim = static_cast(dim_value - 2); - InlinedVector split_value{{slice_dim, 1, 1}}; - split_initializer_proto.set_raw_data(split_value.data(), split_value.size() * sizeof(int64_t)); - NodeArg* split_arg = &graph_utils::AddInitializer(graph, split_initializer_proto); - - Node& split_node = - graph.AddNode(graph.GenerateNodeName("Split"), "Split", "Split for fused Gather-Slice fusion", - {graph.GetNodeArg(node_arg->Name()), split_arg}, split_outputs); - - split_node.AddAttribute("axis", split_axis); - - split_node.SetExecutionProviderType(nodes_to_fuse[0].get().GetExecutionProviderType()); - - int onnx_opset_version = -1; - if (graph.DomainToVersionMap().find(kOnnxDomain) != graph.DomainToVersionMap().end()) { - onnx_opset_version = graph.DomainToVersionMap().at(kOnnxDomain); - } - - if (onnx_opset_version >= 18) { - split_node.AddAttribute("num_outputs", static_cast(consumer_count)); - } - - for (Node& node_to_fuse : nodes_to_fuse) { - graph_utils::RemoveNodeOutputEdges(graph, node_to_fuse); - graph.RemoveNode(node_to_fuse.Index()); - } - modified = true; - } - - return Status::OK(); -} -} // namespace onnxruntime diff --git a/onnxruntime/core/optimizer/gather_slice_fusion.h b/onnxruntime/core/optimizer/gather_slice_fusion.h deleted file mode 100644 index 1c5c307efed7f..0000000000000 --- a/onnxruntime/core/optimizer/gather_slice_fusion.h +++ /dev/null @@ -1,32 +0,0 @@ -// Copyright (c) Microsoft Corporation. All rights reserved. -// Licensed under the MIT License. - -#pragma once - -#include "core/optimizer/graph_transformer.h" - -namespace onnxruntime { - -/** -@class GatherSliceToSplitFusion -Fuse (2 Gather nodes + 1 Slice) to 1 split node. -*/ - -class GatherSliceToSplitFusion : public GraphTransformer { - private: - bool IsSupportedGather(const Graph& graph, const Node& node, int64_t& index, int64_t& axis, - int64_t& indices_n_dims) const; - - bool IsSupportedSlice(const Graph& graph, const Node& node, - InlinedVector& starts, - InlinedVector& ends, - InlinedVector& axes, - InlinedVector& steps) const; - - public: - GatherSliceToSplitFusion(const InlinedHashSet& compatible_execution_providers = {}) noexcept - : GraphTransformer("GatherSliceToSplitFusion", compatible_execution_providers) {} - - Status ApplyImpl(Graph& graph, bool& modified, int graph_level, const logging::Logger& logger) const override; -}; -} // namespace onnxruntime diff --git a/onnxruntime/core/optimizer/gemm_activation_fusion.cc b/onnxruntime/core/optimizer/gemm_activation_fusion.cc index c62887da09fdc..50be2cbd48f7b 100644 --- a/onnxruntime/core/optimizer/gemm_activation_fusion.cc +++ b/onnxruntime/core/optimizer/gemm_activation_fusion.cc @@ -56,6 +56,13 @@ Status GemmActivationFusion::ApplyImpl(Graph& graph, bool& modified, int graph_l continue; } + NodeArg* node_output = node.MutableOutputDefs()[0]; + auto data_type = node_output->TypeAsProto()->tensor_type().elem_type(); + if (data_type != ONNX_NAMESPACE::TensorProto_DataType_FLOAT) { + // FusedGemm is only registered for float data type in fused_gemm.cc! + continue; + } + const Node& next_node = *(node.OutputNodesBegin()); if (!IsFusableActivation(next_node) || next_node.GetExecutionProviderType() != node.GetExecutionProviderType()) { continue; diff --git a/onnxruntime/core/optimizer/gemm_transpose_fusion.cc b/onnxruntime/core/optimizer/gemm_transpose_fusion.cc index b97cce9c2e785..a52517d23db86 100644 --- a/onnxruntime/core/optimizer/gemm_transpose_fusion.cc +++ b/onnxruntime/core/optimizer/gemm_transpose_fusion.cc @@ -75,7 +75,7 @@ Status GemmTransposeFusion::Apply(Graph& graph, Node& node, RewriteRuleEffect& m nodes_to_remove.push_back(output_node); } - Node& new_gemm_node = graph.AddNode(graph.GenerateNodeName(gemm_node.Name() + "_transformed"), + Node& new_gemm_node = graph.AddNode(graph.GenerateNodeName(gemm_node.Name() + "/GemmTransposeFusion/"), gemm_node.OpType(), "Fused Gemm with Transpose", new_gemm_input_defs, diff --git a/onnxruntime/core/optimizer/graph_transformer_utils.cc b/onnxruntime/core/optimizer/graph_transformer_utils.cc index 04b16c782ba58..b22b2f6a50e4f 100644 --- a/onnxruntime/core/optimizer/graph_transformer_utils.cc +++ b/onnxruntime/core/optimizer/graph_transformer_utils.cc @@ -37,7 +37,6 @@ #include "core/optimizer/fast_gelu_fusion.h" #include "core/optimizer/free_dim_override_transformer.h" #include "core/optimizer/gather_fusion.h" -#include "core/optimizer/gather_slice_fusion.h" #include "core/optimizer/gelu_approximation.h" #include "core/optimizer/gelu_fusion.h" #include "core/optimizer/gemm_activation_fusion.h" @@ -70,6 +69,7 @@ #include "core/optimizer/reshape_fusion.h" #include "core/optimizer/rocm_blas_alt_impl.h" #include "core/optimizer/rule_based_graph_transformer.h" +#include "core/optimizer/shape_input_merge.h" #include "core/optimizer/skip_layer_norm_fusion.h" #include "core/optimizer/slice_elimination.h" #include "core/optimizer/transpose_optimizer.h" @@ -212,9 +212,9 @@ InlinedVector> GenerateTransformers( transformers.emplace_back(std::make_unique()); } - // Put ConstantSharing before CommonSubexpressionElimination by intention as it can create more opportunities for - // CSE. For example, if A and B nodes both do Add operation with a same value but different initializers, by - // default, CSE will not merge them, because the different initializers are represented by different NodeArg. + // Put ConstantSharing and ShapeInputMerge before CommonSubexpressionElimination by intention as it can create + // more opportunities for CSE. For example, if A and B nodes consume same different args but produce same output + // or consume different initializers with same value, by default, CSE will not merge them. InlinedHashSet excluded_initializers; excluded_initializers.reserve(session_options.initializers_to_share_map.size()); for (const auto& p : session_options.initializers_to_share_map) { @@ -222,7 +222,7 @@ InlinedVector> GenerateTransformers( } const InlinedHashSet no_limit_empty_ep_list = {}; transformers.emplace_back(std::make_unique(no_limit_empty_ep_list, excluded_initializers)); - + transformers.emplace_back(std::make_unique()); transformers.emplace_back(std::make_unique()); transformers.emplace_back(std::make_unique(cpu_execution_provider, !disable_quant_qdq, session_options.config_options)); @@ -279,7 +279,8 @@ InlinedVector> GenerateTransformers( onnxruntime::kAclExecutionProvider, onnxruntime::kArmNNExecutionProvider, onnxruntime::kJsExecutionProvider}; - + const InlinedHashSet cpu_dml_eps = {onnxruntime::kCpuExecutionProvider, + onnxruntime::kDmlExecutionProvider}; #ifdef MLAS_TARGET_AMD64_IX86 const bool avx2_precision_mode = session_options.config_options.GetConfigOrDefault(kOrtSessionOptionsAvx2PrecisionMode, "0") == "1" && MlasPlatformU8S8Overflow(); @@ -297,7 +298,7 @@ InlinedVector> GenerateTransformers( } transformers.emplace_back(std::make_unique(cpu_ep)); - transformers.emplace_back(std::make_unique(cpu_ep)); + transformers.emplace_back(std::make_unique(cpu_dml_eps)); transformers.emplace_back(std::make_unique(cpu_ep)); transformers.emplace_back(std::make_unique(cpu_cuda_rocm_acl_armnn_js_eps)); @@ -307,9 +308,8 @@ InlinedVector> GenerateTransformers( transformers.emplace_back(std::make_unique(cpu_cuda_rocm_eps)); transformers.emplace_back(std::make_unique(cpu_cuda_dml_rocm_eps)); transformers.emplace_back(std::make_unique(cpu_cuda_dml_rocm_eps)); - transformers.emplace_back(std::make_unique(cpu_cuda_rocm_eps)); - transformers.emplace_back(std::make_unique(cpu_cuda_rocm_eps)); transformers.emplace_back(std::make_unique(cpu_cuda_rocm_eps)); + transformers.emplace_back(std::make_unique(cpu_cuda_rocm_eps)); transformers.emplace_back(std::make_unique(cpu_cuda_dml_rocm_eps)); transformers.emplace_back(std::make_unique(cpu_cuda_dml_rocm_eps)); diff --git a/onnxruntime/core/optimizer/layer_norm_fusion.cc b/onnxruntime/core/optimizer/layer_norm_fusion.cc index b6ad4fde6c1f7..48edf4854fbbb 100644 --- a/onnxruntime/core/optimizer/layer_norm_fusion.cc +++ b/onnxruntime/core/optimizer/layer_norm_fusion.cc @@ -447,8 +447,15 @@ Status LayerNormFusion::ApplyImpl(Graph& graph, bool& modified, int graph_level, NodeArg* x_input = has_leading_cast ? graph.GetNode(p_reduce_mean_input_node->Index())->MutableInputDefs()[0] : reduce_mean_node.MutableInputDefs()[0]; + + // CPU doesn't support fp16 + if (reduce_mean_node.GetExecutionProviderType() == kCpuExecutionProvider && + x_input->TypeAsProto()->tensor_type().elem_type() == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) { + continue; + } + InlinedVector layer_norm_input_defs{x_input, scale, bias}; - Node& layer_norm_node = graph.AddNode(graph.GenerateNodeName("LayerNormalization"), + Node& layer_norm_node = graph.AddNode(graph.GenerateNodeName(mul_node.Name() + "/LayerNormFusion/"), "LayerNormalization", "fused LayerNorm subgraphs ", layer_norm_input_defs, @@ -689,9 +696,16 @@ Status SimplifiedLayerNormFusion::ApplyImpl(Graph& graph, bool& modified, int gr NodeArg* x_input = has_leading_cast ? graph.GetNode(p_pow_input_node->Index())->MutableInputDefs()[0] : pow_node.MutableInputDefs()[0]; + + // CPU doesn't support fp16 + if (reduce_mean_node.GetExecutionProviderType() == kCpuExecutionProvider && + x_input->TypeAsProto()->tensor_type().elem_type() == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) { + continue; + } + InlinedVector layer_norm_input_defs{x_input, scale}; Node& layer_norm_node = - graph.AddNode(graph.GenerateNodeName("SimplifiedLayerNormalization"), "SimplifiedLayerNormalization", + graph.AddNode(graph.GenerateNodeName(mul_node.Name() + "/SimplifiedLayerNormFusion/"), "SimplifiedLayerNormalization", "fused LayerNorm subgraphs ", layer_norm_input_defs, {}, {}, kOnnxDomain); // Get constant "epsilon" from "Add" node if available. Else, default value will be used. diff --git a/onnxruntime/core/optimizer/layout_transformation/layout_transformation.cc b/onnxruntime/core/optimizer/layout_transformation/layout_transformation.cc index 4505d4afdf1e0..7953cde6686c0 100644 --- a/onnxruntime/core/optimizer/layout_transformation/layout_transformation.cc +++ b/onnxruntime/core/optimizer/layout_transformation/layout_transformation.cc @@ -31,6 +31,7 @@ CostCheckResult PostLayoutTransformCostCheck(const api::GraphRef& graph, const a } #if defined(USE_CUDA) && ENABLE_CUDA_NHWC_OPS +// TODO(mtavenrath) generate list from registered kernels using nhwc domain const std::unordered_set& GetCUDALayoutSensitiveOps() { static std::unordered_set cuda_nhwc_ops = []() { return std::unordered_set{ @@ -41,7 +42,10 @@ const std::unordered_set& GetCUDALayoutSensitiveOps() { "MaxPool", "GlobalAveragePool", "AveragePool", - }; + "GridSample", + "DepthToSpace", + "SpaceToDepth", + "LRN"}; }(); return cuda_nhwc_ops; } diff --git a/onnxruntime/core/optimizer/matmul_integer_to_float.cc b/onnxruntime/core/optimizer/matmul_integer_to_float.cc index 56e51cb787931..4fee1a6ce224e 100644 --- a/onnxruntime/core/optimizer/matmul_integer_to_float.cc +++ b/onnxruntime/core/optimizer/matmul_integer_to_float.cc @@ -31,6 +31,24 @@ static bool CheckBiasShape(const TensorShapeProto* bias_shape) { return bias_last_dim > 1; } +bool HasElementDataType(const NodeArg& node_arg, int32_t data_type) { + if (!node_arg.Exists()) { + return false; + } + + const auto* type_proto = node_arg.TypeAsProto(); + if (!type_proto) { + return false; + } + + int32_t actual_data_type; + if (!utils::TryGetElementDataType(*type_proto, actual_data_type)) { + return false; + } + + return data_type == actual_data_type; +} + /** MatMulIntegerToFloatFusion will fuse subgraph like below into MatMulIntegerToFloat: @@ -63,9 +81,10 @@ Status MatMulIntegerToFloatFusion::ApplyImpl(Graph& graph, bool& modified, int g auto& mul_node = *node_ptr; ORT_RETURN_IF_ERROR(Recurse(mul_node, modified, graph_level, logger)); - + const bool is_dml_ep = node_ptr->GetExecutionProviderType() == kDmlExecutionProvider; if (!graph_utils::IsSupportedOptypeVersionAndDomain(mul_node, "Mul", {7, 13, 14}) || - !graph_utils::IsSupportedProvider(mul_node, GetCompatibleExecutionProviders())) { + !graph_utils::IsSupportedProvider(mul_node, GetCompatibleExecutionProviders()) || + (!is_dml_ep && HasElementDataType(*mul_node.InputDefs()[0], ONNX_NAMESPACE::TensorProto_DataType_FLOAT16))) { continue; } diff --git a/onnxruntime/core/optimizer/matmul_scale_fusion.cc b/onnxruntime/core/optimizer/matmul_scale_fusion.cc index b04d794cc9469..e4cdeadbf54d7 100644 --- a/onnxruntime/core/optimizer/matmul_scale_fusion.cc +++ b/onnxruntime/core/optimizer/matmul_scale_fusion.cc @@ -245,7 +245,7 @@ Status ProcessNode( } Node& matmul_scale_node = graph.AddNode( - graph.GenerateNodeName(node.Name() + "_FusedMatMulAndScale"), + graph.GenerateNodeName(node.Name() + "/MatMulScaleFusion/"), "FusedMatMul", "Fused MatMul and Scale", fused_node_inputs, diff --git a/onnxruntime/core/optimizer/matmul_transpose_fusion.cc b/onnxruntime/core/optimizer/matmul_transpose_fusion.cc index 789466778edc6..8eb224013618d 100644 --- a/onnxruntime/core/optimizer/matmul_transpose_fusion.cc +++ b/onnxruntime/core/optimizer/matmul_transpose_fusion.cc @@ -154,14 +154,14 @@ static Node* ReorderCastAndTranspose(Graph& graph, Node* cast, const ONNX_NAMESPACE::TensorProto_DataType element_type = static_cast(cast_output->TypeAsProto()->tensor_type().elem_type()); new_cast_output_type_proto.mutable_tensor_type()->set_elem_type(element_type); - auto& new_cast_output = graph.GetOrCreateNodeArg(cast_output->Name() + "_transformed", &new_cast_output_type_proto); + auto& new_cast_output = graph.GetOrCreateNodeArg(cast_output->Name() + "/MatmulTransposeFusion/", &new_cast_output_type_proto); const std::array new_cast_input_defs{transpose_input}; const std::array new_cast_output_defs{&new_cast_output}; const std::array new_transpose_input_defs = {&new_cast_output}; const std::array new_transpose_output_defs = {cast_output}; - Node& new_cast = graph.AddNode(graph.GenerateNodeName(cast->Name() + "_transformed"), + Node& new_cast = graph.AddNode(graph.GenerateNodeName(cast->Name() + "/MatmulTransposeFusion/"), cast->OpType(), "Created a new Cast node to interchange Cast and Transpose nodes", new_cast_input_defs, @@ -385,7 +385,7 @@ Status MatmulTransposeFusion::ApplyImpl(Graph& graph, bool& modified, int graph_ const std::array input_defs{left_input, right_input}; const std::array output_defs{node.MutableOutputDefs()[0]}; - Node& matmul_node = graph.AddNode(graph.GenerateNodeName("MatMul_With_Transpose"), + Node& matmul_node = graph.AddNode(graph.GenerateNodeName(node.Name() + "/MatmulTransposeFusion/"), "FusedMatMul", "fused MatMul and Transpose ", input_defs, diff --git a/onnxruntime/core/optimizer/noop_elimination.cc b/onnxruntime/core/optimizer/noop_elimination.cc index b3c2991d54b28..bba39b698a27a 100644 --- a/onnxruntime/core/optimizer/noop_elimination.cc +++ b/onnxruntime/core/optimizer/noop_elimination.cc @@ -42,49 +42,62 @@ bool NoopElimination::SatisfyCondition(const Graph& graph, const Node& node, con // if initializer_rank is bigger, the output is expected to be initializer_rank per broadcasting rule, // but it won't happen if the case is accepted, thus reject it - auto initializer_rank = initializer->dims().size(); + const auto& dims = initializer->dims(); + auto initializer_rank = dims.size(); const auto* other_input_shape = node.InputDefs()[input0_is_initializer ? 1 : 0]->Shape(); if (other_input_shape == nullptr || initializer_rank > other_input_shape->dim_size()) { return false; } - int32_t data_type = initializer->data_type(); - Initializer add_init(*initializer, graph.ModelPath()); - if (add_init.size() > 1) { + int64_t tensor_size = 1; + for (auto i : dims) { + tensor_size *= i; + } + + if (tensor_size > 1) { return false; } + // handle edge case where the total size of the initializer is 0 - if (add_init.size() == 0) { + if (tensor_size == 0) { return true; } - float value = 0.0f; - switch (data_type) { - case ONNX_NAMESPACE::TensorProto_DataType_FLOAT: - value = *add_init.data(); - break; - case ONNX_NAMESPACE::TensorProto_DataType_FLOAT16: - value = math::halfToFloat(add_init.data()->val); - break; - case ONNX_NAMESPACE::TensorProto_DataType_DOUBLE: - value = static_cast(*add_init.data()); - break; - case ONNX_NAMESPACE::TensorProto_DataType_INT32: - value = static_cast(*add_init.data()); - break; - case ONNX_NAMESPACE::TensorProto_DataType_INT64: - value = static_cast(*add_init.data()); - break; - default: + if (op_type == "Add" || + op_type == "Sub" || + op_type == "Mul" || + op_type == "Div") { + int32_t data_type = initializer->data_type(); + Initializer add_init(*initializer, graph.ModelPath()); + + float value = 0.0f; + switch (data_type) { + case ONNX_NAMESPACE::TensorProto_DataType_FLOAT: + value = *add_init.data(); + break; + case ONNX_NAMESPACE::TensorProto_DataType_FLOAT16: + value = math::halfToFloat(add_init.data()->val); + break; + case ONNX_NAMESPACE::TensorProto_DataType_DOUBLE: + value = static_cast(*add_init.data()); + break; + case ONNX_NAMESPACE::TensorProto_DataType_INT32: + value = static_cast(*add_init.data()); + break; + case ONNX_NAMESPACE::TensorProto_DataType_INT64: + value = static_cast(*add_init.data()); + break; + default: + return false; + } + + if (value != 0.0f && (op_type == "Add" || op_type == "Sub")) { return false; - } + } - if ((op_type == "Add" || op_type == "Sub") && value != 0.0f) { - return false; - } - - if ((op_type == "Mul" || op_type == "Div") && value != 1.0f) { - return false; + if (value != 1.0f && (op_type == "Mul" || op_type == "Div")) { + return false; + } } // reject node output is graph output for now diff --git a/onnxruntime/core/optimizer/qdq_transformer/qdq_util.cc b/onnxruntime/core/optimizer/qdq_transformer/qdq_util.cc index b1ab641a23256..4e3dff705bd41 100644 --- a/onnxruntime/core/optimizer/qdq_transformer/qdq_util.cc +++ b/onnxruntime/core/optimizer/qdq_transformer/qdq_util.cc @@ -76,6 +76,49 @@ bool IsQDQPairSupported( } } +bool IsDQQConversion( + const Node& dq_node, const Node& q_node, + const GetConstantInitializerFn& get_const_initializer, + const Path& model_path) { + ConstPointerContainer> dq_input_defs = dq_node.InputDefs(); + ConstPointerContainer> q_input_defs = q_node.InputDefs(); + + // Q/DQ contains optional input is not supported + // non-scalar Q/DQ scale and zero point needs are not supported + if (dq_input_defs.size() != InputIndex::TOTAL_COUNT || + q_input_defs.size() != InputIndex::TOTAL_COUNT || + !optimizer_utils::IsScalar(*q_input_defs[InputIndex::SCALE_ID]) || + !optimizer_utils::IsScalar(*q_input_defs[InputIndex::ZERO_POINT_ID]) || + !optimizer_utils::IsScalar(*dq_input_defs[InputIndex::SCALE_ID]) || + !optimizer_utils::IsScalar(*dq_input_defs[InputIndex::ZERO_POINT_ID])) { + return false; + } + + // if Q/DQ scale and zero point are not constant, return false + const ONNX_NAMESPACE::TensorProto* dq_scale_tensor_proto = + get_const_initializer(dq_input_defs[InputIndex::SCALE_ID]->Name()); + const ONNX_NAMESPACE::TensorProto* q_scale_tensor_proto = + get_const_initializer(q_input_defs[InputIndex::SCALE_ID]->Name()); + const ONNX_NAMESPACE::TensorProto* dq_zp_tensor_proto = + get_const_initializer(dq_input_defs[InputIndex::ZERO_POINT_ID]->Name()); + const ONNX_NAMESPACE::TensorProto* q_zp_tensor_proto = + get_const_initializer(q_input_defs[InputIndex::ZERO_POINT_ID]->Name()); + if (nullptr == q_zp_tensor_proto || + nullptr == dq_zp_tensor_proto || + nullptr == q_scale_tensor_proto || + nullptr == dq_scale_tensor_proto) { + return false; + } + + // check Q/DQ have same scale type and different zero point type + Initializer q_zp(*q_zp_tensor_proto, model_path); + Initializer q_scale(*q_scale_tensor_proto, model_path); + Initializer dq_zp(*dq_zp_tensor_proto, model_path); + Initializer dq_scale(*dq_scale_tensor_proto, model_path); + + return (dq_zp.data_type() != q_zp.data_type()) && (dq_scale.data_type() == q_scale.data_type()); +} + bool IsDQSupported(const Node& dq_node, const GetConstantInitializerFn& get_const_initializer) { bool zero_point_exists = false; if (!QOrDQNodeHasConstantScalarScaleAndZeroPoint(dq_node, get_const_initializer, zero_point_exists)) { diff --git a/onnxruntime/core/optimizer/qdq_transformer/qdq_util.h b/onnxruntime/core/optimizer/qdq_transformer/qdq_util.h index bb0bf9438cfcb..8333168b0093f 100644 --- a/onnxruntime/core/optimizer/qdq_transformer/qdq_util.h +++ b/onnxruntime/core/optimizer/qdq_transformer/qdq_util.h @@ -38,6 +38,18 @@ bool IsQDQPairSupported( const GetConstantInitializerFn& get_const_initializer, const Path& model_path); +// Check if a DQ -> Q sequence represents a conversion in quantization data type. +// Example of uint8 to uint16: +// Dequantize (uint8 to float) -> Quantize (float to uint16) +// Requires: +// 1. Q/DQ doesn't have optional input. +// 2. scale and zero-point are constant scalars. +// 3. Q and DQ have the same scale *type* and different zero-point *types*. +bool IsDQQConversion( + const Node& dq_node, const Node& q_node, + const GetConstantInitializerFn& get_const_initializer, + const Path& model_path); + // Check if DQ is supported in extended level QDQ transformers. It requires: // 1. DQ doesn't have optional input. // 2. scale and zero point is constant scalar diff --git a/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.cc b/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.cc index 8535b8c9a944a..6b4f62ae1343d 100644 --- a/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.cc +++ b/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.cc @@ -58,8 +58,8 @@ bool NodeGroupSelector::CheckQDQNodes(const GraphViewer& graph_viewer, const Nod return false; } - if (const auto dq_validation_status = QDQ::ValidateNodeGroupDQNodes(graph_viewer, node, dq_nodes); - !dq_validation_status.IsOK()) { + if (const auto qdq_validation_status = NodeGroup::CanCreateNodeGroup(graph_viewer, node, dq_nodes, q_nodes); + !qdq_validation_status.IsOK()) { return false; } @@ -153,8 +153,8 @@ bool DropDQNodeGroupSelector::Check(const GraphViewer& graph_viewer, return false; } - if (const auto dq_validation_status = QDQ::ValidateNodeGroupDQNodes(graph_viewer, node, dq_nodes); - !dq_validation_status.IsOK()) { + if (const auto qdq_validation_status = NodeGroup::CanCreateNodeGroup(graph_viewer, node, dq_nodes, q_nodes); + !qdq_validation_status.IsOK()) { return false; } @@ -544,8 +544,8 @@ bool TopKNodeGroupSelector::Check(const GraphViewer& graph_viewer, return false; } - if (const auto dq_validation_status = QDQ::ValidateNodeGroupDQNodes(graph_viewer, node, dq_nodes); - !dq_validation_status.IsOK()) { + if (const auto qdq_validation_status = QDQ::NodeGroup::CanCreateNodeGroup(graph_viewer, node, dq_nodes, q_nodes); + !qdq_validation_status.IsOK()) { return false; } diff --git a/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.h b/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.h index deee6e7f25f1a..c90a42a36483d 100644 --- a/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.h +++ b/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.h @@ -5,6 +5,7 @@ #if !defined(ORT_MINIMAL_BUILD) || defined(ORT_EXTENDED_MINIMAL_BUILD) +#include "core/framework/node_unit.h" #include "core/optimizer/selectors_actions/selector_action_transformer.h" namespace onnxruntime { @@ -13,13 +14,6 @@ class Node; namespace QDQ { -// Struct to represent a DQ->Op->Q node group -struct NodeGroup { - std::vector dq_nodes; - std::vector q_nodes; - NodeIndex target_node; -}; - class NodeGroupSelector { public: // This is a QDQ Selectors only function, will return QDQ::NodeGroup instead of NodesToOptimizeIndices diff --git a/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/shared/utils.cc b/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/shared/utils.cc index 544fe82a268c8..1876f7826c968 100644 --- a/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/shared/utils.cc +++ b/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/shared/utils.cc @@ -13,6 +13,7 @@ #include #include "core/optimizer/qdq_transformer/selectors_actions/qdq_selectors.h" +#include "core/optimizer/qdq_transformer/selectors_actions/shared/utils.h" namespace onnxruntime { namespace QDQ { @@ -43,6 +44,7 @@ static const OpVersionsAndSelector::OpVersionsMap GetMiscOpVersionsMap() { {"Tile", {}}}; } +// These produce int64 indices output, which can't be quantized, so there's no downstream Q node. static const OpVersionsAndSelector::OpVersionsMap GetDropDQOpVersionsMap() { return {{"ArgMax", {}}, {"ArgMin", {}}}; @@ -324,28 +326,48 @@ std::vector SelectorManager::GetQDQSelections(const GraphViewer& grap return qdq_selections; } -Status ValidateNodeGroupDQNodes(const GraphViewer& graph_viewer, - const Node& target_node, - gsl::span dq_nodes) { - // Within a QDQ node group, a target node input is the only consumer of each DQ. - // This should have been ensured by the EnsureUniqueDQForNodeUnit graph transformer, but other graph modifications - // may have happened since. Verify that this is still true. - for (const auto* dq_node : dq_nodes) { - const bool dq_produces_graph_output = graph_viewer.NodeProducesGraphOutput(*dq_node); - ORT_RETURN_IF(dq_produces_graph_output, - "QDQ node group cannot have DQ node that produces a graph output. DQ node: ", dq_node->Name(), - ", target node: ", target_node.Name()); - - const bool dq_has_single_output_edge_to_target = - dq_node->GetOutputEdgesCount() == 1 && - dq_node->OutputEdgesBegin()->GetNode().Index() == target_node.Index(); - ORT_RETURN_IF_NOT(dq_has_single_output_edge_to_target, - "QDQ node group cannot have DQ that doesn't have a single output edge to the target node. " - "DQ node: ", - dq_node->Name(), ", target node: ", target_node.Name()); +std::pair>, std::unordered_map> +GetAllNodeUnits(const GraphViewer& graph_viewer) { + std::vector> node_unit_holder; + std::unordered_map node_unit_map; + + const auto add_node_unit_to_map = [&](const std::vector& node_indices, const NodeUnit* node_unit) { + for (const auto& node_idx : node_indices) { + const auto* node = graph_viewer.GetNode(node_idx); + node_unit_map.insert({node, node_unit}); + } + }; + + // Get QDQ NodeUnits first + QDQ::SelectorManager selector_mgr; + const auto qdq_selections = selector_mgr.GetQDQSelections(graph_viewer); + + for (const auto& qdq_selection : qdq_selections) { + auto qdq_unit = std::make_unique(graph_viewer, qdq_selection); + + // Fill the node to node_unit map for all nodes in the QDQ Group + add_node_unit_to_map(qdq_selection.dq_nodes, qdq_unit.get()); + add_node_unit_to_map(qdq_selection.q_nodes, qdq_unit.get()); + add_node_unit_to_map({qdq_selection.target_node}, qdq_unit.get()); + + node_unit_holder.push_back(std::move(qdq_unit)); + } + + // Get the left over SingleNode NodeUnits + const auto& node_indices = graph_viewer.GetNodesInTopologicalOrder(); + for (const auto node_idx : node_indices) { + const auto* node(graph_viewer.GetNode(node_idx)); + + // This is already part of a QDQ NodeUnit + if (node_unit_map.find(node) != node_unit_map.cend()) + continue; + + auto node_unit = std::make_unique(*node); + node_unit_map[node] = node_unit.get(); + node_unit_holder.push_back(std::move(node_unit)); } - return Status::OK(); + return std::make_pair(std::move(node_unit_holder), std::move(node_unit_map)); } } // namespace QDQ diff --git a/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/shared/utils.h b/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/shared/utils.h index 246f26c1760ec..de36202afff29 100644 --- a/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/shared/utils.h +++ b/onnxruntime/core/optimizer/qdq_transformer/selectors_actions/shared/utils.h @@ -7,6 +7,7 @@ #include "core/common/common.h" #include "core/common/gsl.h" #include "core/common/inlined_containers.h" +#include "core/framework/node_unit.h" #include "core/graph/basic_types.h" #if !defined(ORT_MINIMAL_BUILD) @@ -78,11 +79,16 @@ class SelectorManager { ORT_DISALLOW_COPY_ASSIGNMENT_AND_MOVE(SelectorManager); }; -// Checks whether the provided DQ nodes are valid for forming a QDQ node group with the provided target node. -// Returns successful status if so, failed status with reason otherwise. -Status ValidateNodeGroupDQNodes(const GraphViewer& graph_viewer, - const Node& target_node, - gsl::span dq_nodes); +// Get all the nodes in the given graph_viewer as NodeUnits (SingleNode or QDQGroup) +// And return a map to quick query the NodeUnit which contains the given Node, +// Note, the value of the map is owned by the vector of std::unique_ptr +// +// TODO: The overall QDQ setup needs refactoring to separate out generic functionality from optimizer specific +// functionality. +// We currently have a bit of a mess with generic things like this to get all the node units being in the optimizer +// library whereas it should be able to be used by an EP with no dependency on optimizers. +std::pair>, std::unordered_map> +GetAllNodeUnits(const GraphViewer& graph_viewer); } // namespace QDQ } // namespace onnxruntime diff --git a/onnxruntime/core/optimizer/quick_gelu_fusion.cc b/onnxruntime/core/optimizer/quick_gelu_fusion.cc index 6e5eb5612a701..b09ef1c460b8e 100644 --- a/onnxruntime/core/optimizer/quick_gelu_fusion.cc +++ b/onnxruntime/core/optimizer/quick_gelu_fusion.cc @@ -88,7 +88,7 @@ Status QuickGeluFusion::ApplyImpl(Graph& graph, bool& modified, int graph_level, NodeArg* quick_gelu_output_arg = mul_node.MutableOutputDefs()[0]; Node& quick_gelu_node = - graph.AddNode(graph.GenerateNodeName("QuickGelu"), "QuickGelu", "QuickGelu", std::array{quick_gelu_input_arg}, + graph.AddNode(graph.GenerateNodeName(mul_node.Name() + "/QuickGeluFusion/"), "QuickGelu", "QuickGelu", std::array{quick_gelu_input_arg}, std::array{quick_gelu_output_arg}, {}, kMSDomain); quick_gelu_node.AddAttribute("alpha", alpha); quick_gelu_node.SetExecutionProviderType(node.GetExecutionProviderType()); diff --git a/onnxruntime/core/optimizer/shape_input_merge.cc b/onnxruntime/core/optimizer/shape_input_merge.cc new file mode 100644 index 0000000000000..9f20520e3e3f4 --- /dev/null +++ b/onnxruntime/core/optimizer/shape_input_merge.cc @@ -0,0 +1,78 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "core/optimizer/shape_input_merge.h" + +#include "core/graph/graph_utils.h" + +namespace onnxruntime { + +namespace { +std::string GetShapeString(const NodeArg* input_arg) { + auto shape = input_arg->Shape(); + if (!shape) return ""; + std::stringstream ss; + ss << "["; + for (int i = 0; i < shape->dim_size(); ++i) { + if (i != 0) ss << ","; + auto dim = shape->dim(i); + if (dim.has_dim_value()) { + ss << std::to_string(dim.dim_value()); + } else if (dim.has_dim_param()) { + ss << "'" << dim.dim_param() << "'"; + } else { + return ""; + } + } + ss << "]"; + return ss.str(); +} + +} // namespace + +Status ShapeInputMerge::ApplyImpl(Graph& graph, bool& modified, int graph_level, const logging::Logger& logger) const { + GraphViewer graph_viewer(graph); + const auto& node_topology_list = graph_viewer.GetNodesInTopologicalOrder(); + InlinedHashMap> input_hash_to_nodes; + for (auto node_index : node_topology_list) { + auto* p_node = graph.GetNode(node_index); + if (!p_node) continue; // we removed the node as part of an earlier fusion + ORT_RETURN_IF_ERROR(Recurse(*p_node, modified, graph_level, logger)); + if (!graph_utils::IsSupportedOptypeVersionAndDomain(*p_node, "Shape", {1, 13, 15, 19, 21}) || + !graph_utils::IsSupportedProvider(*p_node, GetCompatibleExecutionProviders())) { + continue; + } + std::string shape_str = GetShapeString(p_node->InputDefs()[0]); + if (shape_str.empty()) continue; + if (input_hash_to_nodes.find(shape_str) == input_hash_to_nodes.end()) { + input_hash_to_nodes[shape_str] = InlinedVector(); + } + input_hash_to_nodes[shape_str].emplace_back(p_node); + } + + // All Shape nodes are processed in topological order, so we can safely merge the inputs to the first node's input. + for (auto& kv : input_hash_to_nodes) { + if (kv.second.size() < 2) continue; + NodeArg* first_input_arg = kv.second[0]->MutableInputDefs()[0]; + bool is_first_input_arg_graph_input = graph.IsInputsIncludingInitializers(first_input_arg); + for (size_t i = 1; i < kv.second.size(); ++i) { + Node* p_node = kv.second[i]; + const NodeArg* input_arg = p_node->InputDefs()[0]; + if (p_node->InputDefs()[0]->Name() == first_input_arg->Name()) continue; + if (!graph.IsInputsIncludingInitializers(input_arg)) { + const Node::EdgeEnd& input_edge = *p_node->InputEdgesBegin(); + graph.RemoveEdge(input_edge.GetNode().Index(), p_node->Index(), input_edge.GetSrcArgIndex(), 0); + } + graph_utils::ReplaceNodeInput(*p_node, 0, *first_input_arg); + if (!is_first_input_arg_graph_input) { + const Node::EdgeEnd& first_input_edge = *kv.second[0]->InputEdgesBegin(); + graph.AddEdge(first_input_edge.GetNode().Index(), p_node->Index(), first_input_edge.GetSrcArgIndex(), 0); + } + modified = true; + } + } + + return Status::OK(); +} + +} // namespace onnxruntime diff --git a/onnxruntime/core/optimizer/shape_input_merge.h b/onnxruntime/core/optimizer/shape_input_merge.h new file mode 100644 index 0000000000000..5cb943998487b --- /dev/null +++ b/onnxruntime/core/optimizer/shape_input_merge.h @@ -0,0 +1,23 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#pragma once + +#include "core/optimizer/graph_transformer.h" + +namespace onnxruntime { + +/** +@Class ShapeInputMerge +Merge all shape inputs having same shape value to a single shape input. +This change will not affect the performance, but it open chances for CSE fusion to merge nodes. +*/ +class ShapeInputMerge : public GraphTransformer { + public: + ShapeInputMerge(const InlinedHashSet& compatible_execution_providers = {}) noexcept + : GraphTransformer("ShapeInputMerge", compatible_execution_providers) {} + + Status ApplyImpl(Graph& graph, bool& modified, int graph_level, const logging::Logger& logger) const override; +}; + +} // namespace onnxruntime diff --git a/onnxruntime/core/optimizer/stft_decomposition.cc b/onnxruntime/core/optimizer/stft_decomposition.cc new file mode 100644 index 0000000000000..a54904ff15e1e --- /dev/null +++ b/onnxruntime/core/optimizer/stft_decomposition.cc @@ -0,0 +1,381 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include + +#include "core/optimizer/stft_decomposition.h" +#include "core/optimizer/initializer.h" +#include "core/optimizer/utils.h" +#include "core/graph/graph_utils.h" +#include "core/optimizer/optimizer_execution_frame.h" +#include "core/optimizer/utils.h" +#include "core/framework/op_kernel.h" +#include "core/framework/tensorprotoutils.h" + +using namespace onnxruntime::common; + +namespace onnxruntime { + +STFTDecomposition::STFTDecomposition(const InlinedHashSet& compatible_execution_providers) noexcept + : GraphTransformer("STFTDecomposition", compatible_execution_providers) { +} + +template +constexpr static ONNX_NAMESPACE::TensorProto_DataType GetDataType() { + if constexpr (std::is_same::value) { + return ONNX_NAMESPACE::TensorProto_DataType_FLOAT; + } else if constexpr (std::is_same::value) { + return ONNX_NAMESPACE::TensorProto_DataType_FLOAT16; + } else if constexpr (std::is_same::value) { + return ONNX_NAMESPACE::TensorProto_DataType_DOUBLE; + } else if constexpr (std::is_same::value) { + return ONNX_NAMESPACE::TensorProto_DataType_INT64; + } else { + throw std::logic_error("Invalid data type requested for STFT decomposition"); + } +} + +template +NodeArg* AddInitializer(Graph& graph, const char* name, const int64_t (&shape)[TDims], const TDataType* begin) { + ONNX_NAMESPACE::TensorProto proto; + proto.set_name(graph.GenerateNodeArgName(name)); + proto.set_data_type(GetDataType()); + int64_t element_count = 1; + for (size_t i = 0; i < TDims; i++) { + element_count *= shape[i]; + proto.add_dims(shape[i]); + } + proto.set_raw_data(begin, element_count * sizeof(TDataType)); + return &graph_utils::AddInitializer(graph, proto); +} + +template +NodeArg* AddShapeInitializer(Graph& graph, const char* name, const int64_t (&shape)[TDims]) { + int64_t shape_shape[] = {TDims}; + return AddInitializer(graph, name, shape_shape, shape); +} + +std::pair AddNode(Graph& graph, + const char* op_type, + ProviderType execution_provider_type, + gsl::span inputs) { + auto def_name = graph.GenerateNodeArgName(op_type); + auto node_arg = &graph.GetOrCreateNodeArg(def_name, nullptr); + Node& node = graph.AddNode(graph.GenerateNodeName(op_type), + op_type, + "", + inputs, + {node_arg}); + node.SetExecutionProviderType(execution_provider_type); + return std::make_pair(&node, node_arg); +} + +std::pair AddNodeCast(Graph& graph, NodeArg* in, + ONNX_NAMESPACE::TensorProto_DataType data_type) { + auto def_name = graph.GenerateNodeArgName("Cast"); + auto node_arg = &graph.GetOrCreateNodeArg(def_name, nullptr); + Node& node = graph.AddNode(graph.GenerateNodeName("Cast"), + "Cast", + "", + {in}, + {node_arg}); + node.AddAttribute("to", static_cast(data_type)); + node.SetExecutionProviderType(kCpuExecutionProvider); + return std::make_pair(&node, node_arg); +} + +#define CONTINUE_IF_NO_DIM_VALUE(dim) \ + if (!dim.has_dim_value()) { \ + continue; \ + } +#define CONTINUE_IF_NULL(x) \ + if (x == nullptr) { \ + continue; \ + } + +/* + This function decomposes a STFT node into a subgraph. + The decomposition requires that: + 1) The signal input is real valued and not complex valued! + 2) Both (frame_step) *and* either (window or frame_length) inputs must be constant. + Otherwise the transform will not be applied. + + Subgraph pattern 1: STFT with optional Window parameter set + [root]--(signal)--------------------+ + [root]--(frame_step)---------------+| + [root]--(window)------------------+|| + [root]--(frame_length) ----------+||| + |||| + vvvv + [STFT]--(output)--> + After Fusion: + [root]--(signal)-------------------------+ + [root] | + [root]--(window)--+ | + [root] | | + v v + (only for non-fp32) [Cast] +--[Reshape] + | | | + v | v + [Reshape]-->[Mul]---|-->[Conv]-------+ + | | | + | +-----| | + | v v + +------>[Mul]------>[Conv]-->[Concat]-->[Reshape]-->[Transpose]--(output)--> + + + Subgraph pattern 2: STFT without optional Window parameter set + [root]--(signal)-------------------+ + [root]--(frame_step)--------------+| + [root] | + [root]--(frame_length) ----------+|| + ||| + vvv + [STFT]--(output)--> + After Fusion: + [root]--(signal)-->[Reshape]-->[Conv] + [root] | | + [root] | v + [root] +------>[Conv]-->[Concat]-->[Reshape]-->[Transpose]--(output)--> +*/ +Status STFTDecomposition::ApplyImpl(Graph& graph, bool& modified, int graph_level, const logging::Logger& logger) const { + GraphViewer graph_viewer(graph); + auto& order = graph_viewer.GetNodesInTopologicalOrder(); + + for (NodeIndex i : order) { + auto node = graph.GetNode(i); + CONTINUE_IF_NULL(node); + ORT_RETURN_IF_ERROR(Recurse(*node, modified, graph_level, logger)); + + if (node->OpType() != "STFT") { + continue; + } + + Node& stft = *node; + auto signal = stft.MutableInputDefs()[0]; + auto frame_step = stft.MutableInputDefs()[1]; + auto window = stft.MutableInputDefs()[2]; + auto frame_length = stft.MutableInputDefs()[3]; + + // If the signal has free dimensions, do not transform... + auto batch_size_dim = signal->Shape()->dim(0); + auto signal_length_dim = signal->Shape()->dim(1); + auto signal_components_dim = signal->Shape()->dim(2); + CONTINUE_IF_NO_DIM_VALUE(signal_length_dim); + CONTINUE_IF_NO_DIM_VALUE(signal_components_dim); + + auto batch_size = batch_size_dim.has_dim_value() ? batch_size_dim.dim_value() : static_cast(-1); + auto signal_length = signal_length_dim.dim_value(); + auto is_real = signal_components_dim.dim_value() == 1; + auto data_type = static_cast(signal->TypeAsProto()->tensor_type().elem_type()); + + auto frame_step_initializer = graph_utils::GetConstantInitializer(graph, frame_step->Name()); + auto window_initializer = graph_utils::GetConstantInitializer(graph, window->Name()); + auto frame_length_initializer = graph_utils::GetConstantInitializer(graph, frame_length->Name()); + CONTINUE_IF_NULL(frame_step_initializer); + if (!frame_length_initializer && !window_initializer) { + continue; + } + + auto read_int64_initializer = [](Graph& graph, const ONNX_NAMESPACE::TensorProto* initializer) { + return *Initializer(*initializer, graph.ModelPath()).data(); + }; + auto frame_step_value = read_int64_initializer(graph, frame_step_initializer); + + // Get DFT Size + int64_t dft_size = 0; + if (frame_length_initializer) { + dft_size = read_int64_initializer(graph, frame_length_initializer); + } + if (dft_size == 0 && window_initializer) { + auto window_length_dim = window->Shape()->dim(0); + CONTINUE_IF_NO_DIM_VALUE(window_length_dim); + dft_size = window_length_dim.dim_value(); + } + + bool is_onesided = true; + auto& attrs = stft.GetAttributes(); + if (attrs.find("onesided") != attrs.end()) { + auto& onesided_attr = attrs.at("onesided"); + if (utils::HasInt(onesided_attr)) { + is_onesided = static_cast(onesided_attr.i()); + } + } + + auto dft_unique_bins = is_onesided ? ((dft_size >> 1) + 1) : dft_size; + + Node* signal_recipient = nullptr; + Node* window_recipient = nullptr; + Node* stft_producer = nullptr; + if (is_real) { + auto output_num_frames = stft.MutableOutputDefs()[0]->Shape()->dim(1).dim_value(); + auto output_frame_length = stft.MutableOutputDefs()[0]->Shape()->dim(2).dim_value(); + auto weight_size = static_cast(dft_unique_bins * dft_size); + auto real_weights_data = std::vector(weight_size); + auto imag_weights_data = std::vector(weight_size); + + // Populate weights + for (size_t k = 0; k < static_cast(dft_unique_bins); k++) { + for (size_t n = 0; n < static_cast(dft_size); n++) { + auto index = static_cast(k * dft_size + n); + auto theta = -2 * M_PI * k * n / static_cast(dft_size); + real_weights_data[index] = static_cast(cos(theta)); + imag_weights_data[index] = static_cast(sin(theta)); + } + } + + const int64_t weight_shape[] = {dft_unique_bins, 1, 1, dft_size}; + auto real_weights = AddInitializer(graph, "stft_real_conv_weights", weight_shape, real_weights_data.data()); + auto imaginary_weights = AddInitializer(graph, "stft_imaginary_conv_weights", weight_shape, imag_weights_data.data()); + + const int64_t signal_reshaped[] = {batch_size, 1, 1, signal_length}; + auto signal_shape = AddShapeInitializer(graph, "stft_signal_shape", signal_reshaped); + + const int64_t unsqueezed_output_shape[] = {2, batch_size, output_frame_length, output_num_frames}; + auto unsqueezed_shape = AddShapeInitializer(graph, "stft_output_reshaped", unsqueezed_output_shape); + + NodeArg* signal_reshaped_inputs[] = {signal, signal_shape}; + Node* reshape_signal_node = nullptr; + NodeArg* reshape_output = nullptr; + std::tie(reshape_signal_node, reshape_output) = + AddNode(graph, "Reshape", stft.GetExecutionProviderType(), signal_reshaped_inputs); + + NodeArg* real_weights_final = real_weights; + NodeArg* imag_weights_final = imaginary_weights; + if (!window->Exists()) { + // When we are missing a window function + if (real_weights_final->TypeAsProto()->tensor_type().elem_type() != data_type) { + std::tie(std::ignore, real_weights_final) = + AddNodeCast(graph, real_weights_final, data_type); + } + if (imag_weights_final->TypeAsProto()->tensor_type().elem_type() != data_type) { + std::tie(std::ignore, imag_weights_final) = + AddNodeCast(graph, imag_weights_final, data_type); + } + } else { + // When we have a window function + const int64_t window_reshaped_shape[] = {1, 1, 1, dft_size}; + auto window_shape = AddShapeInitializer(graph, "stft_window_shape", window_reshaped_shape); + + auto window_final = window; + if (window->TypeAsProto()->tensor_type().elem_type() != GetDataType()) { + Node* window_cast_node = nullptr; + std::tie(window_cast_node, window_final) = + AddNodeCast(graph, window, GetDataType()); + window_recipient = window_cast_node; + } + + NodeArg* window_reshaped_inputs[] = {window_final, window_shape}; + Node* window_reshape_node; + NodeArg* window_reshaped = nullptr; + std::tie(window_reshape_node, window_reshaped) = + AddNode(graph, "Reshape", kCpuExecutionProvider, window_reshaped_inputs); + if (!window_recipient) { + window_recipient = window_reshape_node; + } + + NodeArg* scale_real_weights_inputs[] = {real_weights, window_reshaped}; + NodeArg* windowed_real_weights_output = nullptr; + std::tie(std::ignore, windowed_real_weights_output) = + AddNode(graph, "Mul", kCpuExecutionProvider, scale_real_weights_inputs); + + NodeArg* scale_imag_weights_inputs[] = {imaginary_weights, window_reshaped}; + NodeArg* windowed_imag_weights_output = nullptr; + std::tie(std::ignore, windowed_imag_weights_output) = + AddNode(graph, "Mul", kCpuExecutionProvider, scale_imag_weights_inputs); + + std::tie(std::ignore, real_weights_final) = + AddNodeCast(graph, windowed_real_weights_output, data_type); + std::tie(std::ignore, imag_weights_final) = + AddNodeCast(graph, windowed_imag_weights_output, data_type); + } + + // Add Convolution (reals) + NodeArg* conv_real_inputs[] = {reshape_output, real_weights_final}; + Node* real_conv_node = nullptr; + NodeArg* real_conv_output = nullptr; + std::tie(real_conv_node, real_conv_output) = + AddNode(graph, "Conv", stft.GetExecutionProviderType(), conv_real_inputs); + real_conv_node->AddAttribute("strides", std::vector{1, frame_step_value}); + + // Add Convolution (imaginary) + NodeArg* conv_imag_inputs[] = {reshape_output, imag_weights_final}; + Node* imag_conv_node = nullptr; + NodeArg* imag_conv_output = nullptr; + std::tie(imag_conv_node, imag_conv_output) = + AddNode(graph, "Conv", stft.GetExecutionProviderType(), conv_imag_inputs); + imag_conv_node->AddAttribute("strides", std::vector{1, frame_step_value}); + + // Concatenate + NodeArg* concatenate_inputs[] = {real_conv_output, imag_conv_output}; + Node* concat_node = nullptr; + NodeArg* concatenated_conv_output = nullptr; + std::tie(concat_node, concatenated_conv_output) = + AddNode(graph, "Concat", stft.GetExecutionProviderType(), concatenate_inputs); + concat_node->AddAttribute("axis", static_cast(0)); + + // Unsqueeze Reshape + NodeArg* unsqueeze_reshape_inputs[] = {concatenated_conv_output, unsqueezed_shape}; + NodeArg* unsqueezed_output = nullptr; + std::tie(std::ignore, unsqueezed_output) = + AddNode(graph, "Reshape", stft.GetExecutionProviderType(), unsqueeze_reshape_inputs); + + // Transpose + NodeArg* transpose_inputs[] = {unsqueezed_output}; + Node* transpose_node = nullptr; + NodeArg* transpose_output = nullptr; + std::tie(transpose_node, transpose_output) = + AddNode(graph, "Transpose", stft.GetExecutionProviderType(), transpose_inputs); + transpose_node->AddAttribute("perm", std::vector{1, 3, 2, 0}); + + signal_recipient = reshape_signal_node; + stft_producer = transpose_node; + } else { + continue; + } + + auto input_edges = graph_utils::GraphEdge::GetNodeInputEdges(stft); + auto output_edges = graph_utils::GraphEdge::GetNodeOutputEdges(stft); + + // Copy inputs + auto signal_target_idx = signal_recipient->Index(); + auto window_target_idx = window_recipient->Index(); + for (auto cur = input_edges.cbegin(), end = input_edges.cend(); cur != end; ++cur) { + const graph_utils::GraphEdge& edge = *cur; + NodeIndex target_idx = 0; + Node* recipient = nullptr; + switch (cur->dst_arg_index) { + case 0: + target_idx = signal_target_idx; + recipient = signal_recipient; + break; + case 2: + target_idx = window_target_idx; + recipient = window_recipient; + break; + } + + if (!recipient) { + continue; + } + + auto arg_index = graph_utils::GetNodeInputIndexFromInputName(*recipient, edge.arg_name); + graph.AddEdge(edge.src_node, target_idx, edge.src_arg_index, arg_index); + } + + // Copy STFT outputs to stft_producer + stft_producer->MutableOutputDefs() = stft.MutableOutputDefs(); + auto stft_producer_target_idx = stft_producer->Index(); + for (auto cur = output_edges.cbegin(), end = output_edges.cend(); cur != end; ++cur) { + graph.AddEdge(stft_producer_target_idx, cur->dst_node, cur->src_arg_index, cur->dst_arg_index); + } + + graph_utils::GraphEdge::RemoveGraphEdges(graph, input_edges); + graph_utils::GraphEdge::RemoveGraphEdges(graph, output_edges); + graph.RemoveNode(stft.Index()); + + modified = true; + } + return Status::OK(); +} +} // namespace onnxruntime diff --git a/onnxruntime/core/optimizer/stft_decomposition.h b/onnxruntime/core/optimizer/stft_decomposition.h new file mode 100644 index 0000000000000..cac058474375e --- /dev/null +++ b/onnxruntime/core/optimizer/stft_decomposition.h @@ -0,0 +1,30 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#pragma once + +#include "core/optimizer/graph_transformer.h" +#include "core/framework/ort_value.h" +#include +#include "core/framework/execution_provider.h" + +namespace onnxruntime { + +/** +@class STFTDecomposition + +Transformer that traverses the graph top-down and decomposes +STFT into convolution. +*/ +class STFTDecomposition : public GraphTransformer { + public: + /*! STFT decomposition . + \param execution_provider Execution provider instance to execute constant folding. + */ + STFTDecomposition(const InlinedHashSet& compatible_execution_providers = {}) noexcept; + + private: + Status ApplyImpl(Graph& graph, bool& modified, int graph_level, const logging::Logger& logger) const override; +}; + +} // namespace onnxruntime diff --git a/onnxruntime/core/optimizer/transpose_optimization/ort_optimizer_api_impl.cc b/onnxruntime/core/optimizer/transpose_optimization/ort_optimizer_api_impl.cc index d9f08ffe1171e..c532f56b3d3d9 100644 --- a/onnxruntime/core/optimizer/transpose_optimization/ort_optimizer_api_impl.cc +++ b/onnxruntime/core/optimizer/transpose_optimization/ort_optimizer_api_impl.cc @@ -115,7 +115,7 @@ class ApiGraph final : public api::GraphRef { const auto& graph_outputs = graph_.GetOutputs(); graph_outputs_.reserve(graph_outputs.size()); for (const auto* output : graph_outputs) { - graph_outputs_.insert(output->Name()); + graph_outputs_.emplace(output->Name()); } } diff --git a/onnxruntime/core/optimizer/utils.cc b/onnxruntime/core/optimizer/utils.cc index 7c3599a08ec7a..7055882961e17 100644 --- a/onnxruntime/core/optimizer/utils.cc +++ b/onnxruntime/core/optimizer/utils.cc @@ -272,7 +272,7 @@ int32_t IndexOfNodeOutput(const Node& node, const NodeArg& node_arg) { // We could also allow other known domains (kMSDomain, kMSNchwcDomain, kMSFeaturizersDomain), // as long as we verify which of their operations are non-deterministic and add them in the map below. constexpr std::array kOnnxDomainNonDeterministicOps{"RandomUniform", "RandomNormal", "RandomUniformLike", - "RandomNormalLike", "Multinomial"}; + "RandomNormalLike", "Multinomial", "Dropout"}; // List of deterministic MS domain operators. Currently used for constant folding and common subexpression elimination. // @@ -280,7 +280,8 @@ constexpr std::array kOnnxDomainNonDeterministicOps{"RandomUniform", "RandomNorm // with the above ONNX list. With the current approach, only MS domain Q/DQ operators // (plus ShrunkenGather for training) are considered deterministic. #ifdef ENABLE_TRAINING_OPS -constexpr std::array kMSDomainDeterministicOps{"ShrunkenGather", "QuantizeLinear", "DequantizeLinear"}; +constexpr std::array kMSDomainDeterministicOps{"ShrunkenGather", "QuantizeLinear", "DequantizeLinear", + "ConcatTraining"}; #else constexpr std::array kMSDomainDeterministicOps{"QuantizeLinear", "DequantizeLinear"}; #endif diff --git a/onnxruntime/core/platform/windows/debug_alloc.cc b/onnxruntime/core/platform/windows/debug_alloc.cc index ff6a059607367..f3520b4f7f7f5 100644 --- a/onnxruntime/core/platform/windows/debug_alloc.cc +++ b/onnxruntime/core/platform/windows/debug_alloc.cc @@ -55,41 +55,67 @@ struct MemoryBlock { }; struct SymbolHelper { - SymbolHelper() noexcept { - SymSetOptions(SymGetOptions() | SYMOPT_DEFERRED_LOADS); - SymInitialize(GetCurrentProcess(), nullptr, true); + HANDLE process_handle_ = GetCurrentProcess(); + bool initialized_ = false; + + bool InitializeWhenNeeded() { + // We try only once + if (!initialized_) { + SymSetOptions(SymGetOptions() | SYMOPT_DEFERRED_LOADS); + // We use GetCurrentProcess() because other libs are likely to use it + if (!SymInitialize(process_handle_, nullptr, true)) { + const unsigned long long error{GetLastError()}; + std::cerr << "SymInitialize() failed: " << error << std::endl; + return false; + } + initialized_ = true; + } + return true; + } + + SymbolHelper() = default; + + static constexpr size_t kInitialBufferSize = sizeof(SYMBOL_INFO) + MAX_SYM_NAME; + + bool LoookupSymAndInitialize(const ULONG_PTR address, char* buffer, size_t buffer_size, SYMBOL_INFO* symbol) { + if (SymFromAddr(process_handle_, address, 0, symbol) != TRUE) { + if (GetLastError() == ERROR_INVALID_HANDLE) { + // Try to initialize first + if (!InitializeWhenNeeded() || SymFromAddr(process_handle_, address, 0, symbol) != TRUE) { + _snprintf_s(buffer, buffer_size, _TRUNCATE, "0x%08IX (Unknown symbol)", address); + return false; + } + } else { + _snprintf_s(buffer, buffer_size, _TRUNCATE, "0x%08IX (Unknown symbol)", address); + return false; + } + } + return true; } void Lookup(std::string& string, const ULONG_PTR address) { - char buffer[2048] = {0}; - Symbol symbol; - if (SymFromAddr(GetCurrentProcess(), address, 0, &symbol) == false) { - _snprintf_s(buffer, _TRUNCATE, "0x%08IX (Unknown symbol)", address); + alignas(SYMBOL_INFO) char buffer[kInitialBufferSize] = {0}; + SYMBOL_INFO* symbol = reinterpret_cast(buffer); + symbol->SizeOfStruct = sizeof(SYMBOL_INFO); + symbol->MaxNameLen = MAX_SYM_NAME; + + if (!LoookupSymAndInitialize(address, buffer, kInitialBufferSize, symbol)) { string.append(buffer); return; } Line line; DWORD displacement; - if (SymGetLineFromAddr(GetCurrentProcess(), address, &displacement, &line) == false) { - _snprintf_s(buffer, _TRUNCATE, "(unknown file & line number): %s", symbol.Name); + if (SymGetLineFromAddr(process_handle_, address, &displacement, &line) == false) { + _snprintf_s(buffer, _TRUNCATE, "(unknown file & line number): %s", symbol->Name); string.append(buffer); return; } - _snprintf_s(buffer, _TRUNCATE, "%s(%d): %s", line.FileName, static_cast(line.LineNumber), symbol.Name); + _snprintf_s(buffer, _TRUNCATE, "%s(%d): %s", line.FileName, static_cast(line.LineNumber), symbol->Name); string.append(buffer); } - struct Symbol : SYMBOL_INFO { - Symbol() noexcept { - SizeOfStruct = sizeof(SYMBOL_INFO); - MaxNameLen = _countof(buffer); - } - - char buffer[1024] = {0}; - }; - struct Line : IMAGEHLP_LINE { Line() noexcept { SizeOfStruct = sizeof(IMAGEHLP_LINE); diff --git a/onnxruntime/core/platform/windows/env.cc b/onnxruntime/core/platform/windows/env.cc index 0eb34cbfbc9eb..983cc6089bb4c 100644 --- a/onnxruntime/core/platform/windows/env.cc +++ b/onnxruntime/core/platform/windows/env.cc @@ -459,8 +459,8 @@ Status WindowsEnv::MapFileIntoMemory(_In_z_ const ORTCHAR_T* file_path, void* const mapped_base = MapViewOfFile(file_mapping_handle.get(), FILE_MAP_READ, - 0, - static_cast(mapped_offset), + static_cast((mapped_offset >> 32) & 0xFFFFFFFF), + static_cast(mapped_offset & 0xFFFFFFFF), mapped_length); GSL_SUPPRESS(r.11) mapped_memory = diff --git a/onnxruntime/core/providers/cann/cann_execution_provider.cc b/onnxruntime/core/providers/cann/cann_execution_provider.cc index 752b742805a7c..9a242919665bb 100644 --- a/onnxruntime/core/providers/cann/cann_execution_provider.cc +++ b/onnxruntime/core/providers/cann/cann_execution_provider.cc @@ -1045,7 +1045,7 @@ CANNExecutionProvider::~CANNExecutionProvider() { } // All threads share the same context and stream -Status CANNExecutionProvider::OnRunStart() { +Status CANNExecutionProvider::OnRunStart(const onnxruntime::RunOptions& /*run_options*/) { CANN_RETURN_IF_ERROR(aclrtSetDevice(info_.device_id)); return Status::OK(); diff --git a/onnxruntime/core/providers/cann/cann_execution_provider.h b/onnxruntime/core/providers/cann/cann_execution_provider.h index 63ae980869c65..d83bd88d6958f 100644 --- a/onnxruntime/core/providers/cann/cann_execution_provider.h +++ b/onnxruntime/core/providers/cann/cann_execution_provider.h @@ -33,7 +33,7 @@ class CANNExecutionProvider : public IExecutionProvider { explicit CANNExecutionProvider(const CANNExecutionProviderInfo& info); virtual ~CANNExecutionProvider(); - Status OnRunStart() override; + Status OnRunStart(const onnxruntime::RunOptions& run_options) override; template Status Fill(Tensor* y, void* addr, aclrtStream stream) const { diff --git a/onnxruntime/core/providers/cann/cann_stream_handle.h b/onnxruntime/core/providers/cann/cann_stream_handle.h index 4d03fe5201209..5d822d23f966f 100644 --- a/onnxruntime/core/providers/cann/cann_stream_handle.h +++ b/onnxruntime/core/providers/cann/cann_stream_handle.h @@ -12,6 +12,7 @@ #include "core/providers/cann/cann_call.h" namespace onnxruntime { +void WaitCannNotificationOnDevice(Stream& stream, synchronize::Notification& notification); struct CannStream : Stream { CannStream(aclrtStream stream, const OrtDevice& device, bool own_flag); @@ -23,10 +24,11 @@ struct CannStream : Stream { void Flush() override; bool own_stream_{true}; + + WaitNotificationFn GetWaitNotificationFn() const override { return WaitCannNotificationOnDevice; } }; void RegisterCannStreamHandles(IStreamCommandHandleRegistry& stream_handle_registry, const OrtDevice::DeviceType device_type); -void WaitCannNotificationOnDevice(Stream& stream, synchronize::Notification& notification); } // namespace onnxruntime diff --git a/onnxruntime/core/providers/coreml/builders/coreml_spec.h b/onnxruntime/core/providers/coreml/builders/coreml_spec.h index c9adba9e579d0..9448f1167990e 100644 --- a/onnxruntime/core/providers/coreml/builders/coreml_spec.h +++ b/onnxruntime/core/providers/coreml/builders/coreml_spec.h @@ -17,14 +17,19 @@ #ifdef HAS_SHORTEN_64_TO_32 #pragma GCC diagnostic ignored "-Wshorten-64-to-32" #endif +#elif defined(_MSC_VER) +#pragma warning(push) +#pragma warning(disable : 4244) // conversion from long to int #endif // Model.pb.h is generated in the build output directory from the CoreML protobuf files in -// onnxruntime/core/providers/coreml/coremltools/mlmodel/format +// /_deps/coremltools-src/mlmodel/format #include "coreml_proto/Model.pb.h" #if defined(__GNUC__) #pragma GCC diagnostic pop +#elif defined(_MSC_VER) +#pragma warning(pop) #endif namespace COREML_SPEC = CoreML::Specification; diff --git a/onnxruntime/core/providers/coreml/builders/helper.cc b/onnxruntime/core/providers/coreml/builders/helper.cc index bc3ba4432e66d..b8ebbd05a2a20 100644 --- a/onnxruntime/core/providers/coreml/builders/helper.cc +++ b/onnxruntime/core/providers/coreml/builders/helper.cc @@ -85,9 +85,15 @@ bool IsInputSupported(const Node& node, const NodeArg& input, } if (dim == 0) { - LOGS(logger, WARNING) << "CoreML does not support shapes with dimension values of 0. Input:" << input_name - << ", shape: " << Shape2String(shape); - return false; + if (node.OpType() == "Resize" && &input == node.InputDefs()[1]) { + // one special case. Resize 'roi' input was originally a required input but is rarely used. + // ROI is not supported in the CoreML implementation so we will ignore the value, but is often added + // (at least in the unit tests) as an initializer with shape {0}. + } else { + LOGS(logger, WARNING) << "CoreML does not support shapes with dimension values of 0. Input:" << input_name + << ", shape: " << Shape2String(shape); + return false; + } } } @@ -125,7 +131,7 @@ std::unordered_set GetSupportedNodes(const GraphViewer& graph_viewe bool CheckIsConstantInitializer(const NodeArg& node_arg, const GraphViewer& graph_viewer, const logging::Logger& logger, std::string_view input_description) { - if (graph_viewer.GetConstantInitializer(node_arg.Name(), true) == nullptr) { + if (graph_viewer.GetConstantInitializer(node_arg.Name()) == nullptr) { LOGS(logger, VERBOSE) << input_description << " (NodeArg name: '" << node_arg.Name() << "') is not a constant initializer tensor"; return false; diff --git a/onnxruntime/core/providers/coreml/builders/impl/base_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/base_op_builder.cc index 2570e6d88ae0d..83a572f4b60fa 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/base_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/base_op_builder.cc @@ -83,9 +83,14 @@ bool BaseOpBuilder::HasSupportedInputs(const Node& node, const OpBuilderInputPar } /* static */ -bool BaseOpBuilder::IsInput0Supported(const Node& node, const OpBuilderInputParams& /*input_params*/, - const logging::Logger& logger) { - const auto& input = *node.InputDefs()[0]; +bool BaseOpBuilder::IsInputFloat(const Node& node, size_t idx, const OpBuilderInputParams& /*input_params*/, + const logging::Logger& logger) { + if (idx >= node.InputDefs().size()) { + LOGS(logger, VERBOSE) << "Input index [" << idx << "] is out of range"; + return false; + } + + const auto& input = *node.InputDefs()[idx]; int32_t input_type = ONNX_NAMESPACE::TensorProto_DataType_UNDEFINED; @@ -102,7 +107,7 @@ bool BaseOpBuilder::HasSupportedInputsImpl(const Node& node, const OpBuilderInpu const logging::Logger& logger) const { // We only check the type of input 0 by default // specific op builder can override this - return IsInput0Supported(node, input_params, logger); + return IsInputFloat(node, 0, input_params, logger); } bool BaseOpBuilder::HasSupportedOpSet(const Node& node, const logging::Logger& logger) const { diff --git a/onnxruntime/core/providers/coreml/builders/impl/base_op_builder.h b/onnxruntime/core/providers/coreml/builders/impl/base_op_builder.h index 06c4dd94ea30d..63f0b813d654c 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/base_op_builder.h +++ b/onnxruntime/core/providers/coreml/builders/impl/base_op_builder.h @@ -28,9 +28,9 @@ class BaseOpBuilder : public IOpBuilder { void AddInitializersToSkip(ModelBuilder& /*model_builder*/, const Node& /*node*/) const override {} protected: - // check if the first input's data type is supported. - static bool IsInput0Supported(const Node& node, const OpBuilderInputParams& input_params, - const logging::Logger& logger); + // currently we only support float + static bool IsInputFloat(const Node& node, size_t idx, const OpBuilderInputParams& input_params, + const logging::Logger& logger); private: virtual bool IsOpSupportedImpl(const Node& /*node*/, const OpBuilderInputParams& /*input_params*/, diff --git a/onnxruntime/core/providers/coreml/builders/impl/binary_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/binary_op_builder.cc index 6074fba1433d9..fb8e07633621f 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/binary_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/binary_op_builder.cc @@ -5,6 +5,7 @@ #include "core/providers/common.h" #include "core/providers/coreml/builders/helper.h" #include "core/providers/coreml/builders/impl/base_op_builder.h" +#include "core/providers/coreml/builders/impl/builder_utils.h" #include "core/providers/coreml/builders/model_builder.h" #include "core/providers/coreml/builders/op_builder_factory.h" #include "core/providers/shared/utils/utils.h" @@ -19,6 +20,8 @@ class BinaryOpBuilder : public BaseOpBuilder { bool HasSupportedInputsImpl(const Node& node, const OpBuilderInputParams& input_params, const logging::Logger& logger) const override; + + bool SupportsMLProgram() const override { return true; } }; namespace { @@ -57,38 +60,72 @@ Status BinaryOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const const auto& op_type(node.OpType()); const auto& input_defs(node.InputDefs()); - std::unique_ptr layer = model_builder.CreateNNLayer(node); - - if (op_type == "Add") { - // original mutable_add() has limited broadcasting support - // updated to use CoreML::AddBroadcastableLayerParams which has more general broadcasting support - if (CheckIfBothInputShapesMatch(node, logger)) { - layer->mutable_add(); +#if defined(COREML_ENABLE_MLPROGRAM) + if (model_builder.CreateMLProgram()) { + using namespace CoreML::Specification::MILSpec; + + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#module-coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary + std::string_view coreml_op_type; + if (op_type == "Add") { + coreml_op_type = "add"; + } else if (op_type == "Mul") { + coreml_op_type = "mul"; + } else if (op_type == "Sub") { + coreml_op_type = "sub"; + } else if (op_type == "Div") { + // we only support fp32 currently. when we add support for integers we need to check the type and use + // "floor_div" or "real_div" accordingly + coreml_op_type = "real_div"; + } else if (op_type == "Pow") { + coreml_op_type = "pow"; } else { - layer->mutable_addbroadcastable(); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "BinaryOpBuilder::AddToModelBuilderImpl, unexpected op: ", op_type); } - } else if (op_type == "Mul") { - if (CheckIfBothInputShapesMatch(node, logger)) { - layer->mutable_multiply(); + + std::unique_ptr op = model_builder.CreateOperation(node, coreml_op_type); + AddOperationInput(*op, "x", input_defs[0]->Name()); + AddOperationInput(*op, "y", input_defs[1]->Name()); + AddOperationOutput(*op, *node.OutputDefs()[0]); + + model_builder.AddOperation(std::move(op)); + } else +#endif // defined (COREML_ENABLE_MLPROGRAM) + { + std::unique_ptr layer = model_builder.CreateNNLayer(node); + + if (op_type == "Add") { + // original mutable_add() has limited broadcasting support + // updated to use CoreML::AddBroadcastableLayerParams which has more general broadcasting support + if (CheckIfBothInputShapesMatch(node, logger)) { + layer->mutable_add(); + } else { + layer->mutable_addbroadcastable(); + } + } else if (op_type == "Mul") { + if (CheckIfBothInputShapesMatch(node, logger)) { + layer->mutable_multiply(); + } else { + layer->mutable_multiplybroadcastable(); + } + } else if (op_type == "Sub") { + layer->mutable_subtractbroadcastable(); + } else if (op_type == "Div") { + layer->mutable_dividebroadcastable(); + } else if (op_type == "Pow") { + layer->mutable_powbroadcastable(); } else { - layer->mutable_multiplybroadcastable(); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "BinaryOpBuilder::AddToModelBuilderImpl, unexpected op: ", op_type); } - } else if (op_type == "Sub") { - layer->mutable_subtractbroadcastable(); - } else if (op_type == "Div") { - layer->mutable_dividebroadcastable(); - } else if (op_type == "Pow") { - layer->mutable_powbroadcastable(); - } else { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "BinaryOpBuilder::AddToModelBuilderImpl, unknown op: ", op_type); - } - *layer->mutable_input()->Add() = input_defs[0]->Name(); - *layer->mutable_input()->Add() = input_defs[1]->Name(); - *layer->mutable_output()->Add() = node.OutputDefs()[0]->Name(); + *layer->mutable_input()->Add() = input_defs[0]->Name(); + *layer->mutable_input()->Add() = input_defs[1]->Name(); + *layer->mutable_output()->Add() = node.OutputDefs()[0]->Name(); + + model_builder.AddLayer(std::move(layer)); + } - model_builder.AddLayer(std::move(layer)); return Status::OK(); } @@ -99,25 +136,11 @@ int BinaryOpBuilder::GetMinSupportedOpSet(const Node& /* node */) const { bool BinaryOpBuilder::HasSupportedInputsImpl(const Node& node, const OpBuilderInputParams& input_params, const logging::Logger& logger) const { - if (node.OpType() != "Pow") { - return IsInput0Supported(node, input_params, logger); - } - - const auto& input_1 = *node.InputDefs()[0]; - const auto& input_2 = *node.InputDefs()[1]; - - // Pow we only support both inputs as fp32 for now - int32_t input_type_1; - int32_t input_type_2; - if (!GetType(input_1, input_type_1, logger) || - !GetType(input_2, input_type_2, logger)) { - return false; - } - - if (input_type_1 != ONNX_NAMESPACE::TensorProto_DataType_FLOAT || input_type_1 != input_type_2) { - LOGS(logger, VERBOSE) << "Pow only supports fp32 inputs, actual input type" - << ", Input type 1: " << input_type_1 - << ", Input type 2: " << input_type_2; + // Add/Sub/Mul/Div spec says inputs must be of the same type. + // Pow spec says inputs can be different types. + // We only support float for all of these inputs. + if (!IsInputFloat(node, 0, input_params, logger) || + ((node.OpType() == "Pow") && !IsInputFloat(node, 1, input_params, logger))) { return false; } diff --git a/onnxruntime/core/providers/coreml/builders/impl/builder_utils.cc b/onnxruntime/core/providers/coreml/builders/impl/builder_utils.cc index 710f596b2a562..cbea969904ed5 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/builder_utils.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/builder_utils.cc @@ -7,6 +7,7 @@ #include "core/framework/tensorprotoutils.h" #include "core/providers/coreml/builders/coreml_spec.h" #include "core/providers/coreml/builders/helper.h" +#include "core/providers/coreml/builders/model_builder.h" #include "core/providers/shared/utils/utils.h" #include "core/optimizer/initializer.h" @@ -132,6 +133,7 @@ void CreateCoreMLWeight(CoreML::Specification::WeightParams& weight, gsl::spansize(); + size_t num_dims = num_pads / 2; + std::vector reordered_pads(num_pads, 0); + for (size_t i = 0; i < num_pads; ++i) { + auto cur_dim = i % num_dims; + if (i < num_dims) { // start values + reordered_pads[cur_dim * 2] = (*onnx_pads)[i]; + } else { // end values + reordered_pads[cur_dim * 2 + 1] = (*onnx_pads)[i]; + } + } + + AddOperationInput(op, "pad", model_builder.AddConstant(op_type, "pad", reordered_pads)); + + break; + } + + // fall through if explicit pads were not provided as the default value for `pads` is all zeros, + // which is the same as 'valid' padding. + [[fallthrough]]; + } + case AutoPadType::VALID: + AddOperationInput(op, "pad_type", + model_builder.AddScalarConstant(op_type, "pad_type", std::string("valid"))); + + break; + case AutoPadType::SAME_UPPER: + case AutoPadType::SAME_LOWER: { + const auto pad_type = (auto_pad_type == AutoPadType::SAME_UPPER ? "same" : "same_lower"); + AddOperationInput(op, "pad_type", + model_builder.AddScalarConstant(op_type, "pad_type", std::string(pad_type))); + + // despite what the spec says, a 'pad' input seems to be required. + // https://github.com/apple/coremltools/issues/2127 + // Provide the default value as that's what coremltools does for conv/avg_pool/max_pool. + std::vector ignored_pads(num_spatial_dims * 2, 0); + AddOperationInput(op, "pad", model_builder.AddConstant(op_type, "pad", ignored_pads)); + + break; + } + } +} +#endif // defined(COREML_ENABLE_MLPROGRAM) } // namespace coreml } // namespace onnxruntime diff --git a/onnxruntime/core/providers/coreml/builders/impl/builder_utils.h b/onnxruntime/core/providers/coreml/builders/impl/builder_utils.h index 8126f0c126914..2804589065631 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/builder_utils.h +++ b/onnxruntime/core/providers/coreml/builders/impl/builder_utils.h @@ -11,13 +11,15 @@ #include "core/common/status.h" #include "core/graph/basic_types.h" #include "core/providers/common.h" - #include "core/providers/coreml/builders/coreml_spec.h" +#include "core/providers/shared/utils/utils.h" namespace onnxruntime { class NodeArg; namespace coreml { +class ModelBuilder; + // Try to see if we can map explicit padding to auto padding for Conv/Pool // Since usually use auto padding is more efficient Status HandleAutoPad(const std::vector input_shape, @@ -45,6 +47,7 @@ void CreateCoreMLWeight(CoreML::Specification::WeightParams& weight, gsl::span data); +#if defined(COREML_ENABLE_MLPROGRAM) // // MLProgram utils // @@ -130,5 +133,17 @@ void AddOperationInput(COREML_SPEC::MILSpec::Operation& op, /// Operation to update. /// NodeArg with details of output to add. void AddOperationOutput(COREML_SPEC::MILSpec::Operation& op, const NodeArg& output); + +/// +/// Add pad_type and pad values. +/// +/// Operator to update +/// ModelBuilder to add constants with. +/// Operator type. +/// Node attribute helper. +/// Number of spatial dims in input. Generally rank - 2 (ignore N and C dims). +void AddPadTypeAndPads(COREML_SPEC::MILSpec::Operation& op, ModelBuilder& model_builder, std::string_view op_type, + const NodeAttrHelper& helper, int num_spatial_dims); +#endif // defined(COREML_ENABLE_MLPROGRAM) } // namespace coreml } // namespace onnxruntime diff --git a/onnxruntime/core/providers/coreml/builders/impl/clip_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/clip_op_builder.cc index 9aca172abec98..41f4041ef1181 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/clip_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/clip_op_builder.cc @@ -2,6 +2,7 @@ // Licensed under the MIT License. #include "core/providers/coreml/builders/impl/base_op_builder.h" +#include "core/providers/coreml/builders/impl/builder_utils.h" #include "core/providers/coreml/builders/model_builder.h" #include "core/providers/coreml/builders/op_builder_factory.h" #include "core/providers/shared/utils/utils.h" @@ -17,11 +18,31 @@ class ClipOpBuilder : public BaseOpBuilder { bool IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params, const logging::Logger& logger) const override; + + bool SupportsMLProgram() const override { return true; } }; void ClipOpBuilder::AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const { + bool skip = true; + + if (model_builder.CreateMLProgram()) { + float min, max; + ORT_IGNORE_RETURN_VALUE(GetClipMinMax(model_builder.GetGraphViewer(), node, min, max, model_builder.Logger())); + + bool has_min = min != std::numeric_limits::lowest(); + bool has_max = max != std::numeric_limits::max(); + if (has_min && has_max && min == 0.f && max == 6.f) { + // relu6 - skip both + } else if (has_min && min == 0.f && !has_max) { + // relu - skip both + } else { + // clip - we will use both + skip = false; + } + } + // Both min and max values will be injected into the layer, no need to add to the model - if (node.SinceVersion() >= 11) { + if (skip && node.SinceVersion() >= 11) { if (node.InputDefs().size() > 1) model_builder.AddInitializerToSkip(node.InputDefs()[1]->Name()); @@ -35,72 +56,126 @@ Status ClipOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const logging::Logger& logger) const { const auto& node_name = node.Name(); const auto& input_name = node.InputDefs()[0]->Name(); - const auto& output_name = node.OutputDefs()[0]->Name(); + const auto& output = *node.OutputDefs()[0]; + const auto& output_name = output.Name(); float min, max; ORT_RETURN_IF_NOT(GetClipMinMax(model_builder.GetGraphViewer(), node, min, max, logger), "GetClipMinMax failed"); bool has_min = min != std::numeric_limits::lowest(); bool has_max = max != std::numeric_limits::max(); - if (!has_min && !has_max) { - // Clip without min/max is an identity node - // In CoreML we don't have identity, use ActivationLinear instead - std::unique_ptr layer = model_builder.CreateNNLayer(node); - layer->mutable_activation()->mutable_linear()->set_alpha(1.0f); - *layer->mutable_input()->Add() = input_name; - *layer->mutable_output()->Add() = output_name; - - model_builder.AddLayer(std::move(layer)); - } else { - // The implementation of clip(min, max) is done by - // 1. Clipping at min -> max(input, min) is handled by - // min_output = threshold(input, min) - // 2. Clipping at max -> min(min_output, max) is handled by - // output = -1 * (threshold(-min_output, -max)) - - // Now we have at least one or min or max is not default value - // Clipping at max will need take the output of clipping at min, or the node input, if min value is default - // If max value is default, the output of clipping at min will be the output of the node - std::string min_output_name = output_name; - if (has_max) { - min_output_name = has_min - ? model_builder.GetUniqueName(node_name + "min_output") - : input_name; +#if defined(COREML_ENABLE_MLPROGRAM) + if (model_builder.CreateMLProgram()) { + using namespace CoreML::Specification::MILSpec; + + std::unique_ptr op; + if (!has_min && !has_max) { + // Clip without min/max is an identity node. + op = model_builder.CreateOperation(node, "identity"); + Operation& identity_op = *op; + AddOperationInput(identity_op, "x", input_name); + } else { + if (has_min && has_max && min == 0.f && max == 6.f) { + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.activation.relu6 + op = model_builder.CreateOperation(node, "relu6"); + Operation& relu6_op = *op; + AddOperationInput(relu6_op, "x", input_name); + } else if (has_min && min == 0.f && !has_max) { + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.activation.relu + op = model_builder.CreateOperation(node, "relu"); + Operation& relu_op = *op; + AddOperationInput(relu_op, "x", input_name); + } else { + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.clip + op = model_builder.CreateOperation(node, "clip"); + + Operation& clip_op = *op; + AddOperationInput(clip_op, "x", input_name); + + // if min and max were attributes we need to add initializers. otherwise we use the existing inputs + const bool min_max_attribs = node.SinceVersion() < 11; + std::string_view min_name = min_max_attribs ? model_builder.AddScalarConstant(clip_op.type(), "min", min) + : node.InputDefs()[1]->Name(); + + AddOperationInput(clip_op, "alpha", min_name); + + if (has_max) { + std::string_view max_name = min_max_attribs ? model_builder.AddScalarConstant(clip_op.type(), "max", max) + : node.InputDefs()[2]->Name(); + AddOperationInput(clip_op, "beta", max_name); + } + } } - // Handle clipping at min first - if (has_min) { - std::unique_ptr min_layer = model_builder.CreateNNLayer(node, "_Clip_min"); - if (min == 0.0f) { // If min is 0. then this min will be handled by relu - min_layer->mutable_activation()->mutable_relu(); - } else { // otherwise, min will be handled by unary->threshold - min_layer->mutable_unary()->set_alpha(min); - min_layer->mutable_unary()->set_type(COREML_SPEC::UnaryFunctionLayerParams::THRESHOLD); + AddOperationOutput(*op, output); + model_builder.AddOperation(std::move(op)); + } else +#endif // defined(COREML_ENABLE_MLPROGRAM) + { + // TODO: CoreML has a Clip layer for NeuralNetwork. Added in CoreML 4. We could potentially use that if available + // to simplify. + // https://apple.github.io/coremltools/mlmodel/Format/NeuralNetwork.html#cliplayerparams + + if (!has_min && !has_max) { + // Clip without min/max is an identity node + // In CoreML we don't have identity, use ActivationLinear instead + std::unique_ptr layer = model_builder.CreateNNLayer(node); + layer->mutable_activation()->mutable_linear()->set_alpha(1.0f); + *layer->mutable_input()->Add() = input_name; + *layer->mutable_output()->Add() = output_name; + + model_builder.AddLayer(std::move(layer)); + } else { + // The implementation of clip(min, max) is done by + // 1. Clipping at min -> max(input, min) is handled by + // min_output = threshold(input, min) + // 2. Clipping at max -> min(min_output, max) is handled by + // output = -1 * (threshold(-min_output, -max)) + + // Now we have at least one or min or max is not default value + // Clipping at max will need take the output of clipping at min, or the node input, if min value is default + // If max value is default, the output of clipping at min will be the output of the node + std::string min_output_name = output_name; + if (has_max) { + min_output_name = has_min + ? model_builder.GetUniqueName(node_name + "min_output") + : input_name; } - *min_layer->mutable_input()->Add() = input_name; - *min_layer->mutable_output()->Add() = min_output_name; - model_builder.AddLayer(std::move(min_layer)); - } - - // Clipping at max is handled by -1 * (threshold (-min_output, -max)) - if (has_max) { - const auto threshold_output_name = model_builder.GetUniqueName(MakeString(node_name, "threshold_output")); - { // Add threshold layer, which is actually max( -1 * min_output, -max) - auto threshold_layer = model_builder.CreateNNLayer(node, "_Clip_max_threshold"); - threshold_layer->mutable_unary()->set_alpha(-max); - threshold_layer->mutable_unary()->set_scale(-1.0f); - threshold_layer->mutable_unary()->set_type(COREML_SPEC::UnaryFunctionLayerParams::THRESHOLD); - *threshold_layer->mutable_input()->Add() = min_output_name; - *threshold_layer->mutable_output()->Add() = threshold_output_name; - model_builder.AddLayer(std::move(threshold_layer)); + // Handle clipping at min first + if (has_min) { + std::unique_ptr min_layer = model_builder.CreateNNLayer(node, "_Clip_min"); + if (min == 0.0f) { // If min is 0. then this min will be handled by relu + min_layer->mutable_activation()->mutable_relu(); + } else { // otherwise, min will be handled by unary->threshold + min_layer->mutable_unary()->set_alpha(min); + min_layer->mutable_unary()->set_type(COREML_SPEC::UnaryFunctionLayerParams::THRESHOLD); + } + + *min_layer->mutable_input()->Add() = input_name; + *min_layer->mutable_output()->Add() = min_output_name; + model_builder.AddLayer(std::move(min_layer)); } - { // Add linear activation layer -1 * threshold_output - auto linear_layer = model_builder.CreateNNLayer(node, "_Clip_max_linear"); - linear_layer->mutable_activation()->mutable_linear()->set_alpha(-1.0f); - *linear_layer->mutable_input()->Add() = threshold_output_name; - *linear_layer->mutable_output()->Add() = output_name; - model_builder.AddLayer(std::move(linear_layer)); + + // Clipping at max is handled by -1 * (threshold (-min_output, -max)) + if (has_max) { + const auto threshold_output_name = model_builder.GetUniqueName(MakeString(node_name, "threshold_output")); + { // Add threshold layer, which is actually max( -1 * min_output, -max) + auto threshold_layer = model_builder.CreateNNLayer(node, "_Clip_max_threshold"); + threshold_layer->mutable_unary()->set_alpha(-max); + threshold_layer->mutable_unary()->set_scale(-1.0f); + threshold_layer->mutable_unary()->set_type(COREML_SPEC::UnaryFunctionLayerParams::THRESHOLD); + *threshold_layer->mutable_input()->Add() = min_output_name; + *threshold_layer->mutable_output()->Add() = threshold_output_name; + model_builder.AddLayer(std::move(threshold_layer)); + } + { // Add linear activation layer -1 * threshold_output + auto linear_layer = model_builder.CreateNNLayer(node, "_Clip_max_linear"); + linear_layer->mutable_activation()->mutable_linear()->set_alpha(-1.0f); + *linear_layer->mutable_input()->Add() = threshold_output_name; + *linear_layer->mutable_output()->Add() = output_name; + model_builder.AddLayer(std::move(linear_layer)); + } } } } diff --git a/onnxruntime/core/providers/coreml/builders/impl/conv_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/conv_op_builder.cc index 05e43dbbd16af..38125957bf481 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/conv_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/conv_op_builder.cc @@ -67,99 +67,25 @@ Status ConvOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const N AddOperationInput(*conv_op, "bias", input_defs[2]->Name()); } - // ONNX attributes. Add as inputs if specified/required - auto strides = helper.GetInt64s("strides"); - auto dilations = helper.GetInt64s("dilations"); - auto groups = helper.GetInt64("group"); - // we know this input has a valid shape due to the check in IsOpSupportedImpl. ignore N and C dims. const auto num_spatial_dims = input_defs[1]->Shape()->dim_size() - 2; const auto& op_type = conv_op->type(); - if (strides) { - AddOperationInput(*conv_op, "strides", model_builder.AddConstant(op_type, "strides", *strides)); - } else { - // spec says optional. testing suggests otherwise for at least the iOS15 target (CoreML5) - static const auto default_value = std::vector(num_spatial_dims, 1); - AddOperationInput(*conv_op, "strides", model_builder.AddConstant(op_type, "strides", default_value)); - } + // Spec says strides and dilations are optional, but reality is they're required for at least the iOS15 target + // (CoreML5). + const auto strides = helper.Get("strides", std::vector(num_spatial_dims, 1)); + auto dilations = helper.Get("dilations", std::vector(num_spatial_dims, 1)); + auto groups = helper.GetInt64("group"); - if (dilations) { - AddOperationInput(*conv_op, "dilations", model_builder.AddConstant(op_type, "dilations", *dilations)); - } else { - // spec says optional. testing suggests otherwise for at least the iOS15 target (CoreML5) - static const auto default_value = std::vector(num_spatial_dims, 1); - AddOperationInput(*conv_op, "dilations", model_builder.AddConstant(op_type, "dilations", default_value)); - } + AddOperationInput(*conv_op, "strides", model_builder.AddConstant(op_type, "strides", strides)); + AddOperationInput(*conv_op, "dilations", model_builder.AddConstant(op_type, "dilations", dilations)); if (groups) { AddOperationInput(*conv_op, "groups", model_builder.AddScalarConstant(op_type, "groups", *groups)); } - AutoPadType auto_pad_type = StringToAutoPadType(helper.Get("auto_pad", "NOTSET")); - - // pad type (string) - // valid - no pads (ONNX auto_pad VALID) - // custom - pads input (ONNX NOTSET) - // same - inferred to be `d_out[i] = ceil(d_in[i] / strides[i])` (assuming == ONNX SAME_UPPER) - // same_lower - as per same but any extra rows/cols are added at top/left if padding is odd (ONNX SAME_LOWER) - // - // TODO: See if we want to update HandleAutoPad to support 1D (and 3D) so we can infer if an autopad value - // can be used. TBD if that provides any performance benefit with ML Program though as CoreML could - // potentially do that for us. - switch (auto_pad_type) { - case AutoPadType::NOTSET: { - // use `pads` attribute. - auto onnx_pads = helper.GetInt64s("pads"); // 'pads' must be provided if auto_pad is NOTSET - if (onnx_pads) { - AddOperationInput(*conv_op, "pad_type", - model_builder.AddScalarConstant(op_type, "pad_type", std::string("custom"))); - - // need to re-order from x1_start, x2_start..., x1_end, x2_end... to - // x1_start, x1_end, x2_start, x2_end,... - size_t num_pads = onnx_pads->size(); - size_t num_dims = num_pads / 2; - std::vector reordered_pads(num_pads, 0); - for (size_t i = 0; i < num_pads; ++i) { - auto cur_dim = i % num_dims; - if (i < num_dims) { // start values - reordered_pads[cur_dim * 2] = (*onnx_pads)[i]; - } else { // end values - reordered_pads[cur_dim * 2 + 1] = (*onnx_pads)[i]; - } - } - - AddOperationInput(*conv_op, "pad", model_builder.AddConstant(op_type, "pad", reordered_pads)); - - break; - } - - // in theory the pads may not be provided and in that case the default is no padding. - // as that is the same as 'valid', fall through - [[fallthrough]]; - } - case AutoPadType::VALID: - AddOperationInput(*conv_op, "pad_type", - model_builder.AddScalarConstant(op_type, "pad_type", std::string("valid"))); - - break; - case AutoPadType::SAME_UPPER: - case AutoPadType::SAME_LOWER: { - const auto pad_type = (auto_pad_type == AutoPadType::SAME_UPPER ? "same" : "same_lower"); - AddOperationInput(*conv_op, "pad_type", - model_builder.AddScalarConstant(op_type, "pad_type", std::string(pad_type))); - - // despite what the spec says, a 'pad' input seems to be required. - // https://github.com/apple/coremltools/issues/2127 - // provide the default value. passing in an empty vector also works. TBD what's better. - std::vector ignored_pads(num_spatial_dims * 2, 0); - AddOperationInput(*conv_op, "pad", model_builder.AddConstant(op_type, "pad", ignored_pads)); - - break; - } - } + AddPadTypeAndPads(*conv_op, model_builder, op_type, helper, num_spatial_dims); - // set output AddOperationOutput(*conv_op, *node.OutputDefs()[0]); model_builder.AddOperation(std::move(conv_op)); @@ -297,7 +223,7 @@ bool ConvOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputPara const auto& input_defs = node.InputDefs(); const auto& weight_name = input_defs[1]->Name(); - const auto* weight = input_params.graph_viewer.GetConstantInitializer(weight_name, true); + const auto* weight = input_params.graph_viewer.GetConstantInitializer(weight_name); #if defined(COREML_ENABLE_MLPROGRAM) if (input_params.create_mlprogram) { @@ -324,7 +250,7 @@ bool ConvOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputPara return false; } - if (input_defs.size() > 2 && !input_params.graph_viewer.GetConstantInitializer(input_defs[2]->Name(), true)) { + if (input_defs.size() > 2 && !input_params.graph_viewer.GetConstantInitializer(input_defs[2]->Name())) { LOGS(logger, VERBOSE) << "The bias of Conv [" << name << "] must be a constant initializer"; return false; } diff --git a/onnxruntime/core/providers/coreml/builders/impl/gemm_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/gemm_op_builder.cc index 48f77354d7c30..8daf64dc4a457 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/gemm_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/gemm_op_builder.cc @@ -22,18 +22,51 @@ class GemmOpBuilder : public BaseOpBuilder { Status AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node, const logging::Logger& logger) const override; - bool IsOpSupportedImpl(const Node& /* node */, const OpBuilderInputParams& /* input_params */, - const logging::Logger& /* logger */) const override; + bool IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params, + const logging::Logger& logger) const override; + + bool SupportsMLProgram() const override { return true; } }; void GemmOpBuilder::AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const { const auto& op = node.OpType(); const auto& input_defs(node.InputDefs()); - // We have already embedded the weights (matrix B and C(if any)) into the coreml layer - // No need to copy them later to reduce memory consumption - model_builder.AddInitializerToSkip(input_defs[1]->Name()); - if (op == "Gemm" && input_defs.size() > 2) { - model_builder.AddInitializerToSkip(input_defs[2]->Name()); + const bool is_gemm = op == "Gemm"; + +#if defined(COREML_ENABLE_MLPROGRAM) + if (model_builder.CreateMLProgram()) { + // we have to transpose the weight input of Gemm if transB is false, and potentially override the bias shape + if (is_gemm) { + NodeAttrHelper helper(node); + const auto transB = helper.Get("transB", 0); + if (transB == 0) { + model_builder.AddInitializerToSkip(input_defs[1]->Name()); + } + + if (input_defs.size() > 2) { + // ONNX spec requires B to be 2D and we required it to be a constant initializer so reading N this way is safe + // B is {K, N] by default. or {N, K} if transB is true + int N_dim = transB ? 0 : 1; + int64_t N = input_defs[1]->Shape()->dim().at(N_dim).dim_value(); + + const auto& bias_name = input_defs[2]->Name(); + const auto& bias = *model_builder.GetConstantInitializer(bias_name); + if (bias.dims_size() != 1 || bias.dims(0) != N) { + // we have to override the shape/duplicate data to convert {}, {1} or {1, N} to 1D {N} + // when adding the Gemm operation so skip adding the original initializer + model_builder.AddInitializerToSkip(bias_name); + } + } + } + } else +#endif // defined(COREML_ENABLE_MLPROGRAM) + { + // We have already embedded the weights (matrix B and C(if any)) into the coreml layer + // No need to copy them later to reduce memory consumption + model_builder.AddInitializerToSkip(input_defs[1]->Name()); + if (is_gemm && input_defs.size() > 2) { + model_builder.AddInitializerToSkip(input_defs[2]->Name()); + } } } @@ -57,54 +90,152 @@ static Status GetTensorFloatDataTransposed(const ONNX_NAMESPACE::TensorProto& te } Status GemmOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node, - const logging::Logger& /* logger */) const { + const logging::Logger& logger) const { std::unique_ptr layer = model_builder.CreateNNLayer(node); const auto& op_type = node.OpType(); const auto& input_defs = node.InputDefs(); - const auto& b_tensor = *model_builder.GetInitializerTensors().at(input_defs[1]->Name()); - const auto& b_shape = b_tensor.dims(); - - auto* coreml_inner_product = layer->mutable_innerproduct(); - - // The coreml innerproduct weight (matrix B) is stored transposed - // - for MatMul and Gemm (transB = 0), the coreml weight is B' - // - for Gemm (transB = 1), the coreml weight is B - if (op_type == "MatMul") { - coreml_inner_product->set_inputchannels(b_shape[0]); - coreml_inner_product->set_outputchannels(b_shape[1]); - // Add weight (b of MatMul) - std::vector b_transposed; - ORT_RETURN_IF_ERROR(GetTensorFloatDataTransposed(b_tensor, b_transposed)); - CreateCoreMLWeight(*coreml_inner_product->mutable_weights(), b_transposed); - } else { // Gemm - NodeAttrHelper helper(node); - const auto transB = helper.Get("transB", 0); - if (transB == 0) { - coreml_inner_product->set_inputchannels(b_shape[0]); - coreml_inner_product->set_outputchannels(b_shape[1]); + const auto& a = *input_defs[0]; + const auto& b = *input_defs[1]; + const auto* b_initializer = model_builder.GetConstantInitializer(b.Name()); // MLProgram MatMul may not be constant + + const bool is_matmul = op_type == "MatMul"; + const bool is_gemm = op_type == "Gemm"; + + NodeAttrHelper helper(node); + const auto transB = is_gemm ? helper.Get("transB", 0) : 0; + + std::vector b_shape; + ORT_IGNORE_RETURN_VALUE(GetShape(b, b_shape, logger)); + int64_t b0 = -1, b1 = -1; + + // ML Program MatMul supports N-D input + if (model_builder.CreateMLProgram() && is_matmul) { + if (b_shape.size() == 1) { + // B is treated as {b_shape[0], 1} according to the numpy rules. + b0 = b_shape[0]; + b1 = 1; + } else { + // last 2 dims are used + b0 = b_shape[b_shape.size() - 2]; + b1 = b_shape[b_shape.size() - 1]; + } + } else { + // we only support 2D input + b0 = b_shape[0]; + b1 = b_shape[1]; + } + + // B is {K, N} in ONNX spec by default, or {N, K} in Gemm if transB is true + const auto K = transB ? b1 : b0; + const auto N = transB ? b0 : b1; + +#if defined(COREML_ENABLE_MLPROGRAM) + if (model_builder.CreateMLProgram()) { + using namespace CoreML::Specification::MILSpec; + + if (is_gemm) { + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.linear.linear + auto gemm_op = model_builder.CreateOperation(node, "linear"); + AddOperationInput(*gemm_op, "x", a.Name()); + + // CoreML takes weight input as {N, K} which is the reverse of ONNX. + // if transB is true the input weight is {N, K} so can be added directly. + if (transB) { + AddOperationInput(*gemm_op, "weight", b.Name()); + } else { + // transpose from {K, N} to {N, K} + std::vector weight_nk; + std::vector weight_nk_shape = {N, K}; + ORT_RETURN_IF_ERROR(GetTensorFloatDataTransposed(*b_initializer, weight_nk)); + + AddOperationInput(*gemm_op, "weight", + model_builder.AddConstant(gemm_op->type(), b.Name() + "_t", weight_nk, weight_nk_shape)); + } + + if (input_defs.size() == 3) { + const auto& bias_arg = *input_defs[2]; + const auto& bias = *model_builder.GetConstantInitializer(bias_arg.Name()); + + // CoreML linear op requires bias to be 1D tensor of size N + if (bias.dims_size() == 1 && bias.dims().at(0) == N) { + // can use existing initializer + AddOperationInput(*gemm_op, "bias", bias_arg.Name()); + } else { + Initializer unpacked_tensor(bias); + auto bias_data = unpacked_tensor.DataAsSpan(); + std::string_view bias_data_name; + if (bias_data.size() == 1) { + // expand scalar to N + std::vector expanded_bias_data(N, bias_data[0]); + bias_data_name = model_builder.AddConstant(gemm_op->type(), "bias", expanded_bias_data); + } else { + // can use data as-is but need to adjust shape (inferred by AddConstant as {bias_data.size()}) + bias_data_name = model_builder.AddConstant(gemm_op->type(), "bias", bias_data); + } + + AddOperationInput(*gemm_op, "bias", bias_data_name); + } + } + + AddOperationOutput(*gemm_op, *node.OutputDefs()[0]); + model_builder.AddOperation(std::move(gemm_op)); + } else { + // CoreML implementation is the same as ONNX MatMul. + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.linear.matmul + auto matmul_op = model_builder.CreateOperation(node, "matmul"); + AddOperationInput(*matmul_op, "x", a.Name()); + AddOperationInput(*matmul_op, "y", b.Name()); + + // once again the spec lies and says transpose_y and transpose_x are optional... + auto false_value_name = model_builder.AddScalarConstant(matmul_op->type(), "false", false); + AddOperationInput(*matmul_op, "transpose_x", false_value_name); + AddOperationInput(*matmul_op, "transpose_y", false_value_name); + + AddOperationOutput(*matmul_op, *node.OutputDefs()[0]); + model_builder.AddOperation(std::move(matmul_op)); + } + } else +#endif // defined(COREML_ENABLE_MLPROGRAM) + { + auto* coreml_inner_product = layer->mutable_innerproduct(); + + *layer->mutable_input()->Add() = a.Name(); + + coreml_inner_product->set_inputchannels(K); + coreml_inner_product->set_outputchannels(N); + + // CoreML takes weight input as {N, K} which is the reverse of ONNX. + // if Gemm's transB is true the input weight is {N, K} and can be added directly. + if (transB) { + ORT_RETURN_IF_ERROR(CreateCoreMLWeight(*coreml_inner_product->mutable_weights(), *b_initializer)); + } else { std::vector b_transposed; - ORT_RETURN_IF_ERROR(GetTensorFloatDataTransposed(b_tensor, b_transposed)); + ORT_RETURN_IF_ERROR(GetTensorFloatDataTransposed(*b_initializer, b_transposed)); CreateCoreMLWeight(*coreml_inner_product->mutable_weights(), b_transposed); - } else { - coreml_inner_product->set_inputchannels(b_shape[1]); - coreml_inner_product->set_outputchannels(b_shape[0]); - // Add weight (b of MatMul) - ORT_RETURN_IF_ERROR(CreateCoreMLWeight(*coreml_inner_product->mutable_weights(), b_tensor)); } - // Add bias if present - if (input_defs.size() > 2) { + if (is_gemm && input_defs.size() > 2) { + // Add bias coreml_inner_product->set_hasbias(true); - const auto& bias_tensor = *model_builder.GetInitializerTensors().at(input_defs[2]->Name()); - ORT_RETURN_IF_ERROR(CreateCoreMLWeight(*coreml_inner_product->mutable_bias(), bias_tensor)); + const auto& bias_tensor = *model_builder.GetConstantInitializer(input_defs[2]->Name()); + + // if scalar, or single value expand to 1D tensor of size N + // IsOpSupportedImpl enforces it's scalar, {1}, {N}, or {1, N}. + Initializer unpacked_tensor(bias_tensor); + auto bias_data = unpacked_tensor.DataAsSpan(); + if (bias_data.size() == 1 && N > 1) { + std::vector expanded_bias_data(N, bias_data[0]); + CreateCoreMLWeight(*coreml_inner_product->mutable_bias(), expanded_bias_data); + } else { + CreateCoreMLWeight(*coreml_inner_product->mutable_bias(), bias_data); + } } - } - *layer->mutable_input()->Add() = input_defs[0]->Name(); - *layer->mutable_output()->Add() = node.OutputDefs()[0]->Name(); + *layer->mutable_output()->Add() = node.OutputDefs()[0]->Name(); + model_builder.AddLayer(std::move(layer)); + } - model_builder.AddLayer(std::move(layer)); return Status::OK(); } @@ -112,98 +243,105 @@ bool GemmOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputPara const logging::Logger& logger) const { const auto& op_type = node.OpType(); const auto& input_defs(node.InputDefs()); + const bool is_matmul = op_type == "MatMul"; + const bool is_gemm = op_type == "Gemm"; + size_t a_idx = 0, b_idx = 1, c_idx = 2; // A*B+C - const auto& initializers = input_params.graph_viewer.GetAllInitializedTensors(); - if (!Contains(initializers, input_defs[b_idx]->Name())) { - LOGS(logger, VERBOSE) << "B of Gemm/Matmul must be an initializer tensor"; + std::vector a_shape; + if (!GetShape(*input_defs[a_idx], a_shape, logger)) { return false; } - std::vector a_shape; - { - if (!GetShape(*input_defs[a_idx], a_shape, logger)) - return false; - - if (a_shape.size() != 2) { - LOGS(logger, VERBOSE) << "A must be 2D"; - return false; - } + std::vector b_shape; + if (!GetShape(*input_defs[b_idx], b_shape, logger)) { + return false; + } - // TODO is it ok if the shape is dynamic and empty? - if (Product(a_shape) == 0) { - LOGS(logger, VERBOSE) << "A must be non-empty"; + if (!input_params.graph_viewer.GetConstantInitializer(input_defs[b_idx]->Name())) { + if (input_params.create_mlprogram && is_matmul) { + // ML Program MatMul allows non-constant B input + } else { + LOGS(logger, VERBOSE) << op_type << " B input must be a constant initializer"; return false; } } - std::vector b_shape; - { - if (!GetShape(*input_defs[b_idx], b_shape, logger)) - return false; - - if (b_shape.size() != 2) { - LOGS(logger, VERBOSE) << "B must be 2D"; - return false; - } + if (is_matmul) { + if (input_params.create_mlprogram) { + // ML Program matmul op has numpy semantics the same as the ONNX spec so we can use directly + } else { + // we could potentially support 1D and 3D if required. beyond 3D the dims that merge diverge. + // https://github.com/apple/coremltools/blob/1931758aae383c83daddfc56f11a24a9d2bf4b87/coremltools/converters/onnx/_operators.py#L1607 + // https://github.com/apple/coremltools/blob/1931758aae383c83daddfc56f11a24a9d2bf4b87/coremltools/converters/mil/backend/nn/op_mapping.py#L1374 + // https://apple.github.io/coremltools/mlmodel/Format/NeuralNetwork.html#innerproductlayerparams + if (a_shape.size() != 2 || b_shape.size() != 2) { + LOGS(logger, VERBOSE) << "a and b inputs must be 2D. "; + return false; + } - if (Product(b_shape) == 0) { - LOGS(logger, VERBOSE) << "B must be non-empty"; - return false; + if (input_defs.size() > 2) { + LOGS(logger, VERBOSE) << "MatMul with C input is not supported"; + return false; + } } } - if (op_type == "Gemm") { + if (is_gemm) { + // A and B are 2D due to the ONNX spec NodeAttrHelper helper(node); const auto transA = helper.Get("transA", 0); const auto transB = helper.Get("transB", 0); const auto alpha = helper.Get("alpha", 1.0f); const auto beta = helper.Get("beta", 1.0f); + + // TODO: We can support transA, alpha and beta by using multiple layers/operations if needed. if (!(transA == 0 && alpha == 1.f && beta == 1.f)) { - LOGS(logger, VERBOSE) << "Only transA == 0, alpha == 1.0 " - << "and beta == 1.0 is supported." + LOGS(logger, VERBOSE) << "Only support for transA == 0, alpha == 1.0 " + << "and beta == 1.0 is currently implemented." << " transA " << transA << " alpha " << alpha << " beta " << beta; return false; } - // C of Gemm - // For now we only support {n} or {1,n} tensor if (input_defs.size() == 3) { - if (!Contains(initializers, input_defs[c_idx]->Name())) { - LOGS(logger, VERBOSE) << "C of Gemm must be an initializer tensor"; + if (!input_params.graph_viewer.GetConstantInitializer(input_defs[c_idx]->Name())) { + LOGS(logger, VERBOSE) << "C of Gemm must be a constant initializer"; return false; } std::vector c_shape; - if (!GetShape(*input_defs[c_idx], c_shape, logger)) + if (!GetShape(*input_defs[c_idx], c_shape, logger)) { return false; + } - size_t c_dim = c_shape.size(); + // B is {K, N} in ONNX spec by default, or {N, K} in Gemm if transB is true + const auto N = transB ? b_shape[0] : b_shape[1]; - if (c_dim == 0) { - LOGS(logger, VERBOSE) << "C of Gemm cannot be a scalar"; - return false; - } + size_t c_rank = c_shape.size(); - if (c_dim != 1) { - // If C is a (2+)d tensor, it must have the format {1, 1, ..., 1, n} - // where every except the last dimension should be 1 - for (size_t i = 0; i < c_dim - 1; ++i) { - if (c_shape[i] != 1) { - LOGS(logger, VERBOSE) << "C of Gemm must be a vector or a tensor with only last dimension != 1"; - return false; + // allowed: scalar, or 1D where the value is 1 or N, 2D with shape {1, N} + bool c_valid = false; + switch (c_rank) { + case 0: + c_valid = true; + break; + case 1: + if (c_shape[0] == 1 || c_shape[0] == N) { + c_valid = true; } - } + break; + case 2: + if (c_shape[0] == 1 && c_shape[1] == N) { + c_valid = true; + } + break; } - auto c_size = c_shape[c_dim - 1]; - if (c_size != (transB == 0 ? b_shape[1] : b_shape[0])) { - LOGS(logger, VERBOSE) << "C of Gemm must be a vector of b_shape[" - << (transB == 0 ? "1" : "0") << "]" - << " b_shape: [" << b_shape[0] << ", " << b_shape[1] << "]" - << " c_size: " << c_size; + if (!c_valid) { + LOGS(logger, VERBOSE) << "Shape of C Gemm input must be {}, {1}, {N}, or {1, N}. N:" << N << " C shape:" + << Shape2String(c_shape); return false; } diff --git a/onnxruntime/core/providers/coreml/builders/impl/pool_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/pool_op_builder.cc index 01aced739b36d..17910ba6fd486 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/pool_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/pool_op_builder.cc @@ -19,104 +19,176 @@ class PoolOpBuilder : public BaseOpBuilder { bool IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params, const logging::Logger& logger) const override; + + bool SupportsMLProgram() const override { return true; } }; Status PoolOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node, const logging::Logger& logger) const { - std::unique_ptr layer = model_builder.CreateNNLayer(node); - - auto* coreml_pool = layer->mutable_pooling(); const auto& op_type = node.OpType(); const auto& input_defs = node.InputDefs(); - bool is_global_pooling = false; - if (op_type == "GlobalAveragePool") { - is_global_pooling = true; - coreml_pool->set_type(COREML_SPEC::PoolingLayerParams_PoolingType_AVERAGE); - } else if (op_type == "GlobalMaxPool") { - is_global_pooling = true; - coreml_pool->set_type(COREML_SPEC::PoolingLayerParams_PoolingType_MAX); - } else if (op_type == "AveragePool") { - coreml_pool->set_type(COREML_SPEC::PoolingLayerParams_PoolingType_AVERAGE); - } else if (op_type == "MaxPool") { - coreml_pool->set_type(COREML_SPEC::PoolingLayerParams_PoolingType_MAX); - } else { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "PoolOpBuilder, unknown op: ", op_type); - } +#if defined(COREML_ENABLE_MLPROGRAM) + if (model_builder.CreateMLProgram()) { + using namespace CoreML::Specification::MILSpec; + + std::string_view coreml_op_type; + bool is_global = false; + bool is_avg_pool = false; + if (op_type == "GlobalAveragePool") { + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_mean + coreml_op_type = "reduce_mean"; + is_global = true; + } else if (op_type == "GlobalMaxPool") { + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_max + coreml_op_type = "reduce_max"; + is_global = true; + } else if (op_type == "AveragePool") { + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.pool.avg_pool + coreml_op_type = "avg_pool"; + is_avg_pool = true; + } else if (op_type == "MaxPool") { + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.pool.max_pool + coreml_op_type = "max_pool"; + } else { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "PoolOpBuilder, unexpected op: ", op_type); + } - if (is_global_pooling) { - coreml_pool->set_globalpooling(true); - coreml_pool->mutable_valid(); - } else { // AveragePool or MaxPool - NodeAttrHelper helper(node); - const auto kernel_shape = helper.Get("kernel_shape", std::vector{0, 0}); - const auto strides = helper.Get("strides", std::vector{1, 1}); - const auto onnx_pads = helper.Get("pads", std::vector{0, 0, 0, 0}); - - coreml_pool->add_kernelsize(kernel_shape[0]); - coreml_pool->add_kernelsize(kernel_shape[1]); - coreml_pool->add_stride(strides[0]); - coreml_pool->add_stride(strides[1]); - coreml_pool->set_avgpoolexcludepadding(helper.Get("count_include_pad", 0) == 0); - coreml_pool->set_globalpooling(false); - - // Add Padding - // Usually using autopadding is more efficient than using explicit padding - // Try to see if we can map explicit padding to auto padding - std::vector input_shape; - ORT_RETURN_IF_NOT(GetShape(*input_defs[0], input_shape, logger), "Cannot get shape"); - AutoPadType auto_pad_type; - ORT_RETURN_IF_ERROR(HandleAutoPad(input_shape, kernel_shape[0], kernel_shape[1], - onnx_pads, strides, {1, 1} /* dilations */, - StringToAutoPadType(helper.Get("auto_pad", "NOTSET")), - auto_pad_type)); - - if (AutoPadType::SAME_UPPER == auto_pad_type || AutoPadType::SAME_LOWER == auto_pad_type) { - auto* padding_type = coreml_pool->mutable_same(); - if (AutoPadType::SAME_LOWER == auto_pad_type) { // default is SAME_UPPER - padding_type->set_asymmetrymode(COREML_SPEC::SamePadding_SamePaddingMode_TOP_LEFT_HEAVY); + std::unique_ptr op = model_builder.CreateOperation(node, coreml_op_type); + + AddOperationInput(*op, "x", input_defs[0]->Name()); + + if (is_global) { + // keep N and C dims, reduce the rest with keepdims=True. equivalent to the ONNX Global*Pool ops. + std::vector axes{2, 3}; // we only support 4D input currently. + AddOperationInput(*op, "axes", model_builder.AddConstant(op->type(), "axes", axes)); + AddOperationInput(*op, "keep_dims", model_builder.AddScalarConstant(op->type(), "keep_dims", true)); + } else { + NodeAttrHelper helper(node); + constexpr int num_spatial_dims = 2; // we only support 4D. -2 for N and C dims. + + AddPadTypeAndPads(*op, model_builder, op->type(), helper, num_spatial_dims); + + const auto kernel_shape = helper.GetInt64s("kernel_shape"); // required + AddOperationInput(*op, "kernel_sizes", model_builder.AddConstant(op->type(), "kernel_sizes", *kernel_shape)); + + // in theory all these values are optional according to the CoreML spec but simpler to just provide default + // values as the actual model compilation tends to require them. + const auto strides = helper.Get("strides", std::vector(num_spatial_dims, 1)); + const bool ceil_mode = helper.Get("ceil_mode", int64_t(0)); // convert int64_t to bool + + AddOperationInput(*op, "strides", model_builder.AddConstant(op->type(), "strides", strides)); + AddOperationInput(*op, "ceil_mode", model_builder.AddScalarConstant(op->type(), "ceil_mode", ceil_mode)); + + if (is_avg_pool) { + const bool count_exclude_pad = helper.Get("count_include_pad", int64_t(0)) == 0; + AddOperationInput(*op, "exclude_padding_from_average", + model_builder.AddScalarConstant(op->type(), "count_exclude_pad", count_exclude_pad)); } + } + + AddOperationOutput(*op, *node.OutputDefs()[0]); + model_builder.AddOperation(std::move(op)); + + } else +#endif // defined(COREML_ENABLE_MLPROGRAM) + { + std::unique_ptr layer = model_builder.CreateNNLayer(node); + + auto* coreml_pool = layer->mutable_pooling(); + + bool is_global_pooling = false; + if (op_type == "GlobalAveragePool") { + is_global_pooling = true; + coreml_pool->set_type(COREML_SPEC::PoolingLayerParams_PoolingType_AVERAGE); + } else if (op_type == "GlobalMaxPool") { + is_global_pooling = true; + coreml_pool->set_type(COREML_SPEC::PoolingLayerParams_PoolingType_MAX); + } else if (op_type == "AveragePool") { + coreml_pool->set_type(COREML_SPEC::PoolingLayerParams_PoolingType_AVERAGE); + } else if (op_type == "MaxPool") { + coreml_pool->set_type(COREML_SPEC::PoolingLayerParams_PoolingType_MAX); } else { - auto* padding_type = coreml_pool->mutable_valid(); - if (AutoPadType::NOTSET == auto_pad_type && onnx_pads != std::vector{0, 0, 0, 0}) { - // NOTSET is adding the explicit padding to the ValidPadding.paddingAmounts - auto* height_border = padding_type->mutable_paddingamounts()->add_borderamounts(); - height_border->set_startedgesize(onnx_pads[0]); - height_border->set_endedgesize(onnx_pads[2]); - auto* width_border = padding_type->mutable_paddingamounts()->add_borderamounts(); - width_border->set_startedgesize(onnx_pads[1]); - width_border->set_endedgesize(onnx_pads[3]); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "PoolOpBuilder, unexpected op: ", op_type); + } + + if (is_global_pooling) { + coreml_pool->set_globalpooling(true); + coreml_pool->mutable_valid(); + } else { // AveragePool or MaxPool + NodeAttrHelper helper(node); + const auto kernel_shape = helper.Get("kernel_shape", std::vector{0, 0}); + const auto strides = helper.Get("strides", std::vector{1, 1}); + const auto onnx_pads = helper.Get("pads", std::vector{0, 0, 0, 0}); + + coreml_pool->add_kernelsize(kernel_shape[0]); + coreml_pool->add_kernelsize(kernel_shape[1]); + coreml_pool->add_stride(strides[0]); + coreml_pool->add_stride(strides[1]); + coreml_pool->set_avgpoolexcludepadding(helper.Get("count_include_pad", 0) == 0); + coreml_pool->set_globalpooling(false); + + // Add Padding + // Usually using autopadding is more efficient than using explicit padding + // Try to see if we can map explicit padding to auto padding + std::vector input_shape; + ORT_RETURN_IF_NOT(GetShape(*input_defs[0], input_shape, logger), "Cannot get shape"); + AutoPadType auto_pad_type; + ORT_RETURN_IF_ERROR(HandleAutoPad(input_shape, kernel_shape[0], kernel_shape[1], + onnx_pads, strides, {1, 1} /* dilations */, + StringToAutoPadType(helper.Get("auto_pad", "NOTSET")), + auto_pad_type)); + + if (AutoPadType::SAME_UPPER == auto_pad_type || AutoPadType::SAME_LOWER == auto_pad_type) { + auto* padding_type = coreml_pool->mutable_same(); + if (AutoPadType::SAME_LOWER == auto_pad_type) { // default is SAME_UPPER + padding_type->set_asymmetrymode(COREML_SPEC::SamePadding_SamePaddingMode_TOP_LEFT_HEAVY); + } + } else { + auto* padding_type = coreml_pool->mutable_valid(); + if (AutoPadType::NOTSET == auto_pad_type && onnx_pads != std::vector{0, 0, 0, 0}) { + // NOTSET is adding the explicit padding to the ValidPadding.paddingAmounts + auto* height_border = padding_type->mutable_paddingamounts()->add_borderamounts(); + height_border->set_startedgesize(onnx_pads[0]); + height_border->set_endedgesize(onnx_pads[2]); + auto* width_border = padding_type->mutable_paddingamounts()->add_borderamounts(); + width_border->set_startedgesize(onnx_pads[1]); + width_border->set_endedgesize(onnx_pads[3]); + } } } - } - *layer->mutable_input()->Add() = input_defs[0]->Name(); - *layer->mutable_output()->Add() = node.OutputDefs()[0]->Name(); + *layer->mutable_input()->Add() = input_defs[0]->Name(); + *layer->mutable_output()->Add() = node.OutputDefs()[0]->Name(); + + model_builder.AddLayer(std::move(layer)); + } - model_builder.AddLayer(std::move(layer)); return Status::OK(); } -bool PoolOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& /* input_params */, +bool PoolOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params, const logging::Logger& logger) const { const auto& op_type = node.OpType(); const auto& input_defs = node.InputDefs(); std::vector input_shape; - if (!GetShape(*input_defs[0], input_shape, logger)) + if (!GetShape(*input_defs[0], input_shape, logger)) { return false; + } + // TODO: ML Program supports 3D and 5D. Add if we have a use case for that. const auto input_size = input_shape.size(); if (input_size != 4) { - LOGS(logger, VERBOSE) - << op_type << " only supports rank-4 tensor, input [" - << input_defs[0]->Name() << "] has actual dim count " << input_size; + LOGS(logger, VERBOSE) << op_type << " only supports rank-4 tensor, input [" + << input_defs[0]->Name() << "] has actual dim count " << input_size; return false; } if (op_type == "AveragePool" || op_type == "MaxPool") { NodeAttrHelper helper(node); + const auto storage_order = helper.Get("storage_order", 0); if (storage_order == 1) { LOGS(logger, VERBOSE) << "storage_order == 1 is not supported"; @@ -128,12 +200,14 @@ bool PoolOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputPara return false; } - // TODO, add support of the ceil_mode by adjusting the padding - // See https://stackoverflow.com/questions/59906456/in-pytorchs-maxpool2d-is-padding-added-depending-on-ceil-mode - // and https://github.com/apple/coremltools/blob/1931758aae383c83daddfc56f11a24a9d2bf4b87/coremltools/converters/mil/frontend/torch/ops.py#L621-L644 - if (helper.Get("ceil_mode", 0) == 1) { - LOGS(logger, VERBOSE) << "ceil_mode == 1 is not supported for pooling"; - return false; + if (!input_params.create_mlprogram) { + // TODO, add support of the ceil_mode by adjusting the padding + // See https://stackoverflow.com/questions/59906456/in-pytorchs-maxpool2d-is-padding-added-depending-on-ceil-mode + // and https://github.com/apple/coremltools/blob/1931758aae383c83daddfc56f11a24a9d2bf4b87/coremltools/converters/mil/frontend/torch/ops.py#L621-L644 + if (helper.Get("ceil_mode", 0) == 1) { + LOGS(logger, VERBOSE) << "ceil_mode == 1 is not supported for pooling"; + return false; + } } if (helper.Get("dilations", std::vector{1, 1}) != diff --git a/onnxruntime/core/providers/coreml/builders/impl/reshape_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/reshape_op_builder.cc index 7ae1746be3122..27d24d9c21893 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/reshape_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/reshape_op_builder.cc @@ -1,11 +1,10 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. -#include "core/framework/tensorprotoutils.h" #include "core/optimizer/initializer.h" -#include "core/providers/common.h" #include "core/providers/coreml/builders/helper.h" #include "core/providers/coreml/builders/impl/base_op_builder.h" +#include "core/providers/coreml/builders/impl/builder_utils.h" #include "core/providers/coreml/builders/model_builder.h" #include "core/providers/coreml/builders/op_builder_factory.h" #include "core/providers/coreml/shape_utils.h" @@ -26,34 +25,56 @@ class ReshapeOpBuilder : public BaseOpBuilder { // Reshape opset 4- uses attributes for new shape which we do not support for now int GetMinSupportedOpSet(const Node& /* node */) const override { return 5; } + + bool SupportsMLProgram() const override { return true; } }; void ReshapeOpBuilder::AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const { + // Skip the second input which is the new shape as we always have to create a new version as the CoreML rules + // are different from ONNX. model_builder.AddInitializerToSkip(node.InputDefs()[1]->Name()); } Status ReshapeOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node, const logging::Logger& logger) const { - std::unique_ptr layer = model_builder.CreateNNLayer(node); - const auto& input_defs = node.InputDefs(); - const auto& initializers(model_builder.GetInitializerTensors()); - const auto& target_shape_tensor = *initializers.at(input_defs[1]->Name()); - const int64_t* raw_target_shape = target_shape_tensor.int64_data().empty() - ? reinterpret_cast(target_shape_tensor.raw_data().data()) - : target_shape_tensor.int64_data().data(); - - const auto size = target_shape_tensor.dims()[0]; - TensorShapeVector target_shape{raw_target_shape, raw_target_shape + size}; std::vector input_shape; - ORT_RETURN_IF_NOT(GetStaticShape(*input_defs[0], input_shape, logger), "Cannot get shape"); - ReshapeHelper helper(TensorShape(input_shape), target_shape); - *layer->mutable_reshapestatic()->mutable_targetshape() = {target_shape.cbegin(), target_shape.cend()}; - *layer->mutable_input()->Add() = input_defs[0]->Name(); - *layer->mutable_output()->Add() = node.OutputDefs()[0]->Name(); + ORT_RETURN_IF_NOT(GetStaticShape(*input_defs[0], input_shape, logger), "Cannot get shape of data"); + + const auto& data_name = input_defs[0]->Name(); + const auto& new_shape_name = input_defs[1]->Name(); + Initializer unpacked_tensor(*model_builder.GetConstantInitializer(new_shape_name)); + TensorShapeVector new_shape = ToShapeVector(unpacked_tensor.DataAsSpan()); + + // ReshapeHelper applies the ONNX rules to create the concrete output shape + ReshapeHelper helper(TensorShape(input_shape), new_shape); + +#if defined(COREML_ENABLE_MLPROGRAM) + if (model_builder.CreateMLProgram()) { + using namespace CoreML::Specification::MILSpec; - model_builder.AddLayer(std::move(layer)); + // https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.reshape + std::unique_ptr reshape_op = model_builder.CreateOperation(node, "reshape"); + + AddOperationInput(*reshape_op, "x", data_name); + AddOperationInput(*reshape_op, "shape", + model_builder.AddConstant(reshape_op->type(), "shape", ToConstSpan(new_shape))); + + AddOperationOutput(*reshape_op, *node.OutputDefs()[0]); + + model_builder.AddOperation(std::move(reshape_op)); + } else +#endif // defined(COREML_ENABLE_MLPROGRAM) + { + std::unique_ptr layer = model_builder.CreateNNLayer(node); + + *layer->mutable_reshapestatic()->mutable_targetshape() = {new_shape.cbegin(), new_shape.cend()}; + *layer->mutable_input()->Add() = data_name; + *layer->mutable_output()->Add() = node.OutputDefs()[0]->Name(); + + model_builder.AddLayer(std::move(layer)); + } return Status::OK(); } @@ -61,14 +82,15 @@ bool ReshapeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputP const logging::Logger& logger) const { const auto& input_defs = node.InputDefs(); const auto& new_shape_name = input_defs[1]->Name(); - const auto& initializers = input_params.graph_viewer.GetAllInitializedTensors(); - if (!Contains(initializers, new_shape_name)) { + const auto* new_shape_tensor = input_params.graph_viewer.GetConstantInitializer(new_shape_name); + if (!new_shape_tensor) { + // ONNX has different rules around how -1 and 0 values are used/combined, and + // we can't check if those can be translated to CoreML if the shape is unknown. LOGS(logger, VERBOSE) << "New shape of reshape must be a constant initializer"; return false; } - const auto& new_shape_tensor = *initializers.at(new_shape_name); - Initializer unpacked_tensor(new_shape_tensor); + Initializer unpacked_tensor(*new_shape_tensor); auto new_shape = unpacked_tensor.DataAsSpan(); if (new_shape.empty()) { LOGS(logger, VERBOSE) << "New shape of reshape cannot be empty"; @@ -84,7 +106,7 @@ bool ReshapeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputP return false; } - // CoreML reshape doesn't support new shape with more than 5 dimensions + // CoreML reshape doesn't support new shape with more than 5 dimensions. if (new_shape.size() > 5) { LOGS(logger, VERBOSE) << "Reshape does not support new shape with rank greater than 5. Input shape: " << Shape2String(input_shape) << ", new shape: " << Shape2String(new_shape); @@ -93,7 +115,7 @@ bool ReshapeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputP // CoreML reshape does not support 0 as dimension NodeAttrHelper helper(node); - const bool allow_zero = helper.Get("allowzero ", 0) == 1; + const bool allow_zero = helper.Get("allowzero", 0) == 1; if (allow_zero) { if (std::find(new_shape.begin(), new_shape.end(), int64_t{0}) != new_shape.end()) { LOGS(logger, VERBOSE) << "Reshape does not support new shape with 0 as dimension when allowzero is enabled. " diff --git a/onnxruntime/core/providers/coreml/builders/impl/resize_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/resize_op_builder.cc index 35dcde41a6bcf..6c2fcc2ace856 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/resize_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/resize_op_builder.cc @@ -98,7 +98,7 @@ Status ResizeOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const auto& input_defs = node.InputDefs(); const auto& initializers(model_builder.GetInitializerTensors()); - if (input_defs.size() == 3) { // use scales + if (input_defs.size() >= 3 && input_defs[2]->Exists()) { // use scales std::vector scales; ORT_RETURN_IF_NOT(GetResizeScales(initializers, node, scales, logger), "Error getting resize scales"); coreml_upsample->add_scalingfactor(static_cast(scales[2])); @@ -182,20 +182,24 @@ bool ResizeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputPa return false; } + bool using_scales = input_defs.size() >= 3 && input_defs[2]->Exists(); // scales - if (input_defs.size() == 3 && !Contains(initializers, input_defs[2]->Name())) { - LOGS(logger, VERBOSE) << "Input scales of Resize must be known"; + if (using_scales && !input_params.graph_viewer.GetConstantInitializer(input_defs[2]->Name())) { + LOGS(logger, VERBOSE) << "scales input of Resize must be a constant initializer"; return false; } // sizes - if (input_defs.size() > 3 && !Contains(initializers, input_defs[3]->Name())) { - LOGS(logger, VERBOSE) << "Input sizes of Resize must be known"; + if (!using_scales && + (input_defs.size() < 4 || + !input_defs[3]->Exists() || + !input_params.graph_viewer.GetConstantInitializer(input_defs[3]->Name()))) { + LOGS(logger, VERBOSE) << "sizes input of Resize must be a constant initializer"; return false; } // We want to check if the scales or sizes are not trying to resize on N/C channels here - if (input_defs.size() == 3) { // we are using scales + if (using_scales) { std::vector scales; if (!GetResizeScales(initializers, node, scales, logger)) return false; diff --git a/onnxruntime/core/providers/coreml/builders/impl/slice_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/slice_op_builder.cc index b716af738e1b1..39bfbfe5bba1f 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/slice_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/slice_op_builder.cc @@ -54,7 +54,7 @@ Status PrepareSliceComputeMetadataFromConstantInitializers(const Node& slice_nod return Status::OK(); } - const auto* tensor_proto = graph_viewer.GetConstantInitializer(input_defs[input_idx]->Name(), true); + const auto* tensor_proto = graph_viewer.GetConstantInitializer(input_defs[input_idx]->Name()); ORT_RETURN_IF_NOT(tensor_proto, "Failed to get constant initializer."); Initializer unpacked_tensor(*tensor_proto, graph_viewer.ModelPath()); const auto data_type = unpacked_tensor.data_type(); diff --git a/onnxruntime/core/providers/coreml/builders/impl/softmax_op_builder.cc b/onnxruntime/core/providers/coreml/builders/impl/softmax_op_builder.cc index 266396a0fe90e..d6584124c6aba 100644 --- a/onnxruntime/core/providers/coreml/builders/impl/softmax_op_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/impl/softmax_op_builder.cc @@ -52,7 +52,7 @@ Status SoftmaxOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, target_shape.push_back(size_to_dimension); target_shape.push_back(size_from_dimension); - const auto reshape1_output_name = model_builder.GetUniqueName(MakeString(node.Name(), "reshape1_output")); + const auto reshape1_output_name = model_builder.GetUniqueName(node, "reshape1_output"); { // Add reshape layer auto reshape_layer = model_builder.CreateNNLayer(node, "_Softmax_reshape1"); *reshape_layer->mutable_reshapestatic()->mutable_targetshape() = {target_shape.cbegin(), target_shape.cend()}; @@ -60,7 +60,7 @@ Status SoftmaxOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, *reshape_layer->mutable_output()->Add() = reshape1_output_name; model_builder.AddLayer(std::move(reshape_layer)); } - const auto softmax_output_name = model_builder.GetUniqueName(MakeString(node.Name(), "softmax_output")); + const auto softmax_output_name = model_builder.GetUniqueName(node, "softmax_output"); { auto* coreml_softmaxnd = layer->mutable_softmaxnd(); coreml_softmaxnd->set_axis(-1); diff --git a/onnxruntime/core/providers/coreml/builders/model_builder.cc b/onnxruntime/core/providers/coreml/builders/model_builder.cc index daab36f7b933d..eb4723a3b9746 100644 --- a/onnxruntime/core/providers/coreml/builders/model_builder.cc +++ b/onnxruntime/core/providers/coreml/builders/model_builder.cc @@ -144,14 +144,18 @@ void CopyOnnxTensorToCoreMLTensor(const ONNX_NAMESPACE::TensorProto& tensor_prot break; } case ONNX_NAMESPACE::TensorProto_DataType_INT64: { - // from: int64_data/raw, to: longints - if (has_raw_data) { - CopyRawDataToRepeatedField(tensor_proto, *tensor_value.mutable_longints()->mutable_values()); - - } else { - tensor_value.mutable_longints()->mutable_values()->CopyFrom(tensor_proto.int64_data()); - } - break; + // enable when this is proven to not be the case + ORT_THROW( + "INT64 is unexpected as CoreML uses 32-bit int for indices. " + "Most likely an initializer that should have been skipped was not."); + //// from: int64_data/raw, to: longints + // if (has_raw_data) { + // CopyRawDataToRepeatedField(tensor_proto, *tensor_value.mutable_longints()->mutable_values()); + + //} else { + // tensor_value.mutable_longints()->mutable_values()->CopyFrom(tensor_proto.int64_data()); + //} + // break; } case ONNX_NAMESPACE::TensorProto_DataType_FLOAT16: { // from: int32_data/raw, to: bytes @@ -186,18 +190,22 @@ void CopyOnnxTensorToCoreMLTensor(const ONNX_NAMESPACE::TensorProto& tensor_prot break; } case ONNX_NAMESPACE::TensorProto_DataType_UINT64: { - // from: uint64_data/raw, to: longints - if (has_raw_data) { - CopyRawDataToRepeatedField(tensor_proto, *tensor_value.mutable_longints()->mutable_values()); - } else { - // TODO: Is this safe? Need to check the CopyFrom implementation. As it's a straight copy of bytes this - // hopefully can do it as one block instead of iterating and potentially doing a static_cast of each - // individual value. - tensor_value.mutable_longints()->mutable_values()->CopyFrom( - reinterpret_cast&>(tensor_proto.uint64_data())); - } - - break; + // enable when this is proven to not be the case + ORT_THROW( + "UINT64 is unexpected as CoreML uses 32-bit int for indices. " + "Most likely an initializer that should have been skipped was not."); + //// from: uint64_data/raw, to: longints + // if (has_raw_data) { + // CopyRawDataToRepeatedField(tensor_proto, *tensor_value.mutable_longints()->mutable_values()); + // } else { + // // TODO: Is this safe? Need to check the CopyFrom implementation. As it's a straight copy of bytes this + // // hopefully can do it as one block instead of iterating and potentially doing a static_cast of each + // // individual value. + // tensor_value.mutable_longints()->mutable_values()->CopyFrom( + // reinterpret_cast&>(tensor_proto.uint64_data())); + // } + + // break; } case ONNX_NAMESPACE::TensorProto_DataType_BOOL: { // from: int32_data/raw, to: bools @@ -392,23 +400,28 @@ std::string GetModelOutputPath(bool create_ml_program) { } // namespace ModelBuilder::ModelBuilder(const GraphViewer& graph_viewer, const logging::Logger& logger, - int32_t coreml_version, uint32_t coreml_flags) + int32_t coreml_version, uint32_t coreml_flags, + std::vector&& onnx_input_names, + std::vector&& onnx_output_names) : graph_viewer_(graph_viewer), logger_(logger), coreml_version_(coreml_version), coreml_flags_(coreml_flags), create_ml_program_((coreml_flags_ & COREML_FLAG_CREATE_MLPROGRAM) != 0), model_output_path_(GetModelOutputPath(create_ml_program_)), + onnx_input_names_(std::move(onnx_input_names)), + onnx_output_names_(std::move(onnx_output_names)), coreml_model_(std::make_unique()) { if (create_ml_program_) { #if defined(COREML_ENABLE_MLPROGRAM) coreml_model_->set_specificationversion(CoreMLSpecVersion()); MILSpec::Program& mlprogram = *coreml_model_->mutable_mlprogram(); - MILSpec::Function& main = (*mlprogram.mutable_functions())["main"]; + mlprogram.set_version(1); + mlprogram_main_fn_ = &(*mlprogram.mutable_functions())["main"]; const std::string coreml_opset = "CoreML" + std::to_string(CoreMLVersion()); - *main.mutable_opset() = coreml_opset; - mlprogram_main_ = &(*main.mutable_block_specializations())[coreml_opset]; + *mlprogram_main_fn_->mutable_opset() = coreml_opset; + mlprogram_main_block_ = &(*mlprogram_main_fn_->mutable_block_specializations())[coreml_opset]; // create the ModelPackage. this creates the output directory. mlpackage_ = std::make_unique(model_output_path_, /* create */ true); @@ -426,6 +439,8 @@ ModelBuilder::ModelBuilder(const GraphViewer& graph_viewer, const logging::Logge weights_file_writer_ = std::make_unique(weights_info->path() + "/weight.bin"); #else // should never happen due to handling in coreml_execution_provider.cc + // throw here so all other code in this class can assume create_ml_program_ is only ever true in a build + // where ML Program support is enabled. ORT_THROW("ML Program is not enabled in this build"); #endif } else { @@ -435,6 +450,28 @@ ModelBuilder::ModelBuilder(const GraphViewer& graph_viewer, const logging::Logge neural_network->set_arrayinputshapemapping( CoreML::Specification::NeuralNetworkMultiArrayShapeMapping::EXACT_ARRAY_MAPPING); } + + // populate names. + const auto& initializers = graph_viewer_.GetAllInitializedTensors(); + const auto& inputs = graph_viewer_.GetInputs(); + // rough guess to try and avoid reallocs. most nodes produce one output but some have more so allow for that. + // also need to convert attributes to constants so allow for that + unique_names_.reserve(initializers.size() + inputs.size() + size_t(graph_viewer_.NumberOfNodes() * 1.5)); + for (const auto& pair : initializers) { + unique_names_.insert(pair.first); + } + + for (const auto* input : inputs) { + unique_names_.insert(input->Name()); + } + + for (const auto& node : graph_viewer_.Nodes()) { + for (const auto& def : node.OutputDefs()) { + if (def->Exists()) { + unique_names_.insert(def->Name()); + } + } + } } ModelBuilder::~ModelBuilder() = default; @@ -455,11 +492,94 @@ void ModelBuilder::AddLayer(std::unique_ptr layer) { neural_network->mutable_layers()->AddAllocated(layer.release()); } -#if defined(COREML_ENABLE_MLPROGRAM) - /* * ML Program related helpers */ +#if defined(COREML_ENABLE_MLPROGRAM) +const std::string& ModelBuilder::GetSafeName(const std::string& name) { + // Check the name is valid according to the MILSpec rules + // `Identifiers, generally used for names and keys, must match the regular expression [A-Za-z\_][A-Za-z0-9\_@]*.` + // + // There is a secondary list of reserved words that the coremltools python uses, but it's not clear if those are + // required here, or if we will ever hit a model that uses one of them. Due to that, skip checking them for now as + // it adds cost and code complexity + // https://github.com/apple/coremltools/blob/8b37641f243b1a3e81452feea311c6e30dcc9287/coremltools/converters/mil/mil/passes/defs/preprocess.py#L151C1-L175C10 + // static InlinedHashSet reserved_names = + // {"any", "bool", "program", "func", "tensor", "list", "dict", "tuple", "true", "false", + // "string", "bf16", "fp16", "fp32", "fp64", "int8", "int16", "int32", "int64", + // "uint8", "uint16", "uint32", "uint64"}; + + // handle empty name. shouldn't happen but code below assumes name is not empty + if (name.empty()) { + return name; + } + + // We don't need '@' or '\' even though they're allowed. Optimize for a good name that does not need to be changed. + + // has been sanitized and changed already + const auto entry = values_to_rename_.find(name); + if (entry != values_to_rename_.end()) { + return entry->second; + } + + // Replace anything but a good char with '_'. If first char is 0-9 we prefix with '_'; + bool changed = false; + std::string result = name; + + if (std::isdigit(result[0])) { + changed = true; + result = '_' + name; + } + + for (char& c : result) { + if (!std::isalnum(c) && c != '_') { + changed = true; + c = '_'; + } + } + + if (!changed) { + return name; // return original as the return value is a reference that must remain valid + } + + return (values_to_rename_[name] = GetUniqueName(result)); +} + +void ModelBuilder::SanitizeNames() { + // ML Model level inputs/outputs + auto* desc = coreml_model_->mutable_description(); + for (auto& input : *desc->mutable_input()) { + input.set_name(GetSafeName(input.name())); + } + + for (auto& output : *desc->mutable_output()) { + output.set_name(GetSafeName(output.name())); + } + + // main function inputs/outputs. + for (auto& input : *mlprogram_main_fn_->mutable_inputs()) { + input.set_name(GetSafeName(input.name())); + } + + // outputs from block with operations for current coreml version + for (auto& output : *mlprogram_main_block_->mutable_outputs()) { + output = GetSafeName(output); + } + + // iterate operations changing input/output/node names + for (auto& op : *mlprogram_main_block_->mutable_operations()) { + for (auto& input : *op.mutable_inputs()) { + for (auto& arg : *input.second.mutable_arguments()) { + arg.set_name(GetSafeName(arg.name())); + } + } + + for (auto& output : *op.mutable_outputs()) { + output.set_name(GetSafeName(output.name())); + } + } +} + std::unique_ptr ModelBuilder::CreateOperation(const Node& node, std::string_view op_type, std::string_view suffix) { @@ -472,14 +592,9 @@ std::unique_ptr ModelBuilder::CreateOperation(c return op; } -void ModelBuilder::AddConstant(std::string_view name, const ONNX_NAMESPACE::TensorProto& initializer) { - MILSpec::Value coreml_tensor = OnnxTensorToCoreMLTensor(initializer, *weights_file_writer_); - AddConstantOperation(name, std::move(coreml_tensor)); -} - -void ModelBuilder::AddConstantOperation(std::string_view name, MILSpec::Value&& coreml_tensor) { +const std::string& ModelBuilder::AddConstantOperation(std::string_view name, MILSpec::Value&& coreml_tensor) { // Replicates coremltools/converters/mil/backend/mil/load.py translate_const logic - MILSpec::Operation& const_op = *mlprogram_main_->mutable_operations()->Add(); + MILSpec::Operation& const_op = *mlprogram_main_block_->mutable_operations()->Add(); const_op.set_type("const"); MILSpec::NamedValueType& output = *const_op.mutable_outputs()->Add(); @@ -487,58 +602,63 @@ void ModelBuilder::AddConstantOperation(std::string_view name, MILSpec::Value&& *output.mutable_type() = coreml_tensor.type(); auto& attr_map = *const_op.mutable_attributes(); - attr_map["name"] = CreateScalarTensorValue(std::string(name)); + // the operation name doesn't really matter as it isn't used elsewhere, so sanitize name now + attr_map["name"] = CreateScalarTensorValue(GetSafeName(output.name())); attr_map["val"] = std::move(coreml_tensor); + + return output.name(); } // Add operation to the Block for the main function in the ML Program void ModelBuilder::AddOperation(std::unique_ptr operation) { - mlprogram_main_->mutable_operations()->AddAllocated(operation.release()); + mlprogram_main_block_->mutable_operations()->AddAllocated(operation.release()); } -std::string ModelBuilder::AddTensorValueAsConstantOperation(std::string_view op_type, std::string_view value_type, - MILSpec::Value&& input_value) { +const std::string& ModelBuilder::AddTensorValueAsConstantOperation(std::string_view op_type, + std::string_view value_type, + MILSpec::Value&& input_value) { auto unique_value_name = GetUniqueName(MakeString(op_type, "_", value_type)); - AddConstantOperation(unique_value_name, std::move(input_value)); - return unique_value_name; + return AddConstantOperation(unique_value_name, std::move(input_value)); } template -std::string ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, gsl::span value, - std::optional> shape) { +std::string_view ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, + gsl::span value, + std::optional> shape) { // add specialization below static_assert(false_for_T, "Missing specialization for value type"); - return ""; // unreachable + + return "ModelBuilder::AddConstant error"; // unreachable } template <> -std::string ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, - gsl::span value, - std::optional> shape) { +std::string_view ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, + gsl::span value, + std::optional> shape) { auto input_value = CreateTensorValue(value, shape); return AddTensorValueAsConstantOperation(op_type, value_type, std::move(input_value)); } template <> -std::string ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, - gsl::span value, - std::optional> shape) { +std::string_view ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, + gsl::span value, + std::optional> shape) { auto input_value = CreateTensorValue(value, shape); // CoreML uses int32 return AddTensorValueAsConstantOperation(op_type, value_type, std::move(input_value)); } template <> -std::string ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, - gsl::span value, - std::optional> shape) { +std::string_view ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, + gsl::span value, + std::optional> shape) { auto input_value = CreateTensorValue(value, shape); return AddTensorValueAsConstantOperation(op_type, value_type, std::move(input_value)); } template <> -std::string ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, - gsl::span value, - std::optional> shape) { +std::string_view ModelBuilder::AddConstantImpl(std::string_view op_type, std::string_view value_type, + gsl::span value, + std::optional> shape) { auto input_value = CreateTensorValue(value, shape); return AddTensorValueAsConstantOperation(op_type, value_type, std::move(input_value)); } @@ -581,11 +701,13 @@ Status ModelBuilder::RegisterInitializers() { continue; } - if (create_ml_program_) { #if defined(COREML_ENABLE_MLPROGRAM) - AddConstant(name, tensor); + if (create_ml_program_) { + MILSpec::Value coreml_tensor = OnnxTensorToCoreMLTensor(tensor, *weights_file_writer_); + ORT_IGNORE_RETURN_VALUE(AddConstantOperation(name, std::move(coreml_tensor))); + } else #endif - } else { + { std::unique_ptr layer = std::make_unique(); layer->set_name(GetUniqueName("initializer_" + name)); @@ -616,32 +738,33 @@ Status ModelBuilder::RegisterModelInputOutput(const NodeArg& node_arg, bool is_i if (is_input) { // input should not be an initializer - if (Contains(GetInitializerTensors(), name)) + if (Contains(GetInitializerTensors(), name)) { return Status::OK(); + } // This input will not be used - if (Contains(skipped_inputs_, name)) + if (Contains(skipped_inputs_, name)) { return Status::OK(); + } } auto* model_description = coreml_model_->mutable_description(); - auto& input_output = is_input - ? *model_description->mutable_input()->Add() - : *model_description->mutable_output()->Add(); + auto& input_output = is_input ? *model_description->mutable_input()->Add() + : *model_description->mutable_output()->Add(); input_output.set_name(name); + auto* multi_array = input_output.mutable_type()->mutable_multiarraytype(); std::vector shape; - ORT_RETURN_IF_NOT(GetShape(node_arg, shape, logger_), - "Unable to get shape for ", input_output_type, ": ", name); + ORT_RETURN_IF_NOT(GetShape(node_arg, shape, logger_), "Unable to get shape for ", input_output_type, ": ", name); if (shape.empty()) { - // If we have an empty shape, this is a scalar input, - // Since all the input output of CoreML EP is MultiArray, we will make the scalar input output as a {1} MultiArray + // If we have an empty shape, this is a scalar + // Since all the input/output of CoreML EP is MultiArray, we will make the scalar input/output a {1} MultiArray shape.push_back(1); - // we need to change the shapes of these scalar outputs back to {} when CoreML EP returns these values to ORT + // we need to change the shapes of scalar outputs back to {} when CoreML EP returns values to ORT if (!is_input) { AddScalarOutput(name); } @@ -713,13 +836,20 @@ Status ModelBuilder::RegisterModelInputOutput(const NodeArg& node_arg, bool is_i #if defined(COREML_ENABLE_MLPROGRAM) if (create_ml_program_) { - MILSpec::Function& main = (*coreml_model_->mutable_mlprogram()->mutable_functions())["main"]; if (is_input) { - // the model inputs need to be wired up as args to the 'main' function - main.mutable_inputs()->Add(CreateNamedTensorValueType(node_arg)); + // the model inputs need to be wired up as args to the 'main' function. + auto tensor_value_type = CreateNamedTensorValueType(node_arg); + tensor_value_type.set_name(name); + if (node_arg.Shape()->dim_size() == 0) { + // update shape from {} to {1} (same change we made at the model input level above). + tensor_value_type.mutable_type()->mutable_tensortype()->set_rank(1); + tensor_value_type.mutable_type()->mutable_tensortype()->add_dimensions()->mutable_constant()->set_size(1); + } + + mlprogram_main_fn_->mutable_inputs()->Add(std::move(tensor_value_type)); } else { // the model outputs need to be set as outputs of the Block for the 'main' function - *mlprogram_main_->mutable_outputs()->Add() = node_arg.Name(); + *mlprogram_main_block_->mutable_outputs()->Add() = name; } } #endif // defined(COREML_ENABLE_MLPROGRAM) @@ -744,7 +874,7 @@ Status ModelBuilder::ProcessNodes() { // This shouldn't happen as this is called from CoreMLExecutionProvider::Compile and should only be processing // nodes that we said were supported and were returned from CoreMLExecutionProvider::GetCapability. return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, - "Node [", node.Name(), "], type [", node.OpType(), "] is not supported"); + "Node [", node.Name(), "], type [", node.OpType(), "] was not able to be processed"); } } @@ -767,6 +897,12 @@ Status ModelBuilder::CreateModel() { ORT_RETURN_IF_ERROR(ProcessNodes()); ORT_RETURN_IF_ERROR(RegisterModelOutputs()); +#if defined(COREML_ENABLE_MLPROGRAM) + if (create_ml_program_) { + SanitizeNames(); + } +#endif + return Status::OK(); } @@ -795,7 +931,7 @@ Status ModelBuilder::SaveModel() { #if defined(COREML_ENABLE_MLPROGRAM) // need to delete the ModelPackage instance for it to write out the manifest. clear out the other ML Program // related types as well. - mlprogram_main_ = nullptr; + mlprogram_main_block_ = nullptr; mlpackage_.reset(); weights_file_writer_.reset(); #endif @@ -804,11 +940,51 @@ Status ModelBuilder::SaveModel() { } Status ModelBuilder::LoadModel(std::unique_ptr& model) { - model = std::make_unique(model_output_path_, - std::move(input_output_info_), - std::move(scalar_outputs_), - std::move(int64_outputs_), - logger_, coreml_flags_); +#if defined(COREML_ENABLE_MLPROGRAM) + if (create_ml_program_) { + // we need to provide the sanitized names for model inputs/outputs so that info is captured. + // the input/output matching when we execute the model from the CoreML EP is based on order, so the change + // to the names doesn't matter for that. + auto get_sanitized_names = [this](std::vector&& names) -> std::vector { + std::vector output(std::move(names)); + + for (std::string& name : output) { + name = GetSafeName(name); + } + + return output; + }; + + // also need to update the keys in input_output_info_ + auto get_sanitized_io_info = [this](std::unordered_map&& info) { + std::unordered_map output; + output.reserve(info.size()); + + for (auto entry = info.begin(), end = info.end(); entry != end; ++entry) { + output.emplace(GetSafeName(entry->first), std::move(entry->second)); + } + + return output; + }; + + model = std::make_unique(model_output_path_, + get_sanitized_names(std::move(onnx_input_names_)), + get_sanitized_names(std::move(onnx_output_names_)), + get_sanitized_io_info(std::move(input_output_info_)), + std::move(scalar_outputs_), + std::move(int64_outputs_), + logger_, coreml_flags_); + } else +#endif + { + model = std::make_unique(model_output_path_, + std::move(onnx_input_names_), + std::move(onnx_output_names_), + std::move(input_output_info_), + std::move(scalar_outputs_), + std::move(int64_outputs_), + logger_, coreml_flags_); + } return model->LoadModel(); // load using CoreML API, including compilation } @@ -816,8 +992,11 @@ Status ModelBuilder::LoadModel(std::unique_ptr& model) { // static Status ModelBuilder::Build(const GraphViewer& graph_viewer, const logging::Logger& logger, int32_t coreml_version, uint32_t coreml_flags, + std::vector&& onnx_input_names, + std::vector&& onnx_output_names, std::unique_ptr& model) { - ModelBuilder builder(graph_viewer, logger, coreml_version, coreml_flags); + ModelBuilder builder(graph_viewer, logger, coreml_version, coreml_flags, + std::move(onnx_input_names), std::move(onnx_output_names)); ORT_RETURN_IF_ERROR(builder.CreateModel()); ORT_RETURN_IF_ERROR(builder.SaveModel()); @@ -847,20 +1026,31 @@ void ModelBuilder::AddInputToSkip(const std::string& input_name) { skipped_inputs_.insert(input_name); } -std::string ModelBuilder::GetUniqueName(std::string_view base_name) { +const std::string& ModelBuilder::GetUniqueName(const std::string& base_name) { + if (unique_names_.find(base_name) == unique_names_.end()) { + return *unique_names_.insert(base_name).first; + } + std::string unique_name; - do { - std::ostringstream os; - os << base_name << "_token_" << name_token_++; - unique_name = os.str(); - } while (Contains(unique_names_, unique_name)); + std::string suffix; + + // supports up to 1000 unique names without having to grow in the loop + unique_name.reserve(base_name.size() + 5); + unique_name = base_name; + + while (Contains(unique_names_, unique_name)) { + // assign followed by += to avoid creating temporary strings. + unique_name = base_name; + unique_name += "__"; + unique_name += std::to_string(name_token_++); + } - return unique_name; + return *unique_names_.insert(unique_name).first; } -std::string ModelBuilder::GetUniqueName(const Node& node, std::string_view suffix) { +const std::string& ModelBuilder::GetUniqueName(const Node& node, std::string_view suffix) { if (node.Name().empty()) { - return GetUniqueName(MakeString("Node_", node.Index(), "_", node.OpType(), suffix)); + return GetUniqueName(MakeString(node.OpType(), "_", node.Index(), suffix)); } else { return GetUniqueName(node.Name() + std::string(suffix)); } diff --git a/onnxruntime/core/providers/coreml/builders/model_builder.h b/onnxruntime/core/providers/coreml/builders/model_builder.h index 961ba647257b5..8f85ab2c09e7c 100644 --- a/onnxruntime/core/providers/coreml/builders/model_builder.h +++ b/onnxruntime/core/providers/coreml/builders/model_builder.h @@ -25,17 +25,20 @@ namespace onnxruntime { namespace coreml { class IOpBuilder; -class Model; class ModelBuilder { private: ModelBuilder(const GraphViewer& graph_viewer, const logging::Logger& logger, - int32_t coreml_version, uint32_t coreml_flags); + int32_t coreml_version, uint32_t coreml_flags, + std::vector&& onnx_input_names, + std::vector&& onnx_output_names); public: // Create the CoreML model, serialize to disk, load and compile using the CoreML API and return in `model` static Status Build(const GraphViewer& graph_viewer, const logging::Logger& logger, int32_t coreml_version, uint32_t coreml_flags, + std::vector&& onnx_input_names, + std::vector&& onnx_output_names, std::unique_ptr& model); ~ModelBuilder(); @@ -101,8 +104,8 @@ class ModelBuilder { /// /// Unique name generated for value. template - std::string AddConstant(std::string_view op_type, std::string_view value_type, gsl::span value, - std::optional> shape = std::nullopt) { + std::string_view AddConstant(std::string_view op_type, std::string_view value_type, gsl::span value, + std::optional> shape = std::nullopt) { static_assert(std::is_same_v || std::is_same_v || std::is_same_v || @@ -113,8 +116,8 @@ class ModelBuilder { } template - std::string AddConstant(std::string_view op_type, std::string_view value_type, const std::vector& value, - std::optional> shape = std::nullopt) { + std::string_view AddConstant(std::string_view op_type, std::string_view value_type, const std::vector& value, + std::optional> shape = std::nullopt) { return AddConstant(op_type, value_type, AsSpan(value), shape); } @@ -122,17 +125,10 @@ class ModelBuilder { /// Add a scalar value as a 'const' operation. See AddConstant for details. /// template - std::string AddScalarConstant(std::string_view op_type, std::string_view value_type, const T& value) { + std::string_view AddScalarConstant(std::string_view op_type, std::string_view value_type, const T& value) { return AddConstant(op_type, value_type, AsSpan({value}), AsSpan({})); } - /// - /// Add an existing a constant ONNX initializer to the ML Program as a 'const' operation - /// - /// Initializer name - /// Initializer data - void AddConstant(std::string_view name, const ONNX_NAMESPACE::TensorProto& initializer); - // add the operation to the main function void AddOperation(std::unique_ptr operation); #endif @@ -149,18 +145,26 @@ class ModelBuilder { // be added to CoreML model, since CoreML does not like input unused void AddInputToSkip(const std::string& input_name); - std::string GetUniqueName(std::string_view base_name); - std::string GetUniqueName(const Node& node, std::string_view suffix); + const std::string& GetUniqueName(const std::string& base_name); + const std::string& GetUniqueName(const Node& node, std::string_view suffix); + + const logging::Logger& Logger() const { return logger_; } private: #if defined(COREML_ENABLE_MLPROGRAM) template - std::string AddConstantImpl(std::string_view op_type, std::string_view value_type, gsl::span value, - std::optional> shape = std::nullopt); - - void AddConstantOperation(std::string_view name, COREML_SPEC::MILSpec::Value&& initializer); - std::string AddTensorValueAsConstantOperation(std::string_view op_type, std::string_view value_type, - COREML_SPEC::MILSpec::Value&& input_value); + std::string_view AddConstantImpl(std::string_view op_type, std::string_view value_type, gsl::span value, + std::optional> shape = std::nullopt); + + // apply the CoreML naming rules and fix any invalid names. + const std::string& GetSafeName(const std::string& name); + // sanitize all the names in the ML Model + void SanitizeNames(); + + // add Value as a const operation. return value name in case sanitization changed it + const std::string& AddConstantOperation(std::string_view name, COREML_SPEC::MILSpec::Value&& initializer); + const std::string& AddTensorValueAsConstantOperation(std::string_view op_type, std::string_view value_type, + COREML_SPEC::MILSpec::Value&& input_value); #endif // Convert the ONNX model in graph_viewer_ to a CoreML::Specification::Model and serialize to disk. @@ -193,6 +197,9 @@ class ModelBuilder { const bool create_ml_program_; // ML Program (CoreML5, iOS 15+, macOS 12+) or NeuralNetwork (old) const std::string model_output_path_; // create_ml_program_ ? dir for mlpackage : filename for mlmodel + std::vector onnx_input_names_; + std::vector onnx_output_names_; + std::unique_ptr coreml_model_; std::unordered_set scalar_outputs_; std::unordered_set int64_outputs_; @@ -208,9 +215,19 @@ class ModelBuilder { // mlprogram_main_ is the main block of the CoreML ML Program. // It is set in CreateModel to the CoreML Model.mlprogram.functions['main'].block_specializations['CoreML'] // entry we create. - COREML_SPEC::MILSpec::Block* mlprogram_main_{nullptr}; + COREML_SPEC::MILSpec::Function* mlprogram_main_fn_{nullptr}; // Function that contains a Block with the operations + COREML_SPEC::MILSpec::Block* mlprogram_main_block_{nullptr}; // Block that all the operations are added to std::unique_ptr mlpackage_; std::unique_ptr weights_file_writer_; + + // Values must start with [a-zA-A_] + // Additionally they can't be in a list of reserved words. + // If we need to sanitize an initializer name we do so during PreprocessInitializers and apply the change during + // RegisterInitializers. + // We also check inputs in AddOperation and apply the change there. + // This means an op builder author doesn't need to be aware of the renaming. + // https://github.com/apple/coremltools/blob/8b37641f243b1a3e81452feea311c6e30dcc9287/coremltools/converters/mil/mil/passes/defs/preprocess.py#L146-L149 + std::unordered_map values_to_rename_; #endif }; diff --git a/onnxruntime/core/providers/coreml/coreml_execution_provider.cc b/onnxruntime/core/providers/coreml/coreml_execution_provider.cc index 8e718da07703c..0ba715cc7c6d9 100644 --- a/onnxruntime/core/providers/coreml/coreml_execution_provider.cc +++ b/onnxruntime/core/providers/coreml/coreml_execution_provider.cc @@ -114,28 +114,27 @@ common::Status CoreMLExecutionProvider::Compile(const std::vector& node_compute_funcs) { for (const auto& fused_node_and_graph : fused_nodes_and_graphs) { Node& fused_node = fused_node_and_graph.fused_node; - const onnxruntime::GraphViewer& graph_viewer(fused_node_and_graph.filtered_graph); std::unique_ptr coreml_model; - ORT_RETURN_IF_ERROR(coreml::ModelBuilder::Build(graph_viewer, *GetLogger(), coreml_version_, coreml_flags_, - coreml_model)); - { - const auto& input_defs = fused_node.InputDefs(); - std::vector onnx_input_names(input_defs.size()); - for (size_t i = 0, end = input_defs.size(); i < end; ++i) { - onnx_input_names[i] = input_defs[i]->Name(); - } - coreml_model->SetOnnxInputs(std::move(onnx_input_names)); - } + auto get_names = [](const ConstPointerContainer>& args) -> std::vector { + std::vector names; + names.reserve(args.size()); - { - const auto& output_defs = fused_node.OutputDefs(); - std::vector onnx_output_names(output_defs.size()); - for (size_t i = 0, end = output_defs.size(); i < end; ++i) { - onnx_output_names[i] = output_defs[i]->Name(); - } - coreml_model->SetOnnxOutputs(std::move(onnx_output_names)); + for (const NodeArg* def : args) { + names.push_back(def->Name()); + } + + return names; + }; + + std::vector onnx_input_names = get_names(fused_node.InputDefs()); + std::vector onnx_output_names = get_names(fused_node.OutputDefs()); + + const onnxruntime::GraphViewer& graph_viewer(fused_node_and_graph.filtered_graph); + ORT_RETURN_IF_ERROR(coreml::ModelBuilder::Build(graph_viewer, *GetLogger(), coreml_version_, coreml_flags_, + std::move(onnx_input_names), std::move(onnx_output_names), + coreml_model)); } coreml_models_.emplace(fused_node.Name(), std::move(coreml_model)); @@ -153,13 +152,14 @@ common::Status CoreMLExecutionProvider::Compile(const std::vector(state); - const auto& model_inputs = model->GetOnnxInputs(); - const auto& model_outputs = model->GetOnnxOutputs(); + + // input/output names used by the CoreML model in the order that matches the fused_node InputDefs/OutputDefs + const auto& model_inputs = model->GetOrderedInputs(); + const auto& model_outputs = model->GetOrderedOutputs(); ORT_RETURN_IF_NOT(model_inputs.size() <= num_inputs, "Inconsistent input sizes"); ORT_RETURN_IF_NOT(model_outputs.size() == num_outputs, "Inconsistent output sizes"); @@ -182,28 +182,25 @@ common::Status CoreMLExecutionProvider::Compile(const std::vectorshape; - ORT_RETURN_IF(!coreml::IsStaticShape(inferred_shape) && coreml::DoesShapeSpecifyZeroElements(shape), - "Input (", input_name, ") has a dynamic shape (", coreml::Shape2String(inferred_shape), - ") but the runtime shape (", coreml::Shape2String(shape), - ") has zero elements. This is not supported by the CoreML EP."); - } + const auto& inferred_shape = input_info->shape; + ORT_RETURN_IF(!coreml::IsStaticShape(inferred_shape) && coreml::DoesShapeSpecifyZeroElements(shape), + "Input (", input_name, ") has a dynamic shape (", coreml::Shape2String(inferred_shape), + ") but the runtime shape (", coreml::Shape2String(shape), + ") has zero elements. This is not supported by the CoreML EP."); // If we have an empty shape, this is a scalar input, // Since all the input output of CoreML EP is MultiArray, we will make the scalar input as a {1} MultiArray - if (shape.empty()) + if (shape.empty()) { shape.push_back(1); + } // CoreML MLMultiArray API expect input to be non-const // https://developer.apple.com/documentation/coreml/mlmultiarray/2881219-initwithdatapointer?language=objc void* inputBuffer = const_cast(input_tensor.GetTensorRawData()); - inputs.emplace( - input_name, - coreml::OnnxTensorData{ - coreml::OnnxTensorInfo{tensor_info.GetElementType(), shape}, - inputBuffer, - }); + inputs.emplace(input_name, coreml::OnnxTensorData{ + coreml::OnnxTensorInfo{tensor_info.GetElementType(), shape}, + inputBuffer, + }); } // From this point we will need to take the exclusive lock on the model until the Predict is @@ -215,14 +212,13 @@ common::Status CoreMLExecutionProvider::Compile(const std::vector static_shape) -> void* { + [&ctx, &model_outputs](const std::string& name, + int32_t requested_onnx_tensor_element_type, + gsl::span static_shape) -> void* { const auto model_output_it = std::find(model_outputs.begin(), model_outputs.end(), name); ORT_ENFORCE(model_output_it != model_outputs.end(), "Failed to find CoreML model output name: ", name); - const auto output_idx = gsl::narrow_cast(std::distance(model_outputs.begin(), model_output_it)); + const auto output_idx = gsl::narrow_cast(std::distance(model_outputs.begin(), model_output_it)); auto output_tensor = ctx.GetOutput(output_idx, static_shape.data(), static_shape.size()); const auto type_and_shape_info = output_tensor.GetTensorTypeAndShapeInfo(); @@ -243,13 +239,15 @@ common::Status CoreMLExecutionProvider::Compile(const std::vectorIsScalarOutput(output_name)) + if (model->IsScalarOutput(output_name)) { output_shape.clear(); + } // Since CoreML EP only accepts int32 output type and onnx requires int64 output, // We are going to set the model output (from int32) ->int64 - if (model->IsInt64Output(output_name)) + if (model->IsInt64Output(output_name)) { output_type = ONNX_NAMESPACE::TensorProto_DataType_INT64; + } outputs.emplace(output_name, coreml::OnnxTensorInfo{output_type, output_shape}); } diff --git a/onnxruntime/core/providers/coreml/dump_mlprogram_model.py b/onnxruntime/core/providers/coreml/dump_mlprogram_model.py new file mode 100644 index 0000000000000..a3ceee70684dc --- /dev/null +++ b/onnxruntime/core/providers/coreml/dump_mlprogram_model.py @@ -0,0 +1,27 @@ +import sys + +import coremltools as ct + +if len(sys.argv) < 2: + print(f"Usage: {sys.argv[0]} ") + print("If generated by onnxruntime this will be /Data/com.microsoft.onnxruntime/model.mlmodel") + sys.exit(-1) + +model_path = sys.argv[1] +m = ct.models.MLModel(model_path) + +spec = m.get_spec() +print(spec) + +# Example code if you want to filter output or do more advanced things +# main = spec.mlProgram.functions["main"] +# block = main.block_specializations[main.opset] +# print(f"{len(block.operations)} operators") +# for op in block.operations: +# if op.type == 'const': +# if op.attributes["name"].immediateValue.tensor.strings.values[0] == "conv_0_pad_type_0": +# print(f"Conv pad_type={op.attributes['val'].immediateValue.tensor.strings.values}") +# +# if op.type == 'conv': +# #print(op) +# pass diff --git a/onnxruntime/core/providers/coreml/model/host_utils.h b/onnxruntime/core/providers/coreml/model/host_utils.h index 4f9a014c4d885..a9991ccb945ce 100644 --- a/onnxruntime/core/providers/coreml/model/host_utils.h +++ b/onnxruntime/core/providers/coreml/model/host_utils.h @@ -67,6 +67,12 @@ int CoreMLVersion(); // Get a temporary macOS/iOS temp file path std::string GetTemporaryFilePath(); +#if !defined(NDEBUG) && defined(__APPLE__) +// Override location the model is written to so that a) it's easily found and b) it is not automatically deleted +// when the EP exits. Use to debug the model that is generated. +// See onnxruntime/core/providers/coreml/dump_mlprogram_model.py for a script to dump the ML Program. +constexpr const char* kOverrideModelOutputDirectoryEnvVar = "ORT_COREML_EP_MODEL_DIR"; +#endif } // namespace util } // namespace coreml } // namespace onnxruntime diff --git a/onnxruntime/core/providers/coreml/model/host_utils.mm b/onnxruntime/core/providers/coreml/model/host_utils.mm index 0ae0cf8f0d207..5487ea35388f5 100644 --- a/onnxruntime/core/providers/coreml/model/host_utils.mm +++ b/onnxruntime/core/providers/coreml/model/host_utils.mm @@ -1,6 +1,7 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. +#include "core/platform/env.h" #include "core/providers/coreml/model/host_utils.h" #import @@ -31,6 +32,15 @@ int32_t CoreMLVersion() { std::string GetTemporaryFilePath() { // Get temporary directory for user. NSURL* temporary_directory_url = [NSURL fileURLWithPath:NSTemporaryDirectory() isDirectory:YES]; + +#if !defined(NDEBUG) + std::string path_override = Env::Default().GetEnvironmentVar(kOverrideModelOutputDirectoryEnvVar); + if (!path_override.empty()) { + NSString* ns_path_override = [NSString stringWithUTF8String:path_override.c_str()]; + temporary_directory_url = [NSURL fileURLWithPath:ns_path_override isDirectory:YES]; + } +#endif + // Generate a Unique file name to use. NSString* temporary_filename = [[NSProcessInfo processInfo] globallyUniqueString]; diff --git a/onnxruntime/core/providers/coreml/model/model.h b/onnxruntime/core/providers/coreml/model/model.h index b940c4b768aec..e3cd43d786fc3 100644 --- a/onnxruntime/core/providers/coreml/model/model.h +++ b/onnxruntime/core/providers/coreml/model/model.h @@ -35,6 +35,8 @@ using GetOutputTensorMutableRawDataFn = std::function&& model_input_names, + std::vector&& model_output_names, std::unordered_map&& input_output_info, std::unordered_set&& scalar_outputs, std::unordered_set&& int64_outputs, @@ -60,12 +62,11 @@ class Model { // Mutex for exclusive lock to this model object OrtMutex& GetMutex() { return mutex_; } - // Input and output names in the onnx model's order - const std::vector& GetOnnxInputs() const { return onnx_inputs_; } - void SetOnnxInputs(std::vector&& inputs) { onnx_inputs_ = std::move(inputs); } - - const std::vector& GetOnnxOutputs() const { return onnx_outputs_; } - void SetOnnxOutputs(std::vector&& outputs) { onnx_outputs_ = std::move(outputs); } + // Input and output names in the ORT fused node's order. + // Names may have been adjusted from the originals due to CoreML naming rules. + // We do inputs/outputs based on order at the ONNX level so this doesn't matter. + const std::vector& GetOrderedInputs() const { return model_input_names_; } + const std::vector& GetOrderedOutputs() const { return model_output_names_; } const OnnxTensorInfo* TryGetInputOutputInfo(const std::string& name) const { const auto info_it = input_output_info_.find(name); @@ -80,13 +81,13 @@ class Model { private: std::unique_ptr execution_; + std::vector model_input_names_; // input names in the order of the ORT fused node's inputs + std::vector model_output_names_; // output names in the order of the ORT fused node's outputs + std::unordered_map input_output_info_; std::unordered_set scalar_outputs_; std::unordered_set int64_outputs_; - std::vector onnx_inputs_; - std::vector onnx_outputs_; - OrtMutex mutex_; }; diff --git a/onnxruntime/core/providers/coreml/model/model.mm b/onnxruntime/core/providers/coreml/model/model.mm index d5cd70bff9479..1434043e064f4 100644 --- a/onnxruntime/core/providers/coreml/model/model.mm +++ b/onnxruntime/core/providers/coreml/model/model.mm @@ -19,6 +19,7 @@ #include "core/common/narrow.h" #include "core/common/span_utils.h" #include "core/graph/onnx_protobuf.h" +#include "core/platform/env.h" #include "core/providers/coreml/builders/helper.h" #include "core/providers/coreml/coreml_provider_factory.h" #include "core/providers/coreml/model/host_utils.h" @@ -287,6 +288,14 @@ - (void)cleanup { compiled_model_path_ = nil; } +#if !defined(NDEBUG) + std::string path_override = Env::Default().GetEnvironmentVar(util::kOverrideModelOutputDirectoryEnvVar); + if (!path_override.empty()) { + // don't cleanup + coreml_model_path_ = nil; + } +#endif + if (coreml_model_path_ != nil) { error = nil; [[NSFileManager defaultManager] removeItemAtPath:coreml_model_path_ error:&error]; @@ -487,12 +496,16 @@ Status Predict(const std::unordered_map& inputs, } Model::Model(const std::string& path, + std::vector&& model_input_names, + std::vector&& model_output_names, std::unordered_map&& input_output_info, std::unordered_set&& scalar_outputs, std::unordered_set&& int64_outputs, const logging::Logger& logger, uint32_t coreml_flags) : execution_(std::make_unique(path, logger, coreml_flags)), + model_input_names_(std::move(model_input_names)), + model_output_names_(std::move(model_output_names)), input_output_info_(std::move(input_output_info)), scalar_outputs_(std::move(scalar_outputs)), int64_outputs_(std::move(int64_outputs)) { diff --git a/onnxruntime/core/providers/coreml/model/model_stub.cc b/onnxruntime/core/providers/coreml/model/model_stub.cc index 087c9f8c05d5f..c6f2e7401ea1e 100644 --- a/onnxruntime/core/providers/coreml/model/model_stub.cc +++ b/onnxruntime/core/providers/coreml/model/model_stub.cc @@ -9,12 +9,16 @@ namespace coreml { class Execution {}; Model::Model(const std::string& /*path*/, + std::vector&& model_input_names, + std::vector&& model_output_names, std::unordered_map&& input_output_info, std::unordered_set&& scalar_outputs, std::unordered_set&& int64_outputs, const logging::Logger& /*logger*/, uint32_t /*coreml_flags*/) : execution_(std::make_unique()), + model_input_names_(std::move(model_input_names)), + model_output_names_(std::move(model_output_names)), input_output_info_(std::move(input_output_info)), scalar_outputs_(std::move(scalar_outputs)), int64_outputs_(std::move(int64_outputs)) { diff --git a/onnxruntime/core/providers/cpu/cpu_execution_provider.cc b/onnxruntime/core/providers/cpu/cpu_execution_provider.cc index 813fdc54ecd0d..c3d5a51b636ef 100644 --- a/onnxruntime/core/providers/cpu/cpu_execution_provider.cc +++ b/onnxruntime/core/providers/cpu/cpu_execution_provider.cc @@ -143,9 +143,6 @@ class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 7, Aco class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 7, Atan); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 7, 8, float, Gemm); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 7, 8, double, Gemm); -#ifdef MLAS_F16VEC_INTRINSICS_SUPPORTED -class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 7, 8, MLFloat16, Gemm); -#endif class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 1, 10, Hardmax); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 1, 10, float, LogSoftmax); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 1, 10, double, LogSoftmax); @@ -335,9 +332,6 @@ class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOn class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 9, 10, Flatten); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 9, 10, float, Gemm); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 9, 10, double, Gemm); -#ifdef MLAS_F16VEC_INTRINSICS_SUPPORTED -class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 9, 10, MLFloat16, Gemm); -#endif class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 9, 12, float, MatMul); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 9, 12, double, MatMul); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 9, 12, int32_t, MatMul); @@ -497,9 +491,6 @@ class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 11, Sp class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 11, 12, ScatterND); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 11, 12, float, Gemm); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 11, 12, double, Gemm); -#ifdef MLAS_F16VEC_INTRINSICS_SUPPORTED -class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 11, 12, MLFloat16, Gemm); -#endif class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 11, 12, GatherElements); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 11, uint8_t, BitShift); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 11, uint32_t, BitShift); @@ -606,9 +597,6 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, string, Expand); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, float, Gemm); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, double, Gemm); -#ifdef MLAS_F16VEC_INTRINSICS_SUPPORTED -class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, MLFloat16, Gemm); -#endif class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, float, MatMul); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, double, MatMul); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, int32_t, MatMul); @@ -726,6 +714,7 @@ class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDoma class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 19, float, IsNaN); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 19, double, IsNaN); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 19, MLFloat16, IsNaN); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 19, BFloat16, IsNaN); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, bool, NonZero); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, float, NonZero); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, int32_t, NonZero); @@ -1035,6 +1024,8 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 20, float, IsNaN); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 20, double, IsNaN); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 20, MLFloat16, IsNaN); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 20, BFloat16, IsNaN); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 20, Gelu); #if !defined(DISABLE_FLOAT8_TYPES) class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 20, Float8E4M3FN, IsNaN); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 20, Float8E4M3FNUZ, IsNaN); @@ -2007,8 +1998,10 @@ Status RegisterOnnxOperatorKernels(KernelRegistry& kernel_registry) { Greater)>, BuildKernelCreateInfo, BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, #if !defined(DISABLE_FLOAT8_TYPES) BuildKernelCreateInfo, @@ -2613,15 +2609,6 @@ Status RegisterFp16Kernels(KernelRegistry& kernel_registry) { MLFloat16, LeakyRelu)>, BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, - - BuildKernelCreateInfo, }; for (auto& function_table_entry : function_table) { diff --git a/onnxruntime/core/providers/cpu/cpu_provider_shared.cc b/onnxruntime/core/providers/cpu/cpu_provider_shared.cc index bf73c59fb78ca..c4a83efa01a91 100644 --- a/onnxruntime/core/providers/cpu/cpu_provider_shared.cc +++ b/onnxruntime/core/providers/cpu/cpu_provider_shared.cc @@ -25,6 +25,7 @@ #include "core/providers/cpu/tensor/tile.h" #include "core/providers/cpu/tensor/gather_elements.h" #include "core/providers/cpu/tensor/unsqueeze.h" +#include "core/providers/cpu/tensor/upsamplebase.h" #ifndef DISABLE_CONTRIB_OPS #include "contrib_ops/cpu/bert/attention_base.h" @@ -62,6 +63,7 @@ #endif #include "cpu_provider_shared.h" +#include namespace onnxruntime { // The suppressed warning is: "The type with a virtual function needs either public virtual or protected nonvirtual destructor." @@ -292,6 +294,12 @@ struct ProviderHostCPUImpl : ProviderHostCPU { Status Sampling__Compute(const contrib::transformers::Sampling* p, OpKernelContext* ctx) override { return p->contrib::transformers::Sampling::Compute(ctx); } Status Sampling__SetupSubgraphExecutionInfo(contrib::transformers::Sampling* p, const SessionState& session_state, const std::string& attribute_name, const SessionState& subgraph_session_state) override { return p->contrib::transformers::Sampling::SetupSubgraphExecutionInfo(session_state, attribute_name, subgraph_session_state); } + void UpsampleBase__AdjustOutputSizeAsPolicy(const UpsampleBase* p, TensorShapeVector& output_dims, + gsl::span input_dims, + InlinedVector& scales) const override { + p->AdjustOutputSizeAsPolicy(output_dims, input_dims, scales); + } + #ifdef ENABLE_ATEN Status ATen__Compute(const contrib::ATen* p, OpKernelContext* p_ctx) override { return p->ATen::Compute(p_ctx); } #endif diff --git a/onnxruntime/core/providers/cpu/cpu_provider_shared.h b/onnxruntime/core/providers/cpu/cpu_provider_shared.h index f33eec4b93e98..c0e674827e4d1 100644 --- a/onnxruntime/core/providers/cpu/cpu_provider_shared.h +++ b/onnxruntime/core/providers/cpu/cpu_provider_shared.h @@ -24,6 +24,7 @@ class SliceOp__PrepareForComputeMetadata; // Directly maps to SliceOp::PrepareF class UnsqueezeBase__Prepare; // Directly maps to UnsqueezeBase::Prepare class contrib__AdamWOptimizerBase__Prepare; class contrib__SGDOptimizerV2Base__Prepare; +class UpsampleBase; using PadsVector = InlinedVector; @@ -202,6 +203,10 @@ struct ProviderHostCPU { virtual Status Sampling__Compute(const contrib::transformers::Sampling* p, OpKernelContext* ctx) = 0; virtual Status Sampling__SetupSubgraphExecutionInfo(contrib::transformers::Sampling* p, const SessionState& session_state, const std::string& attribute_name, const SessionState& subgraph_session_state) = 0; + virtual void UpsampleBase__AdjustOutputSizeAsPolicy(const UpsampleBase* p, TensorShapeVector& output_dims, + gsl::span input_dims, + InlinedVector& scales) const = 0; + #ifdef ENABLE_ATEN virtual Status ATen__Compute(const contrib::ATen* p, OpKernelContext* p_ctx) = 0; #endif diff --git a/onnxruntime/core/providers/cpu/ml/tree_ensemble_helper.cc b/onnxruntime/core/providers/cpu/ml/tree_ensemble_helper.cc index 180b3153fbb34..e2981da3a6f25 100644 --- a/onnxruntime/core/providers/cpu/ml/tree_ensemble_helper.cc +++ b/onnxruntime/core/providers/cpu/ml/tree_ensemble_helper.cc @@ -1,6 +1,8 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. +#if !defined(ORT_MINIMAL_BUILD) + #include "core/providers/cpu/ml/tree_ensemble_helper.h" #include "core/common/common.h" #include "onnx/defs/tensor_proto_util.h" @@ -64,3 +66,5 @@ Status GetVectorAttrsOrDefault(const OpKernelInfo& info, const std::string& name } // namespace ml } // namespace onnxruntime + +#endif // !defined(ORT_MINIMAL_BUILD) diff --git a/onnxruntime/core/providers/cpu/ml/tree_ensemble_helper.h b/onnxruntime/core/providers/cpu/ml/tree_ensemble_helper.h index 3c8a5a840bc76..33172c343a88e 100644 --- a/onnxruntime/core/providers/cpu/ml/tree_ensemble_helper.h +++ b/onnxruntime/core/providers/cpu/ml/tree_ensemble_helper.h @@ -2,6 +2,9 @@ // Licensed under the MIT License. #pragma once + +#if !defined(ORT_MINIMAL_BUILD) + #include "core/common/common.h" #include "core/framework/op_kernel.h" @@ -13,3 +16,5 @@ Status GetVectorAttrsOrDefault(const OpKernelInfo& info, const std::string& name } // namespace ml } // namespace onnxruntime + +#endif // !defined(ORT_MINIMAL_BUILD) diff --git a/onnxruntime/core/providers/cpu/nn/batch_norm_helper.h b/onnxruntime/core/providers/cpu/nn/batch_norm_helper.h index a5d46aff83b50..ccecbabfa3db3 100644 --- a/onnxruntime/core/providers/cpu/nn/batch_norm_helper.h +++ b/onnxruntime/core/providers/cpu/nn/batch_norm_helper.h @@ -25,6 +25,8 @@ class BatchNormHelper { const Tensor* var, bool is_spatial = true, bool is_nhwc = false) { + // NHWC dependent shape: X + // All other shapes are assumed to be in NCHW layout? const auto& x_dims = X->Shape().GetDims(); // If x_dims size < 2, num_channels defaults to 1. @@ -48,16 +50,22 @@ class BatchNormHelper { // validate 'scales' shape const auto& scale_dims = scale->Shape().GetDims(); if (static_cast(scale_dims.size()) != kNumInputScaleDimensions) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input scale: NumDimensions() != ", kNumInputScaleDimensions); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "Invalid input scale: NumDimensions() != ", kNumInputScaleDimensions); } if (scale_dims[0] != num_channels) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input scale: 0th dimension != ", num_channels); } + // N & C do not belong to features + // skip the first element for NHWC and the first two elements for NCHW. + int feature_offset = is_nhwc ? 1 : 2; + // in non-spatial cases - the other dims of 'scale' must be validated if (!is_spatial) { for (int feature = 0; feature < num_feature_dims; ++feature) { - if (scale_dims[1 + feature] != x_dims[2 + feature]) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input scale: ", (1 + feature), " dimension != ", x_dims[2 + feature]); + if (scale_dims[1 + feature] != x_dims[feature_offset + feature]) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input scale: ", (1 + feature), + " dimension != ", x_dims[feature_offset + feature]); } } } @@ -65,7 +73,8 @@ class BatchNormHelper { // validate 'B' shape const auto& B_dims = B->Shape().GetDims(); if (static_cast(B_dims.size()) != kNumInputBiasDimensions) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input B: NumDimensions() != ", kNumInputBiasDimensions); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "Invalid input B: NumDimensions() != ", kNumInputBiasDimensions); } if (B_dims[0] != num_channels) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input B: 0th dimension != ", num_channels); @@ -73,8 +82,9 @@ class BatchNormHelper { // in non-spatial cases - the other dims of 'B' must be validated if (!is_spatial) { for (int feature = 0; feature < num_feature_dims; ++feature) { - if (B_dims[1 + feature] != x_dims[2 + feature]) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input B: ", (1 + feature), " dimension != ", x_dims[2 + feature]); + if (B_dims[1 + feature] != x_dims[feature_offset + feature]) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input B: ", (1 + feature), + " dimension != ", x_dims[feature_offset + feature]); } } } @@ -82,16 +92,19 @@ class BatchNormHelper { // validate 'mean' shape const auto& mean_dims = mean->Shape().GetDims(); if (static_cast(mean_dims.size()) != kNumInputMeanDimensions) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input mean: NumDimensions() != ", kNumInputMeanDimensions); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "Invalid input mean: NumDimensions() != ", kNumInputMeanDimensions); } if (mean_dims[0] != num_channels) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input mean: 0th dimension != ", num_channels); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "Invalid input mean: 0th dimension != ", num_channels); } // in non-spatial cases - the other dims of 'mean' must be validated if (!is_spatial) { for (int feature = 0; feature < num_feature_dims; ++feature) { - if (mean_dims[1 + feature] != x_dims[2 + feature]) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input mean: ", (1 + feature), " dimension != ", x_dims[2 + feature]); + if (mean_dims[1 + feature] != x_dims[feature_offset + feature]) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input mean: ", (1 + feature), + " dimension != ", x_dims[feature_offset + feature]); } } } @@ -99,7 +112,8 @@ class BatchNormHelper { // validate 'var' shape const auto& var_dims = var->Shape().GetDims(); if (static_cast(var_dims.size()) != kNumInputVarianceDimensions) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input var: NumDimensions() != ", kNumInputVarianceDimensions); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "Invalid input var: NumDimensions() != ", kNumInputVarianceDimensions); } if (var_dims[0] != num_channels) { return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input var: 0th dimension != ", num_channels); @@ -107,8 +121,9 @@ class BatchNormHelper { // in non-spatial cases - the other dims of 'var' must be validated if (!is_spatial) { for (int feature = 0; feature < num_feature_dims; ++feature) { - if (var_dims[1 + feature] != x_dims[2 + feature]) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input var: ", (1 + feature), " dimension != ", x_dims[2 + feature]); + if (var_dims[1 + feature] != x_dims[feature_offset + feature]) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Invalid input var: ", (1 + feature), + " dimension != ", x_dims[feature_offset + feature]); } } } diff --git a/onnxruntime/core/providers/cpu/sequence/sequence_ops.cc b/onnxruntime/core/providers/cpu/sequence/sequence_ops.cc index 8064bc0a58cb1..2913f4ac32b6e 100644 --- a/onnxruntime/core/providers/cpu/sequence/sequence_ops.cc +++ b/onnxruntime/core/providers/cpu/sequence/sequence_ops.cc @@ -453,7 +453,7 @@ Status SplitToSequence::ComputeImpl(OpKernelContext& context, const Tensor& inpu int num_remaining_splits = 0; InlinedVector split_sizes; const bool is_string_type = input.IsDataTypeString(); - const size_t element_size = (is_string_type) ? 0U : input.DataType()->Size(); + const size_t element_size = input.DataType()->Size(); // figure out split_scalar or split_sizes if (p_split_input) { diff --git a/onnxruntime/core/providers/cpu/signal/dft.cc b/onnxruntime/core/providers/cpu/signal/dft.cc index 15bf633579e5f..50fe7d1344eaf 100644 --- a/onnxruntime/core/providers/cpu/signal/dft.cc +++ b/onnxruntime/core/providers/cpu/signal/dft.cc @@ -506,7 +506,7 @@ static Status short_time_fourier_transform(OpKernelContext* ctx, bool is_oneside // Calculate the window size with preference to the window input. const auto window_size = window ? window->Shape()[0] : frame_length; - ORT_ENFORCE(window_size < signal_size, "Ensure that the dft size is smaller than the signal."); + ORT_ENFORCE(window_size <= signal_size, "Ensure that the dft size is smaller than the signal."); // Calculate the number of dfts to run const auto n_dfts = diff --git a/onnxruntime/core/providers/cpu/tensor/gelu.cc b/onnxruntime/core/providers/cpu/tensor/gelu.cc new file mode 100644 index 0000000000000..d55973eda180f --- /dev/null +++ b/onnxruntime/core/providers/cpu/tensor/gelu.cc @@ -0,0 +1,108 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "core/common/common.h" +#include "core/common/narrow.h" +#include "core/framework/op_kernel.h" +#include "core/util/math_cpuonly.h" +#include "core/mlas/inc/mlas.h" + +#include "core/platform/threadpool.h" +#include +#include "core/providers/cpu/element_wise_ranged_transform.h" +#include "core/providers/cpu/tensor/gelu.h" + +using onnxruntime::narrow; +using namespace onnxruntime::common; + +namespace onnxruntime { + +// May revisit the implementations to support inplace computation, if needed. + +ONNX_CPU_OPERATOR_KERNEL( + Gelu, + 20, + KernelDefBuilder().TypeConstraint("T", DataTypeImpl::GetTensorType()), + Gelu); + +#ifndef DISABLE_CONTRIB_OPS +namespace contrib { +ONNX_OPERATOR_KERNEL_EX( + Gelu, + kMSDomain, + 1, + kCpuExecutionProvider, + KernelDefBuilder().TypeConstraint("T", DataTypeImpl::GetTensorType()), + Gelu); +} +#endif + +template +Status Gelu::Compute(OpKernelContext* context) const { + const Tensor* input = context->Input(0); + const T* input_data = input->Data(); + + Tensor* output = context->Output(0, input->Shape()); + T* output_data = output->MutableData(); + + concurrency::ThreadPool* tp = context->GetOperatorThreadPool(); + int64_t elem_count = input->Shape().Size(); + constexpr int64_t length_per_task = 4096; // this number comes from FastGelu. + int64_t task_count = (elem_count + length_per_task - 1) / length_per_task; + + if (approximation_algorithm_ == "tanh") { + // FastGelu allows optional bias. Here we split input data into chunks. Each chunk + // has N elements (except the last chunk), and use thread pool to parallel chunks. + // N = 4096 is selected based on performance test results on input shape 1x128x768. + // FastGelu uses approximation for Gelu. The formula is 0.5 * (1 + Tanh(x * (C * x * x + B))) * x. + static constexpr float B = 0.7978845608028654f; // sqrt(2.0 / M_PI) + static constexpr float C = 0.035677408136300125f; // 0.044715 * sqrt(2.0 / M_PI) + + concurrency::ThreadPool::TryBatchParallelFor( + tp, static_cast(task_count), + [&](ptrdiff_t task_idx) { + const auto start = task_idx * length_per_task; + const T* p_input = input_data + start; + T* p_output = output_data + start; + int64_t count = std::min(length_per_task, elem_count - start); + + for (int64_t i = 0; i < count; i++) { + T value = p_input[i]; + p_output[i] = value * (static_cast(C) * value * value + static_cast(B)); + } + + MlasComputeTanh(p_output, p_output, narrow(count)); + + for (int64_t i = 0; i < count; i++) { + p_output[i] = 0.5f * p_input[i] * (p_output[i] + 1.0f); + } + }, + 0); + return Status::OK(); + } else if (approximation_algorithm_ == "none") { + concurrency::ThreadPool::TryBatchParallelFor( + tp, static_cast(task_count), + [&](ptrdiff_t task_idx) { + const auto start = task_idx * length_per_task; + const T* p_input = input_data + start; + T* p_output = output_data + start; + int64_t count = std::min(length_per_task, elem_count - start); + + for (int64_t i = 0; i < count; i++) { + T value = p_input[i]; + p_output[i] = value * static_cast(M_SQRT1_2); + } + + MlasComputeErf(p_output, p_output, narrow(count)); + + for (int64_t i = 0; i < count; i++) { + p_output[i] = 0.5f * p_input[i] * (p_output[i] + 1.0f); + } + }, + 0); + return Status::OK(); + } + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Unsupported approximation_algorithm: ", approximation_algorithm_); +} + +} // namespace onnxruntime diff --git a/onnxruntime/core/providers/cpu/tensor/gelu.h b/onnxruntime/core/providers/cpu/tensor/gelu.h new file mode 100644 index 0000000000000..13238028d878a --- /dev/null +++ b/onnxruntime/core/providers/cpu/tensor/gelu.h @@ -0,0 +1,18 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +namespace onnxruntime { + +template +class Gelu final : public OpKernel { + public: + explicit Gelu(const OpKernelInfo& info) : OpKernel(info) { + approximation_algorithm_ = info.GetAttrOrDefault("approximate", "none"); + } + Status Compute(OpKernelContext* ctx) const override; + + private: + std::string approximation_algorithm_; +}; + +} // namespace onnxruntime diff --git a/onnxruntime/core/providers/cpu/tensor/isinf.cc b/onnxruntime/core/providers/cpu/tensor/isinf.cc index 1b449f46927a2..9d18d1fa62288 100644 --- a/onnxruntime/core/providers/cpu/tensor/isinf.cc +++ b/onnxruntime/core/providers/cpu/tensor/isinf.cc @@ -23,7 +23,9 @@ ORT_SPECIFY_OP_KERNEL_ARG_DEFAULT_TYPE_LIST( using IsInfTypesOpset20 = TypeList< float, - double + double, + MLFloat16, + BFloat16 #if !defined(DISABLE_FLOAT8_TYPES) , Float8E4M3FN, Float8E4M3FNUZ, Float8E5M2, Float8E5M2FNUZ @@ -76,10 +78,8 @@ ONNX_CPU_OPERATOR_KERNEL( IsInf); IsInf::IsInf(const OpKernelInfo& info) : OpKernel(info) { - Status status = info.GetAttr("detect_positive", &detect_positive_); - ORT_ENFORCE(status.IsOK(), "Failed to obtain detect_positive"); - status = info.GetAttr("detect_negative", &detect_negative_); - ORT_ENFORCE(status.IsOK(), "Failed to obtain detect_negative"); + detect_positive_ = info.GetAttrOrDefault("detect_positive", 1); + detect_negative_ = info.GetAttrOrDefault("detect_negative", 1); opset_ = info.node().SinceVersion(); } @@ -87,29 +87,67 @@ namespace isinf_internal { template struct ComputeDispatchTarget { void operator()(const Tensor& X, Tensor& Y, bool detect_positive, bool detect_negative) const { - const auto total_items = X.Shape().Size(); + auto input_data = X.DataAsSpan(); auto output_data = Y.MutableData(); if (detect_positive && detect_negative) { EigenMap(Y) = EigenMap(X).array().isInf(); } else if (detect_positive) { - auto input_data = X.Data(); - auto end_data = input_data + total_items; std::transform( - input_data, end_data, output_data, [](T v) { + input_data.begin(), input_data.end(), output_data, [](T v) { return (v == std::numeric_limits::infinity()); }); } else if (detect_negative) { - auto input_data = X.Data(); - auto end_data = input_data + total_items; std::transform( - input_data, end_data, output_data, [](T v) { + input_data.begin(), input_data.end(), output_data, [](T v) { return (v == -std::numeric_limits::infinity()); }); } else { // all false - memset(output_data, false, onnxruntime::narrow(total_items)); + memset(output_data, false, input_data.size()); + } + } +}; + +template <> +struct ComputeDispatchTarget { + void operator()(const Tensor& X, Tensor& Y, bool detect_positive, bool detect_negative) const { + auto output_data = Y.MutableData(); + auto input_data = X.DataAsSpan(); + if (detect_positive && detect_negative) { + std::transform(input_data.begin(), input_data.end(), output_data, + [](MLFloat16 v) { return v.IsInfinity(); }); + } else if (detect_positive) { + std::transform(input_data.begin(), input_data.end(), output_data, + [](MLFloat16 v) { return v.IsPositiveInfinity(); }); + } else if (detect_negative) { + std::transform(input_data.begin(), input_data.end(), output_data, + [](MLFloat16 v) { return v.IsNegativeInfinity(); }); + } else { + // all false + memset(output_data, false, input_data.size()); + } + } +}; + +template <> +struct ComputeDispatchTarget { + void operator()(const Tensor& X, Tensor& Y, bool detect_positive, bool detect_negative) const { + auto output_data = Y.MutableData(); + auto input_data = X.DataAsSpan(); + if (detect_positive && detect_negative) { + std::transform(input_data.begin(), input_data.end(), output_data, + [](BFloat16 v) { return v.IsInfinity(); }); + } else if (detect_positive) { + std::transform(input_data.begin(), input_data.end(), output_data, + [](BFloat16 v) { return v.IsPositiveInfinity(); }); + } else if (detect_negative) { + std::transform(input_data.begin(), input_data.end(), output_data, + [](BFloat16 v) { return v.IsNegativeInfinity(); }); + } else { + // all false + memset(output_data, false, input_data.size()); } } }; diff --git a/onnxruntime/core/providers/cpu/tensor/isnan.cc b/onnxruntime/core/providers/cpu/tensor/isnan.cc index 34495e382278a..0e15c64b126f3 100644 --- a/onnxruntime/core/providers/cpu/tensor/isnan.cc +++ b/onnxruntime/core/providers/cpu/tensor/isnan.cc @@ -46,9 +46,11 @@ ADD_TYPED_ISNAN_OP_9(MLFloat16); ADD_TYPED_ISNAN_OP_13(float); ADD_TYPED_ISNAN_OP_13(double); ADD_TYPED_ISNAN_OP_13(MLFloat16); +ADD_TYPED_ISNAN_OP_13(BFloat16); ADD_TYPED_ISNAN_OP(float); ADD_TYPED_ISNAN_OP(double); ADD_TYPED_ISNAN_OP(MLFloat16); +ADD_TYPED_ISNAN_OP(BFloat16); #if !defined(DISABLE_FLOAT8_TYPES) ADD_TYPED_ISNAN_OP(Float8E4M3FN); @@ -75,9 +77,7 @@ Status IsNaN::Compute(OpKernelContext* context) const { template <> Status IsNaN::Compute(OpKernelContext* context) const { const auto* X_ptr = context->Input(0); - if (!X_ptr) { - return Status(common::ONNXRUNTIME, common::FAIL, "Null input ptr"); - } + auto X_data = X_ptr->Data(); auto& dims = X_ptr->Shape(); auto shape_size = dims.Size(); @@ -91,6 +91,19 @@ Status IsNaN::Compute(OpKernelContext* context) const { return Status::OK(); } +template <> +Status IsNaN::Compute(OpKernelContext* context) const { + const auto* X_ptr = context->Input(0); + + auto X_data = X_ptr->DataAsSpan(); + auto& Y = *context->Output(0, X_ptr->Shape()); + + std::transform(X_data.begin(), X_data.end(), Y.MutableData(), + [](BFloat16 x) { return x.IsNaN(); }); + + return Status::OK(); +} + #if !defined(DISABLE_FLOAT8_TYPES) template <> Status IsNaN::Compute(OpKernelContext* context) const { diff --git a/onnxruntime/core/providers/cpu/tensor/reshape_helper.h b/onnxruntime/core/providers/cpu/tensor/reshape_helper.h index 5961686674424..d7ceda16e61ea 100644 --- a/onnxruntime/core/providers/cpu/tensor/reshape_helper.h +++ b/onnxruntime/core/providers/cpu/tensor/reshape_helper.h @@ -37,12 +37,14 @@ class ReshapeHelper { if (unknown_dim != -1) { // calculate unknown dimension ORT_ENFORCE(size != 0 && (input_shape_size % size) == 0, - "The input tensor cannot be reshaped to the requested shape. Input shape:", input_shape, ", requested shape:", TensorShape(requested_shape)); + "The input tensor cannot be reshaped to the requested shape. Input shape:", input_shape, + ", requested shape:", TensorShape(requested_shape)); requested_shape[unknown_dim] = input_shape_size / size; } else { // check if the output shape is valid. ORT_ENFORCE(input_shape_size == size, - "The input tensor cannot be reshaped to the requested shape. Input shape:", input_shape, ", requested shape:", TensorShape(requested_shape)); + "The input tensor cannot be reshaped to the requested shape. Input shape:", input_shape, + ", requested shape:", TensorShape(requested_shape)); } } }; diff --git a/onnxruntime/core/providers/cpu/tensor/space_depth_ops.h b/onnxruntime/core/providers/cpu/tensor/space_depth_ops.h index 7d117317ba172..3218c8952d6ec 100644 --- a/onnxruntime/core/providers/cpu/tensor/space_depth_ops.h +++ b/onnxruntime/core/providers/cpu/tensor/space_depth_ops.h @@ -14,6 +14,7 @@ class SpaceDepthBase { "Attribute blocksize is not set."); } + template Status InputValidationsAndOutputDimsCalc(const Tensor& input, int64_t& batch, int64_t& input_depth, int64_t& input_height, int64_t& input_width, @@ -27,9 +28,15 @@ class SpaceDepthBase { } batch = input_shape[0]; - input_depth = input_shape[1]; - input_height = input_shape[2]; - input_width = input_shape[3]; + if constexpr (IsNHWC) { + input_depth = input_shape[3]; + input_height = input_shape[1]; + input_width = input_shape[2]; + } else { + input_depth = input_shape[1]; + input_height = input_shape[2]; + input_width = input_shape[3]; + } if (is_space_to_depth) { // SpaceToDepth op if ((input_height % this->blocksize_) != 0) { @@ -46,7 +53,8 @@ class SpaceDepthBase { } else { // DepthToSpace op if ((input_depth % (blocksize_ * blocksize_) != 0)) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "DepthToSpace requires input depth to be a multiple of (block_size * blok_size)"); + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "DepthToSpace requires input depth to be a multiple of (block_size * block_size)"); } output_depth = input_depth / blocksize_ / blocksize_; diff --git a/onnxruntime/core/providers/cpu/tensor/upsample.cc b/onnxruntime/core/providers/cpu/tensor/upsample.cc index fa69e144be554..babbac0b7be17 100644 --- a/onnxruntime/core/providers/cpu/tensor/upsample.cc +++ b/onnxruntime/core/providers/cpu/tensor/upsample.cc @@ -1,10 +1,15 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. +#include "core/providers/cpu/tensor/upsample.h" + +#include + +#include "core/common/inlined_containers.h" #include "core/common/safeint.h" #include "core/platform/threadpool.h" -#include "core/providers/cpu/tensor/upsample.h" #include "core/providers/cpu/tensor/upsample_antialias.h" + using namespace onnxruntime::common; using namespace std; using onnxruntime::narrow; @@ -30,6 +35,46 @@ REGISTER_VERSIONED_TYPED_KERNEL(int32_t, 9, 9); REGISTER_VERSIONED_TYPED_KERNEL(int8_t, 9, 9); REGISTER_VERSIONED_TYPED_KERNEL(uint8_t, 9, 9); +void UpsampleBase::AdjustOutputSizeAsPolicy(TensorShapeVector& output_dims, gsl::span input_dims, + InlinedVector& scales) const { + // AspectRatioPolicy::STRETCH is default policy when opset < 18 + if (keep_aspect_ratio_policy_ == AspectRatioPolicy::STRETCH) { + return; + } + + InlinedHashSet axes_set(axes_.begin(), axes_.end()); + + float scale_in_policy = 0.0f; + if (keep_aspect_ratio_policy_ == AspectRatioPolicy ::NOT_LARGER) { + scale_in_policy = std::numeric_limits::max(); + + for (size_t i = 0; i < scales.size(); i++) { + if (axes_set.empty() || axes_set.count(i) > 0) { + scale_in_policy = std::min(scale_in_policy, scales[i]); + } + } + } else if (keep_aspect_ratio_policy_ == AspectRatioPolicy ::NOT_SMALLER) { + scale_in_policy = std::numeric_limits::min(); + + for (size_t i = 0; i < scales.size(); i++) { + if (axes_set.empty() || axes_set.count(i) > 0) { + scale_in_policy = std::max(scale_in_policy, scales[i]); + } + } + } + + for (size_t i = 0; i < scales.size(); i++) { + // if axes is not specified (AKA axes_set.empty()), we apply the policy to all axes + if (axes_set.empty() || axes_set.count(i) > 0) { + scales[i] = scale_in_policy; + output_dims[i] = static_cast(std::round(scales[i] * input_dims[i])); + } else { + scales[i] = 1.0f; + output_dims[i] = input_dims[i]; + } + } +} + template void UpsampleNearest2x(int64_t batch_size, int64_t num_channels, @@ -94,8 +139,8 @@ UpsampleNearestSetupInputMappings(int64_t n_dim, const TensorShape& input_shape, const TensorShape& output_shape, const std::vector& input_dim_factor, - const vector& scales, - const vector& roi, + gsl::span scales, + gsl::span roi, bool extrapolation_enabled, const GetOriginalCoordinateFunc& get_original_coordinate, const GetNearestPixelFunc& get_nearest_pixel) { @@ -141,8 +186,8 @@ static Status UpsampleNearestImpl(const T* input, T* output, const TensorShape& input_shape, const TensorShape& output_shape, - const vector& scales, - const vector& roi, + gsl::span scales, + gsl::span roi, bool extrapolation_enabled, const T extrapolation_value, const GetOriginalCoordinateFunc& get_original_coordinate, @@ -285,8 +330,8 @@ static Status UpsampleNearest(const T* input, T* output, const TensorShape& input_shape, const TensorShape& output_shape, - const vector& scales, - const vector& roi, + gsl::span scales, + gsl::span roi, bool is_resize, bool extrapolation_enabled, T extrapolation_value, @@ -412,7 +457,7 @@ BilinearParams SetupUpsampleBilinear(const int32_t input_height, const int32_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, AllocatorPtr& alloc, const GetOriginalCoordinateFunc& get_original_coordinate, const bool is_nchw) { @@ -518,7 +563,7 @@ BilinearParamsInteger SetupUpsampleBilinearInteger(const int32_t input_height, const int32_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, AllocatorPtr& alloc, const GetOriginalCoordinateFunc& get_original_coordinate, const bool is_nchw) { @@ -650,7 +695,7 @@ static TrilinearParams SetupUpsampleTrilinear(int64_t input_depth, float depth_scale, float height_scale, float width_scale, - const std::vector& roi, + gsl::span roi, AllocatorPtr& alloc, const GetOriginalCoordinateFunc& get_original_coordinate) { TrilinearParams p; @@ -796,7 +841,7 @@ void UpsampleTrilinear(int64_t batch_size, float depth_scale, float height_scale, float width_scale, - const std::vector& roi, + gsl::span roi, bool use_extrapolation, float extrapolation_value, const T* XdataBase, @@ -929,7 +974,7 @@ void ResizeBiCubic(int64_t batch_size, bool use_extrapolation, float extrapolation_value, bool exclude_outside, - const std::vector& roi, + gsl::span roi, const T* Xdata, T* Ydata, const GetOriginalCoordinateFunc& get_original_coordinate) { @@ -1067,9 +1112,9 @@ void ResizeBiCubic(int64_t batch_size, template Status Upsample::BaseCompute(OpKernelContext* context, - const std::vector& roi, - const std::vector& scales, - const gsl::span& output_dims) const { + gsl::span roi, + gsl::span scales, + gsl::span output_dims) const { const auto* X = context->Input(0); auto dims = X->Shape().GetDims(); ORT_RETURN_IF_NOT(output_dims.size() == dims.size(), "Rank of input and output tensor should be same."); @@ -1327,7 +1372,7 @@ Status Upsample::Compute(OpKernelContext* context) const { // Initialize the roi array to all zeros as this will be the most common case // Roi data is needed only when coordinate transformation mode is set to tf_crop_and_resize // for all other cases we need a 0 initialized roi array - std::vector roi_array(roi_); + InlinedVector roi_array(roi_); if (!roi_cached_) { bool use_default_roi = true; @@ -1353,7 +1398,7 @@ Status Upsample::Compute(OpKernelContext* context) const { ComputeROIWithAxes(roi_array, input_dims.size()); // Get scales data - std::vector scales_array(input_dims.size()); + InlinedVector scales_array(input_dims.size()); if (OpKernel::Node().InputDefs().size() == 1) { // Compute output shape from scales and input dims diff --git a/onnxruntime/core/providers/cpu/tensor/upsample.h b/onnxruntime/core/providers/cpu/tensor/upsample.h index 3046ee4b8260d..8ff04781f6ad0 100644 --- a/onnxruntime/core/providers/cpu/tensor/upsample.h +++ b/onnxruntime/core/providers/cpu/tensor/upsample.h @@ -66,8 +66,8 @@ class Upsample : public UpsampleBase, public OpKernel { Status Compute(OpKernelContext* context) const override; - Status BaseCompute(OpKernelContext* context, const std::vector& roi, const std::vector& scales, - const gsl::span& output_dims) const; + Status BaseCompute(OpKernelContext* context, gsl::span roi, gsl::span scales, + gsl::span output_dims) const; }; BilinearParams SetupUpsampleBilinear(const int32_t input_height, @@ -76,7 +76,7 @@ BilinearParams SetupUpsampleBilinear(const int32_t input_height, const int32_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, AllocatorPtr& alloc, const GetOriginalCoordinateFunc& get_original_coordinate, const bool is_nchw); @@ -90,7 +90,7 @@ void UpsampleBilinear(const int32_t batch_size, const int32_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, const bool use_extrapolation, const float extrapolation_value, const T* const XdataBase, @@ -144,7 +144,7 @@ void NhwcUpsampleBilinear(const int32_t batch_size, const int32_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, const float extrapolation_value, const T* const XdataBase, T* const YdataBase, @@ -227,7 +227,7 @@ BilinearParamsInteger SetupUpsampleBilinearInteger(const int32_t input_height, const int32_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, AllocatorPtr& alloc, const GetOriginalCoordinateFunc& get_original_coordinate, const bool is_nchw); @@ -241,7 +241,7 @@ void NhwcUpsampleBilinearInteger(const int32_t batch_size, const int32_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, const float extrapolation_value, const T* const XdataBase, T* const YdataBase, diff --git a/onnxruntime/core/providers/cpu/tensor/upsample_antialias.h b/onnxruntime/core/providers/cpu/tensor/upsample_antialias.h index e1dcaf500a325..1e32b7e874b1a 100644 --- a/onnxruntime/core/providers/cpu/tensor/upsample_antialias.h +++ b/onnxruntime/core/providers/cpu/tensor/upsample_antialias.h @@ -21,32 +21,6 @@ namespace onnxruntime { -namespace ConstValue { -constexpr int32_t mag_factor = 1 << (22 - 1); -} - -namespace { -const uint8_t* GetLookupTableShared() { - // initialized once - static const auto* lookup_table = []() { - // if we have already initialized the lookup table, just return - // ideally we could have a global lookup table, but that account for too much space. - /* Handles values form -640 to 639. */ - static uint8_t table[1280] = {0}; - - // taken from https://github.com/python-pillow/Pillow/blob/66add095a50d76c35c7f58643461f2edf78a3f05/src/libImaging/Resample.c#L94 - // we need to handle negative values - // it's equivalent to :x = np.clip(x, 0, 255) where x \in [-640, 639] - // we will accept a negative x for (&table[640])[x] means table +640 -x - for (int i = 0; i < 1280; ++i) { - table[i] = static_cast(std::min(std::max(i - 640, 0), 255)); - } - return table; - }(); - return lookup_table; -} -} // namespace - template struct FilterParamsBaseAntiAlias { std::vector bound; @@ -57,15 +31,15 @@ struct FilterParamsBaseAntiAlias { template struct FilterParamsAntiAlias { - float support_size = 2.0f; - float cubic_coeff_a = -0.75f; + float support_size = antialias_constants::kSupportSize; + float cubic_coeff_a = antialias_constants::kCubicCoeffA; FilterParamsBaseAntiAlias dim_x; FilterParamsBaseAntiAlias dim_y; FilterParamsBaseAntiAlias dim_z; const uint8_t* GetClip8LookupTable() const { - return GetLookupTableShared(); + return UpsampleBase::GetLookupTableShared(); } virtual ~FilterParamsAntiAlias() = default; virtual float Filter(float x) const = 0; @@ -89,7 +63,7 @@ struct BilinearParamsAntiAlias : FilterParamsAntiAlias { template struct BiCubicParamsAntiAlias : FilterParamsAntiAlias { BiCubicParamsAntiAlias() { - this->support_size = 4.0f; + this->support_size = antialias_constants::kBiCubicSupportSize; } // taken from @@ -124,27 +98,6 @@ struct TriLinearParamsAntiAlias : FilterParamsAntiAlias { } }; -template -struct AccumulateType { - using type = int32_t; - using Dtype = T; -}; - -template <> -struct AccumulateType { - using type = float; -}; - -template <> -struct AccumulateType { - using type = float; -}; - -template <> -struct AccumulateType { - using type = double; -}; - // The following method supports a 3/4/5-D input in 'Linear mode, cubic mode' // that amounts to 'Bilinear,TriLinear, Bicubic/Tricubic' Upsampling/Resizing in the sense that it assumes // A N-D tensor has @@ -156,19 +109,20 @@ struct AccumulateType { // - [N, H, W, C] and the scales are [1.0, height_scale, width_scale, 1.0] template void SetupUpsampleFilterAntiAlias(FilterParamsAntiAlias& p, - const gsl::span input_h_w_c, - const gsl::span output_h_w_c, - const gsl::span scale_h_w_c, - const std::vector& roi, + gsl::span input_h_w_c, + gsl::span output_h_w_c, + gsl::span scale_h_w_c, + gsl::span roi, AllocatorPtr& alloc, const GetOriginalCoordinateFunc& get_original_coordinate, bool exclude_outside, const bool is_nchw) { - auto compute_weight_coefficients = [&alloc, &roi, &get_original_coordinate, exclude_outside](const FilterParamsAntiAlias& p, - const int64_t input_size, - const int64_t output_size, - size_t rindex, - FilterParamsBaseAntiAlias& param_base, - const float rscale) -> int64_t { + auto compute_weight_coefficients = [&alloc, roi, &get_original_coordinate, exclude_outside]( + const FilterParamsAntiAlias& p, + const int64_t input_size, + const int64_t output_size, + size_t rindex, + FilterParamsBaseAntiAlias& param_base, + const float rscale) -> int64_t { param_base.bound.reserve(static_cast(output_size) * 2); param_base.out_of_bound_idx.reserve(static_cast(output_size)); @@ -245,13 +199,14 @@ void SetupUpsampleFilterAntiAlias(FilterParamsAntiAlias& p, // normalize the scale to 1 << 22 for int8/uint8 if constexpr (std::is_same::value) { - scale_buffer_int[x] = static_cast(std::round(scale_buffer[x] * ConstValue::mag_factor * 2.f)); + scale_buffer_int[x] = static_cast(std::round(scale_buffer[x] * ConstValue::mag_factor_x_2)); } } /*for (; x < window_size; x++) { scale_buffer[x] = 0; }*/ } + return window_size; }; @@ -269,9 +224,6 @@ void SetupUpsampleFilterAntiAlias(FilterParamsAntiAlias& p, } } -template -inline constexpr bool is_8bit_v = std::is_same::value || std::is_same::value; - /** * @brief To compute interpolation along with the last axis. * For brief,we assume the input tensor has 3 dimensions and we all it CHW for each character represent a dim. @@ -398,6 +350,7 @@ void ComputeInterpolationAtLevel2(int64_t num_channels, int64_t input_height, in output += *Xdata_offset * (*weight_coeff_start++); Xdata_offset += output_width; } + if constexpr (is_8bit_v) { *Ydata_offset++ = static_cast(clip8_lookups[output >> 22]); } else if constexpr (std::is_same::value) { @@ -444,6 +397,7 @@ void ComputeInterpolationAtLevel2(int64_t num_channels, int64_t input_height, in output += *Xdata_offset * (*weight_coeff_start++); Xdata_offset += output_width; } + if constexpr (is_8bit_v) { *Ydata_offset++ = static_cast(clip8_lookups[output >> 22]); } else if constexpr (std::is_same::value) { @@ -515,6 +469,7 @@ void UpsampleBaseAntiAlias(FilterParamsAntiAlias& p, narrow(input_height * num_channels * input_width)); auto ydata_span = gsl::make_span(image_temp_buffer.get(), narrow(input_height * num_channels * output_width)); + // This computes only the width direction.Thus height keeps unchanged. ComputeInterpolationAtLevel1(num_channels, input_height, input_width, input_height, output_width, xdata_span, ydata_span, p, p.dim_x, tp); } @@ -546,7 +501,7 @@ void UpsampleBilinearAntiAlias(const int64_t batch_size, const int64_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, const bool use_extrapolation, const float extrapolation_value, bool exclude_outside, @@ -575,7 +530,7 @@ void NhwcUpsampleBilinearAntiAlias(const int64_t batch_size, const int64_t output_width, const float height_scale, const float width_scale, - const std::vector& roi, + gsl::span roi, const bool use_extrapolation, const float extrapolation_value, bool exclude_outside, @@ -608,7 +563,7 @@ void NhwcResizeBiCubicAntiAlias(const int64_t batch_size, bool use_extrapolation, float extrapolation_value, bool exclude_outside, - const std::vector& roi, + gsl::span roi, const Tensor* X, T* Ydata_base, AllocatorPtr& alloc, @@ -688,7 +643,7 @@ void ResizeBiCubicAntiAlias(int64_t batch_size, bool use_extrapolation, float extrapolation_value, bool exclude_outside, - const std::vector& roi, + gsl::span roi, const Tensor* X, T* Ydata_base, AllocatorPtr& alloc, @@ -719,7 +674,7 @@ void UpsampleTrilinearAntiAlias(int64_t batch_size, float depth_scale, float height_scale, float width_scale, - const std::vector& roi, + gsl::span roi, bool use_extrapolation, float extrapolation_value, bool exclude_outside, diff --git a/onnxruntime/core/providers/cpu/tensor/upsamplebase.h b/onnxruntime/core/providers/cpu/tensor/upsamplebase.h index a0e7ca1084fef..b768fedd8513a 100644 --- a/onnxruntime/core/providers/cpu/tensor/upsamplebase.h +++ b/onnxruntime/core/providers/cpu/tensor/upsamplebase.h @@ -3,11 +3,13 @@ #pragma once +#include #include #include #include #include -#include + +#include #include "core/common/status.h" #include #include @@ -58,7 +60,73 @@ enum class AspectRatioPolicy { NOT_SMALLER, }; +// Antialias types +template +struct AccumulateType { + using type = int32_t; + using Dtype = T; +}; + +template <> +struct AccumulateType { + using type = float; +}; + +template <> +struct AccumulateType { + using type = float; +}; + +template <> +struct AccumulateType { + using type = float; +}; + +template <> +struct AccumulateType { + using type = double; +}; + +namespace antialias_constants { +constexpr float kCubicCoeffA = -0.75f; +constexpr float kSupportSize = 2.0f; +constexpr float kBiCubicSupportSize = 4.0f; +} // namespace antialias_constants + +namespace ConstValue { +constexpr int32_t mag_factor = 1 << (22 - 1); +// We use to multiply by 2, let's make a constant which is twice as big +constexpr int32_t mag_factor_x_2 = 1 << 22; +} // namespace ConstValue + +template +inline constexpr bool is_8bit_v = std::is_same::value || std::is_same::value; + +template +void PrintAntiAliasBuffers(std::ostream& os, gsl::span bounds, gsl::span out_of_bounds, + gsl::span weight_coefficients) { + os << "#### Bounds: "; + std::copy(bounds.begin(), bounds.end(), std::ostream_iterator(os, " ")); + os << std::endl; + + os << "#### Out of Bounds: "; + std::copy(out_of_bounds.begin(), out_of_bounds.end(), + std::ostream_iterator(os, " ")); + os << std::endl; + + os << "#### Scale Buffer: "; + std::copy(weight_coefficients.begin(), weight_coefficients.end(), + std::ostream_iterator(os, " ")); + os << std::endl; +} + class UpsampleBase { + public: + // Make this available in other EP via provider bridge + // it works iff output_shape is specified + void AdjustOutputSizeAsPolicy(TensorShapeVector& output_dims, gsl::span input_dims, + InlinedVector& scales) const; + protected: explicit UpsampleBase(const OpKernelInfo& info) : scales_cached_(false), roi_cached_(false), use_extrapolation_(false) { @@ -69,23 +137,32 @@ class UpsampleBase { std::string mode; ORT_ENFORCE(info.GetAttr("mode", &mode).IsOK()); mode_ = StringToUpsampleMode(mode); - antialias_ = info.GetAttrOrDefault("antialias", 0) == 0 ? false : true; - if (antialias_) { - ORT_ENFORCE((UpsampleMode::LINEAR == mode_ || UpsampleMode::CUBIC == mode_), - "when anti-aliasing is set, Resize only supports mode `LINEAR` and `CUBIC`."); - } auto input_count = info.GetInputCount(); if (input_count == 1) { // opset < 10 - ORT_THROW_IF_ERROR(info.GetAttrs("scales", scales_)); - ORT_THROW_IF_ERROR(ScalesValidation(scales_, mode_)); + std::vector scales; + ORT_THROW_IF_ERROR(info.GetAttrs("scales", scales)); + ORT_THROW_IF_ERROR(ScalesValidation(scales, mode_)); + scales_.assign(scales.cbegin(), scales.cend()); scales_cached_ = true; } - std::string keep_aspect_ratio_policy = info.GetAttrOrDefault("keep_aspect_ratio_policy", "stretch"); - keep_aspect_ratio_policy_ = StringToKeepAspectRatioPolicy(keep_aspect_ratio_policy); + if (opset >= 18) { + antialias_ = info.GetAttrOrDefault("antialias", 0) == 0 ? false : true; + + if (antialias_) { + ORT_ENFORCE((UpsampleMode::LINEAR == mode_ || UpsampleMode::CUBIC == mode_), + "when anti-aliasing is set, Resize only supports mode `LINEAR` and `CUBIC`."); + } - axes_ = info.GetAttrsOrDefault("axes"); + // The attribute is absent in opset < 18, but the default value as if stretch. + std::string keep_aspect_ratio_policy = info.GetAttrOrDefault("keep_aspect_ratio_policy", "stretch"); + keep_aspect_ratio_policy_ = StringToKeepAspectRatioPolicy(keep_aspect_ratio_policy); + + // guard against unit tests that can add an attribute + auto axes = info.GetAttrsOrDefault("axes"); + axes_.assign(axes.cbegin(), axes.cend()); + } extrapolation_value_ = info.GetAttrOrDefault("extrapolation_value", 0.0f); @@ -112,7 +189,7 @@ class UpsampleBase { nearest_mode_ = StringToNearestMode(nearest_mode_name); get_nearest_pixel_ = GetNearestPixelFromOriginal(nearest_mode_); - cubic_coeff_a_ = info.GetAttrOrDefault("cubic_coeff_a", -0.75f); + cubic_coeff_a_ = info.GetAttrOrDefault("cubic_coeff_a", antialias_constants::kCubicCoeffA); exclude_outside_ = info.GetAttrOrDefault("exclude_outside", 0) == 0 ? false : true; if ((exclude_outside_ == 1 && mode_ != CUBIC) && (antialias_ == false || mode_ != LINEAR)) { @@ -166,7 +243,7 @@ class UpsampleBase { ResizeCoordinateTransformationMode coordinate_transform_mode_; GetOriginalCoordinateFunc get_original_coordinate_; ResizeNearestMode nearest_mode_; - AspectRatioPolicy keep_aspect_ratio_policy_; + AspectRatioPolicy keep_aspect_ratio_policy_{AspectRatioPolicy::STRETCH}; GetNearestPixelFunc get_nearest_pixel_; float cubic_coeff_a_; bool exclude_outside_; @@ -174,9 +251,9 @@ class UpsampleBase { float extrapolation_value_; bool use_nearest2x_optimization_ = false; - std::vector scales_; - std::vector roi_; - std::vector axes_; + InlinedVector scales_; + InlinedVector roi_; + TensorShapeVector axes_; bool scales_cached_; bool roi_cached_; @@ -335,7 +412,7 @@ class UpsampleBase { } } - [[nodiscard]] Status ScalesValidation(const std::vector& scales, const UpsampleMode mode) const { + [[nodiscard]] Status ScalesValidation(gsl::span scales, const UpsampleMode mode) const { if (!is_resize_) { for (auto& scale : scales) { ORT_RETURN_IF_NOT(scale >= 1, "Scale value should be greater than or equal to 1."); @@ -372,7 +449,7 @@ class UpsampleBase { } [[nodiscard]] Status - ParseScalesData(const Tensor* scale, std::vector& scales, int64_t rank) const { + ParseScalesData(const Tensor* scale, InlinedVector& scales, int64_t rank) const { const auto* scale_data = scale->Data(); int64_t scales_size = scale->Shape().Size(); ORT_RETURN_IF_NOT(scales_size > 0, "scales size should be greater than 0."); @@ -387,19 +464,19 @@ class UpsampleBase { // in which case the other axes is ignored and use default scale of 1 // scales_size == axes_.size() should be guaranteed if axes is not empty if (rank > 0 && (scales_size != rank || axes_.size())) { - std::vector new_scales(size_t(rank), 1.0f); + InlinedVector new_scales(size_t(rank), 1.0f); ORT_RETURN_IF_NOT(*std::max_element(axes_.begin(), axes_.end()) < rank && (int64_t(axes_.size()) == scales_size), "all values in axes should be less than rank of the data"); for (size_t i = 0; i < axes_.size(); i++) { new_scales[static_cast(axes_[i])] = scales[i]; } - scales = new_scales; + scales.swap(new_scales); } return ScalesValidation(scales, mode_); } - void ParseRoiData(const Tensor* roi, std::vector& roi_array) const { + void ParseRoiData(const Tensor* roi, InlinedVector& roi_array) const { int64_t roi_size = roi->Shape().Size(); if (roi_size > 0) { roi_array.resize(onnxruntime::narrow(roi_size)); @@ -429,52 +506,11 @@ class UpsampleBase { return Status::OK(); } - // it works iff output_shape is specified - void AdjustOutputSizeAsPolicy(TensorShapeVector& output_dims, gsl::span input_dims, - std::vector& scales) const { - std::unordered_set axes_set(axes_.begin(), axes_.end()); - - // AspectRatioPolicy::STRETCH is default policy when opset < 18 - if (keep_aspect_ratio_policy_ == AspectRatioPolicy ::STRETCH) { - return; - } - - float scale_in_policy = 0.0f; - if (keep_aspect_ratio_policy_ == AspectRatioPolicy ::NOT_LARGER) { - scale_in_policy = std::numeric_limits::max(); - - for (size_t i = 0; i < scales.size(); i++) { - if (axes_set.empty() || axes_set.count(i) > 0) { - scale_in_policy = std::min(scale_in_policy, scales[i]); - } - } - } else if (keep_aspect_ratio_policy_ == AspectRatioPolicy ::NOT_SMALLER) { - scale_in_policy = std::numeric_limits::min(); - - for (size_t i = 0; i < scales.size(); i++) { - if (axes_set.empty() || axes_set.count(i) > 0) { - scale_in_policy = std::max(scale_in_policy, scales[i]); - } - } - } - - for (size_t i = 0; i < scales.size(); i++) { - // if axes is not specified (AKA axes_set.empty()), we apply the policy to all axes - if (axes_set.empty() || axes_set.count(i) > 0) { - scales[i] = scale_in_policy; - output_dims[i] = static_cast(std::round(scales[i] * input_dims[i])); - } else { - scales[i] = 1.0f; - output_dims[i] = input_dims[i]; - } - } - } - // It's different in Opset 18 and before. // we will modify output_shape by sorts of policy even if it's specified [[nodiscard]] Status ParseScalesDataAndAdjustOutputSize(TensorShapeVector& output_dims, gsl::span input_dims, - std::vector& scales) const { + InlinedVector& scales) const { for (size_t i = 0, end = input_dims.size(); i < end; ++i) { // Handle corner case to avoid dividing by zero in the next step if (input_dims[i] == 0) { @@ -507,9 +543,9 @@ class UpsampleBase { // Roi is redefined in Opset-18, we have a concept of axes. // So we need to update it accordingly. - void ComputeROIWithAxes(std::vector& roi_array, size_t rank) const { + void ComputeROIWithAxes(InlinedVector& roi_array, size_t rank) const { if (axes_.size()) { - std::vector roi_tmp(rank * 2, 0); + InlinedVector roi_tmp(rank * 2, 0); for (size_t i = rank; i < rank * 2; ++i) { roi_tmp[i] = 1; } @@ -518,9 +554,32 @@ class UpsampleBase { roi_tmp[v_in_axes] = (roi_array[i]); roi_tmp[rank + v_in_axes] = (roi_array[axes_.size() + i]); } - roi_array = roi_tmp; + roi_array.swap(roi_tmp); } } + + public: + static constexpr size_t kLookupTableSize = 1280; + + static const uint8_t* GetLookupTableShared() { + // initialized once + static const auto* lookup_table = []() { + // if we have already initialized the lookup table, just return + // ideally we could have a global lookup table, but that account for too much space. + /* Handles values form -640 to 639. */ + static uint8_t table[kLookupTableSize] = {0}; + + // taken from https://github.com/python-pillow/Pillow/blob/66add095a50d76c35c7f58643461f2edf78a3f05/src/libImaging/Resample.c#L94 + // we need to handle negative values + // it's equivalent to :x = np.clip(x, 0, 255) where x \in [-640, 639] + // we will accept a negative x for (&table[640])[x] means table +640 -x + for (int i = 0; i < static_cast(kLookupTableSize); ++i) { + table[i] = static_cast(std::min(std::max(i - 640, 0), 255)); + } + return table; + }(); + return lookup_table; + } }; // UpsampleBase } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/cu_inc/common.cuh b/onnxruntime/core/providers/cuda/cu_inc/common.cuh index 0d9928baa86e0..052dd05574ab1 100644 --- a/onnxruntime/core/providers/cuda/cu_inc/common.cuh +++ b/onnxruntime/core/providers/cuda/cu_inc/common.cuh @@ -5,7 +5,9 @@ #include #include #include +#include #include +#include #include #include #include "core/providers/cuda/cuda_common.h" @@ -194,13 +196,13 @@ template <> __device__ __inline__ half _Ceil(half a) { return half(ceilf((float)a)); } template -__device__ __inline__ T _Floor(T a); +__device__ __host__ __inline__ T _Floor(T a); template <> -__device__ __inline__ float _Floor(float a) { return floorf(a); } +__device__ __host__ __inline__ float _Floor(float a) { return floorf(a); } template <> -__device__ __inline__ double _Floor(double a) { return floor(a); } +__device__ __host__ __inline__ double _Floor(double a) { return floor(a); } template <> __device__ __inline__ half _Floor(half a) { return half(floorf((float)a)); } @@ -230,13 +232,13 @@ template <> __device__ __inline__ half _Erf(half a) { return half(erff((float)a)); } template -__device__ __inline__ T _Round(T a); +__device__ __host__ __inline__ T _Round(T a); template <> -__device__ __inline__ float _Round(float a) { return rintf(a); } +__device__ __host__ __inline__ float _Round(float a) { return rintf(a); } template <> -__device__ __inline__ double _Round(double a) { return rint(a); } +__device__ __host__ __inline__ double _Round(double a) { return rint(a); } template <> __device__ __inline__ half _Round(half a) { @@ -345,9 +347,29 @@ __device__ __inline__ half _Pow(half a, half b) { return half(powf((float)a, (fl template __device__ __inline__ T _Min(T a, T b) { return a < b ? a : b; } +template <> +__device__ __inline__ float _Min(float a, float b) { + return (isnan(a) || isnan(b)) ? std::numeric_limits::quiet_NaN() : ( a < b ? a : b ); +} + +template <> +__device__ __inline__ double _Min(double a, double b) { + return (isnan(a) || isnan(b)) ? std::numeric_limits::quiet_NaN() : ( a < b ? a : b ); +} + template __device__ __inline__ T _Max(T a, T b) { return a > b ? a : b; } +template <> +__device__ __inline__ float _Max(float a, float b) { + return (isnan(a) || isnan(b)) ? std::numeric_limits::quiet_NaN() : ( a > b ? a : b ); +} + +template <> +__device__ __inline__ double _Max(double a, double b) { + return (isnan(a) || isnan(b)) ? std::numeric_limits::quiet_NaN() : ( a > b ? a : b ); +} + template __device__ __inline__ T _Abs(T a) { return a > (T)0 ? a : -a; } @@ -438,6 +460,157 @@ __device__ __inline__ BFloat16 _Fmod(BFloat16 a, BFloat16 b) { return fmodf((float)a, (float)b); } +namespace isinf_details { +template +struct IsInfTyped { + static __device__ __inline__ bool IsInf(T a) { + // cast is needed because on non MS compilers, + // because there isinf() returns int + // and we want to avoid stupid warnings + return static_cast(isinf(a)); + } + static __device__ __inline__ bool IsInfPos(T a) { + return a == std::numeric_limits::infinity(); + } + static __device__ __inline__ bool IsInfNeg(T a) { + return a == -std::numeric_limits::infinity(); + } +}; + +template <> +struct IsInfTyped { + static __device__ __inline__ bool IsInf(half a) { + return MLFloat16::kPositiveInfinityBits == + static_cast(*reinterpret_cast(&a) & ~MLFloat16::kSignMask); + } + static __device__ __inline__ bool IsInfPos(half a) { + return MLFloat16::kPositiveInfinityBits == *reinterpret_cast(&a); + } + static __device__ __inline__ bool IsInfNeg(half a) { + return MLFloat16::kNegativeInfinityBits == *reinterpret_cast(&a); + } +}; + +template <> +struct IsInfTyped { + static __device__ __inline__ bool IsInf(BFloat16 a) { + return BFloat16::kPositiveInfinityBits == + static_cast(*reinterpret_cast(&a) & ~BFloat16::kSignMask); + } + static __device__ __inline__ bool IsInfPos(BFloat16 a) { + return BFloat16::kPositiveInfinityBits == *reinterpret_cast(&a); + } + static __device__ __inline__ bool IsInfNeg(BFloat16 a) { + return BFloat16::kNegativeInfinityBits == *reinterpret_cast(&a); + } +}; + +#if !defined(DISABLE_FLOAT8_TYPES) + +template +struct ReturnFalse { + constexpr static bool __device__ __inline__ IsInf(T) { return false; } + constexpr static bool __device__ __inline__ IsInfPos(T) { return false; } + constexpr static bool __device__ __inline__ IsInfNeg(T) { return false; } +}; + +template <> +struct IsInfTyped : ReturnFalse {}; + +template <> +struct IsInfTyped : ReturnFalse {}; + +template <> +struct IsInfTyped { + static __device__ __inline__ bool IsInf(Float8E5M2 a) { + return a.val == 0b01111100 || a.val == 0b11111100; + } + static __device__ __inline__ bool IsInfPos(Float8E5M2 a) { + return a.val == 0b01111100; + } + static __device__ __inline__ bool IsInfNeg(Float8E5M2 a) { + return a.val == 0b11111100; + } +}; + +template <> +struct IsInfTyped : ReturnFalse {}; + +#endif +} // namespace isinf_details + +template +struct _IsInf { + __device__ __inline__ bool operator()(T a) const { + if constexpr (detect_positive && detect_negative) { + return isinf_details::IsInfTyped::IsInf(a); + } else if constexpr (detect_positive) { + return isinf_details::IsInfTyped::IsInfPos(a); + } else if constexpr (detect_negative) { + return isinf_details::IsInfTyped::IsInfNeg(a); + } else { + return false; + } + } +}; + +// float and double +template +struct _IsNan { + __device__ __inline__ bool operator()(T a) const { + return isnan(a); + } +}; + +template <> +struct _IsNan { + __device__ __inline__ bool operator()(half a) const { + return static_cast(*reinterpret_cast(&a) & ~MLFloat16::kSignMask) + > MLFloat16::kPositiveInfinityBits; + } +}; + +template <> +struct _IsNan { + __device__ __inline__ bool operator()(BFloat16 a) const { + return static_cast(*reinterpret_cast(&a) & ~BFloat16::kSignMask) + > BFloat16::kPositiveInfinityBits; + } +}; + +#if !defined(DISABLE_FLOAT8_TYPES) + +template<> +struct _IsNan { + __device__ __inline__ bool operator()(Float8E4M3FN a) const { + return (*reinterpret_cast(&a) & 0x7f) == 0x7f; + } +}; + +template<> +struct _IsNan { + __device__ __inline__ bool operator()(Float8E4M3FNUZ a) const { + return *reinterpret_cast(&a) == 0x80; + } +}; + +template<> +struct _IsNan { + __device__ __inline__ bool operator()(Float8E5M2 a) const { + uint8_t c = *reinterpret_cast(&a); + return ((c & 0x7c) == 0x7c) && ((c & 0x03) != 0x00); + } +}; + +template<> +struct _IsNan { + __device__ __inline__ bool operator()(Float8E5M2FNUZ a) const { + return *reinterpret_cast(&a) == 0x80; + } +}; + +#endif + // We would like to use 64-bit integer to support large matrices. However, CUDA seems to support only 32-bit integer // For now, use int32_t to ensure that both Linux and Windows see this as 32 bit integer type. #ifndef CUDA_LONG diff --git a/onnxruntime/core/providers/cuda/cuda_common.h b/onnxruntime/core/providers/cuda/cuda_common.h index 41c999bacee13..61da125b40953 100644 --- a/onnxruntime/core/providers/cuda/cuda_common.h +++ b/onnxruntime/core/providers/cuda/cuda_common.h @@ -70,6 +70,15 @@ class ToCudaType { } }; +template <> +class ToCudaType { + public: + typedef Float8E4M3FNUZ MappedType; + static MappedType FromFloat(float f) { + return MappedType(f); + } +}; + template <> class ToCudaType { public: @@ -79,6 +88,15 @@ class ToCudaType { } }; +template <> +class ToCudaType { + public: + typedef Float8E5M2FNUZ MappedType; + static MappedType FromFloat(float f) { + return MappedType(f); + } +}; + #endif inline bool CalculateFdmStrides(gsl::span p, const std::vector& dims) { diff --git a/onnxruntime/core/providers/cuda/cuda_execution_provider.cc b/onnxruntime/core/providers/cuda/cuda_execution_provider.cc index 48a952e6dd98f..05d9f3b5a1e8f 100644 --- a/onnxruntime/core/providers/cuda/cuda_execution_provider.cc +++ b/onnxruntime/core/providers/cuda/cuda_execution_provider.cc @@ -3,6 +3,7 @@ // Licensed under the MIT License. #include "core/common/inlined_containers.h" +#include "core/common/parse_string.h" #include "core/providers/shared_library/provider_api.h" #include "core/platform/env_var_utils.h" #include "core/providers/cuda/cuda_execution_provider.h" @@ -11,6 +12,7 @@ #include "core/providers/cuda/cuda_fwd.h" #include "core/providers/cuda/gpu_data_transfer.h" #include "core/providers/cuda/cuda_profiler.h" +#include "core/session/onnxruntime_run_options_config_keys.h" #ifndef USE_CUDA_MINIMAL #ifndef DISABLE_CONTRIB_OPS @@ -190,31 +192,60 @@ CUDAExecutionProvider::PerThreadContext::~PerThreadContext() { #endif } -bool CUDAExecutionProvider::PerThreadContext::IsGraphCaptureAllowed() const { - return regular_run_count_before_graph_capture_ >= min_num_runs_before_cuda_graph_capture_; +bool CUDAExecutionProvider::PerThreadContext::IsGraphCaptureAllowed( + CudaGraphAnnotation_t cuda_graph_annotation_id) const { + if (!IsGraphCaptureAllowedOnRun(cuda_graph_annotation_id)) { + return false; + } + if (graph_id_to_run_count_.find(cuda_graph_annotation_id) == graph_id_to_run_count_.end()) { + return false; + } + return graph_id_to_run_count_.at(cuda_graph_annotation_id) >= min_num_runs_before_cuda_graph_capture_; +} + +bool CUDAExecutionProvider::PerThreadContext::IsGraphCaptureAllowedOnRun( + CudaGraphAnnotation_t cuda_graph_annotation_id) const { + return cuda_graph_.IsGraphCaptureAllowedOnRun(cuda_graph_annotation_id); +} + +CudaGraphAnnotation_t CUDAExecutionProvider::PerThreadContext::GetCudaGraphAnnotationId( + const onnxruntime::RunOptions& run_options) const { + auto graph_annotation_str = + run_options.GetConfigOptions().GetConfigEntry(kOrtRunOptionsConfigCudaGraphAnnotation); + // If graph annotation is not provided, fall back to the one cuda graph per session behavior + CudaGraphAnnotation_t cuda_graph_annotation_id = 0; + if (graph_annotation_str.has_value()) { + ORT_ENFORCE(TryParseStringWithClassicLocale(*graph_annotation_str, cuda_graph_annotation_id), + "Failed to parse the cuda graph annotation id: ", + *graph_annotation_str); + } + + return cuda_graph_annotation_id; } -void CUDAExecutionProvider::PerThreadContext::CaptureBegin() { - cuda_graph_.Reset(); - cuda_graph_.CaptureBegin(); +void CUDAExecutionProvider::PerThreadContext::CaptureBegin(CudaGraphAnnotation_t cuda_graph_annotation_id) { + cuda_graph_.CaptureBegin(cuda_graph_annotation_id); } -void CUDAExecutionProvider::PerThreadContext::CaptureEnd() { - cuda_graph_.CaptureEnd(); - is_graph_captured_ = true; +void CUDAExecutionProvider::PerThreadContext::CaptureEnd(CudaGraphAnnotation_t cuda_graph_annotation_id) { + cuda_graph_.CaptureEnd(cuda_graph_annotation_id); } -bool CUDAExecutionProvider::PerThreadContext::IsGraphCaptured() const { - return is_graph_captured_; +bool CUDAExecutionProvider::PerThreadContext::IsGraphCaptured(CudaGraphAnnotation_t graph_annotation_id) const { + return cuda_graph_.IsGraphCaptured(graph_annotation_id); } -Status CUDAExecutionProvider::PerThreadContext::ReplayGraph() { - ORT_ENFORCE(IsGraphCaptured()); - return cuda_graph_.Replay(); +Status CUDAExecutionProvider::PerThreadContext::ReplayGraph(CudaGraphAnnotation_t graph_annotation_id) { + return cuda_graph_.Replay(graph_annotation_id); } -void CUDAExecutionProvider::PerThreadContext::IncrementRegularRunCountBeforeGraphCapture() { - ++regular_run_count_before_graph_capture_; +void CUDAExecutionProvider::PerThreadContext::IncrementRegularRunCountBeforeGraphCapture( + CudaGraphAnnotation_t cuda_graph_annotation_id) { + if (graph_id_to_run_count_.find(cuda_graph_annotation_id) == graph_id_to_run_count_.end()) { + graph_id_to_run_count_[cuda_graph_annotation_id] = 1; + return; + } + graph_id_to_run_count_[cuda_graph_annotation_id]++; } void OverrideTunableOpInfoByEnv(CUDAExecutionProviderInfo& info) { @@ -386,25 +417,28 @@ Status CUDAExecutionProvider::Sync() const { return Status::OK(); } -Status CUDAExecutionProvider::OnRunStart() { +Status CUDAExecutionProvider::OnRunStart(const onnxruntime::RunOptions& run_options) { // always set CUDA device when session::Run() in case it runs in a worker thread CUDA_RETURN_IF_ERROR(cudaSetDevice(GetDeviceId())); - if (IsGraphCaptureEnabled() && GetPerThreadContext().IsGraphCaptureAllowed() && !GetPerThreadContext().IsGraphCaptured()) { + CudaGraphAnnotation_t cuda_graph_annotation_id = GetPerThreadContext().GetCudaGraphAnnotationId(run_options); + if (IsGraphCaptureEnabled() && !GetPerThreadContext().IsGraphCaptured(cuda_graph_annotation_id) && + GetPerThreadContext().IsGraphCaptureAllowed(cuda_graph_annotation_id)) { LOGS(*GetLogger(), INFO) << "Capturing the cuda graph for this model"; - GetPerThreadContext().CaptureBegin(); + GetPerThreadContext().CaptureBegin(cuda_graph_annotation_id); } return Status::OK(); } -Status CUDAExecutionProvider::OnRunEnd(bool sync_stream) { - if (IsGraphCaptureEnabled() && !GetPerThreadContext().IsGraphCaptured()) { - if (GetPerThreadContext().IsGraphCaptureAllowed()) { - GetPerThreadContext().CaptureEnd(); +Status CUDAExecutionProvider::OnRunEnd(bool sync_stream, const onnxruntime::RunOptions& run_options) { + CudaGraphAnnotation_t cuda_graph_annotation_id = GetPerThreadContext().GetCudaGraphAnnotationId(run_options); + if (IsGraphCaptureEnabled() && !GetPerThreadContext().IsGraphCaptured(cuda_graph_annotation_id)) { + if (GetPerThreadContext().IsGraphCaptureAllowed(cuda_graph_annotation_id)) { + GetPerThreadContext().CaptureEnd(cuda_graph_annotation_id); // CUDA work issued to a capturing stream doesn’t actually run on the GPU, // so run the captured graph here to actually execute the work. - ORT_RETURN_IF_ERROR(GetPerThreadContext().ReplayGraph()); + ORT_RETURN_IF_ERROR(GetPerThreadContext().ReplayGraph(cuda_graph_annotation_id)); } else { - GetPerThreadContext().IncrementRegularRunCountBeforeGraphCapture(); + GetPerThreadContext().IncrementRegularRunCountBeforeGraphCapture(cuda_graph_annotation_id); } } @@ -433,12 +467,12 @@ bool CUDAExecutionProvider::IsGraphCaptureEnabled() const { return info_.enable_cuda_graph; } -bool CUDAExecutionProvider::IsGraphCaptured() const { - return GetPerThreadContext().IsGraphCaptured(); +bool CUDAExecutionProvider::IsGraphCaptured(int graph_annotation_id) const { + return GetPerThreadContext().IsGraphCaptured(graph_annotation_id); } -Status CUDAExecutionProvider::ReplayGraph() { - return GetPerThreadContext().ReplayGraph(); +Status CUDAExecutionProvider::ReplayGraph(int graph_annotation_id) { + return GetPerThreadContext().ReplayGraph(graph_annotation_id); } namespace cuda { @@ -722,6 +756,7 @@ class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kO class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 9, 12, uint32_t, Cast); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 9, 12, uint64_t, Cast); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 9, 12, bool, Cast); +class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 9, 12, IsNaN); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 2, 10, float, Pad); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 2, 10, double, Pad); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 2, 10, MLFloat16, Pad); @@ -830,6 +865,7 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 10, MLFloat16, ThresholdedRelu); class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 10, 10, TopK); class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 10, 12, Mod); +class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 10, 19, IsInf); // opset 11 class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 11, Compress); @@ -913,7 +949,6 @@ class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDom // OpSet 12 class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 12, 12, Clip); - class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 12, float, MaxPool); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 12, double, MaxPool); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 12, MLFloat16, MaxPool); @@ -1062,6 +1097,7 @@ class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, U class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, Concat); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, Gather); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, GatherElements); +class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, 19, IsNaN); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, float, MatMul); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, double, MatMul); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, MLFloat16, MatMul); @@ -1109,11 +1145,11 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, MLFloat16, ReduceSumSquare); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, int64_t, GatherND); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, Dropout); -class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, float, Resize); -class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, double, Resize); -class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, MLFloat16, Resize); -class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, int32_t, Resize); -class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, uint8_t, Resize); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, 17, float, Resize); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, 17, double, Resize); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, 17, MLFloat16, Resize); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, 17, int32_t, Resize); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, 17, uint8_t, Resize); class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, 18, If); class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, 18, Loop); class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 13, Flatten); @@ -1202,9 +1238,12 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 14, float, LSTM); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 14, double, LSTM); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 14, MLFloat16, LSTM); -class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 14, 14, float, BatchNormalization); -class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 14, 14, double, BatchNormalization); -class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 14, 14, MLFloat16, BatchNormalization); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME( + kCudaExecutionProvider, kOnnxDomain, 14, 14, float, BatchNormalization); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME( + kCudaExecutionProvider, kOnnxDomain, 14, 14, double, BatchNormalization); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME( + kCudaExecutionProvider, kOnnxDomain, 14, 14, MLFloat16, BatchNormalization); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, float, ReduceMin); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, double, ReduceMin); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, MLFloat16, ReduceMin); @@ -1256,6 +1295,7 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 16, double, LessOrEqual); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 16, MLFloat16, LessOrEqual); class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 16, 17, ScatterElements); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 16, float, GridSample); // Opset 17 class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 17, float, LayerNormalization); @@ -1276,6 +1316,11 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, double, Pad); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, MLFloat16, Pad); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, bool, Pad); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, float, Resize); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, double, Resize); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, MLFloat16, Resize); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, int32_t, Resize); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 18, uint8_t, Resize); // Opset 19 class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 19, float, Cast); @@ -1329,6 +1374,13 @@ class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 19, S class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 19, Shape); #endif +// Opset 20 +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 20, float, Gelu); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 20, double, Gelu); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 20, MLFloat16, Gelu); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 20, IsInf); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kOnnxDomain, 20, IsNaN); + template <> KernelCreateInfo BuildKernelCreateInfo() { return {}; @@ -1513,6 +1565,7 @@ static Status RegisterCudaKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, @@ -1725,6 +1778,8 @@ static Status RegisterCudaKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, // opset 11 BuildKernelCreateInfo, @@ -1937,6 +1992,7 @@ static Status RegisterCudaKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, @@ -2003,11 +2059,11 @@ static Status RegisterCudaKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, @@ -2096,9 +2152,12 @@ static Status RegisterCudaKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, - BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, @@ -2143,6 +2202,7 @@ static Status RegisterCudaKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, // Opset 17 BuildKernelCreateInfo, @@ -2169,6 +2229,11 @@ static Status RegisterCudaKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, // Opset 19 BuildKernelCreateInfo, @@ -2222,6 +2287,13 @@ static Status RegisterCudaKernels(KernelRegistry& kernel_registry) { BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + + // Opset 20 + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, #endif }; diff --git a/onnxruntime/core/providers/cuda/cuda_execution_provider.h b/onnxruntime/core/providers/cuda/cuda_execution_provider.h index 55f0b5570e0ee..f53779058a8af 100644 --- a/onnxruntime/core/providers/cuda/cuda_execution_provider.h +++ b/onnxruntime/core/providers/cuda/cuda_execution_provider.h @@ -29,9 +29,9 @@ class CUDAExecutionProvider : public IExecutionProvider { Status Sync() const override; - Status OnRunStart() override; + Status OnRunStart(const onnxruntime::RunOptions& run_options) override; - Status OnRunEnd(bool sync_stream) override; + Status OnRunEnd(bool sync_stream, const onnxruntime::RunOptions& run_options) override; DataLayout GetPreferredLayout() const override; @@ -92,8 +92,8 @@ class CUDAExecutionProvider : public IExecutionProvider { std::unique_ptr GetProfiler() override; bool IsGraphCaptureEnabled() const override; - bool IsGraphCaptured() const override; - Status ReplayGraph() override; + bool IsGraphCaptured(CudaGraphAnnotation_t graph_annotation_id) const override; + Status ReplayGraph(CudaGraphAnnotation_t graph_annotation_id) override; void RegisterStreamHandlers(IStreamCommandHandleRegistry& stream_handle_registry, AllocatorMap& allocators) const override; OrtDevice GetOrtDeviceByMemType(OrtMemType mem_type) const override; std::vector CreatePreferredAllocators() override; @@ -115,6 +115,7 @@ class CUDAExecutionProvider : public IExecutionProvider { PerThreadContext(OrtDevice::DeviceId device_id, cudaStream_t stream, size_t cuda_mem_limit, ArenaExtendStrategy arena_extend_strategy, CUDAExecutionProviderExternalAllocatorInfo external_alloc_info, OrtArenaCfg* arena_cfg); ~PerThreadContext(); + ORT_DISALLOW_COPY_ASSIGNMENT_AND_MOVE(PerThreadContext); cublasHandle_t CublasHandle() const { return cublas_handle_; @@ -130,41 +131,33 @@ class CUDAExecutionProvider : public IExecutionProvider { template const T* GetConstOnes(size_t count, cudaStream_t stream) { - constexpr bool is_float = std::is_same::value; - constexpr bool is_double = std::is_same::value; - constexpr bool is_half = std::is_same::value; - constexpr bool is_BFloat16 = std::is_same::value; -#if !defined(DISABLE_FLOAT8_TYPES) - constexpr bool is_Float8E4M3FN = std::is_same::value; - constexpr bool is_Float8E5M2 = std::is_same::value; -#endif - if (is_float) { + if constexpr (std::is_same::value) { if (!constant_ones_float_) { constant_ones_float_ = cuda::CreateConstantOnes(); } return reinterpret_cast(constant_ones_float_->GetBuffer(stream, count)); - } else if (is_double) { + } else if constexpr (std::is_same::value) { if (!constant_ones_double_) { constant_ones_double_ = cuda::CreateConstantOnes(); } return reinterpret_cast(constant_ones_double_->GetBuffer(stream, count)); - } else if (is_half) { + } else if constexpr (std::is_same::value) { if (!constant_ones_half_) { constant_ones_half_ = cuda::CreateConstantOnes(); } return reinterpret_cast(constant_ones_half_->GetBuffer(stream, count)); - } else if (is_BFloat16) { + } else if constexpr (std::is_same::value) { if (!constant_ones_bfloat16_) { constant_ones_bfloat16_ = cuda::CreateConstantOnes(); } return reinterpret_cast(constant_ones_bfloat16_->GetBuffer(stream, count)); #if !defined(DISABLE_FLOAT8_TYPES) - } else if (is_Float8E4M3FN) { + } else if constexpr (std::is_same::value) { if (!constant_ones_float8e4m3fn_) { constant_ones_float8e4m3fn_ = cuda::CreateConstantOnes(); } return reinterpret_cast(constant_ones_float8e4m3fn_->GetBuffer(stream, count)); - } else if (is_Float8E5M2) { + } else if constexpr (std::is_same::value) { if (!constant_ones_float8e5m2_) { constant_ones_float8e5m2_ = cuda::CreateConstantOnes(); } @@ -175,12 +168,14 @@ class CUDAExecutionProvider : public IExecutionProvider { } } - bool IsGraphCaptureAllowed() const; - void CaptureBegin(); - void CaptureEnd(); - bool IsGraphCaptured() const; - Status ReplayGraph(); - void IncrementRegularRunCountBeforeGraphCapture(); + bool IsGraphCaptureAllowed(CudaGraphAnnotation_t cuda_graph_annotation_id) const; + bool IsGraphCaptureAllowedOnRun(CudaGraphAnnotation_t cuda_graph_annotation_id) const; + void CaptureBegin(CudaGraphAnnotation_t cuda_graph_annotation_id); + void CaptureEnd(CudaGraphAnnotation_t cuda_graph_annotation_id); + bool IsGraphCaptured(CudaGraphAnnotation_t cuda_graph_annotation_id) const; + CudaGraphAnnotation_t GetCudaGraphAnnotationId(const onnxruntime::RunOptions& run_options) const; + Status ReplayGraph(CudaGraphAnnotation_t cuda_graph_annotation_id); + void IncrementRegularRunCountBeforeGraphCapture(CudaGraphAnnotation_t cuda_graph_annotation_id); private: cublasHandle_t cublas_handle_ = nullptr; @@ -199,8 +194,8 @@ class CUDAExecutionProvider : public IExecutionProvider { // Cuda graph with multi threads will be supported in the future, so cuda_graph_ // is put under PerThreadContext. CUDAGraph cuda_graph_; - bool is_graph_captured_ = false; - int regular_run_count_before_graph_capture_ = 0; + // Map of graph id to regular_run_count_before_graph_capture + std::unordered_map graph_id_to_run_count_; // There is chance that the second regular run allocates GPU memory for causes like: // (1) memory pattern is enabled. (2) arena allocation for stream. diff --git a/onnxruntime/core/providers/cuda/cuda_graph.cc b/onnxruntime/core/providers/cuda/cuda_graph.cc index 230d664391611..8353c654681fc 100644 --- a/onnxruntime/core/providers/cuda/cuda_graph.cc +++ b/onnxruntime/core/providers/cuda/cuda_graph.cc @@ -9,17 +9,44 @@ namespace onnxruntime { -CUDAGraph::CUDAGraph(cudaStream_t stream) : stream_(stream) { +CudaGraphSet::~CudaGraphSet() { + Clear(); } -void CUDAGraph::SetStream(cudaStream_t stream) { +void CudaGraphSet::Clear() { + for (auto& it : cuda_graphs_) { + CUDA_CALL_THROW(cudaGraphExecDestroy(it.second)); + } + cuda_graphs_.clear(); +} + +bool CudaGraphSet::Contains(CudaGraphAnnotation_t cuda_graph_annotation_id) const { + return cuda_graphs_.find(cuda_graph_annotation_id) != cuda_graphs_.end(); +} + +void CudaGraphSet::Put(CudaGraphAnnotation_t cuda_graph_annotation_id, cudaGraphExec_t graph_exec) { + ORT_ENFORCE(!Contains(cuda_graph_annotation_id)); + cuda_graphs_.emplace(cuda_graph_annotation_id, graph_exec); +} + +cudaGraphExec_t CudaGraphSet::Get(CudaGraphAnnotation_t cuda_graph_annotation_id) const { + ORT_ENFORCE(Contains(cuda_graph_annotation_id)); + return cuda_graphs_.at(cuda_graph_annotation_id); +} + +CUDAGraphManager::CUDAGraphManager(cudaStream_t stream) : stream_(stream) { +} + +void CUDAGraphManager::SetStream(cudaStream_t stream) { stream_ = stream; } -void CUDAGraph::CaptureBegin() { - ORT_ENFORCE(!has_graph_exec_, - "This cuda graph has already captured a graph. " - "Create a new instance to capture a new graph."); +void CUDAGraphManager::CaptureBegin(CudaGraphAnnotation_t cuda_graph_annotation_id) { + ORT_ENFORCE(IsGraphCaptureAllowedOnRun(cuda_graph_annotation_id)); + + ORT_ENFORCE(!cuda_graph_set_.Contains(cuda_graph_annotation_id), + "Trying to capture a graph with annotation id ", cuda_graph_annotation_id, + " that already used. Please use a different annotation id."); CUDA_CALL_THROW(cudaStreamSynchronize(stream_)); // For now cuda graph can only work with a single thread. In the future, we @@ -29,40 +56,48 @@ void CUDAGraph::CaptureBegin() { CUDA_CALL_THROW(cudaStreamBeginCapture(stream_, cudaStreamCaptureModeGlobal)); } -void CUDAGraph::CaptureEnd() { - CUDA_CALL_THROW(cudaStreamEndCapture(stream_, &graph_)); - if (graph_ == NULL) { +void CUDAGraphManager::CaptureEnd(CudaGraphAnnotation_t cuda_graph_annotation_id) { + cudaGraph_t graph = NULL; + CUDA_CALL_THROW(cudaStreamEndCapture(stream_, &graph)); + if (graph == NULL) { ORT_THROW("CUDAGraph::CaptureEnd: graph_ is NULL"); } - has_graph_ = true; - CUDA_CALL_THROW(cudaGraphInstantiate(&graph_exec_, graph_, NULL, NULL, 0)); - has_graph_exec_ = true; - CUDA_CALL_THROW(cudaGraphDestroy(graph_)); - has_graph_ = false; + cudaGraphExec_t graph_exec = NULL; + CUDA_CALL_THROW(cudaGraphInstantiate(&graph_exec, graph, NULL, NULL, 0)); + CUDA_CALL_THROW(cudaGraphDestroy(graph)); + + // Currently all the captured graphs will be tied to the session's lifecycle + // TODO(wy): Addd an interface to free captured graphs + cuda_graph_set_.Put(cuda_graph_annotation_id, graph_exec); } -Status CUDAGraph::Replay() { +Status CUDAGraphManager::Replay(CudaGraphAnnotation_t cuda_graph_annotation_id) { // Although this function is not thread safe, the lock is not needed here because // CUDA EP maintains a separate cuda graph per thread - LOGS_DEFAULT(INFO) << "Replaying CUDA graph on stream " << stream_; - CUDA_RETURN_IF_ERROR(cudaGraphLaunch(graph_exec_, stream_)); + LOGS_DEFAULT(INFO) << "Replaying CUDA graph on stream " << stream_ << " with cuda_graph_annotation_id " + << cuda_graph_annotation_id; + + cudaGraphExec_t graph_exec = cuda_graph_set_.Get(cuda_graph_annotation_id); + CUDA_RETURN_IF_ERROR(cudaGraphLaunch(graph_exec, stream_)); + CUDA_RETURN_IF_ERROR(cudaStreamSynchronize(stream_)); return Status::OK(); } -void CUDAGraph::Reset() { - if (has_graph_) { - CUDA_CALL_THROW(cudaGraphDestroy(graph_)); - has_graph_ = false; - } - if (has_graph_exec_) { - CUDA_CALL_THROW(cudaGraphExecDestroy(graph_exec_)); - has_graph_exec_ = false; - } +bool CUDAGraphManager::IsGraphCaptureAllowedOnRun(CudaGraphAnnotation_t cuda_graph_annotation_id) const { + return cuda_graph_annotation_id != kCudaGraphAnnotationSkip; +} + +bool CUDAGraphManager::IsGraphCaptured(CudaGraphAnnotation_t cuda_graph_annotation_id) const { + return cuda_graph_set_.Contains(cuda_graph_annotation_id); +} + +void CUDAGraphManager::Reset() { + cuda_graph_set_.Clear(); } -CUDAGraph::~CUDAGraph() { +CUDAGraphManager::~CUDAGraphManager() { Reset(); } diff --git a/onnxruntime/core/providers/cuda/cuda_graph.h b/onnxruntime/core/providers/cuda/cuda_graph.h index 9bcefcc64ea77..064994c1f14ae 100644 --- a/onnxruntime/core/providers/cuda/cuda_graph.h +++ b/onnxruntime/core/providers/cuda/cuda_graph.h @@ -3,33 +3,55 @@ #pragma once +#include + #include "core/common/common.h" #include "core/platform/ort_mutex.h" #include "core/providers/cuda/cuda_pch.h" namespace onnxruntime { -using CaptureId_t = unsigned long long; +using CudaGraphAnnotation_t = int; +using CudaGraphSet_t = std::unordered_map; + +constexpr CudaGraphAnnotation_t kCudaGraphAnnotationSkip = -1; +constexpr CudaGraphAnnotation_t kCudaGraphAnnotationDefault = 0; + +struct CudaGraphSet { + CudaGraphSet(){}; + ~CudaGraphSet(); -struct CUDAGraph { - CUDAGraph(){}; - CUDAGraph(cudaStream_t stream); - ~CUDAGraph(); + void Clear(); + bool Contains(CudaGraphAnnotation_t cuda_graph_annotation_id) const; + void Put(CudaGraphAnnotation_t cuda_graph_annotation_id, cudaGraphExec_t graph_exec); + cudaGraphExec_t Get(CudaGraphAnnotation_t cuda_graph_annotation_id) const; + + private: + CudaGraphSet_t cuda_graphs_; +}; + +struct CUDAGraphManager { + CUDAGraphManager(){}; + CUDAGraphManager(cudaStream_t stream); + ~CUDAGraphManager(); void SetStream(cudaStream_t stream); - void CaptureBegin(); - void CaptureEnd(); - Status Replay(); + void CaptureBegin(CudaGraphAnnotation_t cuda_graph_annotation_id); + void CaptureEnd(CudaGraphAnnotation_t cuda_graph_annotation_id); + Status Replay(CudaGraphAnnotation_t cuda_graph_annotation_id); + void Reset(); - private: - cudaGraph_t graph_ = NULL; - cudaGraphExec_t graph_exec_ = NULL; + bool IsGraphCaptureAllowedOnRun(CudaGraphAnnotation_t cuda_graph_annotation_id) const; + bool IsGraphCaptured(CudaGraphAnnotation_t cuda_graph_annotation_id) const; - bool has_graph_ = false; - bool has_graph_exec_ = false; + private: + CudaGraphSet cuda_graph_set_; + CudaGraphAnnotation_t cuda_graph_annotation_id_ = kCudaGraphAnnotationDefault; cudaStream_t stream_ = nullptr; // Does not own the stream }; +using CUDAGraph = CUDAGraphManager; + } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/cuda_nhwc_kernels.cc b/onnxruntime/core/providers/cuda/cuda_nhwc_kernels.cc index f416caecd115f..7afd2d430ec46 100644 --- a/onnxruntime/core/providers/cuda/cuda_nhwc_kernels.cc +++ b/onnxruntime/core/providers/cuda/cuda_nhwc_kernels.cc @@ -18,10 +18,14 @@ namespace onnxruntime::cuda { class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 7, 8, float, BatchNormalization); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 7, 8, double, + BatchNormalization); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 7, 8, MLFloat16, BatchNormalization); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 9, 13, float, BatchNormalization); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 9, 13, double, + BatchNormalization); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 9, 13, MLFloat16, BatchNormalization); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 1, 10, float, @@ -70,14 +74,34 @@ class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kM MaxPool); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 12, float, MaxPool); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 12, MLFloat16, MaxPool); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 12, int8_t, MaxPool); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 12, uint8_t, MaxPool); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 14, 14, float, BatchNormalization); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 14, 14, double, + BatchNormalization); class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 14, 14, MLFloat16, BatchNormalization); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 15, float, BatchNormalization); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 15, double, + BatchNormalization); class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 15, MLFloat16, BatchNormalization); +class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 1, 10, DepthToSpace); +class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 11, 12, DepthToSpace); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 13, DepthToSpace); +class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 1, 12, SpaceToDepth); +class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 13, SpaceToDepth); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME( + kCudaExecutionProvider, kMSInternalNHWCDomain, 1, 12, float, LRN); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME( + kCudaExecutionProvider, kMSInternalNHWCDomain, 1, 12, double, LRN); +class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME( + kCudaExecutionProvider, kMSInternalNHWCDomain, 1, 12, MLFloat16, LRN); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 13, float, LRN); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 13, double, LRN); +class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCudaExecutionProvider, kMSInternalNHWCDomain, 13, MLFloat16, LRN); Status RegisterCudaNhwcKernels(KernelRegistry& kernel_registry) { static const BuildKernelCreateInfoFn nhwc_function_table[] = { @@ -86,18 +110,26 @@ Status RegisterCudaNhwcKernels(KernelRegistry& kernel_registry) { kCudaExecutionProvider, kMSInternalNHWCDomain, 7, 8, MLFloat16, BatchNormalization)>, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, BuildKernelCreateInfo, + + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, + BuildKernelCreateInfo, }; for (auto& function_table_entry : nhwc_function_table) { diff --git a/onnxruntime/core/providers/cuda/cuda_stream_handle.h b/onnxruntime/core/providers/cuda/cuda_stream_handle.h index b02c167e9e9ec..15e7a0553c84e 100644 --- a/onnxruntime/core/providers/cuda/cuda_stream_handle.h +++ b/onnxruntime/core/providers/cuda/cuda_stream_handle.h @@ -11,6 +11,7 @@ namespace onnxruntime { struct CudaStream; +void WaitCudaNotificationOnDevice(Stream& stream, synchronize::Notification& notification); struct DeferredCpuAllocator : public OrtAllocator { DeferredCpuAllocator(CudaStream&); @@ -47,6 +48,8 @@ struct CudaStream : Stream { onnxruntime::IAllocator* GetCpuAllocator() const { return cpu_allocator_.get(); } + WaitNotificationFn GetWaitNotificationFn() const override { return WaitCudaNotificationOnDevice; } + private: std::vector deferred_cpu_buffers_; AllocatorPtr cpu_allocator_; @@ -64,5 +67,4 @@ void RegisterCudaStreamHandles(IStreamCommandHandleRegistry& stream_handle_regis cudnnHandle_t external_cudnn_handle, cublasHandle_t external_cublass_handle, const CUDAExecutionProviderInfo& ep_info); -void WaitCudaNotificationOnDevice(Stream& stream, synchronize::Notification& notification); } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/cudnn_common.cc b/onnxruntime/core/providers/cuda/cudnn_common.cc index c850f7b583bfc..9aa011c1d0ec4 100644 --- a/onnxruntime/core/providers/cuda/cudnn_common.cc +++ b/onnxruntime/core/providers/cuda/cudnn_common.cc @@ -37,13 +37,28 @@ Status CudnnTensor::Set(gsl::span input_dims, cudnnDataType_t dat TensorPitches pitches(input_dims); InlinedVector dims(rank); InlinedVector strides(rank); - for (int i = 0; i < rank; i++) { - dims[i] = gsl::narrow_cast(input_dims[i]); - strides[i] = gsl::narrow_cast(pitches[i]); - } - if (is_nhwc) { - std::swap(dims[1], dims[rank - 1]); - std::swap(strides[1], strides[rank - 1]); + + if (!is_nhwc) { + for (int i = 0; i < rank; i++) { + dims[i] = gsl::narrow_cast(input_dims[i]); + strides[i] = gsl::narrow_cast(pitches[i]); + } + } else { + // NHWDC <-> NCHWD + + // N + dims[0] = gsl::narrow_cast(input_dims[0]); + strides[0] = gsl::narrow_cast(pitches[0]); + + // HWD + for (int i = 1; i < rank - 1; i++) { + dims[i + 1] = gsl::narrow_cast(input_dims[i]); + strides[i + 1] = gsl::narrow_cast(pitches[i]); + } + + // C + dims[1] = gsl::narrow_cast(input_dims[rank - 1]); + strides[1] = gsl::narrow_cast(pitches[rank - 1]); } CUDNN_RETURN_IF_ERROR(cudnnSetTensorNdDescriptor(tensor_, dataType, static_cast(rank), dims.data(), strides.data())); return Status::OK(); @@ -160,7 +175,6 @@ cudnnDataType_t CudnnTensor::GetDataType() { template <> cudnnDataType_t CudnnTensor::GetDataType() { ORT_THROW("cuDNN doesn't support BFloat16."); - return CUDNN_DATA_FLOAT; } template <> diff --git a/onnxruntime/core/providers/cuda/cudnn_common.h b/onnxruntime/core/providers/cuda/cudnn_common.h index fdd14dedad47e..2cbeb13696270 100644 --- a/onnxruntime/core/providers/cuda/cudnn_common.h +++ b/onnxruntime/core/providers/cuda/cudnn_common.h @@ -24,12 +24,12 @@ class CudnnTensor final { operator cudnnTensorDescriptor_t() const { return tensor_; } + Status CreateTensorIfNeeded(); + template static cudnnDataType_t GetDataType(); private: - Status CreateTensorIfNeeded(); - cudnnTensorDescriptor_t tensor_; }; diff --git a/onnxruntime/core/providers/cuda/math/softmax_warpwise_impl.cuh b/onnxruntime/core/providers/cuda/math/softmax_warpwise_impl.cuh index c1b3d6ada8b77..5e2cec464a86b 100644 --- a/onnxruntime/core/providers/cuda/math/softmax_warpwise_impl.cuh +++ b/onnxruntime/core/providers/cuda/math/softmax_warpwise_impl.cuh @@ -1,18 +1,18 @@ /** -* Copyright (c) 2016-present, Facebook, Inc. -* -* Licensed under the Apache License, Version 2.0 (the "License"); -* you may not use this file except in compliance with the License. -* You may obtain a copy of the License at -* -* http://www.apache.org/licenses/LICENSE-2.0 -* -* Unless required by applicable law or agreed to in writing, software -* distributed under the License is distributed on an "AS IS" BASIS, -* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -* See the License for the specific language governing permissions and -* limitations under the License. -*/ + * Copyright (c) 2016-present, Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ // The code below is mostly copied from Pytorch PersistentSoftmax.cuh @@ -55,7 +55,6 @@ __device__ __forceinline__ void warp_reduce(acc_t* sum) { } } - // The softmax_warp_* methods perform softmax forward and backward propagation on samples spanning the fast dimension. // Each sample contains element_count scalar elements. element_count can be any integer value <= 1024. // The template arguments have the following meaning: @@ -163,7 +162,6 @@ __global__ void softmax_warp_forward(output_t* dst, const input_t* src, int batc } } - // softmax_warp_forward uses register to store data in fp32 even when data is fp16, which will cause register resource oversubscription when data is large, // and will lead to low CUDA warp occupancy and thus a poor kernel performance. // softmax_warp_forward_resource_efficient is implemented to solve the issue, it caches data in original data type, and casts it into fp32 when needed, @@ -176,17 +174,19 @@ __global__ void softmax_warp_forward_resource_efficient(output_t* dst, const inp constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE; int local_idx = threadIdx.x; - src += blockIdx.x * stride + local_idx; - dst += blockIdx.x * stride + local_idx; + src += blockIdx.x * stride + local_idx; + dst += blockIdx.x * stride + local_idx; extern __shared__ unsigned char smem[]; - input_t (&elements)[WARP_ITERATIONS][WARP_SIZE] = *reinterpret_cast(smem); + input_t(&elements)[WARP_ITERATIONS][WARP_SIZE] = *reinterpret_cast(smem); #pragma unroll for (int it = 0; it < WARP_ITERATIONS; ++it) { int element_index = local_idx + it * WARP_SIZE; if (element_index < element_count) { elements[it][local_idx] = src[it * WARP_SIZE]; } else { - elements[it][local_idx] = -std::numeric_limits::infinity(); + static_assert(std::numeric_limits::has_infinity, + "type of acc_t should have infinity to avoid infinity function return 0"); + elements[it][local_idx] = static_cast(-std::numeric_limits::infinity()); } } // compute max_value diff --git a/onnxruntime/core/providers/cuda/math/topk.cc b/onnxruntime/core/providers/cuda/math/topk.cc index d516537e25949..cf26e0acfa557 100644 --- a/onnxruntime/core/providers/cuda/math/topk.cc +++ b/onnxruntime/core/providers/cuda/math/topk.cc @@ -56,7 +56,7 @@ TopK::TopK(const OpKernelInfo& info) : CudaKernel(info) { info.GetAttrOrDefault("largest", &largest_, 1); info.GetAttrOrDefault("sorted", &sorted_, 1); if (!inputk) { - info.GetAttrOrDefault("k", &K_, 0); + info.GetAttrOrDefault("k", &attr_k_, 0); } } @@ -67,7 +67,7 @@ TopK::TopK(const OpKernelInfo& info) : CudaKernel(info) { static_cast(tensor_I->MutableDataRaw()), \ elem_nums_cuda, \ elem_nums.size(), \ - axis, K_, largest_, sorted_, N, dimension) + axis, k_value, largest_, sorted_, N, dimension) template Status TopK::ComputeInternal(OpKernelContext* ctx) const { @@ -77,19 +77,29 @@ Status TopK::ComputeInternal(OpKernelContext* ctx) const { int32_t axis = static_cast(axis_ < 0 ? rank + axis_ : axis_); ORT_ENFORCE(axis > -1 && axis < rank); + int64_t k_value = 0; if (inputk) { auto tensor_K = ctx->Input(1); ORT_ENFORCE(nullptr != tensor_K); - K_ = *tensor_K->Data(); - ORT_ENFORCE(K_ >= 0 && K_ <= tensor_X->Shape().GetDims()[axis]); + k_value = *tensor_K->Data(); + } else { // from attribute + k_value = attr_k_; } - auto output_shape = tensor_X->Shape(); - output_shape[axis] = K_; + // Now that we know the value of 'K' and the input shape, + // make a final validation before going to the implementation + const auto& input_shape = tensor_X->Shape(); + if ((k_value < 0) || (k_value > input_shape.GetDims()[axis])) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Value of K outside range. K value: ", k_value, + ". Input shape: ", input_shape, " . Axis: ", axis); + } + + auto output_shape = input_shape; + output_shape[axis] = k_value; auto tensor_V = ctx->Output(0, output_shape); auto tensor_I = ctx->Output(1, output_shape); - if (0 == K_) { + if (output_shape.Size() == 0) { // Bail out early if the output is going to be empty return Status::OK(); } diff --git a/onnxruntime/core/providers/cuda/math/topk.h b/onnxruntime/core/providers/cuda/math/topk.h index 9dec13ad2a930..5731df3130c5a 100644 --- a/onnxruntime/core/providers/cuda/math/topk.h +++ b/onnxruntime/core/providers/cuda/math/topk.h @@ -17,7 +17,7 @@ class TopK final : public CudaKernel { int64_t axis_; int64_t largest_; int64_t sorted_; - mutable int64_t K_; + int64_t attr_k_; }; } // namespace cuda } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/math/unary_elementwise_ops.cc b/onnxruntime/core/providers/cuda/math/unary_elementwise_ops.cc index fd8b69d7bd2f5..24593b255371c 100644 --- a/onnxruntime/core/providers/cuda/math/unary_elementwise_ops.cc +++ b/onnxruntime/core/providers/cuda/math/unary_elementwise_ops.cc @@ -71,6 +71,88 @@ Status UnaryElementwise::Prepare(OpKernelContext* context, UnaryElementwisePrepa return Status::OK(); \ } +ONNX_OPERATOR_VERSIONED_KERNEL_EX( + IsInf, + kOnnxDomain, + 10, + 19, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T1", BuildKernelDefConstraints()) + .TypeConstraint("T2", DataTypeImpl::GetTensorType()), + IsInf); + +ONNX_OPERATOR_KERNEL_EX( + IsInf, + kOnnxDomain, + 20, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T1", BuildKernelDefConstraints()) + .TypeConstraint("T2", DataTypeImpl::GetTensorType()), + IsInf); + +IsInf::IsInf(const OpKernelInfo& info) : UnaryElementwise(info) { + detect_positive_ = static_cast(info.GetAttrOrDefault("detect_positive", 1)); + detect_negative_ = static_cast(info.GetAttrOrDefault("detect_negative", 1)); + opset_ = info.node().SinceVersion(); +} + +Status IsInf::ComputeInternal(OpKernelContext* context) const { + UnaryElementwisePreparation p; + ORT_RETURN_IF_ERROR(UnaryElementwise::Prepare(context, &p)); + + Explicit_Impl_IsInf(Stream(context), opset_, detect_positive_, detect_negative_, + p.input_tensor->GetElementType(), p.input_tensor->DataRaw(), + p.output_tensor->MutableData(), + p.input_tensor->Shape().Size()); + return Status::OK(); +} + +// IsNan +ONNX_OPERATOR_VERSIONED_KERNEL_EX( + IsNaN, + kOnnxDomain, + 9, + 12, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T1", BuildKernelDefConstraints()) + .TypeConstraint("T2", DataTypeImpl::GetTensorType()), + IsNaN); + +ONNX_OPERATOR_VERSIONED_KERNEL_EX( + IsNaN, + kOnnxDomain, + 13, + 19, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T1", BuildKernelDefConstraints()) + .TypeConstraint("T2", DataTypeImpl::GetTensorType()), + IsNaN); + +ONNX_OPERATOR_KERNEL_EX( + IsNaN, + kOnnxDomain, + 20, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T1", BuildKernelDefConstraints()) + .TypeConstraint("T2", DataTypeImpl::GetTensorType()), + IsNaN); + +Status IsNaN::ComputeInternal(OpKernelContext* context) const { + UnaryElementwisePreparation p; + ORT_RETURN_IF_ERROR(UnaryElementwise::Prepare(context, &p)); + + Explicit_Impl_IsNan(Stream(context), p.input_tensor->GetElementType(), p.input_tensor->DataRaw(), + p.output_tensor->MutableData(), + p.input_tensor->Shape().Size()); + + return Status::OK(); +} + #define UNARY_OP_VERSIONED_TYPED(name, startver, endver, T) \ UNARY_ELEMENTWISE_REGISTER_VERSIONED_KERNEL(name, startver, endver, T) diff --git a/onnxruntime/core/providers/cuda/math/unary_elementwise_ops.h b/onnxruntime/core/providers/cuda/math/unary_elementwise_ops.h index 775b78c43a736..95d68b5e1d534 100644 --- a/onnxruntime/core/providers/cuda/math/unary_elementwise_ops.h +++ b/onnxruntime/core/providers/cuda/math/unary_elementwise_ops.h @@ -2,6 +2,7 @@ // Licensed under the MIT License. #pragma once + #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { @@ -119,5 +120,22 @@ class Sign final : public UnaryElementwise { Status ComputeInternal(OpKernelContext* context) const override; }; +class IsInf final : public UnaryElementwise { + public: + explicit IsInf(const OpKernelInfo& info); + Status ComputeInternal(OpKernelContext* context) const override; + + private: + bool detect_positive_{true}; + bool detect_negative_{true}; + int opset_; +}; + +class IsNaN : public UnaryElementwise { + public: + explicit IsNaN(const OpKernelInfo& info) : UnaryElementwise(info) {} + Status ComputeInternal(OpKernelContext* context) const override; +}; + } // namespace cuda } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/math/unary_elementwise_ops_impl.cu b/onnxruntime/core/providers/cuda/math/unary_elementwise_ops_impl.cu index 73c5ac80756be..2cdfcda5be26a 100644 --- a/onnxruntime/core/providers/cuda/math/unary_elementwise_ops_impl.cu +++ b/onnxruntime/core/providers/cuda/math/unary_elementwise_ops_impl.cu @@ -11,6 +11,7 @@ #endif namespace onnxruntime { + namespace cuda { #define OP(name, expr) \ @@ -126,9 +127,10 @@ struct OP_Cast { UnaryElementWiseImpl(stream, input_data, output_data, OP_Cast(), count); \ } -#define IMPL_CAST_IMPL_THROW(InT, OutT) \ - void Explicit_Impl_Cast(cudaStream_t stream, const InT* input_data, OutT* output_data, size_t count) { \ - ORT_THROW("Cast from " #InT " to " #OutT " must define saturate."); \ +#define IMPL_CAST_IMPL_THROW(InT, OutT) \ + void Explicit_Impl_Cast(cudaStream_t /*stream*/, const InT* /*input_data*/, OutT* /*output_data*/, \ + size_t /*count*/) { \ + ORT_THROW("Cast from " #InT " to " #OutT " must define saturate."); \ } #if !defined(DISABLE_FLOAT8_TYPES) @@ -284,5 +286,62 @@ EXPLICIT_IMPL_CASTSAT(__nv_bfloat16, Float8E5M2) #endif +namespace isinf_details { +template +struct IsInf_DispFunc { + void operator()(cudaStream_t stream, const void* input_raw, bool* output_data, + bool detect_positive, bool detect_negative, size_t count) const { + using CudaType = typename ToCudaType::MappedType; + const auto* input_data = reinterpret_cast(input_raw); + if (detect_positive && detect_negative) { + UnaryElementWiseImpl(stream, input_data, output_data, _IsInf{}, count); + } else if (detect_positive) { + UnaryElementWiseImpl(stream, input_data, output_data, _IsInf{}, count); + } else if (detect_negative) { + UnaryElementWiseImpl(stream, input_data, output_data, _IsInf{}, count); + } else { + UnaryElementWiseImpl(stream, input_data, output_data, _IsInf{}, count); + } + } +}; + +} // namespace isinf_details + +void Explicit_Impl_IsInf(cudaStream_t stream, int op_set, + bool detect_positive, bool detect_negative, + int32_t input_data_type, + const void* input_raw, bool* output_data, + size_t count) { + if (op_set < 20) { + utils::MLTypeCallDispatcher dispatcher{input_data_type}; + dispatcher.Invoke(stream, input_raw, output_data, + detect_positive, detect_negative, count); + } else { + utils::MLTypeCallDispatcher dispatcher{input_data_type}; + dispatcher.Invoke(stream, input_raw, output_data, + detect_positive, detect_negative, count); + } +} + +// IsNan + +namespace isnan_details { +template +struct IsNan_Disp { + void operator()(cudaStream_t stream, const void* input_raw, bool* output_data, size_t count) const { + using CudaType = typename ToCudaType::MappedType; + const auto* input_data = reinterpret_cast(input_raw); + UnaryElementWiseImpl(stream, input_data, output_data, _IsNan{}, count); + } +}; +} // namespace isnan_details + +void Explicit_Impl_IsNan(cudaStream_t stream, int32_t input_data_type, + const void* input_raw, bool* output_data, size_t count) { + // KernelDef constraints would ensure only subset of datatypes is used. + utils::MLTypeCallDispatcher dispatcher{input_data_type}; + dispatcher.Invoke(stream, input_raw, output_data, count); +} + } // namespace cuda } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/math/unary_elementwise_ops_impl.h b/onnxruntime/core/providers/cuda/math/unary_elementwise_ops_impl.h index 608a81a24cf4f..2588f56e32c12 100644 --- a/onnxruntime/core/providers/cuda/math/unary_elementwise_ops_impl.h +++ b/onnxruntime/core/providers/cuda/math/unary_elementwise_ops_impl.h @@ -137,5 +137,34 @@ void Impl_CastSat( #endif +// IsInf + +#if !defined(DISABLE_FLOAT8_TYPES) +#define ISINF_OPSET20_ALL_FLOATS float, double, MLFloat16, BFloat16, Float8E4M3FN, Float8E4M3FNUZ, Float8E5M2, \ + Float8E5M2FNUZ +#else +#define ISINF_OPSET20_ALL_FLOATS float, double, MLFloat16, BFloat16 +#endif + +void Explicit_Impl_IsInf(cudaStream_t stream, int op_set, + bool detect_positive, bool detect_negative, + int32_t input_data_type, + const void* input_raw, bool* output_data, + size_t count); + +// IsNan +#define ISNAN_OPSET9_FLOATS float, double, MLFloat16 +#define ISNAN_OPSET13_FLOATS float, double, MLFloat16, BFloat16 +#if !defined(DISABLE_FLOAT8_TYPES) +#define ISNAN_OPSET20_FLOATS float, double, MLFloat16, BFloat16, Float8E4M3FN, Float8E4M3FNUZ, Float8E5M2, \ + Float8E5M2FNUZ +#else +#define ISNAN_OPSET20_FLOATS ISNAN_OPSET13_FLOATS +#endif + +void Explicit_Impl_IsNan(cudaStream_t stream, int32_t input_data_type, + const void* input_raw, bool* output_data, size_t count); + } // namespace cuda + } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/nn/batch_norm.cc b/onnxruntime/core/providers/cuda/nn/batch_norm.cc index c468971e1e426..02da1a2c99dfd 100644 --- a/onnxruntime/core/providers/cuda/nn/batch_norm.cc +++ b/onnxruntime/core/providers/cuda/nn/batch_norm.cc @@ -87,7 +87,7 @@ Status BatchNorm::ComputeInternal(OpKernelContext* p_op_kernel_context) CudnnTensor data_desc; vector new_dims; - BatchNormHelper::NormalizeDims(x_shape, new_dims); + BatchNormHelper::NormalizeDims(x_shape, new_dims, NHWC); ORT_RETURN_IF_ERROR(data_desc.Set(new_dims, CudnnTensor::GetDataType(), NHWC)); // For half data type, the alpha, beta, scale, B, mean, var need to be float type @@ -137,6 +137,12 @@ Status BatchNorm::ComputeInternal(OpKernelContext* p_op_kernel_context) auto saved_mean_data = reinterpret_cast(saved_mean->MutableData()); auto saved_inv_var_data = reinterpret_cast(saved_var->MutableData()); + auto stream = static_cast(p_op_kernel_context->GetComputeStream()->GetHandle()); + CUDA_RETURN_IF_ERROR( + cudaMemcpyAsync(running_mean_data, mean_data, mean->SizeInBytes(), cudaMemcpyDeviceToDevice, stream)); + CUDA_RETURN_IF_ERROR( + cudaMemcpyAsync(running_var_data, var_data, var->SizeInBytes(), cudaMemcpyDeviceToDevice, stream)); + CUDNN_RETURN_IF_ERROR(BatchNormalizationForwardTrainingHelper( GetCudnnHandle(p_op_kernel_context), cudnn_batch_norm_mode_, @@ -149,7 +155,7 @@ Status BatchNorm::ComputeInternal(OpKernelContext* p_op_kernel_context) bn_tensor_desc, scale_data, b_data, - momentum_, + 1.0 - momentum_, running_mean_data, running_var_data, epsilon_, @@ -186,6 +192,7 @@ SPECIALIZED_COMPUTE(MLFloat16, kOnnxDomain, false) #ifdef ENABLE_CUDA_NHWC_OPS SPECIALIZED_COMPUTE(float, kMSInternalNHWCDomain, true) +SPECIALIZED_COMPUTE(double, kMSInternalNHWCDomain, true) SPECIALIZED_COMPUTE(MLFloat16, kMSInternalNHWCDomain, true) #endif } // namespace cuda diff --git a/onnxruntime/core/providers/cuda/nn/conv.cc b/onnxruntime/core/providers/cuda/nn/conv.cc index 82f3503919237..e05786248cbcf 100644 --- a/onnxruntime/core/providers/cuda/nn/conv.cc +++ b/onnxruntime/core/providers/cuda/nn/conv.cc @@ -97,11 +97,11 @@ Status SliceOutUnwantedOutputSection(cudaStream_t stream, template Status Conv::PrePack(const Tensor& tensor, int input_idx, AllocatorPtr alloc, - bool& is_packed, [[maybe_unused]] PrePackedWeights* prepacked_weights) { + bool& is_packed, PrePackedWeights* /*prepacked_weights*/) { is_packed = false; // only layout of weight input is adjusted via PrePack - if (NHWC && is_nhwc_domain_) { // InputTensors::IN_W - if (input_idx == 1) { + if constexpr (NHWC) { + if (is_nhwc_domain_ && input_idx == 1) { // InputTensors::IN_W // Transpose from {M, C/group, kH, kW} to {M, kH, kW, C/group} auto orig_shape = tensor.Shape(); @@ -123,6 +123,10 @@ Status Conv::PrePack(const Tensor& tensor, int input_idx, AllocatorPtr CUDA_CALL_THROW(cudaStreamSynchronize(DefaultCudaStream())); is_packed = true; } + } else { + ORT_UNUSED_PARAMETER(tensor); + ORT_UNUSED_PARAMETER(input_idx); + ORT_UNUSED_PARAMETER(alloc); } return Status::OK(); @@ -149,8 +153,11 @@ Status Conv::UpdateState(OpKernelContext* context, bool bias_expected) // Make sure input and weight are 4D for NHWC since we set 4D descriptor for NHWC. constexpr bool channels_last = NHWC; - if (channels_last && (x_shape.NumDimensions() != 4 || w_shape.NumDimensions() != 4)) { - return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Number of dimensions of X and W should be 4 for channels_last format (NHWC)"); + if constexpr (channels_last) { + if (x_shape.NumDimensions() != 4 || w_shape.NumDimensions() != 4) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "Number of dimensions of X and W should be 4 for channels_last format (NHWC)"); + } } // set B @@ -326,7 +333,8 @@ Status Conv::UpdateState(OpKernelContext* context, bool bias_expected) ORT_RETURN_IF_ERROR(s_.conv_desc.Set(kernel_shape.size(), pads, strides, dilations, gsl::narrow_cast(conv_attrs_.group), - CUDNN_CROSS_CORRELATION, CudnnTensor::GetDataType())); + CUDNN_CROSS_CORRELATION, CudnnTensor::GetDataType(), + UseTF32())); if (context->InputCount() >= 3) { const Tensor* B = context->Input(2); @@ -351,8 +359,13 @@ Status Conv::UpdateState(OpKernelContext* context, bool bias_expected) if (!s_.cached_benchmark_results.contains(x_dims_cudnn)) { // set math type to tensor core before algorithm search - if constexpr (std::is_same::value) + if constexpr (std::is_same::value) { CUDNN_RETURN_IF_ERROR(cudnnSetConvolutionMathType(s_.conv_desc, CUDNN_TENSOR_OP_MATH)); + } else if constexpr (std::is_same::value) { + if (!UseTF32()) { + CUDNN_RETURN_IF_ERROR(cudnnSetConvolutionMathType(s_.conv_desc, CUDNN_FMA_MATH)); + } + } cudnnConvolutionFwdAlgoPerf_t perf; int algo_count = 1; @@ -397,8 +410,11 @@ Status Conv::UpdateState(OpKernelContext* context, bool bias_expected) default: perf.algo = kDefaultConvAlgo; CUDNN_RETURN_IF_ERROR(GetWorkspaceSize(GetCudnnHandle(context), s_, perf.algo, &perf.memory)); - if (std::is_same::value) { + + if constexpr (std::is_same::value) { perf.mathType = CUDNN_TENSOR_OP_MATH; + } else if (std::is_same::value && !UseTF32()) { + perf.mathType = CUDNN_FMA_MATH; } else { perf.mathType = CUDNN_DEFAULT_MATH; } @@ -480,7 +496,8 @@ Status CudnnConvolutionDescriptor::Set( const gsl::span& dilations, int groups, cudnnConvolutionMode_t mode, - cudnnDataType_t data_type) { + cudnnDataType_t data_type, + bool use_tf32) { if (!desc_) CUDNN_RETURN_IF_ERROR(cudnnCreateConvolutionDescriptor(&desc_)); @@ -513,6 +530,8 @@ Status CudnnConvolutionDescriptor::Set( CUDNN_RETURN_IF_ERROR(cudnnSetConvolutionMathType(desc_, CUDNN_DEFAULT_MATH)); if (data_type == CUDNN_DATA_HALF) { CUDNN_RETURN_IF_ERROR(cudnnSetConvolutionMathType(desc_, CUDNN_TENSOR_OP_MATH)); + } else if (data_type == CUDNN_DATA_FLOAT && !use_tf32) { + CUDNN_RETURN_IF_ERROR(cudnnSetConvolutionMathType(desc_, CUDNN_FMA_MATH)); } return Status::OK(); diff --git a/onnxruntime/core/providers/cuda/nn/conv.h b/onnxruntime/core/providers/cuda/nn/conv.h index bcaa4d855b81e..3aec654224e39 100644 --- a/onnxruntime/core/providers/cuda/nn/conv.h +++ b/onnxruntime/core/providers/cuda/nn/conv.h @@ -29,7 +29,8 @@ class CudnnConvolutionDescriptor final { const gsl::span& dilations, int groups, cudnnConvolutionMode_t mode, - cudnnDataType_t data_type); + cudnnDataType_t data_type, + bool use_tf32); operator cudnnConvolutionDescriptor_t() const { return desc_; } @@ -194,7 +195,7 @@ class Conv : public CudaKernel { } Status PrePack(const Tensor& tensor, int input_idx, AllocatorPtr alloc, - bool& is_packed, [[maybe_unused]] PrePackedWeights* prepacked_weights) override; + bool& is_packed, PrePackedWeights* prepacked_weights) override; Status ComputeInternal(OpKernelContext* context) const override; diff --git a/onnxruntime/core/providers/cuda/nn/conv_transpose.cc b/onnxruntime/core/providers/cuda/nn/conv_transpose.cc index 55dceaa2698e8..939b9959af818 100644 --- a/onnxruntime/core/providers/cuda/nn/conv_transpose.cc +++ b/onnxruntime/core/providers/cuda/nn/conv_transpose.cc @@ -167,7 +167,8 @@ Status ConvTranspose::DoConvTranspose(OpKernelContext* context, bool dy cudnnConvolutionMode_t mode = CUDNN_CROSS_CORRELATION; ORT_RETURN_IF_ERROR(s_.conv_desc.Set(p.kernel_shape.size(), p.pads, p.strides, p.dilations, gsl::narrow_cast(conv_transpose_attrs_.group), mode, - CudnnTensor::GetDataType())); + CudnnTensor::GetDataType(), + UseTF32())); if (has_bias) { const auto& b_shape = p.B->Shape(); @@ -187,8 +188,13 @@ Status ConvTranspose::DoConvTranspose(OpKernelContext* context, bool dy GetScratchBuffer(AlgoSearchWorkspaceSize, context->GetComputeStream()); // set math type to tensor core before algorithm search - if constexpr (std::is_same::value) + if constexpr (std::is_same::value) { CUDNN_RETURN_IF_ERROR(cudnnSetConvolutionMathType(s_.conv_desc, CUDNN_TENSOR_OP_MATH)); + } else if constexpr (std::is_same::value) { + if (!UseTF32()) { + CUDNN_RETURN_IF_ERROR(cudnnSetConvolutionMathType(s_.conv_desc, CUDNN_FMA_MATH)); + } + } cudnnConvolutionBwdDataAlgoPerf_t perf; int algo_count = 1; diff --git a/onnxruntime/core/providers/cuda/nn/layer_norm.h b/onnxruntime/core/providers/cuda/nn/layer_norm.h index ff231f4f1ad5c..c021d3ffe63a2 100644 --- a/onnxruntime/core/providers/cuda/nn/layer_norm.h +++ b/onnxruntime/core/providers/cuda/nn/layer_norm.h @@ -7,8 +7,6 @@ namespace onnxruntime { namespace cuda { -using namespace onnxruntime::cuda; - // NOTE: This was originally a contrib op with 3 type constraints. The ONNX spec merges 'T' and 'V'. // the kernel is templatized on all three for backwards compatibility, but in ONNX usage T == V. template diff --git a/onnxruntime/core/providers/cuda/nn/layer_norm_impl.cu b/onnxruntime/core/providers/cuda/nn/layer_norm_impl.cu index 679b8b6b78886..b9e8b45307079 100644 --- a/onnxruntime/core/providers/cuda/nn/layer_norm_impl.cu +++ b/onnxruntime/core/providers/cuda/nn/layer_norm_impl.cu @@ -29,8 +29,6 @@ namespace onnxruntime { namespace cuda { -using namespace onnxruntime::cuda; - template __device__ void cuWelfordOnlineSum( const U curr, diff --git a/onnxruntime/core/providers/cuda/nn/lrn.cc b/onnxruntime/core/providers/cuda/nn/lrn.cc index 6fcdec74d84b5..788299b5eb8d6 100644 --- a/onnxruntime/core/providers/cuda/nn/lrn.cc +++ b/onnxruntime/core/providers/cuda/nn/lrn.cc @@ -6,37 +6,47 @@ namespace onnxruntime { namespace cuda { -#define REGISTER_KERNEL_VERSIONED_TYPED(START_VER, END_VER, T) \ +#define REGISTER_KERNEL_VERSIONED_TYPED(START_VER, END_VER, T, DOMAIN, LAYOUT) \ ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_EX( \ LRN, \ - kOnnxDomain, \ + DOMAIN, \ START_VER, \ END_VER, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()).TypeConstraint("T", DataTypeImpl::GetTensorType()), \ - LRN); + LRN); -#define REGISTER_KERNEL_TYPED(VER, T) \ +#define REGISTER_KERNEL_TYPED(VER, T, DOMAIN, LAYOUT) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ LRN, \ - kOnnxDomain, \ + DOMAIN, \ VER, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()).TypeConstraint("T", DataTypeImpl::GetTensorType()), \ - LRN); + LRN); -REGISTER_KERNEL_VERSIONED_TYPED(1, 12, float) -REGISTER_KERNEL_VERSIONED_TYPED(1, 12, double) -REGISTER_KERNEL_VERSIONED_TYPED(1, 12, MLFloat16) +REGISTER_KERNEL_VERSIONED_TYPED(1, 12, float, kOnnxDomain, false) +REGISTER_KERNEL_VERSIONED_TYPED(1, 12, double, kOnnxDomain, false) +REGISTER_KERNEL_VERSIONED_TYPED(1, 12, MLFloat16, kOnnxDomain, false) -REGISTER_KERNEL_TYPED(13, float) -REGISTER_KERNEL_TYPED(13, double) -REGISTER_KERNEL_TYPED(13, MLFloat16) +REGISTER_KERNEL_TYPED(13, float, kOnnxDomain, false) +REGISTER_KERNEL_TYPED(13, double, kOnnxDomain, false) +REGISTER_KERNEL_TYPED(13, MLFloat16, kOnnxDomain, false) -template -LRN::LRN(const OpKernelInfo& info) : CudaKernel(info) { +#ifdef ENABLE_CUDA_NHWC_OPS +REGISTER_KERNEL_VERSIONED_TYPED(1, 12, float, kMSInternalNHWCDomain, true) +REGISTER_KERNEL_VERSIONED_TYPED(1, 12, double, kMSInternalNHWCDomain, true) +REGISTER_KERNEL_VERSIONED_TYPED(1, 12, MLFloat16, kMSInternalNHWCDomain, true) + +REGISTER_KERNEL_TYPED(13, float, kMSInternalNHWCDomain, true) +REGISTER_KERNEL_TYPED(13, double, kMSInternalNHWCDomain, true) +REGISTER_KERNEL_TYPED(13, MLFloat16, kMSInternalNHWCDomain, true) +#endif + +template +LRN::LRN(const OpKernelInfo& info) : CudaKernel(info) { int64_t size; ORT_ENFORCE(info.GetAttr("size", &size).IsOK()); ORT_ENFORCE(size > 0); @@ -58,8 +68,8 @@ LRN::LRN(const OpKernelInfo& info) : CudaKernel(info) { .IsOK()); } -template -Status LRN::ComputeInternal(OpKernelContext* context) const { +template +Status LRN::ComputeInternal(OpKernelContext* context) const { typedef typename ToCudaType::MappedType CudaT; const Tensor* X = context->Input(0); @@ -71,7 +81,7 @@ Status LRN::ComputeInternal(OpKernelContext* context) const { Tensor* Y = context->Output(0, X->Shape()); CudnnTensor x_tensor; - ORT_RETURN_IF_ERROR(x_tensor.Set(X->Shape().GetDims(), CudnnTensor::GetDataType())); + ORT_RETURN_IF_ERROR(x_tensor.Set(X->Shape().GetDims(), CudnnTensor::GetDataType(), Layout == NHWC)); const auto one = Consts::One; const auto zero = Consts::Zero; diff --git a/onnxruntime/core/providers/cuda/nn/lrn.h b/onnxruntime/core/providers/cuda/nn/lrn.h index 319e323c72a92..31b2819ccc52a 100644 --- a/onnxruntime/core/providers/cuda/nn/lrn.h +++ b/onnxruntime/core/providers/cuda/nn/lrn.h @@ -20,7 +20,7 @@ class CudnnLRNDescriptor final { cudnnLRNDescriptor_t desc_; }; -template +template class LRN : public CudaKernel { public: LRN(const OpKernelInfo& info); diff --git a/onnxruntime/core/providers/cuda/nn/max_pool_with_index.cu b/onnxruntime/core/providers/cuda/nn/max_pool_with_index.cu index ef1155af127d1..9311f044f4ec5 100644 --- a/onnxruntime/core/providers/cuda/nn/max_pool_with_index.cu +++ b/onnxruntime/core/providers/cuda/nn/max_pool_with_index.cu @@ -7,10 +7,11 @@ #include "core/providers/cuda/cu_inc/common.cuh" #include "core/providers/cuda/shared_inc/fast_divmod.h" +#include "core/providers/cuda/shared_inc/cuda_utils.h" namespace onnxruntime { namespace cuda { -template +template __global__ void MaxPoolWithIndexKernel( int64_t batch, int64_t channels, @@ -44,11 +45,27 @@ __global__ void MaxPoolWithIndexKernel( int id = blockIdx.x * blockDim.x + threadIdx.x; if (id >= output_size) return; + auto compute_offset = + [height, width, depth, channels](int n_index, int c_index, int h_index, int w_index, int d_index) -> int64_t { + if constexpr (Layout == LAYOUT_NCHW) { + return (((n_index * channels + c_index) * height + h_index) * width + w_index) * depth + d_index; + } else if constexpr (Layout == LAYOUT_NHWC) { + return (((n_index * height + h_index) * width + w_index) * depth + d_index) * channels + c_index; + } + }; + int d_index, w_index, h_index, c_index, n_index, id_tmp; - fdm_d.divmod(id, id_tmp, d_index); - fdm_w.divmod(id_tmp, id_tmp, w_index); - fdm_h.divmod(id_tmp, id_tmp, h_index); - fdm_c.divmod(id_tmp, n_index, c_index); + if constexpr (Layout == LAYOUT_NCHW) { + fdm_d.divmod(id, id_tmp, d_index); + fdm_w.divmod(id_tmp, id_tmp, w_index); + fdm_h.divmod(id_tmp, id_tmp, h_index); + fdm_c.divmod(id_tmp, n_index, c_index); + } else if constexpr (Layout == LAYOUT_NHWC) { + fdm_c.divmod(id, id_tmp, c_index); + fdm_d.divmod(id_tmp, id_tmp, d_index); + fdm_w.divmod(id_tmp, id_tmp, w_index); + fdm_h.divmod(id_tmp, n_index, h_index); + } int64_t d_start = d_index * stride_d - pad_d; int64_t w_start = w_index * stride_w - pad_w; @@ -64,29 +81,45 @@ __global__ void MaxPoolWithIndexKernel( int64_t d_index_max = -1; int64_t w_index_max = -1; int64_t h_index_max = -1; - int64_t offset = (n_index * channels + c_index) * height * width * depth; + int64_t offset = compute_offset(n_index, c_index, 0, 0, 0); const T* p_slice = p_input + offset; - T maxval = p_slice[h_start * width * depth + w_start * depth + d_start] - (T)1; + T maxval = p_slice[compute_offset(0, 0, h_start, w_start, d_start)] - (T)1; for (int64_t d = d_start; d < d_end; d += dilation_d) { for (int64_t w = w_start; w < w_end; w += dilation_w) { for (int64_t h = h_start; h < h_end; h += dilation_h) { - if (p_slice[h * width * depth + w * depth + d] > maxval) { + auto pool_offset = compute_offset(0, 0, h, w, d); + if (p_slice[pool_offset] > maxval) { h_index_max = h; w_index_max = w; d_index_max = d; - maxval = static_cast(p_slice[h * width * depth + w * depth + d]); + maxval = static_cast(p_slice[pool_offset]); } } } } - p_output[id] = p_input[offset + h_index_max * width * depth + w_index_max * depth + d_index_max]; + p_output[id] = p_input[offset + compute_offset(0, 0, h_index_max, w_index_max, d_index_max)]; + if (p_indices) { - p_indices[id] = storage_order == 0 ? offset + h_index_max * width * depth + w_index_max * depth + d_index_max - : offset + h_index_max + w_index_max * height + d_index_max * width * height; + if constexpr (Layout == LAYOUT_NCHW) { + p_indices[id] = storage_order == 0 ? offset + h_index_max * width * depth + w_index_max * depth + d_index_max + : offset + h_index_max + w_index_max * height + d_index_max * width * height; + } else if constexpr (Layout == LAYOUT_NHWC) { + // The tests currently have to be provided in NHWC layout so that tests do not fail. When converting between + // layouts, does it make sense to do an index conversion as well? + // Storing indices in NHWC layout isn't critical as they are supposed to be used by Unpooling operations + // which currently assume that indices reference to Tensors in NHWC layout. + int64_t id_nchw = + (((n_index * channels + c_index) * pooled_height + h_index) * pooled_width + w_index) * pooled_depth + d_index; + int64_t offset_nchw = (n_index * channels + c_index) * width * height * depth; + + p_indices[id_nchw] = (storage_order == 0) + ? offset_nchw + h_index_max * width * depth + w_index_max * depth + d_index_max + : offset_nchw + h_index_max + w_index_max * height + d_index_max * width * height; + } } } -template +template void MaxPoolWithIndex( cudaStream_t stream, const TensorShape& input_shape, @@ -99,14 +132,29 @@ void MaxPoolWithIndex( const T* p_input, T* p_output, int64_t* p_indices) { - int64_t batchs = input_shape[0]; - int64_t channels = input_shape[1]; - int64_t height = input_shape[2]; - int64_t width = kernel_shape.size() > 1 ? input_shape[3] : 1; - int64_t depth = kernel_shape.size() > 2 ? input_shape[4] : 1; - int64_t pooled_height = output_shape[2]; - int64_t pooled_width = kernel_shape.size() > 1 ? output_shape[3] : 1; - int64_t pooled_depth = kernel_shape.size() > 2 ? output_shape[4] : 1; + int64_t batchs, channels, height, width, depth; + int64_t pooled_height, pooled_width, pooled_depth; + if constexpr (Layout == LAYOUT_NCHW) { + batchs = input_shape[0]; + channels = input_shape[1]; + height = input_shape[2]; + width = kernel_shape.size() > 1 ? input_shape[3] : 1; + depth = kernel_shape.size() > 2 ? input_shape[4] : 1; + + pooled_height = output_shape[2]; + pooled_width = kernel_shape.size() > 1 ? output_shape[3] : 1; + pooled_depth = kernel_shape.size() > 2 ? output_shape[4] : 1; + } else if constexpr (Layout == LAYOUT_NHWC) { + batchs = input_shape[0]; + height = input_shape[1]; + width = kernel_shape.size() > 1 ? input_shape[2] : 1; + depth = kernel_shape.size() > 2 ? input_shape[3] : 1; + channels = input_shape[input_shape.NumDimensions() - 1]; + + pooled_height = output_shape[1]; + pooled_width = kernel_shape.size() > 1 ? output_shape[2] : 1; + pooled_depth = kernel_shape.size() > 2 ? output_shape[3] : 1; + } int64_t kernel_h = kernel_shape[0]; int64_t kernel_w = kernel_shape.size() > 1 ? kernel_shape[1] : 1; int64_t kernel_d = kernel_shape.size() > 2 ? kernel_shape[2] : 1; @@ -130,7 +178,7 @@ void MaxPoolWithIndex( fast_divmod fdm_d(static_cast(pooled_depth)); int blocksPerGrid = (int)((output_size + GridDim::maxThreadsPerBlock - 1) / GridDim::maxThreadsPerBlock); - MaxPoolWithIndexKernel<<>>( + MaxPoolWithIndexKernel<<>>( batchs, channels, height, @@ -162,8 +210,8 @@ void MaxPoolWithIndex( p_indices); } -#define INSTANTIATEMAXPOOLWITHINDEX(T) \ - template void MaxPoolWithIndex( \ +#define INSTANTIATEMAXPOOLWITHINDEX(T, Layout) \ + template void MaxPoolWithIndex( \ cudaStream_t stream, \ const TensorShape& input_shape, \ const TensorShape& output_shape, \ @@ -176,11 +224,19 @@ void MaxPoolWithIndex( T* p_output, \ int64_t* p_indices); -INSTANTIATEMAXPOOLWITHINDEX(float) -INSTANTIATEMAXPOOLWITHINDEX(double) -INSTANTIATEMAXPOOLWITHINDEX(half) -INSTANTIATEMAXPOOLWITHINDEX(int8_t) -INSTANTIATEMAXPOOLWITHINDEX(uint8_t) +INSTANTIATEMAXPOOLWITHINDEX(float, LAYOUT_NCHW) +INSTANTIATEMAXPOOLWITHINDEX(double, LAYOUT_NCHW) +INSTANTIATEMAXPOOLWITHINDEX(half, LAYOUT_NCHW) +INSTANTIATEMAXPOOLWITHINDEX(int8_t, LAYOUT_NCHW) +INSTANTIATEMAXPOOLWITHINDEX(uint8_t, LAYOUT_NCHW) + +#ifdef ENABLE_CUDA_NHWC_OPS +INSTANTIATEMAXPOOLWITHINDEX(float, LAYOUT_NHWC) +INSTANTIATEMAXPOOLWITHINDEX(double, LAYOUT_NHWC) +INSTANTIATEMAXPOOLWITHINDEX(half, LAYOUT_NHWC) +INSTANTIATEMAXPOOLWITHINDEX(int8_t, LAYOUT_NHWC) +INSTANTIATEMAXPOOLWITHINDEX(uint8_t, LAYOUT_NHWC) +#endif } // namespace cuda } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/nn/max_pool_with_index.h b/onnxruntime/core/providers/cuda/nn/max_pool_with_index.h index 27f5b241cc785..98f14c3f6a626 100644 --- a/onnxruntime/core/providers/cuda/nn/max_pool_with_index.h +++ b/onnxruntime/core/providers/cuda/nn/max_pool_with_index.h @@ -7,7 +7,7 @@ namespace onnxruntime { namespace cuda { -template +template void MaxPoolWithIndex( cudaStream_t stream, const TensorShape& input_shape, diff --git a/onnxruntime/core/providers/cuda/nn/pool.cc b/onnxruntime/core/providers/cuda/nn/pool.cc index 8bc96958693bc..4acdcfcf35491 100644 --- a/onnxruntime/core/providers/cuda/nn/pool.cc +++ b/onnxruntime/core/providers/cuda/nn/pool.cc @@ -87,6 +87,8 @@ POOLING_KERNEL_VERSIONED_WITH_INDICES(MaxPool, float, MaxPool<8>, 11, 11, kMSInt POOLING_KERNEL_VERSIONED_WITH_INDICES(MaxPool, MLFloat16, MaxPool<8>, 11, 11, kMSInternalNHWCDomain, true) POOLING_KERNEL_WITH_INDICES(MaxPool, float, MaxPool<8>, 12, kMSInternalNHWCDomain, true) POOLING_KERNEL_WITH_INDICES(MaxPool, MLFloat16, MaxPool<8>, 12, kMSInternalNHWCDomain, true) +POOLING_KERNEL_WITH_INDICES(MaxPool, int8_t, MaxPool<8>, 12, kMSInternalNHWCDomain, true) +POOLING_KERNEL_WITH_INDICES(MaxPool, uint8_t, MaxPool<8>, 12, kMSInternalNHWCDomain, true) POOLING_KERNEL(GlobalMaxPool, float, MaxPool<1>, 1, kMSInternalNHWCDomain, true) POOLING_KERNEL(GlobalMaxPool, MLFloat16, MaxPool<1>, 1, kMSInternalNHWCDomain, true) @@ -145,8 +147,8 @@ class CudnnPoolingDescriptor final { cudnnPoolingDescriptor_t desc_; }; -template -Status Pool::ComputeInternal(OpKernelContext* context) const { +template +Status Pool::ComputeInternal(OpKernelContext* context) const { typedef typename ToCudaType::MappedType CudaT; const Tensor* X = context->Input(0); const TensorShape& x_shape = X->Shape(); @@ -157,16 +159,21 @@ Status Pool::ComputeInternal(OpKernelContext* context) const } auto kernel_shape = pool_attrs_.kernel_shape; - auto pads = pool_attrs_.pads; auto strides = pool_attrs_.strides; + TensorShapeVector pads = pool_attrs_.pads; if (pool_attrs_.global_pooling) { - kernel_shape.assign(x_dims.begin() + 2, x_dims.end()); - pads.assign(kernel_shape.size(), 0); + if constexpr (Layout == LAYOUT_NCHW) { + kernel_shape.assign(x_dims.begin() + 2, x_dims.end()); + } else if constexpr (Layout == LAYOUT_NHWC) { + kernel_shape.assign(x_dims.begin() + 1, x_dims.end() - 1); + } + pads.assign(2 * kernel_shape.size(), 0); strides.assign(kernel_shape.size(), 1); } - auto out_channel = NHWC ? x_shape[3] : x_shape[1]; - auto y_dims = pool_attrs_.SetOutputSize(x_shape, out_channel, &pads, NHWC); + auto out_channel = (Layout == LAYOUT_NHWC) ? x_shape[x_dims.size() - 1] : x_shape[1]; + + auto y_dims = pool_attrs_.SetOutputSize(x_shape, out_channel, &pads, Layout == LAYOUT_NHWC); TensorShape y_shape(y_dims); Tensor* Y = context->Output(0, y_shape); // special case when there is a dim value of 0 in the shape. @@ -178,20 +185,22 @@ Status Pool::ComputeInternal(OpKernelContext* context) const TensorShapeVector x_dims_cudnn(x_dims.begin(), x_dims.end()); TensorShapeVector y_dims_cudnn(y_dims); if (kernel_shape.size() < 2) { - // cudnn only takes 4D or 5D input, so pad dimensions if needed - if (NHWC) { - x_dims_cudnn.insert(x_dims_cudnn.begin() + 1, 1); - y_dims_cudnn.insert(y_dims_cudnn.begin() + 1, 1); - kernel_shape.insert(kernel_shape.begin() + 1, 1); - strides.insert(strides.begin() + 1, 1); - } else { - x_dims_cudnn.push_back(1); - y_dims_cudnn.push_back(1); - kernel_shape.push_back(1); - strides.push_back(1); + // cuDNN only takes 4D or 5D input, so pad dimensions if needed + if constexpr (Layout == LAYOUT_NHWC) { + x_dims_cudnn.insert(x_dims_cudnn.end() - 1, 1); + y_dims_cudnn.insert(y_dims_cudnn.end() - 1, 1); + pads.insert(pads.begin() + pads.size() / 2, 0); + pads.insert(pads.end(), 0); + kernel_shape.insert(kernel_shape.end(), 1); + strides.insert(strides.end(), 1); + } else { // Layout == LAYOUT_NCHW + x_dims_cudnn.insert(x_dims_cudnn.end(), 1); + y_dims_cudnn.insert(y_dims_cudnn.end(), 1); + pads.insert(pads.begin() + pads.size() / 2, 0); + pads.insert(pads.end(), 0); + kernel_shape.insert(kernel_shape.end(), 1); + strides.insert(strides.end(), 1); } - pads.insert(pads.begin() + kernel_shape.size(), 0); - pads.insert(pads.end(), 0); } cudnnPoolingMode_t mode = CUDNN_POOLING_MAX; @@ -208,8 +217,8 @@ Status Pool::ComputeInternal(OpKernelContext* context) const const auto beta = Consts::Zero; CudnnTensor x_tensor; CudnnTensor y_tensor; - ORT_RETURN_IF_ERROR(x_tensor.Set(x_dims_cudnn, CudnnTensor::GetDataType(), NHWC)); - ORT_RETURN_IF_ERROR(y_tensor.Set(y_dims_cudnn, CudnnTensor::GetDataType(), NHWC)); + ORT_RETURN_IF_ERROR(x_tensor.Set(x_dims_cudnn, CudnnTensor::GetDataType(), Layout == LAYOUT_NHWC)); + ORT_RETURN_IF_ERROR(y_tensor.Set(y_dims_cudnn, CudnnTensor::GetDataType(), Layout == LAYOUT_NHWC)); const auto input_count = x_shape.Size(); const auto output_count = y_shape.Size(); @@ -225,8 +234,8 @@ Status Pool::ComputeInternal(OpKernelContext* context) const const auto beta = Consts::Zero; CudnnTensor x_tensor; CudnnTensor y_tensor; - ORT_RETURN_IF_ERROR(x_tensor.Set(x_dims_cudnn, CudnnTensor::GetDataType(), NHWC)); - ORT_RETURN_IF_ERROR(y_tensor.Set(y_dims_cudnn, CudnnTensor::GetDataType(), NHWC)); + ORT_RETURN_IF_ERROR(x_tensor.Set(x_dims_cudnn, CudnnTensor::GetDataType(), Layout == LAYOUT_NHWC)); + ORT_RETURN_IF_ERROR(y_tensor.Set(y_dims_cudnn, CudnnTensor::GetDataType(), Layout == LAYOUT_NHWC)); CUDNN_RETURN_IF_ERROR( PoolingForwardHelper(GetCudnnHandle(context), pooling_desc, &alpha, x_tensor, x_data, &beta, y_tensor, y_data)); @@ -235,8 +244,8 @@ Status Pool::ComputeInternal(OpKernelContext* context) const return Status::OK(); } -template -Status Pool, NHWC>::ComputeInternal(OpKernelContext* context) const { +template +Status Pool, Layout>::ComputeInternal(OpKernelContext* context) const { typedef typename ToCudaType::MappedType CudaT; const Tensor* X = context->Input(0); const TensorShape& x_shape = X->Shape(); @@ -251,12 +260,16 @@ Status Pool, NHWC>::ComputeInternal(OpKernelContext* context) cons auto strides = this->pool_attrs_.strides; if (this->pool_attrs_.global_pooling) { - kernel_shape.assign(x_dims.begin() + 2, x_dims.end()); - pads.assign(kernel_shape.size(), 0); + if constexpr (Layout == LAYOUT_NCHW) { + kernel_shape.assign(x_dims.begin() + 2, x_dims.end()); + } else if constexpr (Layout == LAYOUT_NHWC) { + kernel_shape.assign(x_dims.begin() + 1, x_dims.end() - 1); + } + pads.assign(2 * kernel_shape.size(), 0); // x{i}_begin + x{i}_end strides.assign(kernel_shape.size(), 1); } - auto out_channel = NHWC ? x_shape[3] : x_shape[1]; - auto y_dims = this->pool_attrs_.SetOutputSize(x_shape, out_channel, &pads, NHWC); + auto out_channel = Layout == LAYOUT_NHWC ? x_shape[x_shape.NumDimensions() - 1] : x_shape[1]; + auto y_dims = this->pool_attrs_.SetOutputSize(x_shape, out_channel, &pads, Layout == LAYOUT_NHWC); Tensor* Y = context->Output(0, TensorShape(y_dims)); // special case when there is a dim value of 0 in the shape. @@ -265,13 +278,22 @@ Status Pool, NHWC>::ComputeInternal(OpKernelContext* context) cons auto x_data = reinterpret_cast(X->Data()); auto y_data = reinterpret_cast(Y->MutableData()); - Tensor* I = context->Output(1, TensorShape(y_dims)); + // I is in NCHW format and the contained indices use NCHW math to compute the index + auto i_dims = y_dims; + if constexpr (Layout == LAYOUT_NHWC) { + // y_dims in NHWDC format, i_dims has to be in NCHWD format. + i_dims.insert(i_dims.begin() + 1, i_dims.back()); // N*C*HWDC + i_dims.pop_back(); // NCHW + } + + Tensor* I = context->Output(1, TensorShape(i_dims)); if (nullptr != I || !this->pool_attrs_.default_dilations) { auto i_data = nullptr == I ? nullptr : I->MutableData(); - MaxPoolWithIndex(this->Stream(context), x_shape, TensorShape(y_dims), kernel_shape, strides, pads, - this->pool_attrs_.dilations, this->pool_attrs_.storage_order, x_data, y_data, i_data); + MaxPoolWithIndex(this->Stream(context), x_shape, TensorShape(y_dims), kernel_shape, + strides, pads, this->pool_attrs_.dilations, + this->pool_attrs_.storage_order, x_data, y_data, i_data); } else { - ORT_RETURN_IF_ERROR((Pool, NHWC>::ComputeInternal(context))); + ORT_RETURN_IF_ERROR((Pool, Layout == LAYOUT_NHWC>::ComputeInternal(context))); } return Status::OK(); } diff --git a/onnxruntime/core/providers/cuda/nn/pool.h b/onnxruntime/core/providers/cuda/nn/pool.h index 8b5152a1565a9..97f7c8b8762d5 100644 --- a/onnxruntime/core/providers/cuda/nn/pool.h +++ b/onnxruntime/core/providers/cuda/nn/pool.h @@ -19,10 +19,10 @@ class Pool : public CudaKernel, public PoolBase { Status ComputeInternal(OpKernelContext* context) const override; }; -template -class Pool, NHWC> final : public Pool, NHWC> { +template +class Pool, Layout> final : public Pool, Layout> { public: - explicit Pool(const OpKernelInfo& info) : Pool, NHWC>(info) {} + explicit Pool(const OpKernelInfo& info) : Pool, Layout>(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; diff --git a/onnxruntime/core/providers/cuda/nvtx_profile.cc b/onnxruntime/core/providers/cuda/nvtx_profile.cc index 6c7c594066b86..867e7c1f24584 100644 --- a/onnxruntime/core/providers/cuda/nvtx_profile.cc +++ b/onnxruntime/core/providers/cuda/nvtx_profile.cc @@ -4,13 +4,8 @@ #ifdef ENABLE_NVTX_PROFILE #include "nvtx_profile.h" #include "core/common/common.h" -#if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) #include #include -#else -#include -#include -#endif namespace onnxruntime { namespace profile { diff --git a/onnxruntime/core/providers/cuda/rnn/cudnn_rnn_base.cc b/onnxruntime/core/providers/cuda/rnn/cudnn_rnn_base.cc index 99c1f48e21c74..6476364a211fd 100644 --- a/onnxruntime/core/providers/cuda/rnn/cudnn_rnn_base.cc +++ b/onnxruntime/core/providers/cuda/rnn/cudnn_rnn_base.cc @@ -9,40 +9,49 @@ namespace onnxruntime { namespace cuda { template -void CudnnRnnBase::SetWeightBias(const cudnnHandle_t handle, - const cudnnRNNDescriptor_t rnn_desc, - const int pseudo_layer, - const cudnnTensorDescriptor_t x_desc, - const cudnnFilterDescriptor_t w_desc, - const cudnnFilterDescriptor_t filter_desc, - const void* reorganized_w_data, - const int lin_layer_id, - const T* pos, - int& offset, - bool is_matrix, - cudaStream_t cuda_stream) const { +Status CudnnRnnBase::SetWeightBias(const cudnnHandle_t handle, + const cudnnRNNDescriptor_t rnn_desc, + const int pseudo_layer, + size_t reorganized_w_data_size, + const void* reorganized_w_data, + const int lin_layer_id, + const T* pos, + int& offset, + bool is_matrix, + cudaStream_t cuda_stream) const { int numDims; - std::vector matDims(3); + std::array matDims; + std::array strideA; cudnnDataType_t dt; - cudnnTensorFormat_t tf; T* mem_offset; - if (is_matrix) { - cudnnGetRNNLinLayerMatrixParams(handle, rnn_desc, pseudo_layer, x_desc, w_desc, reorganized_w_data, lin_layer_id, filter_desc, (void**)&mem_offset); - } else { - cudnnGetRNNLinLayerBiasParams(handle, rnn_desc, pseudo_layer, x_desc, w_desc, reorganized_w_data, lin_layer_id, filter_desc, (void**)&mem_offset); - } + CudnnTensor tensor_desc_matrix, tensor_desc_bias; + ORT_RETURN_IF_ERROR(tensor_desc_bias.CreateTensorIfNeeded()); + ORT_RETURN_IF_ERROR(tensor_desc_matrix.CreateTensorIfNeeded()); - cudnnGetFilterNdDescriptor(filter_desc, 3, &dt, &tf, &numDims, matDims.data()); + T *mem_offset_matrix, *mem_offset_bias; + CUDNN_RETURN_IF_ERROR(cudnnGetRNNWeightParams( + handle, rnn_desc, pseudo_layer, reorganized_w_data_size, reorganized_w_data, + lin_layer_id, tensor_desc_matrix, (void**)&mem_offset_matrix, tensor_desc_bias, (void**)&mem_offset_bias)); + CUDNN_RETURN_IF_ERROR(cudnnGetTensorNdDescriptor( + is_matrix ? tensor_desc_matrix : tensor_desc_bias, 3, &dt, &numDims, matDims.data(), strideA.data())); + + mem_offset = is_matrix ? mem_offset_matrix : mem_offset_bias; int count = matDims[0] * matDims[1] * matDims[2]; + + if (strideA[0] != count) { + return ORT_MAKE_STATUS(ONNXRUNTIME, StatusCode::INVALID_ARGUMENT, "Stride is not packed"); + } CUDA_CALL_THROW(cudaMemcpyAsync(mem_offset, pos + offset, count * sizeof(T), cudaMemcpyDeviceToDevice, cuda_stream)); + offset += count; + + return Status::OK(); } template Status CudnnRnnBase::SetCudnnRnnWeightBias(const cudnnHandle_t cudnn_handle, const cudnnRNNDescriptor_t rnn_desc, - const cudnnTensorDescriptor_t x_desc, - const cudnnFilterDescriptor_t w_desc, + size_t reorganized_w_data_size, void* reorganized_w_data, const T* W_data, const T* R_data, @@ -51,18 +60,22 @@ Status CudnnRnnBase::SetCudnnRnnWeightBias(const cudnnHandle_t cudnn_handle, int w_offset = 0; int r_offset = 0; int bias_offset = 0; - CudnnFilterDescriptor filter_desc; for (int layer = 0; layer < RNN_NUM_LAYERS * num_directions_; ++layer) { for (size_t idx = 0; idx < W_lin_layer_id_.size(); ++idx) { - SetWeightBias(cudnn_handle, rnn_desc, layer, x_desc, w_desc, filter_desc, reorganized_w_data, W_lin_layer_id_[idx], W_data, w_offset, true, cuda_stream); + ORT_RETURN_IF_ERROR(SetWeightBias( + cudnn_handle, rnn_desc, layer, reorganized_w_data_size, reorganized_w_data, + W_lin_layer_id_[idx], W_data, w_offset, true, cuda_stream)); if (B_data != nullptr) { - SetWeightBias(cudnn_handle, rnn_desc, layer, x_desc, w_desc, filter_desc, reorganized_w_data, W_lin_layer_id_[idx], B_data, bias_offset, false, cuda_stream); + ORT_RETURN_IF_ERROR(SetWeightBias(cudnn_handle, rnn_desc, layer, reorganized_w_data_size, reorganized_w_data, + W_lin_layer_id_[idx], B_data, bias_offset, false, cuda_stream)); } } for (size_t idx = 0; idx < R_lin_layer_id_.size(); ++idx) { - SetWeightBias(cudnn_handle, rnn_desc, layer, x_desc, w_desc, filter_desc, reorganized_w_data, R_lin_layer_id_[idx], R_data, r_offset, true, cuda_stream); + ORT_RETURN_IF_ERROR(SetWeightBias(cudnn_handle, rnn_desc, layer, reorganized_w_data_size, reorganized_w_data, + R_lin_layer_id_[idx], R_data, r_offset, true, cuda_stream)); if (B_data != nullptr) { - SetWeightBias(cudnn_handle, rnn_desc, layer, x_desc, w_desc, filter_desc, reorganized_w_data, R_lin_layer_id_[idx], B_data, bias_offset, false, cuda_stream); + ORT_RETURN_IF_ERROR(SetWeightBias(cudnn_handle, rnn_desc, layer, reorganized_w_data_size, reorganized_w_data, + R_lin_layer_id_[idx], B_data, bias_offset, false, cuda_stream)); } } } @@ -72,6 +85,7 @@ Status CudnnRnnBase::SetCudnnRnnWeightBias(const cudnnHandle_t cudnn_handle, template Status CudnnRnnBase::ReorganizeWeights(const Tensor* W, const Tensor* R, const Tensor* B, + size_t& reorganized_w_data_size_in_bytes, IAllocatorUniquePtr& reorganized_w_data, CudnnFilterDescriptor& target_w_desc, CudnnRNN& rnn_desc, onnxruntime::Stream* ort_stream) const { @@ -91,19 +105,16 @@ Status CudnnRnnBase::ReorganizeWeights(const Tensor* W, const Tensor* R, cons TensorShapeVector dims_w({w_size, 1, 1}); ORT_RETURN_IF_ERROR(target_w_desc.Set(dims_w, CudnnTensor::GetDataType())); - TensorShapeVector fake_dims_x({1, input_size, 1}); - CudnnTensor fake_x_desc; - ORT_RETURN_IF_ERROR(fake_x_desc.Set(fake_dims_x, CudnnTensor::GetDataType())); - // Prepare the weight data - reorganized_w_data = GetScratchBuffer(w_size * sizeof(T), ort_stream); + reorganized_w_data_size_in_bytes = w_size * sizeof(T); + reorganized_w_data = GetScratchBuffer(reorganized_w_data_size_in_bytes, ort_stream); // In many cases, this allocation is bigger than needed, leaving part of - // the buffer unintialized. non-zero garbage data leads to wrong result + // the buffer uninitialized. non-zero garbage data leads to wrong result // in call to cudnnRNNForwardInference() // TODO! refine allocation size for each case. cudaStream_t cuda_stream = ort_stream ? static_cast(ort_stream->GetHandle()) : nullptr; - cudaMemsetAsync(reorganized_w_data.get(), 0, w_size * sizeof(T), cuda_stream); + CUDA_RETURN_IF_ERROR(cudaMemsetAsync(reorganized_w_data.get(), 0, reorganized_w_data_size_in_bytes, cuda_stream)); const T* W_data = W->Data(); const T* R_data = R->Data(); @@ -111,8 +122,9 @@ Status CudnnRnnBase::ReorganizeWeights(const Tensor* W, const Tensor* R, cons auto* ort_cuda_stream = dynamic_cast(ort_stream); cudnnHandle_t cudnn_handle = ort_cuda_stream ? ort_cuda_stream->cudnn_handle_ : DefaultCudnnHandle(); - ORT_RETURN_IF_ERROR(SetCudnnRnnWeightBias(cudnn_handle, rnn_desc, fake_x_desc, target_w_desc, - reorganized_w_data.get(), W_data, R_data, B_data, cuda_stream)); + ORT_RETURN_IF_ERROR(SetCudnnRnnWeightBias(cudnn_handle, rnn_desc, + reorganized_w_data_size_in_bytes, reorganized_w_data.get(), + W_data, R_data, B_data, cuda_stream)); return Status::OK(); } @@ -128,22 +140,31 @@ Status CudnnRnnBase::CacheCudnnRnnWeights(const OpKernelInfo& info) { bool get_R = info.TryGetConstantInput(RNN_Input_Index::R, &R); bool get_B = info.TryGetConstantInput(RNN_Input_Index::B, &B); + bool has_bias = B != nullptr; + if (get_W && get_R) { CudnnRNN tmp_rnn_desc; - ORT_RETURN_IF_ERROR(tmp_rnn_desc.Set(DefaultCudnnHandle(), + auto proj_size = hidden_size_; + ORT_RETURN_IF_ERROR(tmp_rnn_desc.Set(W->Shape()[2], // input_size hidden_size_, + proj_size, RNN_NUM_LAYERS, cudnn_dropout_desc_, cudnn_direction_mode_, rnn_mode_, - CudnnTensor::GetDataType(), - GetDeviceProp())); + has_bias, + CudnnTensor::GetDataType())); if (get_B) { - ORT_RETURN_IF_ERROR(ReorganizeWeights(W, R, B, w_data_cache_, w_desc_cache_, tmp_rnn_desc, nullptr)); + ORT_RETURN_IF_ERROR(ReorganizeWeights(W, R, B, + w_data_cache_size_in_bytes_, w_data_cache_, w_desc_cache_, + tmp_rnn_desc, nullptr)); } else { - ORT_RETURN_IF_ERROR(ReorganizeWeights(W, R, nullptr, w_data_cache_, w_desc_cache_, tmp_rnn_desc, nullptr)); + ORT_RETURN_IF_ERROR(ReorganizeWeights(W, R, nullptr, + w_data_cache_size_in_bytes_, w_data_cache_, w_desc_cache_, + tmp_rnn_desc, nullptr)); } cudaStreamSynchronize(nullptr); + weight_cached_ = true; } @@ -158,17 +179,72 @@ Status CudnnRnnBase::ComputeInternal(OpKernelContext* ctx) const { ORT_ENFORCE(nullptr != X); // optional inputs - const Tensor* sequence_lens = ctx->Input(RNN_Input_Index::sequence_lens); // [batch_size] - const Tensor* initial_h = ctx->Input(RNN_Input_Index::initial_h); // initial hidden. [num_directions_, batch_size, hidden_size_] + // [batch_size] + const Tensor* sequence_lens = ctx->Input(RNN_Input_Index::sequence_lens); + // initial hidden. [num_directions_, batch_size, hidden_size_] + const Tensor* initial_h = ctx->Input(RNN_Input_Index::initial_h); const Tensor* initial_c(nullptr); if (rnn_mode_ == CUDNN_LSTM) { - initial_c = ctx->Input(RNN_Input_Index::initial_c); // initial cell. [num_directions_, batch_size, hidden_size_] + // initial cell. [num_directions_, batch_size, hidden_size_] + initial_c = ctx->Input(RNN_Input_Index::initial_c); } + size_t proj_size = hidden_size_; int64_t seq_length = X->Shape()[0]; int64_t batch_size = X->Shape()[1]; int64_t input_size = X->Shape()[2]; + // we thread a single input as sequence_lens of length 1, require to expand to [batch_size]? + std::vector sequence_lengths_temp; + if (!sequence_lens) { + sequence_lengths_temp.resize(batch_size, gsl::narrow_cast(seq_length)); + } + + const int32_t* sequence_lens_data = (sequence_lens == nullptr) + ? sequence_lengths_temp.data() + : sequence_lens->Data(); + + // cuDNN doesn't support 0 sequence inside the batch, find the 0 sequence and set it to 1 + // there's a ZeroMask kernel to reset the result to 0 for the 0 sequence + int64_t zero_seq_count = 0; + std::vector zero_seq_index_cache(batch_size, 0); + + CudaAsyncBuffer sequence_lens_buffer(this, batch_size); + int32_t* seq_len_array = sequence_lens_buffer.CpuPtr(); + + // 0-len sequences are not supported by cuDNN. + // Replace them by sequences of len 1 and mask them out with SetZeroSequences + for (int i = 0; i < batch_size; ++i) { + if (0 == sequence_lens_data[i]) { + seq_len_array[i] = 1; + zero_seq_index_cache[zero_seq_count] = i; + ++zero_seq_count; + } else { + seq_len_array[i] = sequence_lens_data[i]; + } + } + + // Calculate the zero position cache for reverse direction if it's bidirectional + // The cache is for Y_h or Y_c, and the 1st sequence for Y, no need to do it for other sequence in Y since + // we hacked the 0 sequence to 1 + if (zero_seq_count && num_directions_ > 1) { + zero_seq_index_cache.resize(zero_seq_count * num_directions_); + for (int64_t i = 0; i < zero_seq_count; ++i) { + zero_seq_index_cache[static_cast(zero_seq_count) + i] = + static_cast(batch_size + zero_seq_index_cache[i]); + } + zero_seq_count *= num_directions_; + } + + // Prior to cuDNN 8.9.1 the sequence lens buffer must be passed to cudnnRNNForward and thus is must + // be copied to the GPU always. + ORT_RETURN_IF_ERROR(sequence_lens_buffer.CopyToGpu(ctx->GetComputeStream())); + // Starting with cuDNN 8.9.1 the sequence lens buffer is ignored by cudnnRNNForward and thus it must + // be copied to the GPU only for the ReverseBySequence kernels. + // if (reverse_) { + // ORT_RETURN_IF_ERROR(sequence_lens_buffer.CopyToGpu(ctx->GetComputeStream())); + // } + // optional outputs TensorShapeVector dims_Y({seq_length, num_directions_, batch_size, hidden_size_}); TensorShapeVector dims_hxy({RNN_NUM_LAYERS * num_directions_, batch_size, hidden_size_}); @@ -177,25 +253,6 @@ Status CudnnRnnBase::ComputeInternal(OpKernelContext* ctx) const { Tensor* Y_h = ctx->Output(Output_Index::Y_h, dims_hxy); Tensor* Y_c = ctx->Output(Output_Index::Y_c, dims_yc); - std::vector dims_x({batch_size, input_size, 1}); - std::vector dims_y({batch_size, hidden_size_ * num_directions_, 1}); - - CudnnTensor x_desc_temp; - ORT_RETURN_IF_ERROR(x_desc_temp.Set(dims_x, CudnnTensor::GetDataType())); - CudnnTensor y_desc_temp; - ORT_RETURN_IF_ERROR(y_desc_temp.Set(dims_y, CudnnTensor::GetDataType())); - std::vector x_desc(seq_length, x_desc_temp); - std::vector y_desc(seq_length, y_desc_temp); - - CudnnTensor hx_desc; - CudnnTensor cx_desc; - CudnnTensor y_h_desc; - CudnnTensor y_c_desc; - ORT_RETURN_IF_ERROR(hx_desc.Set(dims_hxy, CudnnTensor::GetDataType())); - ORT_RETURN_IF_ERROR(cx_desc.Set(dims_hxy, CudnnTensor::GetDataType())); - ORT_RETURN_IF_ERROR(y_h_desc.Set(dims_hxy, CudnnTensor::GetDataType())); - ORT_RETURN_IF_ERROR(y_c_desc.Set(dims_hxy, CudnnTensor::GetDataType())); - IAllocatorUniquePtr x_reversed_data; const T* x_data = X->Data(); if (reverse_) { @@ -203,6 +260,7 @@ Status CudnnRnnBase::ComputeInternal(OpKernelContext* ctx) const { x_reversed_data = GetScratchBuffer(seq_length * batch_size * input_size, ctx->GetComputeStream()); ReverseBySequence(Stream(ctx), gsl::narrow_cast(seq_length), + sequence_lens_buffer.GpuPtr(), gsl::narrow_cast(batch_size), gsl::narrow_cast(input_size), reinterpret_cast(x_data), @@ -226,115 +284,81 @@ Status CudnnRnnBase::ComputeInternal(OpKernelContext* ctx) const { y_data = y_alloc_data.get(); } - const int32_t* sequence_lens_data = (sequence_lens == nullptr) ? nullptr : sequence_lens->Data(); + const Tensor* B = ctx->Input(RNN_Input_Index::B); + bool has_bias = B != nullptr; CudnnRNN rnn_desc; - ORT_RETURN_IF_ERROR(rnn_desc.Set(GetCudnnHandle(ctx), + ORT_RETURN_IF_ERROR(rnn_desc.Set(input_size, hidden_size_, + proj_size, RNN_NUM_LAYERS, cudnn_dropout_desc_, cudnn_direction_mode_, rnn_mode_, - CudnnTensor::GetDataType(), - GetDeviceProp())); + has_bias, + CudnnTensor::GetDataType())); // Prepare the weight data + size_t w_data_size_in_bytes = 0; IAllocatorUniquePtr w_data; CudnnFilterDescriptor w_desc; if (!weight_cached_) { const Tensor& W = *ctx->Input(RNN_Input_Index::W); const Tensor& R = *ctx->Input(RNN_Input_Index::R); - const Tensor* B = ctx->Input(RNN_Input_Index::B); - ORT_RETURN_IF_ERROR(ReorganizeWeights(&W, &R, B, w_data, w_desc, rnn_desc, ctx->GetComputeStream())); + ORT_RETURN_IF_ERROR(ReorganizeWeights(&W, &R, B, w_data_size_in_bytes, w_data, w_desc, + rnn_desc, ctx->GetComputeStream())); } - // CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED works with CUDNN_RNN_PADDED_IO_ENABLED, so that it will auto fill 0 for the shorter sequences - CUDNN_RETURN_IF_ERROR(cudnnSetRNNPaddingMode(rnn_desc, CUDNN_RNN_PADDED_IO_ENABLED)); + CudnnDataTensor x_desc1; + ORT_RETURN_IF_ERROR(x_desc1.Set(CudnnTensor::GetDataType(), seq_length, batch_size, + input_size, seq_len_array)); + CudnnDataTensor y_desc1; + ORT_RETURN_IF_ERROR(y_desc1.Set(CudnnTensor::GetDataType(), seq_length, batch_size, + ((rnn_mode_ == CUDNN_LSTM) ? proj_size : hidden_size_) * num_directions_, + seq_len_array)); - size_t workspace_bytes; - CUDNN_RETURN_IF_ERROR(cudnnGetRNNWorkspaceSize(GetCudnnHandle(ctx), rnn_desc, gsl::narrow_cast(seq_length), x_desc.data(), &workspace_bytes)); - auto workspace_cuda = GetScratchBuffer(workspace_bytes, ctx->GetComputeStream()); - int64_t zero_seq_count = 0; - std::vector zero_seq_index_cache(batch_size, 0); - int64_t zero_seq_index_cache_size = 0; - - if (CUDNN_RNN_RELU == rnn_mode_ || CUDNN_RNN_TANH == rnn_mode_ || nullptr == sequence_lens_data) { - CUDNN_RETURN_IF_ERROR(cudnnRNNForwardInference(GetCudnnHandle(ctx), - rnn_desc, - gsl::narrow_cast(seq_length), - x_desc.data(), - x_data_input, - hx_desc, - hx_data, - cx_desc, - cx_data, - weight_cached_ ? w_desc_cache_ : w_desc, - weight_cached_ ? w_data_cache_.get() : w_data.get(), - y_desc.data(), - y_data, - y_h_desc, - y_h_data, - y_c_desc, - y_c_data, - workspace_cuda.get(), - workspace_bytes)); - } else { - // cudnn doesn't support 0 sequence inside the batch, find the 0 sequence and set it to 1 - // there's a ZeroMask kernel to reset the result to 0 for the 0 sequence - std::vector seq_len_array(sequence_lens_data, sequence_lens_data + batch_size); - for (int i = 0; i < batch_size; ++i) { - if (0 == seq_len_array[i]) { - seq_len_array[i] = 1; - zero_seq_index_cache[zero_seq_count] = i; - ++zero_seq_count; - } - } + CudnnTensor cx_desc; + ORT_RETURN_IF_ERROR(cx_desc.Set(dims_hxy, CudnnTensor::GetDataType())); - // Calculate the zero position cache for reverse direction if it's bidirectional - // The cache is for Y_h or Y_c, and the 1st sequence for Y, no need to do it for other sequence in Y since - // we hacked the 0 sequence to 1 - if (zero_seq_count && num_directions_ > 1) { - zero_seq_index_cache_size = zero_seq_count * num_directions_; - zero_seq_index_cache.resize(zero_seq_index_cache_size); - for (int64_t i = 0; i < zero_seq_count; ++i) { - zero_seq_index_cache[static_cast(zero_seq_count) + i] = static_cast(batch_size + zero_seq_index_cache[i]); - } - } + CudnnTensor hx_desc; + ORT_RETURN_IF_ERROR(hx_desc.Set(dims_hxy, CudnnTensor::GetDataType())); + + // reserveSpaceSize is not required cudnnRNNForward, but returned by cudnnGetRNNTempSpaceSizes + size_t workspace_bytes, reservespace_bytes; - CudnnDataTensor x_desc1; - ORT_RETURN_IF_ERROR(x_desc1.Set(CudnnTensor::GetDataType(), seq_length, batch_size, input_size, seq_len_array.data())); - CudnnDataTensor y_desc1; - ORT_RETURN_IF_ERROR(y_desc1.Set(CudnnTensor::GetDataType(), seq_length, batch_size, hidden_size_ * num_directions_, seq_len_array.data())); - - CUDNN_RETURN_IF_ERROR(cudnnRNNForwardInferenceEx(GetCudnnHandle(ctx), - rnn_desc, - x_desc1, - x_data_input, - hx_desc, - hx_data, - cx_desc, - cx_data, - weight_cached_ ? w_desc_cache_ : w_desc, - weight_cached_ ? w_data_cache_.get() : w_data.get(), - y_desc1, - y_data, - y_h_desc, - y_h_data, - y_c_desc, - y_c_data, - nullptr, nullptr, nullptr, nullptr, - nullptr, nullptr, nullptr, nullptr, - workspace_cuda.get(), - workspace_bytes)); - - // Early terminate for this case since Y data is not required, and Y_h is obtained correctly, no need the following code to retrive Y_h from Y data. - if (nullptr == Y) { + CUDNN_RETURN_IF_ERROR(cudnnGetRNNTempSpaceSizes(GetCudnnHandle(ctx), rnn_desc, CUDNN_FWD_MODE_INFERENCE, + x_desc1, &workspace_bytes, &reservespace_bytes)); + auto workspace_cuda = GetScratchBuffer(workspace_bytes, ctx->GetComputeStream()); + auto reservespace_cuda = GetScratchBuffer(reservespace_bytes, ctx->GetComputeStream()); + + CUDNN_RETURN_IF_ERROR(cudnnRNNForward(GetCudnnHandle(ctx), + rnn_desc, + CUDNN_FWD_MODE_INFERENCE, + sequence_lens_buffer.GpuPtr(), // should be zero starting with cudnn 8.9.1 + x_desc1, + x_data_input, + y_desc1, + y_data, // output + hx_desc, + hx_data, // input + y_h_data, // output + cx_desc, cx_data, y_c_data, + weight_cached_ ? w_data_cache_size_in_bytes_ : w_data_size_in_bytes, + weight_cached_ ? w_data_cache_.get() : w_data.get(), + workspace_bytes, + workspace_cuda.get(), + reservespace_bytes, + reservespace_cuda.get())); + + // Early terminate for this case since Y data is not required, and Y_h is obtained correctly, + // no need the following code to retrieve Y_h from Y data. + if (nullptr == Y) { + // Mask on output for 0 sequence batches + if (zero_seq_count > 0) { // Mask on output for 0 sequence batches - if (zero_seq_count > 0) { - SetZeroSequences(zero_seq_index_cache_size, zero_seq_index_cache, y_data, y_h_data, y_c_data, ctx->GetComputeStream()); - } - return Status::OK(); + SetZeroSequences(zero_seq_count, zero_seq_index_cache, y_data, y_h_data, y_c_data, ctx->GetComputeStream()); } + return Status::OK(); } IAllocatorUniquePtr y_reorganized_data; @@ -345,6 +369,7 @@ Status CudnnRnnBase::ComputeInternal(OpKernelContext* ctx) const { // reverse output data ReverseBySequence(Stream(ctx), gsl::narrow_cast(seq_length), + sequence_lens_buffer.GpuPtr(), gsl::narrow_cast(batch_size), gsl::narrow_cast(hidden_size_), reinterpret_cast(y_data), @@ -361,8 +386,9 @@ Status CudnnRnnBase::ComputeInternal(OpKernelContext* ctx) const { } if (Y != nullptr) { - // User specified this optional output, so need to copy the reversed data to orignial place - CUDA_RETURN_IF_ERROR(cudaMemcpyAsync(y_data, y_reorganized_data.get(), output_size * sizeof(T), cudaMemcpyDeviceToDevice, Stream(ctx))); + // User specified this optional output, so need to copy the reversed data to original place + CUDA_RETURN_IF_ERROR(cudaMemcpyAsync(y_data, y_reorganized_data.get(), output_size * sizeof(T), + cudaMemcpyDeviceToDevice, Stream(ctx))); } else { y_data = y_reorganized_data.get(); } @@ -370,23 +396,9 @@ Status CudnnRnnBase::ComputeInternal(OpKernelContext* ctx) const { // Mask on output for 0 sequence batches if (zero_seq_count > 0) { - SetZeroSequences(zero_seq_index_cache_size, zero_seq_index_cache, y_data, y_h_data, y_c_data, ctx->GetComputeStream()); + SetZeroSequences(zero_seq_count, zero_seq_index_cache, y_data, y_h_data, y_c_data, ctx->GetComputeStream()); } - if ((CUDNN_RNN_RELU == rnn_mode_ || CUDNN_RNN_TANH == rnn_mode_) && sequence_lens_data != nullptr && y_h_data != nullptr && y_data != nullptr) { - CudaAsyncBuffer sequence_lens_buffer(this, batch_size); - memcpy(sequence_lens_buffer.CpuPtr(), sequence_lens_data, batch_size * sizeof(int32_t)); - ORT_RETURN_IF_ERROR(sequence_lens_buffer.CopyToGpu(ctx->GetComputeStream())); - RnnMaskImpl(Stream(ctx), - gsl::narrow_cast(num_directions_), - gsl::narrow_cast(seq_length), - gsl::narrow_cast(batch_size), - gsl::narrow_cast(hidden_size_), - sequence_lens_buffer.GpuPtr(), - reinterpret_cast(y_data), - reinterpret_cast(y_h_data), - output_size); - } return Status::OK(); } @@ -399,7 +411,8 @@ void CudnnRnnBase::SetZeroSequences(const int64_t zero_seq_index_cache_size, onnxruntime::Stream* ort_stream) const { typedef typename ToCudaType::MappedType CudaT; CudaAsyncBuffer zero_seq_index_cache_async_buffer(this, zero_seq_index_cache_size); - memcpy(zero_seq_index_cache_async_buffer.CpuPtr(), zero_seq_index_cache.data(), zero_seq_index_cache_size * sizeof(int32_t)); + memcpy(zero_seq_index_cache_async_buffer.CpuPtr(), zero_seq_index_cache.data(), + zero_seq_index_cache_size * sizeof(int32_t)); ORT_THROW_IF_ERROR(zero_seq_index_cache_async_buffer.CopyToGpu(ort_stream)); cudaStream_t cuda_stream = ort_stream ? static_cast(ort_stream->GetHandle()) : nullptr; MaskZeroSequences(cuda_stream, diff --git a/onnxruntime/core/providers/cuda/rnn/cudnn_rnn_base.h b/onnxruntime/core/providers/cuda/rnn/cudnn_rnn_base.h index 1c9483b2afd38..0fa01d3486e99 100644 --- a/onnxruntime/core/providers/cuda/rnn/cudnn_rnn_base.h +++ b/onnxruntime/core/providers/cuda/rnn/cudnn_rnn_base.h @@ -38,26 +38,28 @@ class CudnnRNN { } } - Status Set(const cudnnHandle_t& cudnnHandle, int64_t hidden_size, int num_layers, + Status Set(int64_t input_size, int64_t hidden_size, int64_t proj_size, int num_layers, cudnnDropoutDescriptor_t cudnn_dropout_desc, cudnnDirectionMode_t cudnn_direction_model, - cudnnRNNMode_t rnn_mode, cudnnDataType_t dataType, const cudaDeviceProp& prop) { + cudnnRNNMode_t rnn_mode, bool has_bias, cudnnDataType_t dataType) { if (!cudnn_rnn_desc_) CUDNN_RETURN_IF_ERROR(cudnnCreateRNNDescriptor(&cudnn_rnn_desc_)); - CUDNN_RETURN_IF_ERROR(cudnnSetRNNDescriptor_v6(cudnnHandle, - cudnn_rnn_desc_, + CUDNN_RETURN_IF_ERROR(cudnnSetRNNDescriptor_v8(cudnn_rnn_desc_, + CUDNN_RNN_ALGO_STANDARD, // CUDNN_RNN_ALGO_PERSIST_STATIC, CUDNN_RNN_ALGO_PERSIST_DYNAMIC + rnn_mode, + has_bias ? CUDNN_RNN_DOUBLE_BIAS : CUDNN_RNN_NO_BIAS, + cudnn_direction_model, + CUDNN_LINEAR_INPUT, + dataType, + dataType, + dataType == CUDNN_DATA_HALF ? CUDNN_TENSOR_OP_MATH : CUDNN_DEFAULT_MATH, + gsl::narrow_cast(input_size), gsl::narrow_cast(hidden_size), + gsl::narrow_cast(proj_size), // projected size num_layers, cudnn_dropout_desc, - CUDNN_LINEAR_INPUT, // We can also skip the input matrix transformation - cudnn_direction_model, - rnn_mode, - CUDNN_RNN_ALGO_STANDARD, // CUDNN_RNN_ALGO_PERSIST_STATIC, CUDNN_RNN_ALGO_PERSIST_DYNAMIC - dataType)); - - if (prop.major >= 7 && dataType == CUDNN_DATA_HALF) { - cudnnSetRNNMatrixMathType(cudnn_rnn_desc_, CUDNN_TENSOR_OP_MATH); - } + // CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED works with CUDNN_RNN_PADDED_IO_ENABLED, so that it will auto fill 0 for the shorter sequences + CUDNN_RNN_PADDED_IO_ENABLED)); return Status::OK(); } @@ -119,8 +121,7 @@ class CudnnRnnBase : public CudaKernel { private: Status SetCudnnRnnWeightBias(const cudnnHandle_t cudnn_handle, const cudnnRNNDescriptor_t rnn_desc, - const cudnnTensorDescriptor_t x_desc, - const cudnnFilterDescriptor_t w_desc, + size_t w_data_size, void* w_data, const T* W_data, const T* R_data, @@ -128,23 +129,22 @@ class CudnnRnnBase : public CudaKernel { cudaStream_t cuda_stream) const; Status ReorganizeWeights(const Tensor* W, const Tensor* R, const Tensor* B, + size_t& target_w_data_size_in_bytes, IAllocatorUniquePtr& target_w_data, CudnnFilterDescriptor& target_w_desc, CudnnRNN& rnn_desc, onnxruntime::Stream* ort_stream) const; - void SetWeightBias(const cudnnHandle_t handle, - const cudnnRNNDescriptor_t rnn_desc, - const int pseudo_layer, - const cudnnTensorDescriptor_t x_desc, - const cudnnFilterDescriptor_t w_desc, - const cudnnFilterDescriptor_t filter_desc, - const void* w_data, - const int lin_layer_id, - const T* pos, - int& offset, - bool is_matrix, - cudaStream_t cuda_stream) const; + Status SetWeightBias(const cudnnHandle_t handle, + const cudnnRNNDescriptor_t rnn_desc, + const int pseudo_layer, + size_t w_data_size, + const void* w_data, + const int lin_layer_id, + const T* pos, + int& offset, + bool is_matrix, + cudaStream_t cuda_stream) const; void SetZeroSequences(const int64_t zero_seq_index_cache_size, const std::vector zero_seq_index_cache, @@ -167,6 +167,7 @@ class CudnnRnnBase : public CudaKernel { cudnnRNNMode_t rnn_mode_; // w_desc_cache_ & w_data_cache_ are changed in Constructor if we can get the weights as constant input CudnnFilterDescriptor w_desc_cache_; + size_t w_data_cache_size_in_bytes_; IAllocatorUniquePtr w_data_cache_; bool weight_cached_; int64_t layout_; diff --git a/onnxruntime/core/providers/cuda/rnn/rnn.cc b/onnxruntime/core/providers/cuda/rnn/rnn.cc index 4bd22340ef2bb..ed8be63679707 100644 --- a/onnxruntime/core/providers/cuda/rnn/rnn.cc +++ b/onnxruntime/core/providers/cuda/rnn/rnn.cc @@ -1,8 +1,9 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. -#include "core/providers/shared_library/provider_api.h" #include "rnn.h" + +#include "core/providers/shared_library/provider_api.h" #include "rnn_impl.h" #include "core/providers/cuda/cudnn_common.h" diff --git a/onnxruntime/core/providers/cuda/rnn/rnn.h b/onnxruntime/core/providers/cuda/rnn/rnn.h index e4e50046b3725..6221afb003b22 100644 --- a/onnxruntime/core/providers/cuda/rnn/rnn.h +++ b/onnxruntime/core/providers/cuda/rnn/rnn.h @@ -4,6 +4,7 @@ #pragma once #include "cudnn_rnn_base.h" + #include "core/providers/cuda/cuda_common.h" #include diff --git a/onnxruntime/core/providers/cuda/rnn/rnn_impl.cu b/onnxruntime/core/providers/cuda/rnn/rnn_impl.cu index d485855ddb417..94c8036be6cdf 100644 --- a/onnxruntime/core/providers/cuda/rnn/rnn_impl.cu +++ b/onnxruntime/core/providers/cuda/rnn/rnn_impl.cu @@ -8,22 +8,32 @@ namespace onnxruntime { namespace cuda { template -__global__ void _ReverseBySequenceKernel(const int32_t seq_length, +__global__ void _ReverseBySequenceKernel(const int32_t max_seq_length, + const int32_t* seq_lengths, const int32_t block_size, const fast_divmod div_batch_block, + const fast_divmod div_input_or_hidden_size, const T* data, T* reversed_data, const CUDA_LONG N) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); int seq_id, offset; div_batch_block.divmod(id, seq_id, offset); - int org_id = (seq_length - seq_id - 1) * block_size + offset; - reversed_data[id] = data[org_id]; + int batch, batch_offset; + div_input_or_hidden_size.divmod(offset, batch, batch_offset); + int seq_id_org = seq_lengths[batch] - seq_id - 1; + if (seq_id_org >= 0) { + int org_id = seq_id_org * block_size + offset; + reversed_data[id] = data[org_id]; + } else { + reversed_data[id] = T{}; + } } template void ReverseBySequence(cudaStream_t stream, - const int32_t seq_length, + const int32_t max_seq_length, + const int32_t *seq_lengths, const int32_t batch_size, const int32_t input_or_hidden_size, const T* data, @@ -32,9 +42,10 @@ void ReverseBySequence(cudaStream_t stream, // kerneral int32_t block_size = batch_size * input_or_hidden_size; fast_divmod div_batch_block(block_size); + fast_divmod div_input_or_hidden_size(input_or_hidden_size); int blocksPerGrid = (int)(ceil(static_cast(N) / GridDim::maxThreadsPerBlock)); _ReverseBySequenceKernel<<>>( - seq_length, block_size, div_batch_block, data, reversed_data, (CUDA_LONG)N); + max_seq_length, seq_lengths, block_size, div_batch_block, div_input_or_hidden_size, data, reversed_data, (CUDA_LONG)N); } template @@ -82,60 +93,6 @@ void ReorderBidirectionalDataInSequence(cudaStream_t stream, data, reordered_data, (CUDA_LONG)N); } -template -__global__ void _RnnMaskKernel(const int32_t seq_length, - const int32_t batch_size, - const int32_t hidden_size, - const int32_t* sequence_lens, - const fast_divmod div_seq_block, - const fast_divmod div_dir_block, - const fast_divmod div_batch_block, - T* y_output_data, - T* y_h_output_data, - const CUDA_LONG N) { - CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); - - int seq_id, direction_id, batch_id, offset; - div_seq_block.divmod(id, seq_id, offset); - div_dir_block.divmod(offset, direction_id, offset); - div_batch_block.divmod(offset, batch_id, offset); - int32_t batch_seq_length = sequence_lens[batch_id]; - - if (batch_id >= batch_size || batch_seq_length == seq_length) { - return; - } - - if (seq_id >= batch_seq_length) { - y_output_data[id] = 0; - return; - } - - if ((y_h_output_data != nullptr) && - ((direction_id == 0 && (seq_id + 1) == batch_seq_length) || (direction_id == 1 && seq_id == 0))) { - int hy_idx = direction_id * batch_size * hidden_size + batch_id * hidden_size + offset; - y_h_output_data[hy_idx] = y_output_data[id]; - } -} - -template -void RnnMaskImpl(cudaStream_t stream, - const int32_t num_directions, - const int32_t seq_length, - const int32_t batch_size, - const int32_t hidden_size, - const int32_t* sequence_lens, - T* y_output_data, - T* y_h_output_data, - const size_t N) { - fast_divmod div_seq_block(batch_size * hidden_size * num_directions); - fast_divmod div_dir_block(batch_size * hidden_size); - fast_divmod div_batch_block(hidden_size); - int blocksPerGrid = (int)(ceil(static_cast(N) / GridDim::maxThreadsPerBlock)); - _RnnMaskKernel<<>>( - seq_length, batch_size, hidden_size, sequence_lens, div_seq_block, - div_dir_block, div_batch_block, y_output_data, y_h_output_data, (CUDA_LONG)N); -} - template __global__ void _MaskZeroSequences(const int32_t hidden_size, T* y_output_data, @@ -180,17 +137,9 @@ void MaskZeroSequences(cudaStream_t stream, } #define SPECIALIZED_RNN_IMPL(T) \ - template void RnnMaskImpl(cudaStream_t stream, \ - const int32_t num_directions, \ - const int32_t seq_length, \ - const int32_t batch_size, \ - const int32_t hidden_size, \ - const int32_t* sequence_lens, \ - T* y_output_data, \ - T* y_h_output_data, \ - const size_t N); \ - template void ReverseBySequence(cudaStream_t stream, \ - const int32_t seq_length, \ + template void ReverseBySequence(cudaStream_t stream, \ + const int32_t max_seq_length, \ + const int32_t* seq_lengths, \ const int32_t batch_size, \ const int32_t hidden_size, \ const T* data, \ @@ -203,7 +152,7 @@ void MaskZeroSequences(cudaStream_t stream, const T* data, \ T* reordered_data, \ const size_t N); \ -template void MaskZeroSequences(cudaStream_t stream, \ +template void MaskZeroSequences(cudaStream_t stream, \ const int32_t hidden_size, \ T* y_output_data, \ T* y_h_output_data, \ diff --git a/onnxruntime/core/providers/cuda/rnn/rnn_impl.h b/onnxruntime/core/providers/cuda/rnn/rnn_impl.h index 9844e04ff6ec5..ba876011f6b67 100644 --- a/onnxruntime/core/providers/cuda/rnn/rnn_impl.h +++ b/onnxruntime/core/providers/cuda/rnn/rnn_impl.h @@ -10,7 +10,8 @@ namespace cuda { template void ReverseBySequence(cudaStream_t stream, - const int32_t seq_length, + const int32_t max_seq_length, + const int32_t* seq_lengths, const int32_t batch_size, const int32_t input_or_hidden_size, const T* data, @@ -26,17 +27,6 @@ void ReorderBidirectionalDataInSequence(cudaStream_t stream, T* reordered_data, const size_t N); -template -void RnnMaskImpl(cudaStream_t stream, - const int32_t num_directions, - const int32_t seq_length, - const int32_t batch_size, - const int32_t hidden_size, - const int32_t* sequence_lens, - T* y_output_data, - T* y_h_output_data, - const size_t N); - template void MaskZeroSequences(cudaStream_t stream, const int32_t hidden_size, diff --git a/onnxruntime/core/providers/cuda/shared_inc/cuda_utils.h b/onnxruntime/core/providers/cuda/shared_inc/cuda_utils.h index fa987866c002f..54c024793ff0b 100644 --- a/onnxruntime/core/providers/cuda/shared_inc/cuda_utils.h +++ b/onnxruntime/core/providers/cuda/shared_inc/cuda_utils.h @@ -168,5 +168,31 @@ struct NumericLimits { } }; +// TODO Where to put this? good places might be +// core/framework/tensor_shape.h +// core/util/matrix_layout.h + +constexpr bool LAYOUT_NCHW = false; +constexpr bool LAYOUT_NHWC = true; + +template +struct Channels; + +template <> +struct Channels { + static constexpr size_t N = 0; + static constexpr size_t H = 1; + static constexpr size_t W = 2; + static constexpr size_t C = 3; +}; + +template <> +struct Channels { + static constexpr size_t N = 0; + static constexpr size_t C = 1; + static constexpr size_t H = 2; + static constexpr size_t W = 3; +}; + } // namespace cuda } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/tensor/gelu.cc b/onnxruntime/core/providers/cuda/tensor/gelu.cc new file mode 100644 index 0000000000000..67b2fad373a7f --- /dev/null +++ b/onnxruntime/core/providers/cuda/tensor/gelu.cc @@ -0,0 +1,89 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "core/providers/cuda/cuda_common.h" +#include "core/providers/cuda/cudnn_common.h" +#include "core/providers/cuda/tensor/gelu.h" +#include "core/providers/cuda/tensor/gelu_impl.h" + +namespace onnxruntime { +namespace cuda { + +#define REGISTER_KERNEL_TYPED(T) \ + ONNX_OPERATOR_TYPED_KERNEL_EX( \ + Gelu, \ + kOnnxDomain, \ + 20, \ + T, \ + kCudaExecutionProvider, \ + (*KernelDefBuilder::Create()) \ + .TypeConstraint("T", DataTypeImpl::GetTensorType()) \ + .MayInplace(0, 0), \ + Gelu); + +REGISTER_KERNEL_TYPED(float) +REGISTER_KERNEL_TYPED(MLFloat16) +REGISTER_KERNEL_TYPED(double) + +template +Status Gelu::ComputeInternal(OpKernelContext* context) const { + const Tensor* input = context->Input(0); + const auto& input_dims = input->Shape().GetDims(); + if (input_dims.size() < 1) { + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, + "Input 0 is expected to have 1 or more dimensions, got ", input_dims.size()); + } + + Tensor* output = context->Output(0, input->Shape()); + + int64_t input_length = input->Shape().Size(); + if (input_length == 0) { + return Status::OK(); + } + + typedef typename ToCudaType::MappedType CudaT; + + if (approximation_algorithm_ == "tanh") { + return LaunchFastGeluKernel(GetDeviceProp(), + Stream(context), + static_cast(input_length), + 0 /* no bias */, + reinterpret_cast(input->Data()), + nullptr /* no bias */, + reinterpret_cast(output->MutableData()), + use_half2_); + } else if (approximation_algorithm_ == "none") { + return LaunchGeluKernel(Stream(context), + reinterpret_cast(input->Data()), + reinterpret_cast(output->MutableData()), + static_cast(input_length)); + } + + return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Unsupported approximation_algorithm: ", approximation_algorithm_); +} + +} // namespace cuda + +#ifndef DISABLE_CONTRIB_OPS +namespace contrib::cuda { +#define REGISTER_CONTRIB_KERNEL_TYPED(T) \ + ONNX_OPERATOR_TYPED_KERNEL_EX( \ + Gelu, \ + kMSDomain, \ + 1, \ + T, \ + kCudaExecutionProvider, \ + (*KernelDefBuilder::Create()) \ + .TypeConstraint("T", DataTypeImpl::GetTensorType()) \ + .MayInplace(0, 0), \ + onnxruntime::cuda::Gelu); + +REGISTER_CONTRIB_KERNEL_TYPED(float) +REGISTER_CONTRIB_KERNEL_TYPED(MLFloat16) +REGISTER_CONTRIB_KERNEL_TYPED(double) + +#undef REGISTER_CONTRIB_KERNEL_TYPED +} // namespace contrib::cuda +#endif + +} // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/tensor/gelu.h b/onnxruntime/core/providers/cuda/tensor/gelu.h new file mode 100644 index 0000000000000..1c8189ab24121 --- /dev/null +++ b/onnxruntime/core/providers/cuda/tensor/gelu.h @@ -0,0 +1,28 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#pragma once +#include "core/common/common.h" +#include "core/providers/cuda/cuda_kernel.h" +#include "core/providers/cuda/math/unary_elementwise_ops.h" + +namespace onnxruntime { +namespace cuda { + +template +class Gelu final : public UnaryElementwise { + public: + Gelu(const OpKernelInfo& info) : UnaryElementwise(info) { + approximation_algorithm_ = info.GetAttrOrDefault("approximate", "none"); + } + + Status ComputeInternal(OpKernelContext* ctx) const override; + + private: + const bool use_half2_{true}; + + std::string approximation_algorithm_; +}; + +} // namespace cuda +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/cuda/bert/fast_gelu_impl.cu b/onnxruntime/core/providers/cuda/tensor/gelu_approximate_impl.cu similarity index 84% rename from onnxruntime/contrib_ops/cuda/bert/fast_gelu_impl.cu rename to onnxruntime/core/providers/cuda/tensor/gelu_approximate_impl.cu index c9498eb1bcd7b..7a27b7af33137 100644 --- a/onnxruntime/contrib_ops/cuda/bert/fast_gelu_impl.cu +++ b/onnxruntime/core/providers/cuda/tensor/gelu_approximate_impl.cu @@ -24,12 +24,9 @@ limitations under the License. #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/cu_inc/common.cuh" #include "core/providers/cuda/shared_inc/cuda_call.h" -#include "contrib_ops/cuda/bert/fast_gelu_impl.h" - -using namespace onnxruntime::cuda; +#include "core/providers/cuda/tensor/gelu_impl.h" namespace onnxruntime { -namespace contrib { namespace cuda { // constants for approximating the normal cdf @@ -65,7 +62,7 @@ __global__ void FastGeluKernel2(const half2 a, const half2 b, const half2 c, int } template <> -Status LaunchFastGeluKernel(const cudaDeviceProp& prop, cudaStream_t stream, int input_length, int bias_length, +Status LaunchFastGeluKernel(const cudaDeviceProp& /*prop*/, cudaStream_t stream, int input_length, int bias_length, const float* input, const float* bias, float* output, bool /*use_half2*/) { constexpr int blockSize = 256; const int gridSize = (input_length + blockSize - 1) / blockSize; @@ -75,6 +72,17 @@ Status LaunchFastGeluKernel(const cudaDeviceProp& prop, cudaStream_t stream, int return CUDA_CALL(cudaGetLastError()); } +template <> +Status LaunchFastGeluKernel(const cudaDeviceProp& /*prop*/, cudaStream_t stream, int input_length, int bias_length, + const double* input, const double* bias, double* output, bool /*use_half2*/) { + constexpr int blockSize = 256; + const int gridSize = (input_length + blockSize - 1) / blockSize; + FastGeluKernel<<>>(A, B, C, input_length, bias_length, + input, bias, output); + + return CUDA_CALL(cudaGetLastError()); +} + template <> Status LaunchFastGeluKernel(const cudaDeviceProp& prop, cudaStream_t stream, int input_length, int bias_length, const half* input, const half* bias, half* output, bool use_half2) { @@ -100,7 +108,7 @@ Status LaunchFastGeluKernel(const cudaDeviceProp& prop, cudaStream_t stream, int } template <> -Status LaunchFastGeluKernel(const cudaDeviceProp& prop, cudaStream_t stream, int input_length, int bias_length, +Status LaunchFastGeluKernel(const cudaDeviceProp& /*prop*/, cudaStream_t stream, int input_length, int bias_length, const BFloat16* input, const BFloat16* bias, BFloat16* output, bool /*use_half2*/) { constexpr int blockSize = 256; @@ -114,5 +122,4 @@ Status LaunchFastGeluKernel(const cudaDeviceProp& prop, cudaStream_t stream, int } } // namespace cuda -} // namespace contrib } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/tensor/gelu_impl.cu b/onnxruntime/core/providers/cuda/tensor/gelu_impl.cu new file mode 100644 index 0000000000000..3f96da38b37bb --- /dev/null +++ b/onnxruntime/core/providers/cuda/tensor/gelu_impl.cu @@ -0,0 +1,48 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include +#include "core/providers/cuda/tensor/gelu_impl.h" +#include "core/providers/cuda/cu_inc/common.cuh" +#include "core/providers/cuda/cu_inc/unary_elementwise_impl.cuh" + +namespace onnxruntime { +namespace cuda { + +template +struct OP_Gelu { + __device__ __inline__ T operator()(const T& a) const { + return _Gelu(a); + } +}; + +template <> +struct OP_Gelu { + __device__ __inline__ half operator()(const half& a) const { + return static_cast(_Gelu(static_cast(a))); + } +}; + +template +Status LaunchGeluKernel( + cudaStream_t stream, + const T* input_data, + T* output_data, + size_t count) { + UnaryElementWiseImpl(stream, input_data, output_data, OP_Gelu(), count); + + return CUDA_CALL(cudaGetLastError()); +} + +#define SPECIALIZED_GELU_IMPL(T) \ + template Status LaunchGeluKernel(cudaStream_t stream, const T* input_data, T* output_data, \ + size_t count); + +SPECIALIZED_GELU_IMPL(float); +SPECIALIZED_GELU_IMPL(half); +SPECIALIZED_GELU_IMPL(double); + +#undef SPECIALIZED_GELU_IMPL + +} // namespace cuda +} // namespace onnxruntime diff --git a/onnxruntime/contrib_ops/cuda/bert/fast_gelu_impl.h b/onnxruntime/core/providers/cuda/tensor/gelu_impl.h similarity index 80% rename from onnxruntime/contrib_ops/cuda/bert/fast_gelu_impl.h rename to onnxruntime/core/providers/cuda/tensor/gelu_impl.h index ba78310f5dfc2..2ea0d3441fda3 100644 --- a/onnxruntime/contrib_ops/cuda/bert/fast_gelu_impl.h +++ b/onnxruntime/core/providers/cuda/tensor/gelu_impl.h @@ -1,17 +1,18 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. - #pragma once + #include "core/common/common.h" namespace onnxruntime { -namespace contrib { namespace cuda { +template +Status LaunchGeluKernel(cudaStream_t stream, const T* input, T* output, size_t count); + template Status LaunchFastGeluKernel(const cudaDeviceProp& prop, cudaStream_t stream, int input_length, int bias_length, const T* input, const T* bias, T* output, bool use_half2); } // namespace cuda -} // namespace contrib } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/tensor/resize.cc b/onnxruntime/core/providers/cuda/tensor/resize.cc index 764172a8d1fac..97d4eb71e970a 100644 --- a/onnxruntime/core/providers/cuda/tensor/resize.cc +++ b/onnxruntime/core/providers/cuda/tensor/resize.cc @@ -28,10 +28,22 @@ namespace cuda { .InputMemoryType(OrtMemTypeCPUInput, 3) \ .TypeConstraint("T1", DataTypeImpl::GetTensorType()), \ Resize); \ + ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_EX( \ + Resize, \ + kOnnxDomain, \ + 13, 17, \ + T, \ + kCudaExecutionProvider, \ + (*KernelDefBuilder::Create()) \ + .InputMemoryType(OrtMemTypeCPUInput, 1) \ + .InputMemoryType(OrtMemTypeCPUInput, 2) \ + .InputMemoryType(OrtMemTypeCPUInput, 3) \ + .TypeConstraint("T1", DataTypeImpl::GetTensorType()), \ + Resize); \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ Resize, \ kOnnxDomain, \ - 13, \ + 18, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()) \ diff --git a/onnxruntime/core/providers/cuda/tensor/resize_antialias_impl.cu b/onnxruntime/core/providers/cuda/tensor/resize_antialias_impl.cu new file mode 100644 index 0000000000000..d56e4bc53874d --- /dev/null +++ b/onnxruntime/core/providers/cuda/tensor/resize_antialias_impl.cu @@ -0,0 +1,1179 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "core/providers/cuda/cu_inc/common.cuh" +#include "core/providers/cuda/tensor/resize_impl.h" + +#define FUNC_DEF __device__ + +namespace onnxruntime { +namespace cuda { + +using onnxruntime::ResizeCoordinateTransformationMode; +using onnxruntime::UpsampleMode; + +/// +/// Compute a buffer for bilinear data for CUDA antialias resizing. +/// +static std::tuple ComputeBilinearScaleBufferSize( + int64_t output_height, int64_t output_width, + float height_rscale, float width_rscale, + float support_value, + float& scaled_support_height, float& scaled_support_width, + int32_t& window_size_height, int32_t& window_size_width) { + scaled_support_height = ComputeScaledSupportValue(support_value, height_rscale); + scaled_support_width = ComputeScaledSupportValue(support_value, width_rscale); + window_size_height = ComputeWindowSize(scaled_support_height); + window_size_width = ComputeWindowSize(scaled_support_width); + + auto height_buffer_size = ComputeWeightedCoeffBufferSize(output_height, window_size_height); + auto width_buffer_size = ComputeWeightedCoeffBufferSize(output_width, window_size_width); + + return std::make_tuple(height_buffer_size, width_buffer_size); +} + +/// +/// Compute a buffer for btrilinear data for CUDA antialias resizing. +/// +static std::tuple ComputeTrilinearScaleBufferSize( + int64_t output_depth, int64_t output_height, int64_t output_width, + float depth_rscale, float height_rscale, float width_rscale, + float support_value, + float& scaled_support_depth, float& scaled_support_height, + float& scaled_support_width, int32_t& window_size_depth, + int32_t& window_size_height, int32_t& window_size_width) { + scaled_support_depth = ComputeScaledSupportValue(support_value, depth_rscale); + window_size_depth = ComputeWindowSize(scaled_support_depth); + auto depth_buffer_size = ComputeWeightedCoeffBufferSize(output_depth, window_size_depth); + + const auto [y_buffer_size, w_buffer_size] = ComputeBilinearScaleBufferSize(output_height, + output_width, height_rscale, + width_rscale, support_value, + scaled_support_height, + scaled_support_width, + window_size_height, window_size_width); + return std::make_tuple(depth_buffer_size, y_buffer_size, w_buffer_size); +} + +// Antialiasing filters +struct BilinearFilter { + __device__ __host__ float operator()(float x, float /* cubic_coeff_a */) const { + if (x < 0.0f) { + x = -x; + } + if (x < 1.0f) { + return 1.0f - x; + } + return 0.0f; + } +}; + +struct BiCubicFilter { + __device__ __host__ float operator()(float x, float cubic_coeff_a) const { + /* https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm + */ + if (x < 0.0f) { + x = -x; + } + if (x < 1.0f) { + return ((cubic_coeff_a + 2.0f) * x - (cubic_coeff_a + 3.0f)) * x * x + 1; + } + if (x < 2.0f) { + return (((x - 5.0f) * x + 8.f) * x - 4.f) * cubic_coeff_a; + } + return 0.0f; + } +}; + +struct TriLinearFilter { + __device__ __host__ float operator()(float x, float /* cubic_coeff_a */) const { + if (x < 0.0f) { + x = -x; + } + if (x < 1.0f) { + return 1.0f - x; + } + return 0.0f; + } +}; + +template +struct AccumTypeCaster { + static __device__ __host__ AccumType* cast(AccumType* p) { + return p; + } +}; + +template <> +struct AccumTypeCaster { + static __device__ __host__ float* cast(int32_t* p) { + return reinterpret_cast(p); + } +}; + +template +__global__ void _ComputeInterpolationAtLevel1( + int64_t num_channels, + int64_t input_height, int64_t input_width, + int64_t output_height, int64_t output_width, + const fast_divmod div_output_width, + const fast_divmod div_output_image, + int32_t window_size, + const uint8_t* clip8_table, + const int64_t* bound_data, + std::tuple outof_bounds_buffers, + const AccumType* weight_coefficients, + const T* Xdata, T* Ydata, + const int N) { + CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); + + // No need to do scale + if (output_width == input_width) { + Ydata[id] = Xdata[id]; + return; + } + + int bxc, output_image_index; + div_output_image.divmod(id, bxc, output_image_index); + + int output_y, output_x; + div_output_width.divmod(output_image_index, output_y, output_x); + + CUDA_LONG input_index = static_cast(bxc * num_channels * input_height * input_width); + CUDA_LONG output_index = static_cast(bxc * num_channels * output_height * output_width); + + auto* Ydata_offset = Ydata + output_index + output_width * output_y + output_x; + const auto* bound = bound_data; + + AccumType output = onnxruntime::is_8bit_v ? ConstValue::mag_factor : 0; + + const auto* weight_coeff = weight_coefficients + window_size * output_x; + int64_t xmin = bound[static_cast(output_x) * 2]; + int64_t xmax = bound[static_cast(output_x) * 2 + 1]; + + // Input window + const auto* Xdata_offset = Xdata + input_index + input_width * output_y + xmin; + + for (; xmin < xmax; ++xmin) { + if constexpr (std::is_same::value) { + // This cast is needed when we deal with half + output += static_cast((*Xdata_offset++)) * (*weight_coeff++); + } else { + output += (*Xdata_offset++) * (*weight_coeff++); + } + } + + if constexpr (onnxruntime::is_8bit_v) { + const uint8_t* clip8_lookups = &clip8_table[640]; + *Ydata_offset = static_cast(clip8_lookups[output >> 22]); + } else if constexpr (std::is_same::value) { + *Ydata_offset = static_cast(std::round(output)); + } else { + *Ydata_offset = static_cast(output); + } +} + +template +__global__ void _ComputeInterpolationAtLevel2( + int64_t num_channels, + int64_t input_height, int64_t input_width, + int64_t output_height, int64_t output_width, + const fast_divmod div_output_height, + const fast_divmod div_output_width, + const fast_divmod div_output_image, + int32_t window_size, + bool use_extrapolation, float extrapolation_value, + const uint8_t* clip8_table, + const int64_t* bound_data, + std::tuple outof_bounds_buffers, + const AccumType* weight_coefficients, + const T* Xdata, T* Ydata, int N) { + CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); + + // No need to do scale + if (output_height == input_height) { + Ydata[id] = Xdata[id]; + return; + } + + int bxc, output_image_index; + div_output_image.divmod(id, bxc, output_image_index); + + int output_z, output_y, output_x, temp; + div_output_height.divmod(output_image_index, output_z, temp); + div_output_width.divmod(temp, output_y, output_x); + + CUDA_LONG input_index = static_cast(bxc * num_channels * input_height * input_width + + output_z * input_height * input_width); + CUDA_LONG output_index = static_cast(bxc * num_channels * output_height * output_width + + output_z * output_height * output_width); + + auto* Ydata_offset = Ydata + output_index + output_width * output_y + output_x; + + if (use_extrapolation) { + const auto* w_outof_bounds = std::get<1>(outof_bounds_buffers); + // Extrapolate along the w dimension + if (w_outof_bounds[static_cast(output_x)] != -1) { + *Ydata_offset = static_cast(extrapolation_value); + return; + } + + // Extrapolate along the y dimension + const auto* y_outof_bounds = std::get<0>(outof_bounds_buffers); + if (y_outof_bounds[static_cast(output_y)] != -1) { + *Ydata_offset = static_cast(extrapolation_value); + return; + } + } + + const auto* bound = bound_data; + + AccumType output = onnxruntime::is_8bit_v ? ConstValue::mag_factor : 0; + + const auto* weight_coeff = weight_coefficients + window_size * output_y; + int64_t ymin = bound[static_cast(output_y) * 2]; + int64_t ymax = bound[static_cast(output_y) * 2 + 1]; + + const auto* Xdata_offset = Xdata + input_index + ymin * output_width + output_x; + + for (; ymin < ymax; ++ymin) { + if constexpr (std::is_same::value) { + // We cast to AccumType to resolve ambiguous call to operator* for half in CUDA + output += static_cast((*Xdata_offset)) * (*weight_coeff++); + } else { + output += (*Xdata_offset) * (*weight_coeff++); + } + Xdata_offset += input_width; + } + + if constexpr (onnxruntime::is_8bit_v) { + const uint8_t* clip8_lookups = &clip8_table[640]; + *Ydata_offset = static_cast(clip8_lookups[output >> 22]); + } else if constexpr (std::is_same::value) { + *Ydata_offset = static_cast(std::round(output)); + } else { + *Ydata_offset = output; + } +} + +template +__global__ void _ComputeInterpolationAtLevel3( + int64_t input_depth, + int64_t input_height, int64_t input_width, + int64_t output_depth, + int64_t output_height, int64_t output_width, + const fast_divmod div_output_height, + const fast_divmod div_output_width, + const fast_divmod div_output_image, + int32_t window_size, + bool use_extrapolation, float extrapolation_value, + const uint8_t* clip8_table, + const int64_t* bound_data, + std::tuple outof_bounds_buffers, + const AccumType* weight_coefficients, + const T* Xdata, T* Ydata, int N) { + CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); + + // No need to do scale + if (input_depth == output_depth) { + Ydata[id] = Xdata[id]; + return; + } + + int bxc, output_image_index; + div_output_image.divmod(id, bxc, output_image_index); + + int output_z, output_y, output_x, temp; + div_output_height.divmod(output_image_index, output_z, temp); + div_output_width.divmod(temp, output_y, output_x); + + CUDA_LONG input_index = static_cast(bxc * input_depth * input_height * input_width); + + auto* Ydata_offset = Ydata + id; + + if (use_extrapolation) { + const auto* w_outof_bounds = std::get<2>(outof_bounds_buffers); + // Extrapolate along the w dimension + if (w_outof_bounds[static_cast(output_x)] != -1) { + *Ydata_offset = static_cast(extrapolation_value); + return; + } + + // Extrapolate along the y dimension + const auto* y_outof_bounds = std::get<1>(outof_bounds_buffers); + if (y_outof_bounds[static_cast(output_y)] != -1) { + *Ydata_offset = static_cast(extrapolation_value); + return; + } + + // Extrapolate along the z dimension + const int64_t* z_outof_bounds = std::get<0>(outof_bounds_buffers); + if (z_outof_bounds != nullptr && z_outof_bounds[static_cast(output_z)] != -1) { + *Ydata_offset = static_cast(extrapolation_value); + return; + } + } + + const auto* bound = bound_data; + + AccumType output = onnxruntime::is_8bit_v ? ConstValue::mag_factor : 0; + + const auto* weight_coeff = weight_coefficients + window_size * output_z; + int64_t zmin = bound[static_cast(output_z) * 2]; + int64_t zmax = bound[static_cast(output_z) * 2 + 1]; + + const auto z_step = input_height * input_width; + const auto* Xdata_offset = Xdata + input_index + zmin * z_step + output_y * output_width + output_x; + + for (; zmin < zmax; ++zmin) { + if constexpr (std::is_same::value) { + // We cast to AccumType to resolve ambiguous call to operator* for half in CUDA + output += static_cast((*Xdata_offset)) * (*weight_coeff++); + } else { + output += (*Xdata_offset) * (*weight_coeff++); + } + Xdata_offset += z_step; + } + + if constexpr (onnxruntime::is_8bit_v) { + const uint8_t* clip8_lookups = &clip8_table[640]; + *Ydata_offset = static_cast(clip8_lookups[output >> 22]); + } else if constexpr (std::is_same::value) { + *Ydata_offset = static_cast(std::round(output)); + } else { + *Ydata_offset = output; + } +} + +/// +/// This function expects the following buffers to be pre-allocated on device +/// 1. bounds: int64_t[output_size * 2] +/// 2. out_of_bounds: int64_t[output_size] +/// 3. scale_data: T[output_size * window_size] +/// +/// Template parameter AccumType +/// +template +FUNC_DEF void SetupUpsampleFilterAnitAliasImpl( + int64_t i, + int64_t input_size, int64_t output_size, + float rscale, + float roi_start, float roi_end, + float scaled_support, int32_t window_size, bool exclude_outside, + float cubic_coeff_a, + int64_t* bounds, + int64_t* out_of_bounds, + AccumType* scale_data) { + Filter filter{}; + CudaFunctionOriginalCoordinate get_original_coordinate{}; + + const auto scale = 1.f / rscale; + const float inv_scale = (scale >= 1.0f) ? 1.0f / scale : 1.0f; + + const float id = static_cast(i); + float center = 0.5f; + if (scale == 1.0f) { + center += id; + } else { + center += get_original_coordinate(id, rscale, + static_cast(output_size), + static_cast(input_size), + roi_start, roi_end); + } + + if (center - 0.5f < 0 || center - 0.5f > static_cast(input_size - 1)) { + out_of_bounds[i] = i; + } else { + out_of_bounds[i] = -1; + } + + float total_weight{0}; + + auto fmin = _Floor(center - scaled_support + 0.5f); + auto fmax = _Floor(center + scaled_support + 0.5f); + + int64_t min_real = static_cast(fmin); + int64_t max_real = static_cast(fmax); + int64_t min_cut = std::max(min_real, 0); + int64_t max_cut = std::min(max_real, input_size); + + int64_t min_val = exclude_outside ? min_cut : min_real; + int64_t max_val = exclude_outside ? max_cut : max_real; + bounds[i * 2] = min_cut; + bounds[i * 2 + 1] = max_cut; + + // This is done for int32_t case, when the final result is in int32_t, but + // we perform calculations in float. All other types as is. + auto* scale_buffer = AccumTypeCaster::cast(&scale_data[i * window_size]); + + max_val -= min_val; + for (int64_t x = 0; x < max_val; x++) { + const float arg = (x + min_val - center + 0.5f) * inv_scale; + const auto w = filter(arg, cubic_coeff_a); + scale_buffer[x] = w; + total_weight += w; + } + + if (!exclude_outside) { + int64_t neg_xsize = min_val < 0 ? -min_val : 0; + for (int64_t x = 0; x < neg_xsize; x++) { + scale_buffer[neg_xsize] += scale_buffer[x]; + } + + int64_t bound_size = + max_val + min_val > input_size ? max_val + min_val - input_size : 0; + for (int64_t x = max_val - bound_size; x < max_val; x++) { + scale_buffer[max_val - bound_size - 1] += + scale_buffer[x]; + } + + for (int64_t x = 0; (neg_xsize | bound_size) > 0 && x < max_cut - min_cut; x++) { + scale_buffer[x] = scale_buffer[x + neg_xsize]; + } + } + + const float total_weight_inv = (total_weight == 0) ? 1.f : (1.f / total_weight); + if constexpr (std::is_same::value) { + auto* scale_buffer_int = reinterpret_cast(scale_buffer); + for (int64_t x = 0; x < max_cut - min_cut; x++) { + scale_buffer[x] *= total_weight_inv; + // normalize the scale to 1 << 22 for int8/uint8 + scale_buffer_int[x] = static_cast(_Round(scale_buffer[x] * ConstValue::mag_factor_x_2)); + } + } else { + for (int64_t x = 0; x < max_cut - min_cut; x++) { + scale_buffer[x] *= total_weight_inv; + } + } +} + +/// This kernel computes antialias filter for bilinear or bicubic upsampling. +/// The function expects the following buffers to be pre-allocated on device +/// 1. bounds: int64_t[output_size * 2] for each of the two dimensions +/// 2. out_of_bounds: int64_t[output_size] for each of the two dimensions +/// 3. scale_data: AccumType[output_size * window_size] for each of the two dimensions +/// Buffers layout [h_data, w_data] +template +__global__ void _SetupBilinearUpsampleFilterAntiAlias( + std::tuple input_dims, // h, w + std::tuple output_dims, // h, w + std::tuple inv_scale_vals, // h, w + std::tuple roi_start_vals, // h, w + std::tuple roi_end_vals, // h, w + std::tuple dim_scaled_support, // Pre-computed scaled support values h, w + std::tuple dim_window_size, // Pre-computed windows sizes h, w + float cubic_coeff_a, + bool exclude_outside, + int64_t* bounds, + int64_t* out_of_bounds, + std::tuple weighted_coefficients // y, h buffers +) { + const auto N = std::get<0>(output_dims) + std::get<1>(output_dims); + + CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); + + if (id < std::get<0>(output_dims)) { + // Setup for y + int64_t input_size = std::get<0>(input_dims); + int64_t output_size = std::get<0>(output_dims); + float inv_scale = std::get<0>(inv_scale_vals); + float roi_start = std::get<0>(roi_start_vals); + float roi_end = std::get<0>(roi_end_vals); + float scaled_support = std::get<0>(dim_scaled_support); + int32_t window_size = std::get<0>(dim_window_size); + + SetupUpsampleFilterAnitAliasImpl( + id, + input_size, output_size, + inv_scale, + roi_start, roi_end, + scaled_support, window_size, + exclude_outside, + cubic_coeff_a, + bounds, + out_of_bounds, + std::get<0>(weighted_coefficients)); + + } else { + // Setup for w + // w = id - output_height + + int64_t input_size = std::get<1>(input_dims); + int64_t output_size = std::get<1>(output_dims); + float inv_scale = std::get<1>(inv_scale_vals); + float roi_start = std::get<1>(roi_start_vals); + float roi_end = std::get<1>(roi_end_vals); + + float scaled_support = std::get<1>(dim_scaled_support); + int32_t window_size = std::get<1>(dim_window_size); + + // Adjust buffer positions + const auto y_output_size = std::get<0>(output_dims); + + auto i = id - y_output_size; + bounds += (y_output_size * 2); + out_of_bounds += y_output_size; + + SetupUpsampleFilterAnitAliasImpl( + i, + input_size, output_size, + inv_scale, + roi_start, roi_end, + scaled_support, window_size, + exclude_outside, + cubic_coeff_a, + bounds, + out_of_bounds, + std::get<1>(weighted_coefficients)); + } +} + +/// +/// Compute AntiAlias filter for trilinear upsampling, all in one go +/// The function expects the following buffers to be pre-allocated on device +/// 1. bounds: int64_t[output_size * 2] for each of the three dimensions +/// 2. out_of_bounds: int64_t[output_size] for each of the three dimensions +/// 3. scale_data: AccumType[output_size * window_size] for each of the three dimensions +/// Each kind of buffer contains data for all 3 dims. +/// Buffers layout [d_data, h_data, w_data] +/// +template +__global__ void _SetupTrilinerarUpsampleFilterAntiAlias( + std::tuple input_dims, // d, h, w + std::tuple output_dims, // d, h, w + std::tuple inv_scale_vals, // d, h, w + std::tuple roi_start_vals, // d, h, w + std::tuple roi_end_vals, // d, h, w + std::tuple dim_scaled_support, // Pre-computed scaled support values d, h, w + std::tuple dim_window_size, // Pre-computed windows sizes d, h, w + bool exclude_outisde, + int64_t* bounds, + int64_t* out_of_bounds, + std::tuple weighted_coefficients) { + const auto N = std::get<0>(output_dims) + std::get<1>(output_dims) + std::get<2>(output_dims); + + CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); + + if (id < std::get<0>(output_dims)) { + // Setup for d by default (id < output_depth) + int64_t input_size = std::get<0>(input_dims); + int64_t output_size = std::get<0>(output_dims); + float inv_scale = std::get<0>(inv_scale_vals); + float roi_start = std::get<0>(roi_start_vals); + float roi_end = std::get<0>(roi_end_vals); + float scaled_support = std::get<0>(dim_scaled_support); + int32_t window_size = std::get<0>(dim_window_size); + + SetupUpsampleFilterAnitAliasImpl( + id, + input_size, output_size, + inv_scale, + roi_start, roi_end, + scaled_support, window_size, + exclude_outisde, + onnxruntime::antialias_constants::kCubicCoeffA, // Default value for trilinear + bounds, + out_of_bounds, + std::get<0>(weighted_coefficients)); + + } else if (id >= std::get<0>(output_dims) && id < (std::get<0>(output_dims) + std::get<1>(output_dims))) { + int64_t input_size = std::get<1>(input_dims); + int64_t output_size = std::get<1>(output_dims); + float inv_scale = std::get<1>(inv_scale_vals); + float roi_start = std::get<1>(roi_start_vals); + float roi_end = std::get<1>(roi_end_vals); + + float scaled_support = std::get<1>(dim_scaled_support); + int32_t window_size = std::get<1>(dim_window_size); + + // Adjust buffer positions + const auto d_output_size = std::get<0>(output_dims); + + auto i = id - d_output_size; + bounds += d_output_size * 2; + out_of_bounds += d_output_size; + + SetupUpsampleFilterAnitAliasImpl( + i, + input_size, output_size, + inv_scale, + roi_start, roi_end, + scaled_support, window_size, + exclude_outisde, + onnxruntime::antialias_constants::kCubicCoeffA, // Default value for trilinear + bounds, + out_of_bounds, + std::get<1>(weighted_coefficients)); + } else { + int64_t input_size = std::get<2>(input_dims); + int64_t output_size = std::get<2>(output_dims); + float inv_scale = std::get<2>(inv_scale_vals); + float roi_start = std::get<2>(roi_start_vals); + float roi_end = std::get<2>(roi_end_vals); + float scaled_support = std::get<2>(dim_scaled_support); + int32_t window_size = std::get<2>(dim_window_size); + + // Adjust buffer positions + const auto d_y_output_size = std::get<0>(output_dims) + std::get<1>(output_dims); + + auto i = id - d_y_output_size; + bounds += (d_y_output_size * 2); + out_of_bounds += d_y_output_size; + + SetupUpsampleFilterAnitAliasImpl( + i, + input_size, output_size, + inv_scale, + roi_start, roi_end, + scaled_support, window_size, + exclude_outisde, + onnxruntime::antialias_constants::kCubicCoeffA, // Default value for trilinear + bounds, + out_of_bounds, + std::get<2>(weighted_coefficients)); + } +} + +#define CASEA_COORD_ANTIALIAS(coordinate_mode, TransformCoordType, ...) \ + case coordinate_mode: { \ + using coord_t = TransformCoordType; \ + return __VA_ARGS__(); \ + break; \ + } + +#define DISPATCH_ANTIALIAS_FILTER_SETUP(coord_enum, ...) \ + [&] { \ + const auto the_type = coord_enum; \ + switch (the_type) { \ + CASEA_COORD_ANTIALIAS(ResizeCoordinateTransformationMode::HALF_PIXEL, \ + TransformCoordinate_HALF_PIXEL, __VA_ARGS__) \ + CASEA_COORD_ANTIALIAS(ResizeCoordinateTransformationMode::ASYMMETRIC, \ + TransformCoordinate_ASYMMETRIC, __VA_ARGS__) \ + CASEA_COORD_ANTIALIAS(ResizeCoordinateTransformationMode::PYTORCH_HALF_PIXEL, \ + TransformCoordinate_PYTORCH_HALF_PIXEL, __VA_ARGS__) \ + CASEA_COORD_ANTIALIAS(ResizeCoordinateTransformationMode::ALIGN_CORNERS, \ + TransformCoordinate_ALIGN_CORNERS, __VA_ARGS__) \ + CASEA_COORD_ANTIALIAS(ResizeCoordinateTransformationMode::TF_HALF_PIXEL_FOR_NN, \ + TransformCoordinate_TF_HALF_PIXEL_FOR_NN, __VA_ARGS__) \ + CASEA_COORD_ANTIALIAS(ResizeCoordinateTransformationMode::TF_CROP_AND_RESIZE, \ + TransformCoordinate_TF_CROP_AND_RESIZE, __VA_ARGS__) \ + default: \ + ORT_THROW("unknown ResizeCoordinateTransformationMode"); \ + } \ + }() + +namespace { +template +IAllocatorUniquePtr AllocateTyped( + const TempSpaceAllocateFunc& alloc, + size_t elements) { + return alloc(elements * sizeof(T)); +} + +template +T* GetTyped(IAllocatorUniquePtr& bytes) { + return reinterpret_cast(bytes.get()); +} +} // namespace + +template +void ResizeTrilinearUpsample( + cudaStream_t stream, + int rank, + const UpsampleMode /*upsample_mode*/, + ResizeCoordinateTransformationMode coordinate_transform_mode, + gsl::span /*input_shape*/, + gsl::span /*output_shape*/, + int64_t batch_size, int64_t num_channels, + std::tuple inferred_input_dims, + std::tuple inferred_output_dims, + std::tuple inferred_dim_rscales, + const TArray& output_div_pitches, + gsl::span roi_vals, + const std::optional& extrapolation, + bool exclude_outside, + const TempSpaceAllocateFunc& allocate_temp_space, + const uint8_t* clip8_lookups, + const T* input_data, + T* output_data, + const size_t N) { + using AccumType = typename onnxruntime::AccumulateType::type; + + const bool use_extrapolation = extrapolation.has_value(); + const float extrapolation_value = use_extrapolation ? *extrapolation : 0.f; + + int64_t input_depth, input_height, input_width; + std::tie(input_depth, input_height, input_width) = inferred_input_dims; + + int64_t output_depth, output_height, output_width; + std::tie(output_depth, output_height, output_width) = inferred_output_dims; + + int blocksPerDimsMappingGrid = + static_cast(ceil((output_depth + output_height + output_width) / 32.0)); + + int blocksPerGrid = static_cast(ceil(static_cast(N) / GridDim::maxThreadsPerBlock)); + + constexpr float support_value = antialias_constants::kSupportSize; + float z_scale, h_scale, w_scale; + std::tie(z_scale, h_scale, w_scale) = inferred_dim_rscales; + + const auto& div_output_width = output_div_pitches[rank - 2]; + + SafeInt bounds_buffer_size = (SafeInt(output_depth) + output_height + output_width) * 2; + SafeInt out_of_bounds_buffer_size = (SafeInt(output_depth) + output_height + output_width); + + auto bounds_buffer_ptr = AllocateTyped(allocate_temp_space, bounds_buffer_size); + auto out_of_bounds_buffer_ptr = AllocateTyped(allocate_temp_space, out_of_bounds_buffer_size); + + int64_t* z_bounds_buffer = GetTyped(bounds_buffer_ptr); + int64_t* y_bounds_buffer = z_bounds_buffer + output_depth * 2; + int64_t* w_bounds_buffer = y_bounds_buffer + output_height * 2; + + int64_t* z_outof_bounds_buffer = GetTyped(out_of_bounds_buffer_ptr); + int64_t* y_outof_bounds_buffer = z_outof_bounds_buffer + output_depth; + int64_t* w_outof_bounds_buffer = y_outof_bounds_buffer + output_height; + + float z_scaled_support, h_scaled_support, w_scaled_support; + int32_t z_window_size, h_window_size, w_window_size; + const auto [z_buffer_size, y_buffer_size, w_buffer_size] = ComputeTrilinearScaleBufferSize( + output_depth, output_height, output_width, + z_scale, h_scale, w_scale, support_value, + z_scaled_support, h_scaled_support, w_scaled_support, + z_window_size, h_window_size, w_window_size); + + const int64_t weighted_buffer_size = SafeInt(z_buffer_size) + y_buffer_size + w_buffer_size; + + auto weighted_buffer_ptr = AllocateTyped(allocate_temp_space, weighted_buffer_size); + AccumType* z_weighted_buffer = GetTyped(weighted_buffer_ptr); + AccumType* y_weighted_buffer = z_weighted_buffer + z_buffer_size; + AccumType* w_weighted_buffer = y_weighted_buffer + y_buffer_size; + + const auto h_w_interpolate_temp_buf_size = SafeInt(batch_size) * num_channels * + input_depth * input_height * output_width; + auto h_w_interpolate_temp_buffer_ptr = AllocateTyped(allocate_temp_space, + narrow(h_w_interpolate_temp_buf_size)); + + const auto h_w_interpolate_result_buffer_size = SafeInt(batch_size) * num_channels * + input_depth * output_height * output_width; + auto h_w_interpolate_result_buffer_ptr = AllocateTyped(allocate_temp_space, h_w_interpolate_result_buffer_size); + + // clang-format off + DISPATCH_ANTIALIAS_FILTER_SETUP(coordinate_transform_mode, [&]() { + _SetupTrilinerarUpsampleFilterAntiAlias<<>>( + inferred_input_dims, + inferred_output_dims, + inferred_dim_rscales, + std::make_tuple(roi_vals[rank - 3], roi_vals[rank - 2], roi_vals[rank - 1]), // roi starts d, h, w + std::make_tuple(roi_vals[rank - 3 + rank], roi_vals[rank - 2 + rank], // roi ends d, h, w + roi_vals[rank - 1 + rank]), + std::make_tuple(z_scaled_support, h_scaled_support, w_scaled_support), + std::make_tuple(z_window_size, h_window_size, w_window_size), + exclude_outside, + GetTyped(bounds_buffer_ptr), + GetTyped(out_of_bounds_buffer_ptr), + std::make_tuple(z_weighted_buffer, y_weighted_buffer, w_weighted_buffer)); + }); + + // clang-format on + const fast_divmod div_w_image(narrow(num_channels * input_depth * input_height * output_width)); + // clang-format off + _ComputeInterpolationAtLevel1<<>>( + num_channels * input_depth, input_height, input_width, input_height, output_width, + div_output_width, + div_w_image, + w_window_size, + clip8_lookups, + w_bounds_buffer, + std::make_tuple(y_outof_bounds_buffer, w_outof_bounds_buffer), + w_weighted_buffer, input_data, + GetTyped(h_w_interpolate_temp_buffer_ptr), + narrow(h_w_interpolate_temp_buf_size)); + + // clang-format on + const fast_divmod div_output_height{narrow(output_height * output_width)}; + const fast_divmod div_h_w_image(narrow(num_channels * input_depth * output_height * output_width)); + // clang-format off + _ComputeInterpolationAtLevel2<<>>( + num_channels * input_depth, input_height, output_width, output_height, output_width, + div_output_height, + div_output_width, + div_h_w_image, + h_window_size, + false, 0.f, // No extrapolation + clip8_lookups, + y_bounds_buffer, + std::make_tuple(y_outof_bounds_buffer, w_outof_bounds_buffer), + y_weighted_buffer, GetTyped(h_w_interpolate_temp_buffer_ptr), + GetTyped(h_w_interpolate_result_buffer_ptr), + narrow(h_w_interpolate_result_buffer_size)); + + // clang-format on + const fast_divmod div_z_h_w_image(narrow(input_depth * output_height * output_width)); + // clang-format off + _ComputeInterpolationAtLevel3<<>>( + input_depth, output_height, output_width, + output_depth, output_height, output_width, + div_output_height, + div_output_width, + div_z_h_w_image, + z_window_size, + use_extrapolation, extrapolation_value, + clip8_lookups, + z_bounds_buffer, + std::make_tuple(z_outof_bounds_buffer, y_outof_bounds_buffer, w_outof_bounds_buffer), + z_weighted_buffer, GetTyped(h_w_interpolate_result_buffer_ptr), + output_data, + narrow(N)); + // clang-format on +} + +template +void ResizeBiLinearUpsample(cudaStream_t stream, + int rank, + const UpsampleMode /*upsample_mode*/, + ResizeCoordinateTransformationMode coordinate_transform_mode, + gsl::span /*input_shape*/, + gsl::span /*output_shape*/, + int64_t /*batch_size*/, int64_t num_channels, + std::tuple inferred_input_dims, + std::tuple inferred_output_dims, + std::tuple inferred_dim_rscales, + const TArray& output_div_pitches, + gsl::span roi_vals, + const std::optional& extrapolation, + bool exclude_outside, + const TempSpaceAllocateFunc& allocate_temp_space, + const uint8_t* clip8_lookups, + const T* input_data, + T* output_data, + const size_t N) { + using AccumType = typename onnxruntime::AccumulateType::type; + + const bool use_extrapolation = extrapolation.has_value(); + const float extrapolation_value = use_extrapolation ? *extrapolation : 0.f; + + int64_t input_depth, input_height, input_width; + std::tie(input_depth, input_height, input_width) = inferred_input_dims; + + int64_t output_depth, output_height, output_width; + std::tie(output_depth, output_height, output_width) = inferred_output_dims; + + int blocksPerDimsMappingGrid = + narrow(CeilDiv((output_depth + output_height + output_width), 32)); + + // rank 2 or 4 + const fast_divmod div_output_image = (rank > 2) ? output_div_pitches[rank - 4] + : fast_divmod(gsl::narrow_cast(N)); + const fast_divmod& div_output_width = output_div_pitches[rank - 2]; + + constexpr float support_value = antialias_constants::kSupportSize; + + float h_scale, w_scale; + std::tie(std::ignore, h_scale, w_scale) = inferred_dim_rscales; + + int blocksPerGrid = narrow(CeilDiv(N, GridDim::maxThreadsPerBlock)); + + SafeInt bounds_buffer_size = (SafeInt(output_height) + output_width) * 2; + SafeInt out_of_bounds_buffer_size = (SafeInt(output_height) + output_width); + + float h_scaled_support, w_scaled_support; + int32_t h_window_size, w_window_size; + const auto [weighted_y_size, weighted_w_size] = + ComputeBilinearScaleBufferSize(output_height, output_width, + h_scale, w_scale, support_value, + h_scaled_support, w_scaled_support, h_window_size, w_window_size); + + auto bounds_buffer_ptr = AllocateTyped(allocate_temp_space, bounds_buffer_size); + auto out_of_bounds_buffer_ptr = AllocateTyped(allocate_temp_space, out_of_bounds_buffer_size); + + int64_t* y_bounds_buffer = GetTyped(bounds_buffer_ptr); + int64_t* w_bounds_buffer = y_bounds_buffer + output_height * 2; + + int64_t* y_outof_bounds_buffer = GetTyped(out_of_bounds_buffer_ptr); + int64_t* w_outof_bounds_buffer = y_outof_bounds_buffer + output_height; + + const int64_t weighted_buffer_size = SafeInt(weighted_y_size) + weighted_w_size; + auto weighted_buffer_ptr = AllocateTyped(allocate_temp_space, narrow(weighted_buffer_size)); + + AccumType* y_weighted_buffer = GetTyped(weighted_buffer_ptr); + AccumType* w_weighted_buffer = y_weighted_buffer + weighted_y_size; + + const auto temp_buf_size = num_channels * input_height * output_width; + auto image_temp_buffer = AllocateTyped(allocate_temp_space, narrow(temp_buf_size)); + + // clang-format off + DISPATCH_ANTIALIAS_FILTER_SETUP(coordinate_transform_mode, [&]() { + // Data is d, h, w in tuples + + _SetupBilinearUpsampleFilterAntiAlias<<>>( + std::make_tuple(input_height, input_width), + std::make_tuple(output_height, output_width), + std::make_tuple(h_scale, w_scale), + std::make_tuple(roi_vals[rank - 2], roi_vals[rank - 1]), // roi starts h, w + std::make_tuple(roi_vals[rank - 2 + rank], roi_vals[rank - 1 + rank]), // roi ends h, w + std::make_tuple(h_scaled_support, w_scaled_support), + std::make_tuple(h_window_size, w_window_size), + onnxruntime::antialias_constants::kCubicCoeffA, exclude_outside, + GetTyped(bounds_buffer_ptr), + GetTyped(out_of_bounds_buffer_ptr), + std::make_tuple(y_weighted_buffer, w_weighted_buffer)); + }); + + // clang-format on + const fast_divmod div_step_image{narrow(num_channels * input_height * output_width)}; + // clang-format off + _ComputeInterpolationAtLevel1<<>>( + num_channels, input_height, input_width, input_height, output_width, + div_output_width, + div_step_image, + w_window_size, + clip8_lookups, + w_bounds_buffer, + std::make_tuple(y_outof_bounds_buffer, w_outof_bounds_buffer), + w_weighted_buffer, input_data, GetTyped(image_temp_buffer), + narrow(temp_buf_size)); + + // clang-format on + const fast_divmod div_output_height{narrow(output_height * output_width)}; + // clang-format off + _ComputeInterpolationAtLevel2<<>>( + num_channels, input_height, output_width, output_height, output_width, + div_output_height, + div_output_width, + div_output_image, + h_window_size, + use_extrapolation, extrapolation_value, + clip8_lookups, + y_bounds_buffer, + std::make_tuple(y_outof_bounds_buffer, w_outof_bounds_buffer), + y_weighted_buffer, GetTyped(image_temp_buffer), output_data, + narrow(N)); + + // clang-format on +} + +template +void ResizeBicubicUpsample(cudaStream_t stream, + int rank, + const UpsampleMode /*upsample_mode*/, + ResizeCoordinateTransformationMode coordinate_transform_mode, + gsl::span /*input_shape*/, + gsl::span /*output_shape*/, + int64_t batch_size, int64_t num_channels, + std::tuple inferred_input_dims, + std::tuple inferred_output_dims, + std::tuple inferred_dim_rscales, + // const TArray& input_strides, + const TArray& output_div_pitches, + gsl::span roi_vals, + const std::optional& extrapolation, + bool exclude_outside, + const TempSpaceAllocateFunc& allocate_temp_space, + const uint8_t* clip8_lookups, + const T* input_data, + T* output_data, + const size_t N) { + using AccumType = typename onnxruntime::AccumulateType::type; + + const bool use_extrapolation = extrapolation.has_value(); + const float extrapolation_value = use_extrapolation ? *extrapolation : 0.f; + + int blocksPerGrid = narrow(CeilDiv(N, GridDim::maxThreadsPerBlock)); + const fast_divmod div_output_image = (rank > 2) ? output_div_pitches[rank - 4] + : fast_divmod(gsl::narrow_cast(N)); + const fast_divmod& div_output_width = output_div_pitches[rank - 2]; + + constexpr float support_value = antialias_constants::kBiCubicSupportSize; + + int64_t input_depth, input_height, input_width; + std::tie(input_depth, input_height, input_width) = inferred_input_dims; + + int64_t output_depth, output_height, output_width; + std::tie(output_depth, output_height, output_width) = inferred_output_dims; + + int blocksPerDimsMappingGrid = + narrow(CeilDiv((output_depth + output_height + output_width), 32)); + + float h_scale, w_scale; + std::tie(std::ignore, h_scale, w_scale) = inferred_dim_rscales; + + SafeInt bounds_buffer_size = (SafeInt(output_height) + output_width) * 2; + SafeInt out_of_bounds_buffer_size = (SafeInt(output_height) + output_width); + + float h_scaled_support, w_scaled_support; + int32_t h_window_size, w_window_size; + const auto [weighted_y_size, weighted_w_size] = + ComputeBilinearScaleBufferSize(output_height, output_width, + h_scale, w_scale, support_value, + h_scaled_support, w_scaled_support, h_window_size, w_window_size); + + auto bounds_buffer_ptr = AllocateTyped(allocate_temp_space, bounds_buffer_size); + auto out_of_bounds_buffer_ptr = AllocateTyped(allocate_temp_space, out_of_bounds_buffer_size); + + int64_t* y_bounds_buffer = GetTyped(bounds_buffer_ptr); + int64_t* w_bounds_buffer = y_bounds_buffer + output_height * 2; + + int64_t* y_outof_bounds_buffer = GetTyped(out_of_bounds_buffer_ptr); + int64_t* w_outof_bounds_buffer = y_outof_bounds_buffer + output_height; + + const int64_t weighted_buffer_size = SafeInt(weighted_y_size) + + weighted_w_size; + auto weighted_buffer_ptr = AllocateTyped(allocate_temp_space, weighted_buffer_size); + + AccumType* y_weighted_buffer = GetTyped(weighted_buffer_ptr); + AccumType* w_weighted_buffer = y_weighted_buffer + weighted_y_size; + + const auto temp_buf_size = SafeInt(batch_size) * num_channels * input_height * output_width; + auto image_temp_buffer = AllocateTyped(allocate_temp_space, narrow(temp_buf_size)); + + // clang-format off + DISPATCH_ANTIALIAS_FILTER_SETUP(coordinate_transform_mode, [&]() { + _SetupBilinearUpsampleFilterAntiAlias<<>>( + std::make_tuple(input_height, input_width), + std::make_tuple(output_height, output_width), + std::make_tuple(h_scale, w_scale), + std::make_tuple(roi_vals[rank - 2], roi_vals[rank - 1]), // roi starts h, w + std::make_tuple(roi_vals[rank - 2 + rank], roi_vals[rank - 1 + rank]), // roi ends h, w + std::make_tuple(h_scaled_support, w_scaled_support), + std::make_tuple(h_window_size, w_window_size), + onnxruntime::antialias_constants::kCubicCoeffA, exclude_outside, + GetTyped(bounds_buffer_ptr), + GetTyped(out_of_bounds_buffer_ptr), + std::make_tuple(y_weighted_buffer, w_weighted_buffer)); + }); + // clang-format on + const fast_divmod div_step_image(narrow(num_channels * input_height * output_width)); + // clang-format off + _ComputeInterpolationAtLevel1<<>>( + num_channels, input_height, input_width, input_height, output_width, + div_output_width, + div_step_image, + w_window_size, + clip8_lookups, + w_bounds_buffer, + std::make_tuple(y_outof_bounds_buffer, w_outof_bounds_buffer), + w_weighted_buffer, input_data, GetTyped(image_temp_buffer), + narrow(temp_buf_size)); + // clang-format on + + const fast_divmod div_output_height{narrow(output_height * output_width)}; + // clang-format off + _ComputeInterpolationAtLevel2<<>>( + num_channels, input_height, output_width, output_height, output_width, + div_output_height, + div_output_width, + div_output_image, + h_window_size, + use_extrapolation, extrapolation_value, + clip8_lookups, + y_bounds_buffer, + std::make_tuple(y_outof_bounds_buffer, w_outof_bounds_buffer), + y_weighted_buffer, GetTyped(image_temp_buffer), output_data, + narrow(N)); + // clang-format on +} + +template +void ResizeAntiAliasImpl( + cudaStream_t stream, + int rank, + const UpsampleMode upsample_mode, + ResizeCoordinateTransformationMode coordinate_transform_mode, + gsl::span input_shape, + gsl::span output_shape, + int64_t batch_size, int64_t num_channels, + std::tuple inferred_input_dims, + std::tuple inferred_output_dims, + std::tuple inferred_dim_rscales, + const TArray& output_div_pitches, + gsl::span roi_vals, + const std::optional& extrapolation, + bool exclude_outside, + TempSpaceAllocateFunc allocate_temp_space, + const uint8_t* clip8_lookups, + const T* input_data, + T* output_data, + const size_t N) { + // We support a special case of bilinear or bicubic if the input data is 4D with the outer 2 scales being 1.0 + // We would have validated the outer scale values by the time execution reaches this + const bool is_2D = (rank == 2 || rank == 4); + + // We support a special case of trilinear or tricubic if the input data is 5D with the outer 2 scales being 1.0 + // We would have validated the outer scale values by the time execution reaches this + const bool is_3D = (rank == 3 || rank == 5); + + // Should not hit this as we have already validated input rank/scales and we provide verbose error messages + // to the user. + ORT_ENFORCE(is_2D || is_3D, "Only bilinear/trilinear and bicubic modes are supported in Resize anti-alias mode"); + + switch (upsample_mode) { + case UpsampleMode::LINEAR: { + if (is_2D) { + ResizeBiLinearUpsample(stream, rank, upsample_mode, coordinate_transform_mode, + input_shape, output_shape, batch_size, num_channels, + inferred_input_dims, inferred_output_dims, inferred_dim_rscales, + output_div_pitches, roi_vals, extrapolation, exclude_outside, + allocate_temp_space, clip8_lookups, input_data, output_data, N); + } else if (is_3D) { + ResizeTrilinearUpsample(stream, rank, upsample_mode, coordinate_transform_mode, + input_shape, output_shape, batch_size, num_channels, + inferred_input_dims, inferred_output_dims, inferred_dim_rscales, + output_div_pitches, roi_vals, extrapolation, exclude_outside, + allocate_temp_space, clip8_lookups, input_data, output_data, N); + } else { + ORT_NOT_IMPLEMENTED("Resize supports only 2-D or 3-D in LINEAR mode."); + } + } break; + case CUBIC: { + if (is_2D) { + ResizeBicubicUpsample(stream, rank, upsample_mode, coordinate_transform_mode, + input_shape, output_shape, batch_size, num_channels, + inferred_input_dims, inferred_output_dims, inferred_dim_rscales, + output_div_pitches, roi_vals, extrapolation, exclude_outside, + allocate_temp_space, clip8_lookups, input_data, output_data, N); + } else { + ORT_NOT_IMPLEMENTED("Resize supports only 2-D in CUBIC mode."); + } + } break; + default: + ORT_NOT_IMPLEMENTED("Only bilinear/trilinear and bicubic modes are supported in Resize anti-alias mode"); + break; + } +} + +#define SPECIALIZED_ANTIALIAS_IMPL(T) \ + template void ResizeAntiAliasImpl( \ + cudaStream_t stream, \ + int rank, \ + const UpsampleMode upsample_mode, \ + ResizeCoordinateTransformationMode coordinate_transform_mode, \ + gsl::span input_shape, \ + gsl::span output_shape, \ + int64_t batch_size, int64_t num_channels, \ + std::tuple inferred_input_dims, \ + std::tuple inferred_output_dims, \ + std::tuple inferred_dim_rscales, \ + const TArray& output_div_pitches, \ + gsl::span roi_vals, \ + const std::optional& extrapolation_value, \ + bool exclude_outside, \ + TempSpaceAllocateFunc allocate_temp_space, \ + const uint8_t* clip8_lookups, \ + const T* input_data, \ + T* output_data, \ + const size_t N); + +SPECIALIZED_ANTIALIAS_IMPL(float) +SPECIALIZED_ANTIALIAS_IMPL(double) +SPECIALIZED_ANTIALIAS_IMPL(half) +SPECIALIZED_ANTIALIAS_IMPL(int32_t) +SPECIALIZED_ANTIALIAS_IMPL(uint8_t) + +} // namespace cuda +} // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/tensor/resize_impl.cu b/onnxruntime/core/providers/cuda/tensor/resize_impl.cu index 1a94c7705e913..e788f24052985 100644 --- a/onnxruntime/core/providers/cuda/tensor/resize_impl.cu +++ b/onnxruntime/core/providers/cuda/tensor/resize_impl.cu @@ -12,7 +12,7 @@ using onnxruntime::ResizeNearestMode; using onnxruntime::UpsampleMode; struct NearestPixel_SIMPLE { - __device__ __forceinline__ int operator() (float x_original, bool is_down_sampling) const { + __device__ __forceinline__ int operator()(float x_original, bool is_down_sampling) const { if (is_down_sampling) { return static_cast(_Ceil(x_original)); } @@ -21,7 +21,7 @@ struct NearestPixel_SIMPLE { }; struct NearestPixel_ROUND_PREFER_FLOOR { - __device__ __forceinline__ int operator() (float x_original, bool) const { + __device__ __forceinline__ int operator()(float x_original, bool) const { if (x_original == static_cast(x_original) + 0.5f) { return static_cast(_Floor(x_original)); } @@ -30,62 +30,23 @@ struct NearestPixel_ROUND_PREFER_FLOOR { }; struct NearestPixel_ROUND_PREFER_CEIL { - __device__ __forceinline__ int operator() (float x_original, bool) const { + __device__ __forceinline__ int operator()(float x_original, bool) const { return static_cast(roundf(x_original)); } }; struct NearestPixel_FLOOR { - __device__ __forceinline__ int operator() (float x_original, bool) const { + __device__ __forceinline__ int operator()(float x_original, bool) const { return static_cast(_Floor(x_original)); } }; struct NearestPixel_CEIL { - __device__ __forceinline__ int operator() (float x_original, bool) const { + __device__ __forceinline__ int operator()(float x_original, bool) const { return static_cast(_Ceil(x_original)); } }; -struct TransformCoordinate_ASYMMETRIC { - __device__ __forceinline__ float operator() (float x_resized, float x_scale, float, float, float, float) const { - return x_resized / x_scale; - } -}; - -struct TransformCoordinate_HALF_PIXEL { - __device__ __forceinline__ float operator() (float x_resized, float x_scale, float, float, float, float) const { - return ((x_resized + 0.5f) / x_scale) - 0.5f; - } -}; - -struct TransformCoordinate_PYTORCH_HALF_PIXEL { - __device__ __forceinline__ float operator() (float x_resized, float x_scale, float length_resized, float, float, float) const { - return length_resized > 1 ? (x_resized + 0.5f) / x_scale - 0.5f : 0.0f; - } -}; - -struct TransformCoordinate_TF_HALF_PIXEL_FOR_NN { - __device__ __forceinline__ float operator() (float x_resized, float x_scale, float, float, float, float) const { - return (x_resized + 0.5f) / x_scale; - } -}; - -struct TransformCoordinate_ALIGN_CORNERS { - __device__ __forceinline__ float operator() (float x_resized, float, float length_resized, float length_original, float, float) const { - return length_resized == 1 ? 0 : x_resized * (length_original - 1) / (length_resized - 1); - } -}; - -struct TransformCoordinate_TF_CROP_AND_RESIZE { - __device__ __forceinline__ float operator() (float x_resized, float, float length_resized, float length_original, float roi_start, float roi_end) const { - auto orig = length_resized > 1 - ? roi_start * (length_original - 1) + (x_resized * (roi_end - roi_start) * (length_original - 1)) / (length_resized - 1) - : 0.5 * (roi_start + roi_end) * (length_original - 1); - return static_cast(orig); - } -}; - #define CASE_TYPE_USING_HINT(enum_type, type, HINT, ...) \ case enum_type: { \ using HINT = type; \ @@ -95,20 +56,24 @@ struct TransformCoordinate_TF_CROP_AND_RESIZE { #define CASE_TYPE_COORD(enum_type, type, ...) \ CASE_TYPE_USING_HINT(enum_type, type, coord_t, __VA_ARGS__) -#define DISPATCH_RESIZE_COORDINATE_TRANSFORMATION_MODE(TYPE, ...) \ - [&] { \ - const auto& the_type = TYPE; \ - /* don't use TYPE again in case it is an expensive or side-effect op */ \ - switch (the_type) { \ - CASE_TYPE_COORD(ResizeCoordinateTransformationMode::HALF_PIXEL, TransformCoordinate_HALF_PIXEL, __VA_ARGS__) \ - CASE_TYPE_COORD(ResizeCoordinateTransformationMode::ASYMMETRIC, TransformCoordinate_ASYMMETRIC, __VA_ARGS__) \ - CASE_TYPE_COORD(ResizeCoordinateTransformationMode::PYTORCH_HALF_PIXEL, TransformCoordinate_PYTORCH_HALF_PIXEL, __VA_ARGS__) \ - CASE_TYPE_COORD(ResizeCoordinateTransformationMode::ALIGN_CORNERS, TransformCoordinate_ALIGN_CORNERS, __VA_ARGS__) \ - CASE_TYPE_COORD(ResizeCoordinateTransformationMode::TF_HALF_PIXEL_FOR_NN, TransformCoordinate_TF_HALF_PIXEL_FOR_NN, __VA_ARGS__) \ - CASE_TYPE_COORD(ResizeCoordinateTransformationMode::TF_CROP_AND_RESIZE, TransformCoordinate_TF_CROP_AND_RESIZE, __VA_ARGS__) \ - default: \ - ORT_THROW("unknown ResizeCoordinateTransformationMode"); \ - } \ +#define DISPATCH_RESIZE_COORDINATE_TRANSFORMATION_MODE(TYPE, ...) \ + [&] { \ + const auto& the_type = TYPE; \ + /* don't use TYPE again in case it is an expensive or side-effect op */ \ + switch (the_type) { \ + CASE_TYPE_COORD(ResizeCoordinateTransformationMode::HALF_PIXEL, TransformCoordinate_HALF_PIXEL, __VA_ARGS__) \ + CASE_TYPE_COORD(ResizeCoordinateTransformationMode::ASYMMETRIC, TransformCoordinate_ASYMMETRIC, __VA_ARGS__) \ + CASE_TYPE_COORD(ResizeCoordinateTransformationMode::PYTORCH_HALF_PIXEL, \ + TransformCoordinate_PYTORCH_HALF_PIXEL, __VA_ARGS__) \ + CASE_TYPE_COORD(ResizeCoordinateTransformationMode::ALIGN_CORNERS, \ + TransformCoordinate_ALIGN_CORNERS, __VA_ARGS__) \ + CASE_TYPE_COORD(ResizeCoordinateTransformationMode::TF_HALF_PIXEL_FOR_NN, \ + TransformCoordinate_TF_HALF_PIXEL_FOR_NN, __VA_ARGS__) \ + CASE_TYPE_COORD(ResizeCoordinateTransformationMode::TF_CROP_AND_RESIZE, \ + TransformCoordinate_TF_CROP_AND_RESIZE, __VA_ARGS__) \ + default: \ + ORT_THROW("unknown ResizeCoordinateTransformationMode"); \ + } \ }() #define CASE_TYPE_NEAREST(enum_type, type, ...) \ @@ -119,11 +84,11 @@ struct TransformCoordinate_TF_CROP_AND_RESIZE { const auto& the_type = TYPE; \ /* don't use TYPE again in case it is an expensive or side-effect op */ \ switch (the_type) { \ - CASE_TYPE_NEAREST(ResizeNearestMode::SIMPLE, NearestPixel_SIMPLE, __VA_ARGS__) \ + CASE_TYPE_NEAREST(ResizeNearestMode::SIMPLE, NearestPixel_SIMPLE, __VA_ARGS__) \ CASE_TYPE_NEAREST(ResizeNearestMode::ROUND_PREFER_FLOOR, NearestPixel_ROUND_PREFER_FLOOR, __VA_ARGS__) \ - CASE_TYPE_NEAREST(ResizeNearestMode::ROUND_PREFER_CEIL, NearestPixel_ROUND_PREFER_CEIL, __VA_ARGS__) \ - CASE_TYPE_NEAREST(ResizeNearestMode::FLOOR, NearestPixel_FLOOR, __VA_ARGS__) \ - CASE_TYPE_NEAREST(ResizeNearestMode::CEIL, NearestPixel_CEIL, __VA_ARGS__) \ + CASE_TYPE_NEAREST(ResizeNearestMode::ROUND_PREFER_CEIL, NearestPixel_ROUND_PREFER_CEIL, __VA_ARGS__) \ + CASE_TYPE_NEAREST(ResizeNearestMode::FLOOR, NearestPixel_FLOOR, __VA_ARGS__) \ + CASE_TYPE_NEAREST(ResizeNearestMode::CEIL, NearestPixel_CEIL, __VA_ARGS__) \ default: \ ORT_THROW("unknown ResizeNearestMode"); \ } \ @@ -151,10 +116,12 @@ __global__ void _ResizeNearestMappingKernel2D( // only apply co-ordinate transformation if scale != 1.0 if (scales_height == 1.0f) { - dims_mapping[id].extrapolate_ = 0; + dims_mapping[id].extrapolate_ = 0; } else { - float orig_coord = transform_coordinate(static_cast(dim), scales_height, static_cast(output_height), - static_cast(input_height), roi_start_height, roi_end_height); + float orig_coord = transform_coordinate(static_cast(dim), scales_height, + static_cast(output_height), + static_cast(input_height), + roi_start_height, roi_end_height); dims_mapping[id].extrapolate_ = static_cast( extrapolation_enabled && (orig_coord < 0.f || orig_coord > static_cast(input_height - 1))); dim = calc_nearest_pixel(orig_coord, scales_height < 1); @@ -210,9 +177,12 @@ __global__ void _ResizeNearestMappingKernel( if (scales[axis] == 1.0f) { dims_mapping[id].extrapolate_ = 0; } else { - float orig_coord = transform_coordinate(static_cast(dim), scales[axis], static_cast(output_shape[axis]), + float orig_coord = transform_coordinate(static_cast(dim), scales[axis], + static_cast(output_shape[axis]), static_cast(input_shape[axis]), roi[axis], roi[axis + rank]); - dims_mapping[id].extrapolate_ = static_cast(extrapolation_enabled && (orig_coord < 0.f || orig_coord > static_cast(input_shape[axis] - 1))); + dims_mapping[id].extrapolate_ = static_cast(extrapolation_enabled && + (orig_coord < 0.f || + orig_coord > static_cast(input_shape[axis] - 1))); dim = calc_nearest_pixel(orig_coord, scales[axis] < 1); if (dim >= input_shape[axis]) dim = input_shape[axis] - 1; if (dim < 0) dim = 0; @@ -293,21 +263,27 @@ __global__ void _ResizeBilinearCoordinateMapping( LinearMappingInfo* dims_mapping) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, SumHW); if (id < output_height) { // y = id - float input_y = scale_height == 1 ? static_cast(id) : - transform_coordinate(static_cast(id), scale_height, - static_cast(output_height), static_cast(input_height), - roi_height_start, roi_height_end); - dims_mapping[id].extrapolate_ = (int)(extrapolation_enabled && (input_y < 0 || input_y > static_cast(input_height - 1))); + float input_y = scale_height == 1 ? static_cast(id) + : transform_coordinate(static_cast(id), scale_height, + static_cast(output_height), + static_cast(input_height), + roi_height_start, roi_height_end); + dims_mapping[id].extrapolate_ = static_cast((extrapolation_enabled && + (input_y < 0 || + input_y > static_cast(input_height - 1)))); input_y = max(0.0f, min(input_y, static_cast(input_height - 1))); int y_int = static_cast(input_y); dims_mapping[id].origin_ = y_int; dims_mapping[id].weight_ = (y_int >= input_height - 1) ? 0.5f : input_y - y_int; - } else { //x = id - output_height - float input_x = scale_width == 1 ? static_cast(id - output_height) : - transform_coordinate(static_cast(id - output_height), scale_width, - static_cast(output_width), static_cast(input_width), - roi_width_start, roi_width_end); - dims_mapping[id].extrapolate_ = (int)(extrapolation_enabled && (input_x < 0 || input_x > static_cast(input_width - 1))); + } else { // x = id - output_height + float input_x = scale_width == 1 ? static_cast(id - output_height) + : transform_coordinate(static_cast(id - output_height), + scale_width, static_cast(output_width), + static_cast(input_width), roi_width_start, + roi_width_end); + dims_mapping[id].extrapolate_ = static_cast((extrapolation_enabled && + (input_x < 0 || + input_x > static_cast(input_width - 1)))); input_x = max(0.0f, min(input_x, static_cast(input_width - 1))); int x_int = static_cast(input_x); dims_mapping[id].origin_ = x_int; @@ -371,32 +347,40 @@ __global__ void _ResizeTrilinearCoordinateMapping( LinearMappingInfo* dims_mapping) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, SumDHW); if (id < output_depth) { // z = id - float input_z = scale_depth == 1 ? static_cast(id) : - transform_coordinate(static_cast(id), scale_depth, - static_cast(output_depth), static_cast(input_depth), - roi_depth_start, roi_depth_end); - dims_mapping[id].extrapolate_ = (int)(extrapolation_enabled && (input_z < 0 || input_z > static_cast(input_depth - 1))); + float input_z = scale_depth == 1 ? static_cast(id) + : transform_coordinate(static_cast(id), scale_depth, + static_cast(output_depth), + static_cast(input_depth), + roi_depth_start, roi_depth_end); + dims_mapping[id].extrapolate_ = static_cast((extrapolation_enabled && + (input_z < 0 || + input_z > static_cast(input_depth - 1)))); input_z = max(0.0f, min(input_z, static_cast(input_depth - 1))); int z_int = static_cast(input_z); dims_mapping[id].origin_ = z_int; dims_mapping[id].weight_ = (z_int >= input_depth - 1) ? 0.5f : input_z - z_int; } else if (id >= output_depth && id < (output_depth + output_height)) { // y = id - output_depth - float input_y = scale_height == 1 ? static_cast(id - output_depth) : - transform_coordinate(static_cast(id - output_depth), scale_height, - static_cast(output_height), static_cast(input_height), - roi_height_start, roi_height_end); - - dims_mapping[id].extrapolate_ = (int)(extrapolation_enabled && (input_y < 0 || input_y > static_cast(input_height - 1))); + float input_y = scale_height == 1 ? static_cast(id - output_depth) + : transform_coordinate(static_cast(id - output_depth), + scale_height, static_cast(output_height), + static_cast(input_height), + roi_height_start, roi_height_end); + + dims_mapping[id].extrapolate_ = static_cast((extrapolation_enabled && + (input_y < 0 || + input_y > static_cast(input_height - 1)))); input_y = max(0.0f, min(input_y, static_cast(input_height - 1))); int y_int = static_cast(input_y); dims_mapping[id].origin_ = y_int; dims_mapping[id].weight_ = (y_int >= input_height - 1) ? 0.5f : input_y - y_int; - } else { //x = id - output_depth - output_height - float input_x = scale_width == 1 ? static_cast(id - output_depth - output_height) : - transform_coordinate(static_cast(id - output_depth - output_height), scale_width, - static_cast(output_width), static_cast(input_width), - roi_width_start, roi_width_end); - dims_mapping[id].extrapolate_ = (int)(extrapolation_enabled && (input_x < 0 || input_x > static_cast(input_width - 1))); + } else { // x = id - output_depth - output_height + float input_x = scale_width == 1 ? static_cast(id - output_depth - output_height) + : transform_coordinate(static_cast(id - output_depth - output_height), + scale_width, static_cast(output_width), + static_cast(input_width), + roi_width_start, roi_width_end); + dims_mapping[id].extrapolate_ = (int)(extrapolation_enabled && (input_x < 0 || + input_x > static_cast(input_width - 1))); input_x = max(0.0f, min(input_x, static_cast(input_width - 1))); int x_int = static_cast(input_x); dims_mapping[id].origin_ = x_int; @@ -513,21 +497,33 @@ __global__ void _ResizeCubicCoordinateMapping( int max_input_coord = static_cast(is_y_axis ? input_height : input_width); float scale = is_y_axis ? scale_height : scale_width; - float input_coordinat = scale == 1 ? (is_y_axis ? id : id - output_height) : - transform_coordinate( - static_cast(is_y_axis ? id : id - output_height), - scale, - static_cast(is_y_axis ? output_height : output_width), - static_cast(max_input_coord), - (is_y_axis ? roi_height_start : roi_width_start), - (is_y_axis ? roi_height_end : roi_width_end)); + float input_coordinat = scale == 1 ? (is_y_axis ? id : id - output_height) + : transform_coordinate( + static_cast(is_y_axis ? id : id - output_height), + scale, + static_cast(is_y_axis ? output_height : output_width), + static_cast(max_input_coord), + (is_y_axis ? roi_height_start : roi_width_start), + (is_y_axis ? roi_height_end : roi_width_end)); int coord_int = static_cast(_Floor(input_coordinat)); float s_coord = abs(input_coordinat - coord_int); float coeff_sum = 1.0f; - float coeff_0 = static_cast(((cubic_coeff_a * (s_coord + 1) - 5 * cubic_coeff_a) * (s_coord + 1) + 8 * cubic_coeff_a) * (s_coord + 1) - 4 * cubic_coeff_a); - float coeff_1 = static_cast(((cubic_coeff_a + 2) * s_coord - (cubic_coeff_a + 3)) * s_coord * s_coord + 1); - float coeff_2 = static_cast(((cubic_coeff_a + 2) * (1 - s_coord) - (cubic_coeff_a + 3)) * (1 - s_coord) * (1 - s_coord) + 1); - float coeff_3 = static_cast(((cubic_coeff_a * (2 - s_coord) - 5 * cubic_coeff_a) * (2 - s_coord) + 8 * cubic_coeff_a) * (2 - s_coord) - 4 * cubic_coeff_a); + float coeff_0 = static_cast(((cubic_coeff_a * (s_coord + 1) - 5 * cubic_coeff_a) * + (s_coord + 1) + + 8 * cubic_coeff_a) * + (s_coord + 1) - + 4 * cubic_coeff_a); + float coeff_1 = static_cast(((cubic_coeff_a + 2) * s_coord - (cubic_coeff_a + 3)) * + s_coord * s_coord + + 1); + float coeff_2 = static_cast(((cubic_coeff_a + 2) * (1 - s_coord) - (cubic_coeff_a + 3)) * + (1 - s_coord) * (1 - s_coord) + + 1); + float coeff_3 = static_cast(((cubic_coeff_a * (2 - s_coord) - 5 * cubic_coeff_a) * + (2 - s_coord) + + 8 * cubic_coeff_a) * + (2 - s_coord) - + 4 * cubic_coeff_a); if (exclude_outside) { coeff_0 = (coord_int - 1 < 0 || coord_int - 1 >= max_input_coord) ? 0.0 : coeff_0; coeff_1 = (coord_int + 0 < 0 || coord_int + 0 >= max_input_coord) ? 0.0 : coeff_1; @@ -540,7 +536,8 @@ __global__ void _ResizeCubicCoordinateMapping( dm.coeff1_ = coeff_1 / coeff_sum; dm.coeff2_ = coeff_2 / coeff_sum; dm.coeff3_ = coeff_3 / coeff_sum; - dm.extrapolate_ = (int)(extrapolation_enabled && (input_coordinat < 0 || input_coordinat > static_cast(max_input_coord - 1))); + dm.extrapolate_ = (int)(extrapolation_enabled && (input_coordinat < 0 || + input_coordinat > static_cast(max_input_coord - 1))); } template @@ -569,21 +566,30 @@ __global__ void _ResizeBiCubicKernel( int x_int = x_info.origin_; int y_int = y_info.origin_; const T* image = input_data + input_index; - output_data[id] = y_info.coeff0_ * CubicInterpolationRowwise(image, x_int, y_int - 1, input_height, input_width, w0, w1, w2, w3) + - y_info.coeff1_ * CubicInterpolationRowwise(image, x_int, y_int, input_height, input_width, w0, w1, w2, w3) + - y_info.coeff2_ * CubicInterpolationRowwise(image, x_int, y_int + 1, input_height, input_width, w0, w1, w2, w3) + - y_info.coeff3_ * CubicInterpolationRowwise(image, x_int, y_int + 2, input_height, input_width, w0, w1, w2, w3); + output_data[id] = y_info.coeff0_ * + CubicInterpolationRowwise(image, x_int, y_int - 1, input_height, input_width, w0, w1, w2, w3) + + y_info.coeff1_ * + CubicInterpolationRowwise(image, x_int, y_int, input_height, input_width, w0, w1, w2, w3) + + y_info.coeff2_ * + CubicInterpolationRowwise(image, x_int, y_int + 1, input_height, input_width, w0, w1, w2, w3) + + y_info.coeff3_ * + CubicInterpolationRowwise(image, x_int, y_int + 2, input_height, input_width, w0, w1, w2, w3); } size_t CalcResizeBufferSize(const onnxruntime::UpsampleMode upsample_mode, const gsl::span& output_dims) { switch (upsample_mode) { case UpsampleMode::NN: - return sizeof(int64_t) * output_dims.size() + sizeof(NearestMappingInfo) * static_cast(std::accumulate(output_dims.begin(), output_dims.end(), (int64_t)0)); + return sizeof(int64_t) * output_dims.size() + + sizeof(NearestMappingInfo) * + static_cast(std::accumulate(output_dims.begin(), + output_dims.end(), (int64_t)0)); case UpsampleMode::LINEAR: - return sizeof(LinearMappingInfo) * static_cast(std::accumulate(output_dims.rbegin(), output_dims.rbegin() + 2, (int64_t)0)); + return sizeof(LinearMappingInfo) * + static_cast(std::accumulate(output_dims.rbegin(), output_dims.rbegin() + 2, (int64_t)0)); case UpsampleMode::CUBIC: - return sizeof(CubicMappingInfo) * static_cast(std::accumulate(output_dims.rbegin(), output_dims.rbegin() + 2, (int64_t)0)); + return sizeof(CubicMappingInfo) * + static_cast(std::accumulate(output_dims.rbegin(), output_dims.rbegin() + 2, (int64_t)0)); } return 0; } @@ -603,7 +609,7 @@ void ResizeNearestImpl( const size_t N, bool extrapolation_enabled, const T extrapolation_value, - float cubic_coeff_a, + float /*cubic_coeff_a*/, ResizeCoordinateTransformationMode transform_coordinate, ResizeNearestMode calc_nearest_pixel, int64_t* /* prefix_dim_sum */, @@ -616,7 +622,8 @@ void ResizeNearestImpl( if (could2d) { int64_t output_height = output_shape[rank - 2]; int64_t output_width = output_shape[rank - 1]; - fast_divmod div_output_image = (rank > 2) ? output_div_pitches[rank - 3] : fast_divmod(static_cast(output_height * output_width)); + fast_divmod div_output_image = (rank > 2) ? output_div_pitches[rank - 3] + : fast_divmod(static_cast(output_height * output_width)); int blocksPerDimsMappingGrid = static_cast(ceil((output_height + output_width) / 32.0)); DISPATCH_RESIZE_COORDINATE_TRANSFORMATION_MODE(transform_coordinate, [&]() { @@ -694,13 +701,6 @@ void ResizeImpl( ResizeCoordinateTransformationMode coordinate_transform_mode, ResizeNearestMode nearest_mode, void* dims_mapping) { - bool isSame = std::all_of(scales_vals.Data(), scales_vals.Data() + rank, [](float v) { return v == 1.0f; }) && - (coordinate_transform_mode != ResizeCoordinateTransformationMode::TF_CROP_AND_RESIZE); - if (isSame) { - CUDA_CALL_THROW(cudaMemcpyAsync(output_data, input_data, N * sizeof(T), cudaMemcpyDeviceToDevice, stream)); - return; - } - if (upsample_mode == UpsampleMode::NN) { ResizeNearestImpl( stream, rank, input_shape, output_shape, input_strides, output_div_pitches, @@ -761,7 +761,7 @@ void ResizeImpl( } else if (is_3D) { DISPATCH_RESIZE_COORDINATE_TRANSFORMATION_MODE(coordinate_transform_mode, [&]() { _ResizeTrilinearCoordinateMapping<<>>( - input_shape[rank - 3] , input_shape[rank - 2], input_shape[rank - 1], + input_shape[rank - 3], input_shape[rank - 2], input_shape[rank - 1], output_depth, output_height, output_width, scales_vals[rank - 3], scales_vals[rank - 2], scales_vals[rank - 1], roi_vals[rank - 3], roi_vals[rank - 3 + rank], @@ -778,7 +778,7 @@ void ResizeImpl( reinterpret_cast(dims_mapping)); return; } - ORT_THROW("Only bilinear/trilinear and bicubic modes are supported in Resize"); + ORT_THROW("Resize support 2-D and 3-D dimensions in LINEAR mode."); break; case UpsampleMode::CUBIC: if (is_2D) { @@ -801,7 +801,7 @@ void ResizeImpl( reinterpret_cast(dims_mapping)); return; } - ORT_THROW("Only bilinear/trilinear and bicubic modes are supported in Resize"); + ORT_THROW("Resize supports only 2-D in CUBIC mode."); case UpsampleMode::NN: ORT_THROW("Only bilinear/trilinear and bicubic modes are supported in Resize"); } @@ -809,7 +809,7 @@ void ResizeImpl( #define SPECIALIZED_IMPL(T) \ template void ResizeImpl( \ - cudaStream_t stream, \ + cudaStream_t stream, \ const UpsampleMode upsample_mode, \ const int rank, \ TArray& input_shape, \ diff --git a/onnxruntime/core/providers/cuda/tensor/resize_impl.h b/onnxruntime/core/providers/cuda/tensor/resize_impl.h index d459dbff18d3e..ad06eebb9efb1 100644 --- a/onnxruntime/core/providers/cuda/tensor/resize_impl.h +++ b/onnxruntime/core/providers/cuda/tensor/resize_impl.h @@ -2,15 +2,69 @@ // Licensed under the MIT License. #pragma once + #include + +#include + #include "core/providers/cuda/shared_inc/cuda_utils.h" #include "core/common/common.h" #include "core/providers/cpu/tensor/upsamplebase.h" #include "core/providers/cuda/cuda_common.h" namespace onnxruntime { +template <> +struct AccumulateType { + using type = float; +}; namespace cuda { +struct TransformCoordinate_ASYMMETRIC { + __device__ __host__ __forceinline__ float operator()(float x_resized, float x_scale, + float, float, float, float) const { + return x_resized / x_scale; + } +}; + +struct TransformCoordinate_HALF_PIXEL { + __device__ __host__ __forceinline__ float operator()(float x_resized, float x_scale, + float, float, float, float) const { + return ((x_resized + 0.5f) / x_scale) - 0.5f; + } +}; + +struct TransformCoordinate_PYTORCH_HALF_PIXEL { + __device__ __host__ __forceinline__ float operator()(float x_resized, float x_scale, float length_resized, float, + float, float) const { + return length_resized > 1 ? (x_resized + 0.5f) / x_scale - 0.5f : 0.0f; + } +}; + +struct TransformCoordinate_TF_HALF_PIXEL_FOR_NN { + __device__ __host__ __forceinline__ float operator()(float x_resized, float x_scale, + float, float, float, float) const { + return (x_resized + 0.5f) / x_scale; + } +}; + +struct TransformCoordinate_ALIGN_CORNERS { + __device__ __host__ __forceinline__ float operator()(float x_resized, float, float length_resized, + float length_original, float, float) const { + return length_resized == 1 ? 0 : x_resized * (length_original - 1) / (length_resized - 1); + } +}; + +struct TransformCoordinate_TF_CROP_AND_RESIZE { + __device__ __host__ __forceinline__ float operator()(float x_resized, float, float length_resized, + float length_original, float roi_start, float roi_end) const { + auto orig = length_resized > 1 + ? roi_start * (length_original - 1) + + (x_resized * (roi_end - roi_start) * (length_original - 1)) / (length_resized - 1) + : 0.5 * (roi_start + roi_end) * (length_original - 1); + return static_cast(orig); + } +}; + size_t CalcResizeBufferSize(const onnxruntime::UpsampleMode upsample_mode, const gsl::span& output_dims); @@ -36,5 +90,62 @@ void ResizeImpl( onnxruntime::ResizeNearestMode nearest_mode, void* dims_mapping); +using TempSpaceAllocateFunc = std::function(size_t buffer_size)>; + +template +void ResizeAntiAliasImpl( + cudaStream_t stream, + int rank, + const UpsampleMode upsample_mode, + ResizeCoordinateTransformationMode coordinate_transform_mode, + gsl::span input_shape, + gsl::span output_shape, + int64_t batch_size, int64_t num_channels, + std::tuple inferred_input_dims, + std::tuple inferred_output_dims, + std::tuple inferred_dim_rscales, + const TArray& output_div_pitches, + gsl::span roi_vals, // CPU + const std::optional& extrapolation_value, + bool exclude_outside, + TempSpaceAllocateFunc allocate_temp_space, + const uint8_t* clip8_lookups, + const T* input_data, + T* output_data, + const size_t N); + +/// +/// Compute scaled support value for a given dimension inverse scale +/// +/// Support value from parameters +/// inverse scale value comes from input/attr for +/// +inline float ComputeScaledSupportValue(float support_value, float rscale) { + const float scale = 1.0f / rscale; + float scaled_support = (scale >= 1.0f) ? (support_value * 0.5f) * scale : support_value * 0.5f; + return scaled_support; +} + +/// +/// Compute window size for a given dimension scaled support value. +/// +/// +/// +inline int32_t ComputeWindowSize(float scaled_support) { + SafeInt window_size(ceilf(scaled_support)); + return window_size * 2 + 1; +} + +/// +/// Computes scale buffer size in number of elements for allocation purposes. +/// +/// +/// +/// Number of elements to fit in the buffer +inline SafeInt ComputeWeightedCoeffBufferSize(int64_t output_size, int32_t window_size) { + SafeInt buffer_size(output_size); + return buffer_size * window_size; +} + } // namespace cuda } // namespace onnxruntime diff --git a/onnxruntime/core/providers/cuda/tensor/space_depth_ops.cc b/onnxruntime/core/providers/cuda/tensor/space_depth_ops.cc index 407a2ef3981f1..aaaf3600b676e 100644 --- a/onnxruntime/core/providers/cuda/tensor/space_depth_ops.cc +++ b/onnxruntime/core/providers/cuda/tensor/space_depth_ops.cc @@ -20,7 +20,22 @@ ONNX_OPERATOR_VERSIONED_KERNEL_EX( {DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType()}), - SpaceToDepth); + SpaceToDepth); + +#ifdef ENABLE_CUDA_NHWC_OPS +ONNX_OPERATOR_VERSIONED_KERNEL_EX( + SpaceToDepth, + kMSInternalNHWCDomain, + 1, + 12, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T", + {DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType()}), + SpaceToDepth); +#endif ONNX_OPERATOR_KERNEL_EX( SpaceToDepth, @@ -32,7 +47,21 @@ ONNX_OPERATOR_KERNEL_EX( {DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType()}), - SpaceToDepth); + SpaceToDepth); + +#ifdef ENABLE_CUDA_NHWC_OPS +ONNX_OPERATOR_KERNEL_EX( + SpaceToDepth, + kMSInternalNHWCDomain, + 13, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T", + {DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType()}), + SpaceToDepth); +#endif ONNX_OPERATOR_VERSIONED_KERNEL_EX( DepthToSpace, @@ -45,7 +74,22 @@ ONNX_OPERATOR_VERSIONED_KERNEL_EX( {DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType()}), - DepthToSpace); + DepthToSpace); + +#ifdef ENABLE_CUDA_NHWC_OPS +ONNX_OPERATOR_VERSIONED_KERNEL_EX( + DepthToSpace, + kMSInternalNHWCDomain, + 1, + 10, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T", + {DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType()}), + DepthToSpace); +#endif ONNX_OPERATOR_VERSIONED_KERNEL_EX( DepthToSpace, @@ -58,7 +102,22 @@ ONNX_OPERATOR_VERSIONED_KERNEL_EX( {DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType()}), - DepthToSpace); + DepthToSpace); + +#ifdef ENABLE_CUDA_NHWC_OPS +ONNX_OPERATOR_VERSIONED_KERNEL_EX( + DepthToSpace, + kMSInternalNHWCDomain, + 11, + 12, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T", + {DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType()}), + DepthToSpace); +#endif ONNX_OPERATOR_KERNEL_EX( DepthToSpace, @@ -70,23 +129,35 @@ ONNX_OPERATOR_KERNEL_EX( {DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType(), DataTypeImpl::GetTensorType()}), - DepthToSpace); + DepthToSpace); + +#ifdef ENABLE_CUDA_NHWC_OPS +ONNX_OPERATOR_KERNEL_EX( + DepthToSpace, + kMSInternalNHWCDomain, + 13, + kCudaExecutionProvider, + (*KernelDefBuilder::Create()) + .TypeConstraint("T", + {DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType(), + DataTypeImpl::GetTensorType()}), + DepthToSpace); +#endif static Status SpaceDepthOpCudaImpl(const cudaDeviceProp& prop, cudaStream_t stream, const cublasHandle_t cublas_handle, const Tensor& input, Tensor& output, const std::vector& permutation, - const int64_t batch_size, - const int64_t in_dim1, const int64_t in_dim2, const int64_t in_dim3, - const int64_t in_dim4, const int64_t in_dim5, + const TensorShape& virtual_input_shape, const TensorShape& virtual_output_shape) { - TensorShape virtual_input_shape{batch_size, in_dim1, in_dim2, in_dim3, in_dim4, in_dim5}; return Transpose::DoTranspose(prop, stream, cublas_handle, permutation, input, output, &virtual_input_shape, &virtual_output_shape); } -Status SpaceToDepth::ComputeInternal(OpKernelContext* context) const { +template +Status SpaceToDepth::ComputeInternal(OpKernelContext* context) const { const auto* tensor_pointer = context->Input(0); if (tensor_pointer == nullptr) return Status(common::ONNXRUNTIME, common::FAIL, "input count mismatch"); const Tensor& input = *tensor_pointer; @@ -101,29 +172,44 @@ Status SpaceToDepth::ComputeInternal(OpKernelContext* context) const { int64_t output_height = -1; int64_t output_width = -1; - ORT_RETURN_IF_ERROR(InputValidationsAndOutputDimsCalc(input, - batch, - input_depth, input_height, input_width, - output_depth, output_height, output_width, - true)); + ORT_RETURN_IF_ERROR( + InputValidationsAndOutputDimsCalc(input, + batch, + input_depth, input_height, input_width, + output_depth, output_height, output_width, + true)); // We use the "actual" output shape to construct the output tensor - Tensor& output = *context->Output(0, {batch, output_depth, output_height, output_width}); + Tensor& output = (Layout == LAYOUT_NCHW) + ? *context->Output(0, {batch, output_depth, output_height, output_width}) + : *context->Output(0, {batch, output_height, output_width, output_depth}); + + TensorShape virtual_input_shape = (Layout == LAYOUT_NCHW) + ? TensorShape{batch, input_depth, input_height / blocksize_, + blocksize_, input_width / blocksize_, blocksize_} + : TensorShape{batch, input_height / blocksize_, blocksize_, + input_width / blocksize_, blocksize_, input_depth}; // We will pass in the "virtual" output shape to be used by DoTranspose() in SpaceDepthOpCudaImpl(...) - TensorShape virtual_output_shape{batch, blocksize_, blocksize_, input_depth, - input_height / blocksize_, input_width / blocksize_}; + TensorShape virtual_output_shape = (Layout == LAYOUT_NCHW) + ? TensorShape{batch, blocksize_, blocksize_, input_depth, + input_height / blocksize_, input_width / blocksize_} + : TensorShape{batch, input_height / blocksize_, input_width / blocksize_, + blocksize_, blocksize_, input_depth}; - std::vector permutation = {0, 3, 5, 1, 2, 4}; + std::vector permutation = (Layout == LAYOUT_NCHW) + ? std::vector{0, 3, 5, 1, 2, 4} + : std::vector{0, 1, 3, 2, 4, 5}; - ORT_RETURN_IF_ERROR(SpaceDepthOpCudaImpl(GetDeviceProp(), Stream(context), GetCublasHandle(context), input, output, permutation, batch, - input_depth, input_height / blocksize_, blocksize_, input_width / blocksize_, blocksize_, - virtual_output_shape)); + ORT_RETURN_IF_ERROR( + SpaceDepthOpCudaImpl(GetDeviceProp(), Stream(context), GetCublasHandle(context), input, output, permutation, + virtual_input_shape, virtual_output_shape)); return Status::OK(); } -Status DepthToSpace::ComputeInternal(OpKernelContext* context) const { +template +Status DepthToSpace::ComputeInternal(OpKernelContext* context) const { const auto* tensor_pointer = context->Input(0); if (tensor_pointer == nullptr) return Status(common::ONNXRUNTIME, common::FAIL, "input count mismatch"); const Tensor& input = *tensor_pointer; @@ -138,46 +224,56 @@ Status DepthToSpace::ComputeInternal(OpKernelContext* context) const { int64_t output_height = -1; int64_t output_width = -1; - ORT_RETURN_IF_ERROR(InputValidationsAndOutputDimsCalc(input, - batch, - input_depth, input_height, input_width, - output_depth, output_height, output_width, - false)); + ORT_RETURN_IF_ERROR( + InputValidationsAndOutputDimsCalc(input, + batch, + input_depth, input_height, input_width, + output_depth, output_height, output_width, + false)); // We use the "actual" output shape to construct the output tensor - Tensor& output = *context->Output(0, {batch, output_depth, output_height, output_width}); + Tensor& output = (Layout == LAYOUT_NCHW) + ? *context->Output(0, {batch, output_depth, output_height, output_width}) + : *context->Output(0, {batch, output_height, output_width, output_depth}); + + int64_t virtual_input_depth = input_depth / blocksize_ / blocksize_; + TensorShape virtual_input_shape; + + // cdr only here! + if (is_dcr_) { + virtual_input_shape = (Layout == LAYOUT_NCHW) + ? TensorShape{batch, blocksize_, blocksize_, + virtual_input_depth, input_height, input_width} + : TensorShape{batch, input_height, input_width, + blocksize_, blocksize_, virtual_input_depth}; + } else { + virtual_input_shape = (Layout == LAYOUT_NCHW) + ? TensorShape{batch, virtual_input_depth, blocksize_, + blocksize_, input_height, input_width} + : TensorShape{batch, input_height, input_width, + virtual_input_depth, blocksize_, blocksize_}; + } // We will pass in the "virtual" output shape to be used by DoTranspose() in SpaceDepthOpCudaImpl(...) - TensorShape virtual_output_shape{batch, input_depth / blocksize_ / blocksize_, - input_height, blocksize_, input_width, blocksize_}; + TensorShape virtual_output_shape = (Layout == LAYOUT_NCHW) + ? TensorShape{batch, virtual_input_depth, input_height, + blocksize_, input_width, blocksize_} + : TensorShape{batch, input_height, blocksize_, + input_width, blocksize_, virtual_input_depth}; std::vector permutation; - permutation.reserve(6); - permutation.push_back(0); if (is_dcr_) { - permutation.push_back(3); - permutation.push_back(4); - permutation.push_back(1); - permutation.push_back(5); - permutation.push_back(2); + permutation = (Layout == LAYOUT_NCHW) + ? std::vector({0, 3, 4, 1, 5, 2}) + : std::vector({0, 1, 3, 2, 4, 5}); } else { - permutation.push_back(1); - permutation.push_back(4); - permutation.push_back(2); - permutation.push_back(5); - permutation.push_back(3); + permutation = std::vector({0, 1, 4, 2, 5, 3}); } - int64_t dim1 = is_dcr_ ? blocksize_ : input_depth / blocksize_ / blocksize_; - int64_t dim3 = is_dcr_ ? input_depth / blocksize_ / blocksize_ : blocksize_; - ORT_RETURN_IF_ERROR(SpaceDepthOpCudaImpl(GetDeviceProp(), Stream(context), GetCublasHandle(context), input, output, - permutation, - batch, - dim1, blocksize_, dim3, input_height, input_width, - virtual_output_shape)); + permutation, virtual_input_shape, virtual_output_shape)); return Status::OK(); } diff --git a/onnxruntime/core/providers/cuda/tensor/space_depth_ops.h b/onnxruntime/core/providers/cuda/tensor/space_depth_ops.h index 57b85556f1dbe..8780d9b365005 100644 --- a/onnxruntime/core/providers/cuda/tensor/space_depth_ops.h +++ b/onnxruntime/core/providers/cuda/tensor/space_depth_ops.h @@ -9,6 +9,7 @@ namespace onnxruntime { namespace cuda { +template class SpaceToDepth final : public CudaKernel, SpaceDepthBase { public: explicit SpaceToDepth(const OpKernelInfo& info) : CudaKernel(info), SpaceDepthBase(info) { @@ -17,6 +18,7 @@ class SpaceToDepth final : public CudaKernel, SpaceDepthBase { Status ComputeInternal(OpKernelContext* context) const override; }; +template class DepthToSpace final : public CudaKernel, SpaceDepthBase { public: explicit DepthToSpace(const OpKernelInfo& info) : CudaKernel(info), SpaceDepthBase(info) { diff --git a/onnxruntime/core/providers/cuda/tensor/transpose_impl.cu b/onnxruntime/core/providers/cuda/tensor/transpose_impl.cu index 9f9c365d2a53d..6344845359b32 100644 --- a/onnxruntime/core/providers/cuda/tensor/transpose_impl.cu +++ b/onnxruntime/core/providers/cuda/tensor/transpose_impl.cu @@ -80,7 +80,7 @@ bool CanDoTranspose3D(const cudaDeviceProp& prop, size_t rank, const gsl::span& input_shape, - const TArray& input_strides, const void* input_data, void* output_data, int64_t N, + const TArray& input_strides, const void* input_data, void* output_data, int64_t /*N*/, const dim3& grid_size, const dim3& block_size) { switch (element_size) { HANDLE_TRANSPOSE_3D_TILE_DIM(int8_t); @@ -248,10 +248,10 @@ __global__ void Transpose4DKernelParallelizeOneElementPerThread( } bool CanDoTranspose4DParallelizeOneElementPerThread(const cudaDeviceProp& prop, - size_t element_size, + size_t /*element_size*/, int32_t rank, const gsl::span& input_dims, - const gsl::span& permutations, + const gsl::span& /*permutations*/, dim3& grid_size, dim3& block_size) { if (rank == 4) { // dims[3]: block.x diff --git a/onnxruntime/core/providers/cuda/tensor/upsample.cc b/onnxruntime/core/providers/cuda/tensor/upsample.cc index ae12ca328bc7c..17533eb3d9a72 100644 --- a/onnxruntime/core/providers/cuda/tensor/upsample.cc +++ b/onnxruntime/core/providers/cuda/tensor/upsample.cc @@ -2,6 +2,9 @@ // Licensed under the MIT License. #include "upsample.h" + +#include + #include "upsample_impl.h" #include "core/providers/cuda/tensor/resize_impl.h" #include "core/providers/cpu/tensor/utils.h" @@ -37,11 +40,23 @@ REGISTER_VERSIONED_TYPED_KERNEL(MLFloat16, 9, 9); REGISTER_VERSIONED_TYPED_KERNEL(int32_t, 9, 9); REGISTER_VERSIONED_TYPED_KERNEL(uint8_t, 9, 9); +template +Upsample::Upsample(const OpKernelInfo& info) : UpsampleBase(info), CudaKernel(info) { + if (UpsampleBase::antialias_) { + // Copy the table on DEVICE + const uint8_t* lookup_table = GetLookupTableShared(); + auto alloc = info.GetAllocator(OrtMemTypeDefault); + shared_lookup_table_ondevice_ = IAllocator::MakeUniquePtr(std::move(alloc), kLookupTableSize); + CUDA_CALL_THROW(cudaMemcpyAsync(shared_lookup_table_ondevice_.get(), lookup_table, kLookupTableSize, + cudaMemcpyHostToDevice, nullptr)); + } +} + template Status Upsample::BaseCompute(OpKernelContext* context, - const std::vector& roi, - const std::vector& scales, - const gsl::span& output_dims) const { + gsl::span roi, + gsl::span scales, + gsl::span output_dims) const { const Tensor* X = context->Input(0); auto X_dims = X->Shape().GetDims(); int32_t rank = static_cast(X_dims.size()); @@ -52,7 +67,8 @@ Status Upsample::BaseCompute(OpKernelContext* context, is_resize_ ? "Resize: input tensor cannot be scalar." : "Upsample: input tensor cannot be scalar."); if (rank != static_cast(scales.size())) return Status(ONNXRUNTIME, INVALID_ARGUMENT, - is_resize_ ? "Resize: input tensor's dimension does not match the scales." : "Upsample: input tensor's dimension does not match the scales."); + is_resize_ ? "Resize: input tensor's dimension does not match the scales." + : "Upsample: input tensor's dimension does not match the scales."); if (roi.size() != 2 * X_dims.size()) return Status(ONNXRUNTIME, INVALID_ARGUMENT, "Resize: size of roi array should be 2 * N where N is the rank of input tensor X."); @@ -79,22 +95,194 @@ Status Upsample::BaseCompute(OpKernelContext* context, size_t output_count = Y->Shape().Size(); if (is_resize_) { - TArray input_shape(X_dims); - TArray output_shape(output_dims); - TArray roi_vals(roi); - TArray scales_vals(scales); - - size_t temp_buffer_size = CalcResizeBufferSize(mode_, output_dims); - auto dims_mapping_buffer = GetScratchBuffer(temp_buffer_size, context->GetComputeStream()); - void* dims_mapping = reinterpret_cast(dims_mapping_buffer.get()); - ResizeImpl(Stream(context), mode_, (int)rank, input_shape, output_shape, - input_strides, output_div_pitches, scales_vals, roi_vals, - reinterpret_cast(X->Data()), - reinterpret_cast(Y->MutableData()), - output_count, use_extrapolation_, ToCudaType::FromFloat(extrapolation_value_), - cubic_coeff_a_, exclude_outside_, - coordinate_transform_mode_, nearest_mode_, - dims_mapping); + const bool is_same = std::all_of(scales.begin(), scales.end(), [](float v) { return v == 1.0f; }) && + (coordinate_transform_mode_ != ResizeCoordinateTransformationMode::TF_CROP_AND_RESIZE); + if (is_same) { + CUDA_CALL_THROW(cudaMemcpyAsync(Y->MutableData(), X->Data(), + output_count * sizeof(T), cudaMemcpyDeviceToDevice, Stream(context))); + return Status::OK(); + } + + if (antialias_) { + TempSpaceAllocateFunc allocate_temp_space = [&](size_t bytes_size) { + return GetScratchBuffer(bytes_size, context->GetComputeStream()); + }; + + std::optional extrapolation_value; + if (use_extrapolation_) + extrapolation_value.emplace(extrapolation_value_); + + switch (mode_) { + case UpsampleMode::LINEAR: { + if (X_dims.size() == 2 || X_dims.size() == 4) { + const bool is_2D = X_dims.size() == 2; + + int64_t batch_size = 1; + int64_t num_channels = 1; + + int64_t input_height; + int64_t input_width; + + int64_t output_height; + int64_t output_width; + + float height_scale; + float width_scale; + + if (is_2D) { + input_height = X_dims[0]; + input_width = X_dims[1]; + + output_height = output_dims[0]; + output_width = output_dims[1]; + + height_scale = scales[0]; + width_scale = scales[1]; + } else { + if (scales[0] == 1.0f && scales[1] == 1.0f) { + batch_size = X_dims[Channels::N]; + num_channels = X_dims[Channels::C]; + input_height = X_dims[Channels::H]; + input_width = X_dims[Channels::W]; + + output_height = output_dims[Channels::H]; + output_width = output_dims[Channels::W]; + + height_scale = scales[2]; + width_scale = scales[3]; + } else { + return ORT_MAKE_STATUS(ONNXRUNTIME, NOT_IMPLEMENTED, "Resize", ": NHWC is not supported yet"); + } + } + + ResizeAntiAliasImpl(Stream(context), + rank, + mode_, + coordinate_transform_mode_, + X_dims, output_dims, + batch_size, num_channels, + std::make_tuple(0, input_height, input_width), + std::make_tuple(0, output_height, output_width), + std::make_tuple(0.f, height_scale, width_scale), + output_div_pitches, + roi, + extrapolation_value, + exclude_outside_, + allocate_temp_space, + shared_lookup_table_ondevice_.get(), + reinterpret_cast(X->Data()), + reinterpret_cast(Y->MutableData()), + output_count); + + } else if (X_dims.size() == 3 || X_dims.size() == 5) { + const bool is_3D = X_dims.size() == 3; + + if (!is_3D) { + if (!(scales[0] == 1.0f && scales[1] == 1.0f)) { + return ORT_MAKE_STATUS(ONNXRUNTIME, NOT_IMPLEMENTED, "Resize", ": NDHWC is not supported yet"); + } + } + + const int64_t batch_size = is_3D ? 1 : X_dims[0]; + const int64_t num_channels = is_3D ? 1 : X_dims[1]; + const int64_t input_depth = is_3D ? X_dims[0] : X_dims[2]; + const int64_t input_height = is_3D ? X_dims[1] : X_dims[3]; + const int64_t input_width = is_3D ? X_dims[2] : X_dims[4]; + + const int64_t output_depth = is_3D ? output_dims[0] : output_dims[2]; + const int64_t output_height = is_3D ? output_dims[1] : output_dims[3]; + const int64_t output_width = is_3D ? output_dims[2] : output_dims[4]; + + const float depth_scale = is_3D ? scales[0] : scales[2]; + const float height_scale = is_3D ? scales[1] : scales[3]; + const float width_scale = is_3D ? scales[2] : scales[4]; + + ResizeAntiAliasImpl(Stream(context), + rank, + mode_, + coordinate_transform_mode_, + X_dims, output_dims, + batch_size, num_channels, + std::make_tuple(input_depth, input_height, input_width), + std::make_tuple(output_depth, output_height, output_width), + std::make_tuple(depth_scale, height_scale, width_scale), + output_div_pitches, + roi, + extrapolation_value, + exclude_outside_, + allocate_temp_space, + shared_lookup_table_ondevice_.get(), + reinterpret_cast(X->Data()), + reinterpret_cast(Y->MutableData()), + output_count); + } else { + return ORT_MAKE_STATUS(ONNXRUNTIME, NOT_IMPLEMENTED, "Resize", + ": 'Linear' mode only support 2-D inputs or 3-D inputs ('Bilinear', 'Trilinear') " + "or 4-D inputs or 5-D inputs with the corresponding outermost 2 scale values " + "being 1."); + } + } break; + case UpsampleMode::CUBIC: { + if (X_dims.size() != 2 && X_dims.size() != 4) { + return ORT_MAKE_STATUS(ONNXRUNTIME, NOT_IMPLEMENTED, "Resize", + ": 'Cubic' mode only support 2-D inputs ('Bicubic') or 4-D inputs " + "with the corresponding outermost 2 scale values being 1."); + } + + const bool is_2D = X_dims.size() == 2; + const bool is_nchw = is_2D ? true : (scales[1] == 1.0f && scales[1] == 1.0f); + + ORT_RETURN_IF_NOT(is_nchw, + "Resize 'Cubic' mode only supports NCWH layout " + " with 2-D or 4-D with leading dims equal to 1"); + + const int64_t batch_size = is_2D ? 1 : X_dims[Channels::N]; + const int64_t num_channels = is_2D ? 1 : X_dims[Channels::C]; + const int64_t input_height = is_2D ? X_dims[0] : X_dims[Channels::H]; + const int64_t input_width = is_2D ? X_dims[1] : X_dims[Channels::W]; + + const int64_t output_height = is_2D ? output_dims[0] : output_dims[Channels::H]; + const int64_t output_width = is_2D ? output_dims[1] : output_dims[Channels::W]; + const float height_scale = is_2D ? scales[0] : scales[2]; + const float width_scale = is_2D ? scales[1] : scales[3]; + + ResizeAntiAliasImpl(Stream(context), rank, mode_, coordinate_transform_mode_, + X_dims, output_dims, + batch_size, num_channels, + std::make_tuple(0, input_height, input_width), + std::make_tuple(0, output_height, output_width), + std::make_tuple(0.f, height_scale, width_scale), + output_div_pitches, + roi, + extrapolation_value, + exclude_outside_, + allocate_temp_space, + shared_lookup_table_ondevice_.get(), + reinterpret_cast(X->Data()), + reinterpret_cast(Y->MutableData()), + output_count); + } break; + default: + return Status(ONNXRUNTIME, INVALID_ARGUMENT, "Resize: unexpected mode"); + } + } else { + TArray input_shape(X_dims); + TArray output_shape(output_dims); + TArray roi_vals(roi); + TArray scales_vals(scales); + + size_t temp_buffer_size = CalcResizeBufferSize(mode_, output_dims); + auto dims_mapping_buffer = GetScratchBuffer(temp_buffer_size, context->GetComputeStream()); + void* dims_mapping = reinterpret_cast(dims_mapping_buffer.get()); + ResizeImpl(Stream(context), mode_, rank, input_shape, output_shape, + input_strides, output_div_pitches, scales_vals, roi_vals, + reinterpret_cast(X->Data()), + reinterpret_cast(Y->MutableData()), + output_count, use_extrapolation_, ToCudaType::FromFloat(extrapolation_value_), + cubic_coeff_a_, exclude_outside_, + coordinate_transform_mode_, nearest_mode_, + dims_mapping); + } } else { TArray scales_div(rank); @@ -124,7 +312,7 @@ Status Upsample::ComputeInternal(OpKernelContext* context) const { auto input_dims = X->Shape().GetDims(); TensorShapeVector output_dims(input_dims.size()); - std::vector roi_array(input_dims.size() * 2, 0.0f); + InlinedVector roi_array(input_dims.size() * 2, 0.0f); if (!roi_cached_) { bool use_default_roi = true; if (need_roi_input_) { @@ -147,29 +335,37 @@ Status Upsample::ComputeInternal(OpKernelContext* context) const { } } - const std::vector& roi = roi_cached_ ? roi_ : roi_array; - std::vector scales_array = scales_; + ComputeROIWithAxes(roi_array, input_dims.size()); + InlinedVector scales_array(input_dims.size()); + // opset < 10 if (OpKernel::Node().InputDefs().size() == 1) { - // Compute output shape from scales and input dims + // Compute output shape from scales attributes and input dims + scales_array = scales_; + ComputeOutputShape(scales_array, input_dims, output_dims); - return BaseCompute(context, roi, scales_, output_dims); + return BaseCompute(context, roi_array, scales_, output_dims); } const Tensor* scales = context->Input(scales_input_idx_); const Tensor* sizes = context->Input(sizes_input_idx_); + // This is when scales are obtained and cached from a constant initializer if (scales_cached_) { - ORT_ENFORCE(sizes == nullptr, "Only one of scales or sizes must be provided as input."); + ORT_RETURN_IF_NOT(sizes == nullptr, "Only one of scales or sizes must be provided as input."); + scales_array = scales_; + // Compute output shape from scales and input dims ComputeOutputShape(scales_array, input_dims, output_dims); - return BaseCompute(context, roi, scales_, output_dims); + return BaseCompute(context, roi_array, scales_array, output_dims); } - scales_array.resize((input_dims.size())); + // Scales and sizes are input to the node if (scales != nullptr && scales->Shape().Size() != 0) { // use scales input data ORT_ENFORCE(sizes == nullptr, "Only one of scales or sizes must be provided as input."); ORT_RETURN_IF_ERROR(ParseScalesData(scales, scales_array, input_dims.size())); + + // Compute output shape from scales and input dims ComputeOutputShape(scales_array, input_dims, output_dims); } else { // When sizes input is available directly populate it into the output_dims array. @@ -179,7 +375,7 @@ Status Upsample::ComputeInternal(OpKernelContext* context) const { ORT_RETURN_IF_ERROR(ParseScalesDataAndAdjustOutputSize(output_dims, input_dims, scales_array)); } - return BaseCompute(context, roi, scales_array, output_dims); + return BaseCompute(context, roi_array, scales_array, output_dims); } } // namespace cuda diff --git a/onnxruntime/core/providers/cuda/tensor/upsample.h b/onnxruntime/core/providers/cuda/tensor/upsample.h index 7bf2a23ede399..50597e0fba1b9 100644 --- a/onnxruntime/core/providers/cuda/tensor/upsample.h +++ b/onnxruntime/core/providers/cuda/tensor/upsample.h @@ -13,12 +13,14 @@ namespace cuda { template class Upsample : public UpsampleBase, public CudaKernel { public: - Upsample(const OpKernelInfo& info) : UpsampleBase(info), CudaKernel(info) { - } + explicit Upsample(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; - Status BaseCompute(OpKernelContext* context, const std::vector& roi, const std::vector& scales, - const gsl::span& output_dims) const; + Status BaseCompute(OpKernelContext* context, gsl::span roi, gsl::span scales, + gsl::span output_dims) const; + + private: + IAllocatorUniquePtr shared_lookup_table_ondevice_; }; } // namespace cuda diff --git a/onnxruntime/core/providers/cuda/triton_kernel.cu b/onnxruntime/core/providers/cuda/triton_kernel.cu index 6ffbf0420a15f..b42dbd0291b7a 100644 --- a/onnxruntime/core/providers/cuda/triton_kernel.cu +++ b/onnxruntime/core/providers/cuda/triton_kernel.cu @@ -130,27 +130,11 @@ void LoadOrtTritonKernel() { std::call_once(load_ort_triton_kernel_flag, TryToLoadKernel); } -Status LaunchTritonKernel(cudaStream_t stream, std::string fname, - int grid0, int grid1, int grid2, void* args, size_t args_size) { -#ifdef USE_TRITON_KERNEL - if (ort_triton_kernel_map.count(fname) == 0) { - // Return unsupported status if function name not found in registry. - // This error status will be used by TunableOp - std::ostringstream message_stream; - message_stream << "Can't find ort triton kernel name: " << fname; - std::string message = message_stream.str(); - TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(true, message); - } - auto idx = ort_triton_kernel_map[fname]; - return LaunchTritonKernel(stream, idx, grid0, grid1, grid2, args, args_size); -#else - return Status::OK(); -#endif -} -Status LaunchTritonKernel(cudaStream_t stream, size_t idx, - int grid0, int grid1, int grid2, void* args, size_t args_size) { + #ifdef USE_TRITON_KERNEL +Status LaunchTritonKernel(cudaStream_t stream, size_t idx, int grid0, int grid1, int grid2, + void* args, size_t args_size) { if (idx >= ort_triton_kernel_metadata.size()) { // Return unsupported status when idx exceeds the size of ort_triton_kernel_metadata. // This error status will be used by TunableOp @@ -181,11 +165,37 @@ Status LaunchTritonKernel(cudaStream_t stream, size_t idx, nullptr, (void**)&config), "Launching kernel failed."); -#endif return Status::OK(); } +Status LaunchTritonKernel(cudaStream_t stream, std::string fname, int grid0, int grid1, int grid2, + void* args, size_t args_size) { + if (ort_triton_kernel_map.count(fname) == 0) { + // Return unsupported status if function name not found in registry. + // This error status will be used by TunableOp + std::ostringstream message_stream; + message_stream << "Can't find ort triton kernel name: " << fname; + std::string message = message_stream.str(); + TUNABLE_OP_RETURN_UNSUPPORTED_ARGUMENT_IF(true, message); + } + auto idx = ort_triton_kernel_map[fname]; + return LaunchTritonKernel(stream, idx, grid0, grid1, grid2, args, args_size); +} + +#else +Status LaunchTritonKernel(cudaStream_t /*stream*/, std::string /*fname*/, int /*grid0*/, int /*grid1*/, int /*grid2*/, + void* /*args*/, size_t /*args_size*/) { + return Status::OK(); +} + +Status LaunchTritonKernel(cudaStream_t /*stream*/, size_t /*idx*/, int /*grid0*/, int /*grid1*/, int /*grid2*/, + void* /*args*/, size_t /*args_size*/) { + return Status::OK(); +} +#endif + + const TritonKernelMetaData* GetOrtTritonKernelMetadata(size_t idx) { if (idx >= ort_triton_kernel_metadata.size()) { return nullptr; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/inc/IWinmlExecutionProvider.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/inc/IWinmlExecutionProvider.h index f29cc3afc3cda..88e3dd487d427 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/inc/IWinmlExecutionProvider.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/inc/IWinmlExecutionProvider.h @@ -80,15 +80,10 @@ namespace Windows::AI::MachineLearning::Adapter }; // This is the counterpart to the MLOperatorGraphDesc ABI struct which owns its memory and uses containers. - // Either nodesAsOperatorDesc or nodesAsIDMLOperator can have non-zero size. struct DmlGraphNodeCreateInfo { uint32_t nodeCount = 0; - std::vector> nodesAsOperatorDesc; - - // TODO (jeffbloo): Remove this - std::vector> nodesAsIDMLOperator; - + std::vector> nodes; std::vector inputEdges; std::vector outputEdges; std::vector intermediateEdges; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/AllocationInfo.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/AllocationInfo.h index 59a827a4ffa1b..9c395e9cc906b 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/AllocationInfo.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/AllocationInfo.h @@ -5,7 +5,7 @@ #include #include -#include +#include "directx/d3d12.h" #include "DmlResourceWrapper.h" namespace Dml diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ApiTraits.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ApiTraits.cpp new file mode 100644 index 0000000000000..1d6b1e6b21d1c --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ApiTraits.cpp @@ -0,0 +1,578 @@ +//--------------------------------------------------------------------------- +// Copyright (c) Microsoft Corporation. All rights reserved. +// +// This file is automatically generated. Please do not edit it directly. +// To modify this file, edit the schema: dml/Tools/DirectMLSchema.json +// And run this script to regenerate: dml/Tools/GenerateSchema.ps1 +// +// #dml-new-operator-location +//--------------------------------------------------------------------------- + +#pragma once + +#include "precomp.h" + +template +T ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ +#ifndef WAI_BUILD_LINUX + // Clang will instantiate this template even if it isn't used, + // so this static_assert will always fire and break the build. + static_assert(false, "Not implemented for this type"); +#endif +} + +template <> +DML_TENSOR_DATA_TYPE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_TENSOR_DATA_TYPE_UNKNOWN", DML_TENSOR_DATA_TYPE_UNKNOWN}, + {"DML_TENSOR_DATA_TYPE_FLOAT32", DML_TENSOR_DATA_TYPE_FLOAT32}, + {"DML_TENSOR_DATA_TYPE_FLOAT16", DML_TENSOR_DATA_TYPE_FLOAT16}, + {"DML_TENSOR_DATA_TYPE_UINT32", DML_TENSOR_DATA_TYPE_UINT32}, + {"DML_TENSOR_DATA_TYPE_UINT16", DML_TENSOR_DATA_TYPE_UINT16}, + {"DML_TENSOR_DATA_TYPE_UINT8", DML_TENSOR_DATA_TYPE_UINT8}, + {"DML_TENSOR_DATA_TYPE_INT32", DML_TENSOR_DATA_TYPE_INT32}, + {"DML_TENSOR_DATA_TYPE_INT16", DML_TENSOR_DATA_TYPE_INT16}, + {"DML_TENSOR_DATA_TYPE_INT8", DML_TENSOR_DATA_TYPE_INT8}, + {"DML_TENSOR_DATA_TYPE_FLOAT64", DML_TENSOR_DATA_TYPE_FLOAT64}, + {"DML_TENSOR_DATA_TYPE_UINT64", DML_TENSOR_DATA_TYPE_UINT64}, + {"DML_TENSOR_DATA_TYPE_INT64", DML_TENSOR_DATA_TYPE_INT64}, + {"DML_TENSOR_DATA_TYPE_UINT4", DML_TENSOR_DATA_TYPE_UINT4}, + {"DML_TENSOR_DATA_TYPE_INT4", DML_TENSOR_DATA_TYPE_INT4}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_TENSOR_TYPE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_TENSOR_TYPE_INVALID", DML_TENSOR_TYPE_INVALID}, + {"DML_TENSOR_TYPE_BUFFER", DML_TENSOR_TYPE_BUFFER}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_OPERATOR_TYPE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_OPERATOR_INVALID", DML_OPERATOR_INVALID}, + {"DML_OPERATOR_ELEMENT_WISE_IDENTITY", DML_OPERATOR_ELEMENT_WISE_IDENTITY}, + {"DML_OPERATOR_ELEMENT_WISE_ABS", DML_OPERATOR_ELEMENT_WISE_ABS}, + {"DML_OPERATOR_ELEMENT_WISE_ACOS", DML_OPERATOR_ELEMENT_WISE_ACOS}, + {"DML_OPERATOR_ELEMENT_WISE_ADD", DML_OPERATOR_ELEMENT_WISE_ADD}, + {"DML_OPERATOR_ELEMENT_WISE_ASIN", DML_OPERATOR_ELEMENT_WISE_ASIN}, + {"DML_OPERATOR_ELEMENT_WISE_ATAN", DML_OPERATOR_ELEMENT_WISE_ATAN}, + {"DML_OPERATOR_ELEMENT_WISE_CEIL", DML_OPERATOR_ELEMENT_WISE_CEIL}, + {"DML_OPERATOR_ELEMENT_WISE_CLIP", DML_OPERATOR_ELEMENT_WISE_CLIP}, + {"DML_OPERATOR_ELEMENT_WISE_COS", DML_OPERATOR_ELEMENT_WISE_COS}, + {"DML_OPERATOR_ELEMENT_WISE_DIVIDE", DML_OPERATOR_ELEMENT_WISE_DIVIDE}, + {"DML_OPERATOR_ELEMENT_WISE_EXP", DML_OPERATOR_ELEMENT_WISE_EXP}, + {"DML_OPERATOR_ELEMENT_WISE_FLOOR", DML_OPERATOR_ELEMENT_WISE_FLOOR}, + {"DML_OPERATOR_ELEMENT_WISE_LOG", DML_OPERATOR_ELEMENT_WISE_LOG}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_AND", DML_OPERATOR_ELEMENT_WISE_LOGICAL_AND}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_EQUALS", DML_OPERATOR_ELEMENT_WISE_LOGICAL_EQUALS}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_GREATER_THAN", DML_OPERATOR_ELEMENT_WISE_LOGICAL_GREATER_THAN}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_LESS_THAN", DML_OPERATOR_ELEMENT_WISE_LOGICAL_LESS_THAN}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_GREATER_THAN_OR_EQUAL", DML_OPERATOR_ELEMENT_WISE_LOGICAL_GREATER_THAN_OR_EQUAL}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_LESS_THAN_OR_EQUAL", DML_OPERATOR_ELEMENT_WISE_LOGICAL_LESS_THAN_OR_EQUAL}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_NOT", DML_OPERATOR_ELEMENT_WISE_LOGICAL_NOT}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_OR", DML_OPERATOR_ELEMENT_WISE_LOGICAL_OR}, + {"DML_OPERATOR_ELEMENT_WISE_LOGICAL_XOR", DML_OPERATOR_ELEMENT_WISE_LOGICAL_XOR}, + {"DML_OPERATOR_ELEMENT_WISE_MAX", DML_OPERATOR_ELEMENT_WISE_MAX}, + {"DML_OPERATOR_ELEMENT_WISE_MEAN", DML_OPERATOR_ELEMENT_WISE_MEAN}, + {"DML_OPERATOR_ELEMENT_WISE_MIN", DML_OPERATOR_ELEMENT_WISE_MIN}, + {"DML_OPERATOR_ELEMENT_WISE_MULTIPLY", DML_OPERATOR_ELEMENT_WISE_MULTIPLY}, + {"DML_OPERATOR_ELEMENT_WISE_POW", DML_OPERATOR_ELEMENT_WISE_POW}, + {"DML_OPERATOR_ELEMENT_WISE_CONSTANT_POW", DML_OPERATOR_ELEMENT_WISE_CONSTANT_POW}, + {"DML_OPERATOR_ELEMENT_WISE_RECIP", DML_OPERATOR_ELEMENT_WISE_RECIP}, + {"DML_OPERATOR_ELEMENT_WISE_SIN", DML_OPERATOR_ELEMENT_WISE_SIN}, + {"DML_OPERATOR_ELEMENT_WISE_SQRT", DML_OPERATOR_ELEMENT_WISE_SQRT}, + {"DML_OPERATOR_ELEMENT_WISE_SUBTRACT", DML_OPERATOR_ELEMENT_WISE_SUBTRACT}, + {"DML_OPERATOR_ELEMENT_WISE_TAN", DML_OPERATOR_ELEMENT_WISE_TAN}, + {"DML_OPERATOR_ELEMENT_WISE_THRESHOLD", DML_OPERATOR_ELEMENT_WISE_THRESHOLD}, + {"DML_OPERATOR_ELEMENT_WISE_QUANTIZE_LINEAR", DML_OPERATOR_ELEMENT_WISE_QUANTIZE_LINEAR}, + {"DML_OPERATOR_ELEMENT_WISE_DEQUANTIZE_LINEAR", DML_OPERATOR_ELEMENT_WISE_DEQUANTIZE_LINEAR}, + {"DML_OPERATOR_ACTIVATION_ELU", DML_OPERATOR_ACTIVATION_ELU}, + {"DML_OPERATOR_ACTIVATION_CELU", DML_OPERATOR_ACTIVATION_CELU}, + {"DML_OPERATOR_ACTIVATION_HARDMAX", DML_OPERATOR_ACTIVATION_HARDMAX}, + {"DML_OPERATOR_ACTIVATION_HARDMAX1", DML_OPERATOR_ACTIVATION_HARDMAX1}, + {"DML_OPERATOR_ACTIVATION_HARD_SIGMOID", DML_OPERATOR_ACTIVATION_HARD_SIGMOID}, + {"DML_OPERATOR_ACTIVATION_IDENTITY", DML_OPERATOR_ACTIVATION_IDENTITY}, + {"DML_OPERATOR_ACTIVATION_LEAKY_RELU", DML_OPERATOR_ACTIVATION_LEAKY_RELU}, + {"DML_OPERATOR_ACTIVATION_LINEAR", DML_OPERATOR_ACTIVATION_LINEAR}, + {"DML_OPERATOR_ACTIVATION_LOG_SOFTMAX", DML_OPERATOR_ACTIVATION_LOG_SOFTMAX}, + {"DML_OPERATOR_ACTIVATION_LOG_SOFTMAX1", DML_OPERATOR_ACTIVATION_LOG_SOFTMAX1}, + {"DML_OPERATOR_ACTIVATION_PARAMETERIZED_RELU", DML_OPERATOR_ACTIVATION_PARAMETERIZED_RELU}, + {"DML_OPERATOR_ACTIVATION_PARAMETRIC_SOFTPLUS", DML_OPERATOR_ACTIVATION_PARAMETRIC_SOFTPLUS}, + {"DML_OPERATOR_ACTIVATION_RELU", DML_OPERATOR_ACTIVATION_RELU}, + {"DML_OPERATOR_ACTIVATION_SCALED_ELU", DML_OPERATOR_ACTIVATION_SCALED_ELU}, + {"DML_OPERATOR_ACTIVATION_SCALED_TANH", DML_OPERATOR_ACTIVATION_SCALED_TANH}, + {"DML_OPERATOR_ACTIVATION_SIGMOID", DML_OPERATOR_ACTIVATION_SIGMOID}, + {"DML_OPERATOR_ACTIVATION_SOFTMAX", DML_OPERATOR_ACTIVATION_SOFTMAX}, + {"DML_OPERATOR_ACTIVATION_SOFTMAX1", DML_OPERATOR_ACTIVATION_SOFTMAX1}, + {"DML_OPERATOR_ACTIVATION_SOFTPLUS", DML_OPERATOR_ACTIVATION_SOFTPLUS}, + {"DML_OPERATOR_ACTIVATION_SOFTSIGN", DML_OPERATOR_ACTIVATION_SOFTSIGN}, + {"DML_OPERATOR_ACTIVATION_TANH", DML_OPERATOR_ACTIVATION_TANH}, + {"DML_OPERATOR_ACTIVATION_THRESHOLDED_RELU", DML_OPERATOR_ACTIVATION_THRESHOLDED_RELU}, + {"DML_OPERATOR_CONVOLUTION", DML_OPERATOR_CONVOLUTION}, + {"DML_OPERATOR_GEMM", DML_OPERATOR_GEMM}, + {"DML_OPERATOR_REDUCE", DML_OPERATOR_REDUCE}, + {"DML_OPERATOR_AVERAGE_POOLING", DML_OPERATOR_AVERAGE_POOLING}, + {"DML_OPERATOR_AVERAGE_POOLING1", DML_OPERATOR_AVERAGE_POOLING1}, + {"DML_OPERATOR_LP_POOLING", DML_OPERATOR_LP_POOLING}, + {"DML_OPERATOR_LP_POOLING1", DML_OPERATOR_LP_POOLING1}, + {"DML_OPERATOR_MAX_POOLING", DML_OPERATOR_MAX_POOLING}, + {"DML_OPERATOR_ROI_POOLING", DML_OPERATOR_ROI_POOLING}, + {"DML_OPERATOR_SLICE", DML_OPERATOR_SLICE}, + {"DML_OPERATOR_CAST", DML_OPERATOR_CAST}, + {"DML_OPERATOR_SPLIT", DML_OPERATOR_SPLIT}, + {"DML_OPERATOR_JOIN", DML_OPERATOR_JOIN}, + {"DML_OPERATOR_PADDING", DML_OPERATOR_PADDING}, + {"DML_OPERATOR_PADDING1", DML_OPERATOR_PADDING1}, + {"DML_OPERATOR_VALUE_SCALE_2D", DML_OPERATOR_VALUE_SCALE_2D}, + {"DML_OPERATOR_UPSAMPLE_2D", DML_OPERATOR_UPSAMPLE_2D}, + {"DML_OPERATOR_GATHER", DML_OPERATOR_GATHER}, + {"DML_OPERATOR_SPACE_TO_DEPTH", DML_OPERATOR_SPACE_TO_DEPTH}, + {"DML_OPERATOR_DEPTH_TO_SPACE", DML_OPERATOR_DEPTH_TO_SPACE}, + {"DML_OPERATOR_TILE", DML_OPERATOR_TILE}, + {"DML_OPERATOR_TOP_K", DML_OPERATOR_TOP_K}, + {"DML_OPERATOR_BATCH_NORMALIZATION", DML_OPERATOR_BATCH_NORMALIZATION}, + {"DML_OPERATOR_BATCH_NORMALIZATION_TRAINING", DML_OPERATOR_BATCH_NORMALIZATION_TRAINING}, + {"DML_OPERATOR_MEAN_VARIANCE_NORMALIZATION", DML_OPERATOR_MEAN_VARIANCE_NORMALIZATION}, + {"DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION", DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION}, + {"DML_OPERATOR_LP_NORMALIZATION", DML_OPERATOR_LP_NORMALIZATION}, + {"DML_OPERATOR_RNN", DML_OPERATOR_RNN}, + {"DML_OPERATOR_LSTM", DML_OPERATOR_LSTM}, + {"DML_OPERATOR_GRU", DML_OPERATOR_GRU}, + {"DML_OPERATOR_ELEMENT_WISE_SIGN", DML_OPERATOR_ELEMENT_WISE_SIGN}, + {"DML_OPERATOR_ELEMENT_WISE_IS_NAN", DML_OPERATOR_ELEMENT_WISE_IS_NAN}, + {"DML_OPERATOR_ELEMENT_WISE_ERF", DML_OPERATOR_ELEMENT_WISE_ERF}, + {"DML_OPERATOR_ELEMENT_WISE_SINH", DML_OPERATOR_ELEMENT_WISE_SINH}, + {"DML_OPERATOR_ELEMENT_WISE_COSH", DML_OPERATOR_ELEMENT_WISE_COSH}, + {"DML_OPERATOR_ELEMENT_WISE_TANH", DML_OPERATOR_ELEMENT_WISE_TANH}, + {"DML_OPERATOR_ELEMENT_WISE_ASINH", DML_OPERATOR_ELEMENT_WISE_ASINH}, + {"DML_OPERATOR_ELEMENT_WISE_ACOSH", DML_OPERATOR_ELEMENT_WISE_ACOSH}, + {"DML_OPERATOR_ELEMENT_WISE_ATANH", DML_OPERATOR_ELEMENT_WISE_ATANH}, + {"DML_OPERATOR_ELEMENT_WISE_IF", DML_OPERATOR_ELEMENT_WISE_IF}, + {"DML_OPERATOR_ELEMENT_WISE_ADD1", DML_OPERATOR_ELEMENT_WISE_ADD1}, + {"DML_OPERATOR_ACTIVATION_SHRINK", DML_OPERATOR_ACTIVATION_SHRINK}, + {"DML_OPERATOR_MAX_POOLING1", DML_OPERATOR_MAX_POOLING1}, + {"DML_OPERATOR_MAX_UNPOOLING", DML_OPERATOR_MAX_UNPOOLING}, + {"DML_OPERATOR_DIAGONAL_MATRIX", DML_OPERATOR_DIAGONAL_MATRIX}, + {"DML_OPERATOR_SCATTER", DML_OPERATOR_SCATTER}, + {"DML_OPERATOR_ONE_HOT", DML_OPERATOR_ONE_HOT}, + {"DML_OPERATOR_RESAMPLE", DML_OPERATOR_RESAMPLE}, + {"DML_OPERATOR_ELEMENT_WISE_BIT_SHIFT_LEFT", DML_OPERATOR_ELEMENT_WISE_BIT_SHIFT_LEFT}, + {"DML_OPERATOR_ELEMENT_WISE_BIT_SHIFT_RIGHT", DML_OPERATOR_ELEMENT_WISE_BIT_SHIFT_RIGHT}, + {"DML_OPERATOR_ELEMENT_WISE_ROUND", DML_OPERATOR_ELEMENT_WISE_ROUND}, + {"DML_OPERATOR_ELEMENT_WISE_IS_INFINITY", DML_OPERATOR_ELEMENT_WISE_IS_INFINITY}, + {"DML_OPERATOR_ELEMENT_WISE_MODULUS_TRUNCATE", DML_OPERATOR_ELEMENT_WISE_MODULUS_TRUNCATE}, + {"DML_OPERATOR_ELEMENT_WISE_MODULUS_FLOOR", DML_OPERATOR_ELEMENT_WISE_MODULUS_FLOOR}, + {"DML_OPERATOR_FILL_VALUE_SEQUENCE", DML_OPERATOR_FILL_VALUE_SEQUENCE}, + {"DML_OPERATOR_FILL_VALUE_CONSTANT", DML_OPERATOR_FILL_VALUE_CONSTANT}, + {"DML_OPERATOR_CUMULATIVE_SUMMATION", DML_OPERATOR_CUMULATIVE_SUMMATION}, + {"DML_OPERATOR_REVERSE_SUBSEQUENCES", DML_OPERATOR_REVERSE_SUBSEQUENCES}, + {"DML_OPERATOR_GATHER_ELEMENTS", DML_OPERATOR_GATHER_ELEMENTS}, + {"DML_OPERATOR_GATHER_ND", DML_OPERATOR_GATHER_ND}, + {"DML_OPERATOR_SCATTER_ND", DML_OPERATOR_SCATTER_ND}, + {"DML_OPERATOR_MAX_POOLING2", DML_OPERATOR_MAX_POOLING2}, + {"DML_OPERATOR_SLICE1", DML_OPERATOR_SLICE1}, + {"DML_OPERATOR_TOP_K1", DML_OPERATOR_TOP_K1}, + {"DML_OPERATOR_DEPTH_TO_SPACE1", DML_OPERATOR_DEPTH_TO_SPACE1}, + {"DML_OPERATOR_SPACE_TO_DEPTH1", DML_OPERATOR_SPACE_TO_DEPTH1}, + {"DML_OPERATOR_MEAN_VARIANCE_NORMALIZATION1", DML_OPERATOR_MEAN_VARIANCE_NORMALIZATION1}, + {"DML_OPERATOR_RESAMPLE1", DML_OPERATOR_RESAMPLE1}, + {"DML_OPERATOR_MATRIX_MULTIPLY_INTEGER", DML_OPERATOR_MATRIX_MULTIPLY_INTEGER}, + {"DML_OPERATOR_QUANTIZED_LINEAR_MATRIX_MULTIPLY", DML_OPERATOR_QUANTIZED_LINEAR_MATRIX_MULTIPLY}, + {"DML_OPERATOR_CONVOLUTION_INTEGER", DML_OPERATOR_CONVOLUTION_INTEGER}, + {"DML_OPERATOR_QUANTIZED_LINEAR_CONVOLUTION", DML_OPERATOR_QUANTIZED_LINEAR_CONVOLUTION}, + {"DML_OPERATOR_ELEMENT_WISE_BIT_AND", DML_OPERATOR_ELEMENT_WISE_BIT_AND}, + {"DML_OPERATOR_ELEMENT_WISE_BIT_OR", DML_OPERATOR_ELEMENT_WISE_BIT_OR}, + {"DML_OPERATOR_ELEMENT_WISE_BIT_XOR", DML_OPERATOR_ELEMENT_WISE_BIT_XOR}, + {"DML_OPERATOR_ELEMENT_WISE_BIT_NOT", DML_OPERATOR_ELEMENT_WISE_BIT_NOT}, + {"DML_OPERATOR_ELEMENT_WISE_BIT_COUNT", DML_OPERATOR_ELEMENT_WISE_BIT_COUNT}, + {"DML_OPERATOR_ACTIVATION_RELU_GRAD", DML_OPERATOR_ACTIVATION_RELU_GRAD}, + {"DML_OPERATOR_AVERAGE_POOLING_GRAD", DML_OPERATOR_AVERAGE_POOLING_GRAD}, + {"DML_OPERATOR_MAX_POOLING_GRAD", DML_OPERATOR_MAX_POOLING_GRAD}, + {"DML_OPERATOR_RANDOM_GENERATOR", DML_OPERATOR_RANDOM_GENERATOR}, + {"DML_OPERATOR_NONZERO_COORDINATES", DML_OPERATOR_NONZERO_COORDINATES}, + {"DML_OPERATOR_RESAMPLE_GRAD", DML_OPERATOR_RESAMPLE_GRAD}, + {"DML_OPERATOR_SLICE_GRAD", DML_OPERATOR_SLICE_GRAD}, + {"DML_OPERATOR_ADAM_OPTIMIZER", DML_OPERATOR_ADAM_OPTIMIZER}, + {"DML_OPERATOR_ARGMIN", DML_OPERATOR_ARGMIN}, + {"DML_OPERATOR_ARGMAX", DML_OPERATOR_ARGMAX}, + {"DML_OPERATOR_ROI_ALIGN", DML_OPERATOR_ROI_ALIGN}, + {"DML_OPERATOR_GATHER_ND1", DML_OPERATOR_GATHER_ND1}, + {"DML_OPERATOR_ELEMENT_WISE_ATAN_YX", DML_OPERATOR_ELEMENT_WISE_ATAN_YX}, + {"DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD", DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD}, + {"DML_OPERATOR_ELEMENT_WISE_DIFFERENCE_SQUARE", DML_OPERATOR_ELEMENT_WISE_DIFFERENCE_SQUARE}, + {"DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION_GRAD", DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION_GRAD}, + {"DML_OPERATOR_CUMULATIVE_PRODUCT", DML_OPERATOR_CUMULATIVE_PRODUCT}, + {"DML_OPERATOR_BATCH_NORMALIZATION_GRAD", DML_OPERATOR_BATCH_NORMALIZATION_GRAD}, + {"DML_OPERATOR_BATCH_NORMALIZATION_TRAINING_GRAD", DML_OPERATOR_BATCH_NORMALIZATION_TRAINING_GRAD}, + {"DML_OPERATOR_ELEMENT_WISE_QUANTIZED_LINEAR_ADD", DML_OPERATOR_ELEMENT_WISE_QUANTIZED_LINEAR_ADD}, + {"DML_OPERATOR_DYNAMIC_QUANTIZE_LINEAR", DML_OPERATOR_DYNAMIC_QUANTIZE_LINEAR}, + {"DML_OPERATOR_ROI_ALIGN1", DML_OPERATOR_ROI_ALIGN1}, + {"DML_OPERATOR_ELEMENT_WISE_CLIP1", DML_OPERATOR_ELEMENT_WISE_CLIP1}, + {"DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD1", DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD1}, + {"DML_OPERATOR_ELEMENT_WISE_NEGATE", DML_OPERATOR_ELEMENT_WISE_NEGATE}, + {"DML_OPERATOR_ACTIVATION_GELU", DML_OPERATOR_ACTIVATION_GELU}, + {"DML_OPERATOR_ACTIVATION_SWISH", DML_OPERATOR_ACTIVATION_SWISH}, + {"DML_OPERATOR_ACTIVATION_HARD_SWISH", DML_OPERATOR_ACTIVATION_HARD_SWISH}, + {"DML_OPERATOR_RESAMPLE2", DML_OPERATOR_RESAMPLE2}, + {"DML_OPERATOR_RESAMPLE_GRAD1", DML_OPERATOR_RESAMPLE_GRAD1}, + {"DML_OPERATOR_DIAGONAL_MATRIX1", DML_OPERATOR_DIAGONAL_MATRIX1}, + {"DML_OPERATOR_MULTIHEAD_ATTENTION", DML_OPERATOR_MULTIHEAD_ATTENTION}, + {"DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING", DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING}, + {"DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT", DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT}, + {"DML_OPERATOR_RESAMPLE3", DML_OPERATOR_RESAMPLE3}, + {"DML_OPERATOR_FOLD", DML_OPERATOR_FOLD}, + {"DML_OPERATOR_UNFOLD", DML_OPERATOR_UNFOLD}, + {"DML_OPERATOR_MEAN_VARIANCE_NORMALIZATION2", DML_OPERATOR_MEAN_VARIANCE_NORMALIZATION2}, + {"DML_OPERATOR_MULTIHEAD_ATTENTION1", DML_OPERATOR_MULTIHEAD_ATTENTION1}, + {"DML_OPERATOR_QUANTIZE", DML_OPERATOR_QUANTIZE}, + {"DML_OPERATOR_DEQUANTIZE", DML_OPERATOR_DEQUANTIZE}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_BINDING_TYPE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_BINDING_TYPE_NONE", DML_BINDING_TYPE_NONE}, + {"DML_BINDING_TYPE_BUFFER", DML_BINDING_TYPE_BUFFER}, + {"DML_BINDING_TYPE_BUFFER_ARRAY", DML_BINDING_TYPE_BUFFER_ARRAY}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_REDUCE_FUNCTION ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_REDUCE_FUNCTION_ARGMAX", DML_REDUCE_FUNCTION_ARGMAX}, + {"DML_REDUCE_FUNCTION_ARGMIN", DML_REDUCE_FUNCTION_ARGMIN}, + {"DML_REDUCE_FUNCTION_AVERAGE", DML_REDUCE_FUNCTION_AVERAGE}, + {"DML_REDUCE_FUNCTION_L1", DML_REDUCE_FUNCTION_L1}, + {"DML_REDUCE_FUNCTION_L2", DML_REDUCE_FUNCTION_L2}, + {"DML_REDUCE_FUNCTION_LOG_SUM", DML_REDUCE_FUNCTION_LOG_SUM}, + {"DML_REDUCE_FUNCTION_LOG_SUM_EXP", DML_REDUCE_FUNCTION_LOG_SUM_EXP}, + {"DML_REDUCE_FUNCTION_MAX", DML_REDUCE_FUNCTION_MAX}, + {"DML_REDUCE_FUNCTION_MIN", DML_REDUCE_FUNCTION_MIN}, + {"DML_REDUCE_FUNCTION_MULTIPLY", DML_REDUCE_FUNCTION_MULTIPLY}, + {"DML_REDUCE_FUNCTION_SUM", DML_REDUCE_FUNCTION_SUM}, + {"DML_REDUCE_FUNCTION_SUM_SQUARE", DML_REDUCE_FUNCTION_SUM_SQUARE}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + +template <> +DML_MATRIX_TRANSFORM ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_MATRIX_TRANSFORM_NONE", DML_MATRIX_TRANSFORM_NONE}, + {"DML_MATRIX_TRANSFORM_TRANSPOSE", DML_MATRIX_TRANSFORM_TRANSPOSE}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_CONVOLUTION_MODE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_CONVOLUTION_MODE_CONVOLUTION", DML_CONVOLUTION_MODE_CONVOLUTION}, + {"DML_CONVOLUTION_MODE_CROSS_CORRELATION", DML_CONVOLUTION_MODE_CROSS_CORRELATION}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_CONVOLUTION_DIRECTION ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_CONVOLUTION_DIRECTION_FORWARD", DML_CONVOLUTION_DIRECTION_FORWARD}, + {"DML_CONVOLUTION_DIRECTION_BACKWARD", DML_CONVOLUTION_DIRECTION_BACKWARD}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + +template <> +DML_PADDING_MODE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_PADDING_MODE_CONSTANT", DML_PADDING_MODE_CONSTANT}, + {"DML_PADDING_MODE_EDGE", DML_PADDING_MODE_EDGE}, + {"DML_PADDING_MODE_REFLECTION", DML_PADDING_MODE_REFLECTION}, + {"DML_PADDING_MODE_SYMMETRIC", DML_PADDING_MODE_SYMMETRIC}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_INTERPOLATION_MODE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_INTERPOLATION_MODE_NEAREST_NEIGHBOR", DML_INTERPOLATION_MODE_NEAREST_NEIGHBOR}, + {"DML_INTERPOLATION_MODE_LINEAR", DML_INTERPOLATION_MODE_LINEAR}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_RECURRENT_NETWORK_DIRECTION ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_RECURRENT_NETWORK_DIRECTION_FORWARD", DML_RECURRENT_NETWORK_DIRECTION_FORWARD}, + {"DML_RECURRENT_NETWORK_DIRECTION_BACKWARD", DML_RECURRENT_NETWORK_DIRECTION_BACKWARD}, + {"DML_RECURRENT_NETWORK_DIRECTION_BIDIRECTIONAL", DML_RECURRENT_NETWORK_DIRECTION_BIDIRECTIONAL}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_FEATURE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_FEATURE_TENSOR_DATA_TYPE_SUPPORT", DML_FEATURE_TENSOR_DATA_TYPE_SUPPORT}, + {"DML_FEATURE_FEATURE_LEVELS", DML_FEATURE_FEATURE_LEVELS}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_FEATURE_LEVEL ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_FEATURE_LEVEL_1_0", DML_FEATURE_LEVEL_1_0}, + {"DML_FEATURE_LEVEL_2_0", DML_FEATURE_LEVEL_2_0}, + {"DML_FEATURE_LEVEL_2_1", DML_FEATURE_LEVEL_2_1}, + {"DML_FEATURE_LEVEL_3_0", DML_FEATURE_LEVEL_3_0}, + {"DML_FEATURE_LEVEL_3_1", DML_FEATURE_LEVEL_3_1}, + {"DML_FEATURE_LEVEL_4_0", DML_FEATURE_LEVEL_4_0}, + {"DML_FEATURE_LEVEL_4_1", DML_FEATURE_LEVEL_4_1}, + {"DML_FEATURE_LEVEL_5_0", DML_FEATURE_LEVEL_5_0}, + {"DML_FEATURE_LEVEL_5_1", DML_FEATURE_LEVEL_5_1}, + {"DML_FEATURE_LEVEL_5_2", DML_FEATURE_LEVEL_5_2}, + {"DML_FEATURE_LEVEL_6_0", DML_FEATURE_LEVEL_6_0}, + {"DML_FEATURE_LEVEL_6_1", DML_FEATURE_LEVEL_6_1}, + {"DML_FEATURE_LEVEL_6_2", DML_FEATURE_LEVEL_6_2}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_IS_INFINITY_MODE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_IS_INFINITY_MODE_EITHER", DML_IS_INFINITY_MODE_EITHER}, + {"DML_IS_INFINITY_MODE_POSITIVE", DML_IS_INFINITY_MODE_POSITIVE}, + {"DML_IS_INFINITY_MODE_NEGATIVE", DML_IS_INFINITY_MODE_NEGATIVE}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_DEPTH_SPACE_ORDER ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_DEPTH_SPACE_ORDER_DEPTH_COLUMN_ROW", DML_DEPTH_SPACE_ORDER_DEPTH_COLUMN_ROW}, + {"DML_DEPTH_SPACE_ORDER_COLUMN_ROW_DEPTH", DML_DEPTH_SPACE_ORDER_COLUMN_ROW_DEPTH}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_AXIS_DIRECTION ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_AXIS_DIRECTION_INCREASING", DML_AXIS_DIRECTION_INCREASING}, + {"DML_AXIS_DIRECTION_DECREASING", DML_AXIS_DIRECTION_DECREASING}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_ROUNDING_MODE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_ROUNDING_MODE_HALVES_TO_NEAREST_EVEN", DML_ROUNDING_MODE_HALVES_TO_NEAREST_EVEN}, + {"DML_ROUNDING_MODE_TOWARD_ZERO", DML_ROUNDING_MODE_TOWARD_ZERO}, + {"DML_ROUNDING_MODE_TOWARD_INFINITY", DML_ROUNDING_MODE_TOWARD_INFINITY}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_RANDOM_GENERATOR_TYPE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_RANDOM_GENERATOR_TYPE_PHILOX_4X32_10", DML_RANDOM_GENERATOR_TYPE_PHILOX_4X32_10}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} + + +template <> +DML_MULTIHEAD_ATTENTION_MASK_TYPE ApiTraits::StringifyHelpers::FromString(std::string_view value) +{ + constexpr StringUtil::NameAndIndex mapping[] = + { + {"DML_MULTIHEAD_ATTENTION_MASK_TYPE_NONE", DML_MULTIHEAD_ATTENTION_MASK_TYPE_NONE}, + {"DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_LENGTH", DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_LENGTH}, + {"DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_END_START", DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_END_START}, + {"DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_QUERY_SEQUENCE_LENGTH_START_END", DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_QUERY_SEQUENCE_LENGTH_START_END}, + {"DML_MULTIHEAD_ATTENTION_MASK_TYPE_BOOLEAN", DML_MULTIHEAD_ATTENTION_MASK_TYPE_BOOLEAN}, + }; + auto index = StringUtil::MapToIndex(value, mapping); + if (!index) + { + assert(false); + return static_cast(0); + } + return static_cast(*index); +} diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlExternalBufferAllocator.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlExternalBufferAllocator.h index 22fd3be42c416..b22f0b2853e5d 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlExternalBufferAllocator.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlExternalBufferAllocator.h @@ -4,7 +4,7 @@ #pragma once #include -#include +#include "directx/d3d12.h" #include #include #include "External/D3DX12/d3dx12.h" diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphDeserialization.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphDeserialization.cpp new file mode 100644 index 0000000000000..013ad949c1c3f --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphDeserialization.cpp @@ -0,0 +1,555 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. + +#pragma once +#include "precomp.h" + +OperatorFieldVariant CreateAttribute( + const DML_SCHEMA_FIELD* schemaField, + const dml::ir::operatorFieldTypes::AttributeDesc* attributeDesc); + +OperatorFieldVariant CreateActivation( + const dml::ir::operatorFieldTypes::Activation* activationDesc) +{ + DML_OPERATOR_TYPE activationOperatorType = ApiTraits::StringifyHelpers::FromString(activationDesc->type()->c_str()); + const DML_OPERATOR_SCHEMA& activationSchema = SchemaHelpers::GetSchema(activationOperatorType); + std::vector activationOperatorFields(activationSchema.FieldCount); + uint32_t attributeIndex = 0; + + for (uint32_t fieldIndex = 0; fieldIndex < activationSchema.FieldCount; fieldIndex++) + { + const DML_SCHEMA_FIELD* schemaField = &activationSchema.Fields[fieldIndex]; + OperatorFieldVariant field; + switch (schemaField->Kind) + { + case DML_SCHEMA_FIELD_KIND_INPUT_TENSOR: + case DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR: + { + if (schemaField->Type == DML_SCHEMA_FIELD_TYPE_TENSOR_DESC) + { + field = OperatorFieldTypes::TensorDesc(); + } + else if (schemaField->Type == DML_SCHEMA_FIELD_TYPE_TENSOR_DESC_ARRAY) + { + field = OperatorFieldTypes::TensorDescArray(); + } + break; + } + case DML_SCHEMA_FIELD_KIND_ATTRIBUTE: + { + const dml::ir::operatorFieldTypes::AttributeDesc* attributeDesc = + attributeIndex >= activationDesc->attributes()->size() ? + nullptr : + activationDesc->attributes()->Get(attributeIndex++); + field = CreateAttribute(schemaField, attributeDesc); + break; + } + } + + activationOperatorFields[fieldIndex] = OperatorField(schemaField, std::move(field)); + } + + return AbstractOperatorDesc(&activationSchema, std::move(activationOperatorFields)); +} + +OperatorFieldVariant CreateActivations( + const dml::ir::operatorFieldTypes::ActivationArray* activationDescs) +{ + std::vector activations; + for (uint32_t index = 0; index < static_cast(activationDescs->data()->size()); index++) + { + OperatorFieldVariant activation = CreateActivation(activationDescs->data()->Get(index)); + activations.push_back(std::get(activation).value()); + } + return activations; +} + +OperatorFieldVariant CreateAttribute( + const DML_SCHEMA_FIELD* schemaField, + const dml::ir::operatorFieldTypes::AttributeDesc* attributeDesc) +{ + switch (schemaField->Type) + { + case DML_SCHEMA_FIELD_TYPE_OPERATOR_DESC: + { + return attributeDesc != nullptr && attributeDesc->val_as_Activation() != nullptr ? + CreateActivation(attributeDesc->val_as_Activation()) : + OperatorFieldTypes::FusedActivationOperatorDesc(); + } + case DML_SCHEMA_FIELD_TYPE_OPERATOR_DESC_ARRAY: + { + return attributeDesc != nullptr && attributeDesc->val_as_ActivationArray() != nullptr ? + CreateActivations(attributeDesc->val_as_ActivationArray()) : + OperatorFieldTypes::FusedActivationOperatorDescArray(); + } + case DML_SCHEMA_FIELD_TYPE_UINT: + { + OperatorFieldTypes::UInt data; + if (attributeDesc != nullptr) + { + data = attributeDesc->val_as_UInt32()->data(); + } + return data; + } + case DML_SCHEMA_FIELD_TYPE_UINT64: + { + OperatorFieldTypes::UInt64 data; + if (attributeDesc != nullptr) + { + data = attributeDesc->val_as_UInt64()->data(); + } + return data; + } + case DML_SCHEMA_FIELD_TYPE_INT: + { + OperatorFieldTypes::Int data; + if (attributeDesc != nullptr) + { + data = attributeDesc->val_as_Int32()->data(); + } + return data; + } + case DML_SCHEMA_FIELD_TYPE_FLOAT: + { + OperatorFieldTypes::Float data; + if (attributeDesc != nullptr) + { + data = attributeDesc->val_as_Float32()->data(); + } + return data; + } + case DML_SCHEMA_FIELD_TYPE_UINT_ARRAY: + { + OperatorFieldTypes::UIntArray data; + if (attributeDesc != nullptr) + { + data.assign(attributeDesc->val_as_UIntArray()->data()->begin(), attributeDesc->val_as_UIntArray()->data()->end()); + } + return data; + } + case DML_SCHEMA_FIELD_TYPE_INT_ARRAY: + { + OperatorFieldTypes::IntArray data; + if (attributeDesc != nullptr) + { + data.assign(attributeDesc->val_as_IntArray()->data()->begin(), attributeDesc->val_as_IntArray()->data()->end()); + } + return data; + } + case DML_SCHEMA_FIELD_TYPE_FLOAT_ARRAY: + { + OperatorFieldTypes::FloatArray data; + if (attributeDesc != nullptr) + { + data.assign(attributeDesc->val_as_FloatArray()->data()->begin(), attributeDesc->val_as_FloatArray()->data()->end()); + } + return data; + } + case DML_SCHEMA_FIELD_TYPE_SCALE_BIAS: + { + OperatorFieldTypes::ScaleBias scaleBias; + const dml::ir::operatorFieldTypes::ScaleBias* scaleBiasAttribute = attributeDesc->val_as_ScaleBias(); + if (scaleBiasAttribute != nullptr) + { + scaleBias = {scaleBiasAttribute->scale(), scaleBiasAttribute->bias()}; + } + return scaleBias; + } + case DML_SCHEMA_FIELD_TYPE_SIZE_2D: + { + OperatorFieldTypes::Size2D size2d = {}; + if (attributeDesc != nullptr) + { + size2d.Height = attributeDesc->val_as_Size2D()->height(); + size2d.Width = attributeDesc->val_as_Size2D()->width(); + } + return size2d; + } + case DML_SCHEMA_FIELD_TYPE_SCALAR_UNION: + { + DML_SCALAR_UNION scalarUnion; + if (attributeDesc != nullptr) + { + const dml::ir::operatorFieldTypes::ByteArray* byteArr = attributeDesc->val_as_ScalarUnionData()->data_as_ByteArray(); + std::copy(byteArr->data()->begin(), byteArr->data()->end(), scalarUnion.Bytes); + } + return scalarUnion; + } + case DML_SCHEMA_FIELD_TYPE_BOOL: + { + OperatorFieldTypes::Bool data; + if (attributeDesc != nullptr) + { + data = attributeDesc->val_as_Bool()->data(); + } + return data; + } + default: + { + throw std::invalid_argument("Invalid attribute type."); + } + } +} + +OperatorFieldTypes::TensorDesc CreateBufferTensorDesc( + const dml::ir::DmlBufferTensorDesc* tensorDesc, + const bool isConstantTensor = false) +{ + DmlBufferTensorDesc bufferTensorDesc = {}; + bufferTensorDesc.dataType = ApiTraits::StringifyHelpers::FromString(tensorDesc->dataType()->c_str()); + if (isConstantTensor) + { + bufferTensorDesc.flags = DML_TENSOR_FLAG_OWNED_BY_DML; + } + bufferTensorDesc.sizes.assign(tensorDesc->sizes()->begin(), tensorDesc->sizes()->end()); + if (flatbuffers::IsFieldPresent(tensorDesc, dml::ir::DmlBufferTensorDesc::VT_STRIDES)) + { + bufferTensorDesc.strides.emplace(tensorDesc->strides()->begin(), tensorDesc->strides()->end()); + } + bufferTensorDesc.totalTensorSizeInBytes = tensorDesc->totalTensorSizeInBytes(); + return bufferTensorDesc; +} + +AbstractOperatorDesc CreateAbstractOperatorDesc( + uint32_t nodeIndex, + const dml::ir::OperatorNodeDesc* flatbufferOperatorNodeDesc, + const ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>* nodeInputNames, + const ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>* nodeOutputNames, + const std::unordered_set& constantInputs) +{ + DML_OPERATOR_TYPE type = ApiTraits::StringifyHelpers::FromString(flatbufferOperatorNodeDesc->type()->c_str()); + if (type == DML_OPERATOR_INVALID) + { + throw std::invalid_argument("Graph operator node at index:" + std::to_string(nodeIndex) + + " either has empty or invalid operator type."); + } + const DML_OPERATOR_SCHEMA& schema = SchemaHelpers::GetSchema(type); + std::vector operatorFields(schema.FieldCount); + + auto inputNameItr = nodeInputNames->begin(); + uint32_t inputTensorDescIndex = 0; + + uint32_t outputTensorDescIndex = 0; + auto outputNameItr = nodeOutputNames->begin(); + + uint32_t attributeIndex = 0; + + + for (uint32_t fieldIndex = 0; fieldIndex < schema.FieldCount; fieldIndex++) + { + const DML_SCHEMA_FIELD* schemaField = &schema.Fields[fieldIndex]; + + OperatorFieldVariant field; + switch (schemaField->Kind) + { + case DML_SCHEMA_FIELD_KIND_INPUT_TENSOR: + { + if (inputNameItr == nodeInputNames->end()) + { + throw std::invalid_argument("Missing input names for node at index:" + std::to_string(nodeIndex)); + } + + if (schemaField->Type == DML_SCHEMA_FIELD_TYPE_TENSOR_DESC) + { + const flatbuffers::String* inputName = *inputNameItr; + inputNameItr++; + if (inputName->size() == 0) + { + field = OperatorFieldTypes::TensorDesc(); + break; + } + bool isConstantTensor = !constantInputs.empty() && constantInputs.find(inputName->c_str()) != constantInputs.end(); + + if (flatbufferOperatorNodeDesc->inputs()->size() <= inputTensorDescIndex) + { + throw std::invalid_argument("Expecting at least " + std::to_string(inputTensorDescIndex + 1) + + "input tensor desc for graph operator node at index:" + std::to_string(nodeIndex)); + } + const dml::ir::DmlBufferTensorDesc* tensorDesc = flatbufferOperatorNodeDesc->inputs()->Get(inputTensorDescIndex++); + field = CreateBufferTensorDesc(tensorDesc, isConstantTensor); + } + else if (schemaField->Type == DML_SCHEMA_FIELD_TYPE_TENSOR_DESC_ARRAY) + { + std::vector tensors; + while (inputTensorDescIndex < static_cast(flatbufferOperatorNodeDesc->inputs()->size())) + { + const flatbuffers::String* inputName = *inputNameItr; + inputNameItr++; + bool isConstantTensor = !constantInputs.empty() && constantInputs.find(inputName->c_str()) != constantInputs.end(); + + if (flatbufferOperatorNodeDesc->inputs()->size() <= inputTensorDescIndex) + { + throw std::invalid_argument("Expecting at least " + std::to_string(inputTensorDescIndex + 1) + + "input tensor desc for graph operator node at index:" + std::to_string(nodeIndex)); + } + const dml::ir::DmlBufferTensorDesc* tensorDesc = flatbufferOperatorNodeDesc->inputs()->Get(inputTensorDescIndex++); + tensors.push_back(CreateBufferTensorDesc(tensorDesc, isConstantTensor).value()); + } + field = tensors; + } + break; + } + case DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR: + { + if (outputNameItr == nodeOutputNames->end()) + { + throw std::invalid_argument("Missing output names for node at index:" + std::to_string(nodeIndex)); + } + + if (schemaField->Type == DML_SCHEMA_FIELD_TYPE_TENSOR_DESC) + { + const flatbuffers::String* outputName = *outputNameItr; + outputNameItr++; + + if (outputName->size() == 0) + { + field = OperatorFieldTypes::TensorDesc(); + break; + } + + if (flatbufferOperatorNodeDesc->outputs()->size() <= outputTensorDescIndex) + { + throw std::invalid_argument("Expecting at least " + std::to_string(outputTensorDescIndex + 1) + + "output tensor desc for graph operator node at index:" + std::to_string(nodeIndex)); + } + const dml::ir::DmlBufferTensorDesc* tensorDesc = flatbufferOperatorNodeDesc->outputs()->Get(outputTensorDescIndex++); + field = CreateBufferTensorDesc(tensorDesc); + } + else if (schemaField->Type == DML_SCHEMA_FIELD_TYPE_TENSOR_DESC_ARRAY) + { + std::vector tensors; + while (outputTensorDescIndex < static_cast(flatbufferOperatorNodeDesc->outputs()->size())) + { + if (flatbufferOperatorNodeDesc->outputs()->size() <= outputTensorDescIndex) + { + throw std::invalid_argument("Expecting at least " + std::to_string(outputTensorDescIndex + 1) + + "output tensor desc for graph operator node at index:" + std::to_string(nodeIndex)); + } + const dml::ir::DmlBufferTensorDesc* tensorDesc = flatbufferOperatorNodeDesc->outputs()->Get(outputTensorDescIndex++); + tensors.push_back(CreateBufferTensorDesc(tensorDesc).value()); + } + field = tensors; + } + break; + } + case DML_SCHEMA_FIELD_KIND_ATTRIBUTE: + { + if (flatbufferOperatorNodeDesc->attributes()->size() <= attributeIndex) + { + throw std::invalid_argument("Expecting at least " + std::to_string(attributeIndex + 1) + + "attributes for graph operator node at index:" + std::to_string(nodeIndex)); + } + const dml::ir::operatorFieldTypes::AttributeDesc* attributeDesc = + attributeIndex >= flatbufferOperatorNodeDesc->attributes()->size() ? + nullptr : + flatbufferOperatorNodeDesc->attributes()->Get(attributeIndex++); + field = CreateAttribute(schemaField, attributeDesc); + break; + } + } + + operatorFields[fieldIndex] = OperatorField(schemaField, std::move(field)); + } + + return AbstractOperatorDesc(&schema, std::move(operatorFields)); +} + +std::unordered_map ConvertToEdgeNameToIndexMap( + const ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>* list) +{ + std::unordered_map nameToIndexMap; + for (uint32_t index = 0; index < list->size(); index++) + { + const flatbuffers::String* name = list->GetAsString(index); + if (name->size() == 0) + { + continue; + } + nameToIndexMap[name->string_view()] = index; + } + return nameToIndexMap; // NRVO will automatically move it. no need to use std::move +} + +template void PopulateEdges( + const uint32_t nodeIndex, + const ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>* edgeNames, + const std::unordered_map& edgeNameToIndexMap, + /*out*/ std::vector& edges, + /*out*/ std::vector& intermediateEdges, + /*out*/ std::unordered_map& edgeToOutgoingNodeIndexMap) +{ + for (flatbuffers::uoffset_t edgeIndex = 0; edgeIndex < edgeNames->size(); edgeIndex++) + { + const flatbuffers::String* edgeName = edgeNames->Get(edgeIndex); + if (edgeName->size() == 0) + { + // This must be optional input/output + continue; + } + // edge can be graphInput or graphOutput + if (edgeNameToIndexMap.find(edgeName->string_view()) != edgeNameToIndexMap.end()) + { + EdgeType edge = {}; + edge.Name = edgeName->str(); + + if constexpr (std::is_same_v) + { + edge.GraphInputIndex = edgeNameToIndexMap.at(edgeName->string_view()); + edge.ToNodeIndex = nodeIndex; + edge.ToNodeInputIndex = edgeIndex; + } + else if constexpr (std::is_same_v) + { + edge.GraphOutputIndex = edgeNameToIndexMap.at(edgeName->string_view()); + edge.FromNodeIndex = nodeIndex; + edge.FromNodeOutputIndex = edgeIndex; + edgeToOutgoingNodeIndexMap[edgeName->string_view()] = {nodeIndex, edgeIndex}; + } + + edges.push_back(edge); + } + // edge is intermediate edge + else + { + if constexpr (std::is_same_v) + { + if (edgeToOutgoingNodeIndexMap.find(edgeName->string_view()) == edgeToOutgoingNodeIndexMap.end()) + { + throw std::range_error("Neither there is any graph input with name " + edgeName->str() + + " nor there is any node which has " + edgeName->str() + " as one of the output."); + } + auto& intermediateEdgeNodeIndex = edgeToOutgoingNodeIndexMap[edgeName->string_view()]; + DmlIntermediateSerializedGraphEdge intermediateEdge = {}; + intermediateEdge.Name = edgeName->str(); + intermediateEdge.FromNodeIndex = intermediateEdgeNodeIndex.nodeIndex; + intermediateEdge.FromNodeOutputIndex = intermediateEdgeNodeIndex.nodeOutputIndex; + intermediateEdge.ToNodeIndex = nodeIndex; + intermediateEdge.ToNodeInputIndex = edgeIndex; + intermediateEdges.push_back(std::move(intermediateEdge)); + } + else if constexpr (std::is_same_v) + { + edgeToOutgoingNodeIndexMap[edgeName->string_view()] = {nodeIndex, edgeIndex}; + } + } + } +} + +/* +* - Handling of empty optional input/output/attibute for non-constant node: +* input/output +* - and will have an null entry +* but the actual OperatorNodeDesc variant's +* and will not have any entry. +* attribute +* - will have null entry +*/ +DmlSerializedGraphDesc DeserializeDmlGraph( + const uint8_t* flatbufferGraphDescBlob, + /*out*/ std::vector>& rawData) +{ + if (flatbufferGraphDescBlob == nullptr) + { + throw std::invalid_argument("Given pointer to flatbuffer blob is null"); + } + const dml::ir::DmlGraphDesc* flatbufferGraphDesc = dml::ir::GetDmlGraphDesc(flatbufferGraphDescBlob); + + std::unordered_map graphInputEdgeToIndexMap = ConvertToEdgeNameToIndexMap(flatbufferGraphDesc->graphInputNames()); + std::unordered_map graphOutputEdgeToIndexMap = ConvertToEdgeNameToIndexMap(flatbufferGraphDesc->graphOutputNames()); + + std::unordered_map edgeToOutgoingNodeIndexMap; + std::unordered_set constantInputs; + + std::vector nodes(flatbufferGraphDesc->nodes()->size()); + std::vector inputEdges; + std::vector outputEdges; + std::vector intermediateEdges; + + for (uint32_t nodeIndex = 0; nodeIndex < flatbufferGraphDesc->nodes()->size(); nodeIndex++) + { + const dml::ir::DmlGraphNode* flatbufferNode = flatbufferGraphDesc->nodes()->Get(nodeIndex); + + PopulateEdges( + nodeIndex, + flatbufferNode->inputNames(), + graphInputEdgeToIndexMap, + inputEdges, + intermediateEdges, + edgeToOutgoingNodeIndexMap); + + PopulateEdges( + nodeIndex, + flatbufferNode->outputNames(), + graphOutputEdgeToIndexMap, + outputEdges, + intermediateEdges, + edgeToOutgoingNodeIndexMap); + + DmlSerializedGraphNode node = {}; + if (flatbufferNode->name()->size() == 0) + { + throw std::invalid_argument("Graph node at index:" + std::to_string(nodeIndex) + " doesn't have any name"); + } + node.Name = flatbufferNode->name()->c_str(); + + if (flatbufferNode->desc_type() == dml::ir::NodeDesc_ConstantNodeDesc) + { + const dml::ir::ConstantNodeDesc* flatbufferConstantNode = flatbufferNode->desc_as_ConstantNodeDesc(); + if (flatbufferConstantNode->data_type() == dml::ir::ConstantNodeDescDetail_ConstantName) + { + if (flatbufferConstantNode->data_as_ConstantName()->name()->size() == 0) + { + throw std::invalid_argument("Constant node at index:" + std::to_string(nodeIndex) + + " doesn't have constant data name."); + } + + ConstantName constantNode = {flatbufferConstantNode->data_as_ConstantName()->name()->c_str()}; + node.Desc = constantNode; + // Output of this node will be part of constantInputs list. + for (uint32_t outputIndex = 0; outputIndex < flatbufferNode->outputNames()->size(); outputIndex++) + { + constantInputs.insert(flatbufferNode->outputNames()->Get(outputIndex)->c_str()); + } + } + else if (flatbufferConstantNode->data_type() == dml::ir::ConstantNodeDescDetail_ConstantRawData) + { + + uint32_t rawDataSize = flatbufferConstantNode->data_as_ConstantRawData()->data()->size(); + rawData.push_back(std::make_unique(rawDataSize)); + std::transform( + flatbufferConstantNode->data_as_ConstantRawData()->data()->begin(), + flatbufferConstantNode->data_as_ConstantRawData()->data()->end(), + rawData.back().get(), + [](uint8_t b) {return static_cast(b);}); + + ConstantData constantData = {}; + constantData.dataSize = rawDataSize; + constantData.data = rawData.back().get(); + node.Desc = constantData; + } + + + } + else if (flatbufferNode->desc_type() == dml::ir::NodeDesc::NodeDesc_OperatorNodeDesc) + { + // convert dml::ir::OperatorNodeDesc to AbstractOperatorDesc + const dml::ir::OperatorNodeDesc* flatbufferOperatorNodeDesc = flatbufferNode->desc_as_OperatorNodeDesc(); + node.Desc = CreateAbstractOperatorDesc( + nodeIndex, + flatbufferOperatorNodeDesc, + flatbufferNode->inputNames(), + flatbufferNode->outputNames(), + constantInputs); + } + + nodes[nodeIndex] = node; + } + + DmlSerializedGraphDesc graphDesc; + graphDesc.InputCount = flatbufferGraphDesc->graphInputNames()->size(); + graphDesc.OutputCount = flatbufferGraphDesc->graphOutputNames()->size(); + graphDesc.InputEdges = std::move(inputEdges); + graphDesc.IntermediateEdges = std::move(intermediateEdges); + graphDesc.OutputEdges = std::move(outputEdges); + graphDesc.Nodes = std::move(nodes); + return graphDesc; +} diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionHelper.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionHelper.cpp index 642d9aa03eeef..27168bc8e9763 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionHelper.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionHelper.cpp @@ -135,8 +135,10 @@ namespace DmlGraphFusionHelper void ProcessInputData( const ExecutionProviderImpl* providerImpl, + const bool graphSerializationEnabled, const std::vector& isInputsUploadedByDmlEP, - const std::vector& inputEdges, + const std::unordered_map* serializedGraphInputIndexToSubgraphInputIndex, + const std::unordered_map* serializedGraphLargeConstantNameToSubgraphInputIndex, const gsl::span subGraphInputArgNames, const std::unordered_map>& initializerNameToInitializerMap, onnxruntime::Graph& graph, @@ -162,8 +164,17 @@ namespace DmlGraphFusionHelper // Walk through each graph edge and mark used inputs inputsUsed.assign(fusedNodeInputCount, false); - for (const DML_INPUT_GRAPH_EDGE_DESC& edge : inputEdges) { - inputsUsed[edge.GraphInputIndex] = true; + for (auto it = serializedGraphInputIndexToSubgraphInputIndex->begin(); it != serializedGraphInputIndexToSubgraphInputIndex->end(); it++) { + inputsUsed[it->second] = true; + } + for (auto it = serializedGraphLargeConstantNameToSubgraphInputIndex->begin(); it != serializedGraphLargeConstantNameToSubgraphInputIndex->end(); it++) { + inputsUsed[it->second] = true; + } + + std::wstring modelName; + if (graphSerializationEnabled) + { + modelName = GetModelName(graph.ModelPath()); } for (uint32_t i = 0; i < initInputBindings.size(); i++) @@ -209,6 +220,10 @@ namespace DmlGraphFusionHelper // Tensor sizes in DML must be a multiple of 4 bytes large. tensorByteSize = AlignToPow2(tensorByteSize, 4); + if(graphSerializationEnabled) + { + WriteToFile(modelName, ConvertToWString(iter->first) + L".bin", reinterpret_cast(tensorPtr), tensorByteSize); + } if (inputRawData) { @@ -287,55 +302,158 @@ namespace DmlGraphFusionHelper return initializerPartitionMap; } + inline uint32_t GetConstantNodeGraphInputIndex( + const std::string& constantName, + const std::unordered_map* serializedGraphConstantNameToMainGraphInputIndex, + uint32_t& graphMaxInputIndex, + std::unordered_map& localConstantNameToIndexMap) + { + if (serializedGraphConstantNameToMainGraphInputIndex == nullptr) + { + if (localConstantNameToIndexMap.find(constantName) == localConstantNameToIndexMap.end()) + { + localConstantNameToIndexMap[constantName] = ++graphMaxInputIndex; + } + return localConstantNameToIndexMap[constantName]; + } + else + { + graphMaxInputIndex = std::max(graphMaxInputIndex, serializedGraphConstantNameToMainGraphInputIndex->at(constantName)); + return serializedGraphConstantNameToMainGraphInputIndex->at(constantName); + } + } + + template void ConvertGraphDesc( const Dml::GraphDescBuilder::GraphDesc& graphDesc, - _Out_ DML_GRAPH_DESC& dmlGraphDesc, const uint32_t inputCount, const uint32_t outputCount, - _Inout_ std::vector& dmlOperatorGraphNodes, - _Inout_ std::vector& dmlConstantGraphNodes, + IDMLDevice* device, + StackAllocator& allocator, + const std::unordered_map* serializedGraphInputIndexToSubgraphInputIndex, + const std::unordered_map* serializedGraphLargeConstantNameToSubgraphInputIndex, + _Out_ DML_GRAPH_DESC& dmlGraphDesc, + _Inout_ std::vector>& dmlOperators, _Inout_ std::vector& dmlGraphNodes, _Inout_ std::vector& dmlInputEdges, _Inout_ std::vector& dmlOutputEdges, _Inout_ std::vector& dmlIntermediateEdges) { - for (size_t i = 0; i < graphDesc.nodes.size(); ++i) + std::unordered_map oldNodeIndexToNewNodeIndexMap; + for (uint32_t index = 0; index < static_cast(graphDesc.Nodes.size()); index++) { - auto& nodeInfo = graphDesc.nodes[i]; - - if (std::holds_alternative>(nodeInfo.nodeDef)) + const DmlSerializedGraphNode& node = graphDesc.Nodes[index]; + if (std::holds_alternative(node.Desc)) { - dmlOperatorGraphNodes[i] = DML_OPERATOR_GRAPH_NODE_DESC{std::get>(nodeInfo.nodeDef).Get(), nodeInfo.name.data()}; - dmlGraphNodes[i] = DML_GRAPH_NODE_DESC{DML_GRAPH_NODE_TYPE_OPERATOR, &dmlOperatorGraphNodes[i]}; + oldNodeIndexToNewNodeIndexMap[index] = static_cast(dmlGraphNodes.size()); + DML_OPERATOR_DESC dmlDesc = SchemaHelpers::ConvertOperatorDesc(std::get(node.Desc), &allocator); + ComPtr op; + ORT_THROW_IF_FAILED(device->CreateOperator(&dmlDesc, IID_PPV_ARGS(&op))); + dmlOperators.push_back(op); + DML_OPERATOR_GRAPH_NODE_DESC* dmlOperatorGraphNode = allocator.template Allocate(); + dmlOperatorGraphNode->Name = node.Name.data(); + dmlOperatorGraphNode->Operator = op.Get(); + dmlGraphNodes.push_back(DML_GRAPH_NODE_DESC{DML_GRAPH_NODE_TYPE_OPERATOR, dmlOperatorGraphNode}); } else { - auto& nodeDefinitionData = std::get>(nodeInfo.nodeDef); - dmlConstantGraphNodes[i] = DML_CONSTANT_DATA_GRAPH_NODE_DESC{ - nodeDefinitionData.data(), - nodeDefinitionData.size(), - nodeInfo.name.data() - }; - - // TODO: Change as new header is ingested - dmlGraphNodes[i] = DML_GRAPH_NODE_DESC{static_cast(2), &dmlConstantGraphNodes[i]}; + auto& constantNodeVariant = std::get(node.Desc); + if (std::holds_alternative(constantNodeVariant)) + { + oldNodeIndexToNewNodeIndexMap[index] = static_cast(dmlGraphNodes.size()); + + auto& constantData = std::get(constantNodeVariant); + + DML_CONSTANT_DATA_GRAPH_NODE_DESC* constantNode = allocator.template Allocate(); + constantNode->Name = node.Name.data(); + constantNode->DataSize = constantData.dataSize; + constantNode->Data = constantData.data; + dmlGraphNodes.push_back(DML_GRAPH_NODE_DESC{DML_GRAPH_NODE_TYPE_CONSTANT, constantNode}); + } } } - for (size_t i = 0; i < graphDesc.inputEdges.size(); ++i) + uint32_t graphMaxInputIndex = 0; + + for (size_t i = 0; i < graphDesc.InputEdges.size(); ++i) { - dmlInputEdges[i] = DML_GRAPH_EDGE_DESC{DML_GRAPH_EDGE_TYPE_INPUT, &graphDesc.inputEdges[i]}; + DML_INPUT_GRAPH_EDGE_DESC* edge = allocator.template Allocate(); + // 1. If serializedGraphInputIndexToMainGraphInputIndex is not null: + // then use the corresponding main graph input index, because the caller will use corresponding + // main graph input index for extracting the actual input tensor from the main graph and + // the caller does not own the creation of dml bindings directly. + // Use Case: When the caller is ORT (DML EP) or DmlEngine. + // + // 2. If serializedGraphInputIndexToMainGraphInputIndex is null: + // then assign the sequential graph input index, because it owns the creation of dml bindings + // directly. + edge->GraphInputIndex = serializedGraphInputIndexToSubgraphInputIndex == nullptr ? + graphDesc.InputEdges[i].GraphInputIndex : + serializedGraphInputIndexToSubgraphInputIndex->at(graphDesc.InputEdges[i].GraphInputIndex); + edge->ToNodeIndex = oldNodeIndexToNewNodeIndexMap[graphDesc.InputEdges[i].ToNodeIndex]; + edge->ToNodeInputIndex = graphDesc.InputEdges[i].ToNodeInputIndex; + edge->Name = graphDesc.InputEdges[i].Name.data(); + + graphMaxInputIndex = std::max(graphMaxInputIndex, edge->GraphInputIndex); + dmlInputEdges.push_back(DML_GRAPH_EDGE_DESC{DML_GRAPH_EDGE_TYPE_INPUT, edge}); } - for (size_t i = 0; i < graphDesc.outputEdges.size(); ++i) + for (size_t i = 0; i < graphDesc.OutputEdges.size(); ++i) { - dmlOutputEdges[i] = DML_GRAPH_EDGE_DESC{DML_GRAPH_EDGE_TYPE_OUTPUT, &graphDesc.outputEdges[i]}; + DML_OUTPUT_GRAPH_EDGE_DESC* edge = allocator.template Allocate(); + edge->GraphOutputIndex = graphDesc.OutputEdges[i].GraphOutputIndex; + edge->FromNodeIndex = oldNodeIndexToNewNodeIndexMap[graphDesc.OutputEdges[i].FromNodeIndex]; + edge->FromNodeOutputIndex = graphDesc.OutputEdges[i].FromNodeOutputIndex; + edge->Name = graphDesc.OutputEdges[i].Name.data(); + + dmlOutputEdges.push_back(DML_GRAPH_EDGE_DESC{DML_GRAPH_EDGE_TYPE_OUTPUT, edge}); } - for (size_t i = 0; i < graphDesc.intermediateEdges.size(); ++i) + std::unordered_map localConstantNameToIndexMap; + for (uint32_t i = 0; i < static_cast(graphDesc.IntermediateEdges.size()); ++i) { - dmlIntermediateEdges[i] = - DML_GRAPH_EDGE_DESC{DML_GRAPH_EDGE_TYPE_INTERMEDIATE, &graphDesc.intermediateEdges[i]}; + DmlSerializedGraphNodeDescVariant descVariant = graphDesc.Nodes[graphDesc.IntermediateEdges[i].FromNodeIndex].Desc; + bool isConstantEdge = std::holds_alternative(descVariant); + if (isConstantEdge) + { + auto& constantNodeVariant = std::get(descVariant); + if (std::holds_alternative(constantNodeVariant)) + { + DML_INTERMEDIATE_GRAPH_EDGE_DESC* edge = allocator.template Allocate(); + edge->FromNodeIndex = oldNodeIndexToNewNodeIndexMap[graphDesc.IntermediateEdges[i].FromNodeIndex]; + edge->FromNodeOutputIndex = graphDesc.IntermediateEdges[i].FromNodeOutputIndex; + edge->ToNodeIndex = oldNodeIndexToNewNodeIndexMap[graphDesc.IntermediateEdges[i].ToNodeIndex]; + edge->ToNodeInputIndex = graphDesc.IntermediateEdges[i].ToNodeInputIndex; + edge->Name = graphDesc.IntermediateEdges[i].Name.data(); + dmlIntermediateEdges.push_back(DML_GRAPH_EDGE_DESC{DML_GRAPH_EDGE_TYPE_INTERMEDIATE, edge}); + } + else + { + const std::string& constantName = graphDesc.Nodes[graphDesc.IntermediateEdges[i].FromNodeIndex].Name; + + DML_INPUT_GRAPH_EDGE_DESC* edge = allocator.template Allocate(); + edge->GraphInputIndex = GetConstantNodeGraphInputIndex( + constantName, + serializedGraphLargeConstantNameToSubgraphInputIndex, + graphMaxInputIndex, + localConstantNameToIndexMap); + edge->ToNodeIndex = oldNodeIndexToNewNodeIndexMap[graphDesc.IntermediateEdges[i].ToNodeIndex]; + edge->ToNodeInputIndex = graphDesc.IntermediateEdges[i].ToNodeInputIndex; + edge->Name = graphDesc.IntermediateEdges[i].Name.data(); + + dmlInputEdges.push_back({DML_GRAPH_EDGE_TYPE_INPUT, edge}); + } + } + else + { + DML_INTERMEDIATE_GRAPH_EDGE_DESC* edge = allocator.template Allocate(); + edge->FromNodeIndex = oldNodeIndexToNewNodeIndexMap[graphDesc.IntermediateEdges[i].FromNodeIndex]; + edge->FromNodeOutputIndex = graphDesc.IntermediateEdges[i].FromNodeOutputIndex; + edge->ToNodeIndex = oldNodeIndexToNewNodeIndexMap[graphDesc.IntermediateEdges[i].ToNodeIndex]; + edge->ToNodeInputIndex = graphDesc.IntermediateEdges[i].ToNodeInputIndex; + edge->Name = graphDesc.IntermediateEdges[i].Name.data(); + dmlIntermediateEdges.push_back(DML_GRAPH_EDGE_DESC{DML_GRAPH_EDGE_TYPE_INTERMEDIATE, edge}); + } } dmlGraphDesc.InputCount = inputCount; @@ -400,27 +518,34 @@ namespace DmlGraphFusionHelper Microsoft::WRL::ComPtr TryCreateCompiledOperator( const GraphDescBuilder::GraphDesc& graphDesc, const onnxruntime::IndexedSubGraph& indexedSubGraph, - const ExecutionProviderImpl* providerImpl) + const ExecutionProviderImpl* providerImpl, + const std::unordered_map* serializedGraphInputIndexToSubgraphInputIndex, + const std::unordered_map* serializedGraphLargeConstantNameToSubgraphInputIndex) { const uint32_t fusedNodeInputCount = gsl::narrow_cast(indexedSubGraph.GetMetaDef()->inputs.size()); const uint32_t fusedNodeOutputCount = gsl::narrow_cast(indexedSubGraph.GetMetaDef()->outputs.size()); // convert DML EP GraphDesc into DML_GRAPH_DESC and create IDMLCompiledOperator - DML_GRAPH_DESC dmlGraphDesc = {}; - std::vector dmlOperatorGraphNodes(graphDesc.nodes.size()); - std::vector dmlConstantGraphNodes(graphDesc.nodes.size()); + ComPtr device; + ORT_THROW_IF_FAILED(providerImpl->GetDmlDevice(device.GetAddressOf())); - std::vector dmlGraphNodes(graphDesc.nodes.size()); - std::vector dmlInputEdges(graphDesc.inputEdges.size()); - std::vector dmlOutputEdges(graphDesc.outputEdges.size()); - std::vector dmlIntermediateEdges(graphDesc.intermediateEdges.size()); + StackAllocator<1024> allocator; + DML_GRAPH_DESC dmlGraphDesc = {}; + std::vector> dmlOperators; + std::vector dmlGraphNodes; + std::vector dmlInputEdges; + std::vector dmlOutputEdges; + std::vector dmlIntermediateEdges; ConvertGraphDesc( graphDesc, - dmlGraphDesc, fusedNodeInputCount, fusedNodeOutputCount, - dmlOperatorGraphNodes, - dmlConstantGraphNodes, + device.Get(), + allocator, + serializedGraphInputIndexToSubgraphInputIndex, + serializedGraphLargeConstantNameToSubgraphInputIndex, + dmlGraphDesc, + dmlOperators, dmlGraphNodes, dmlInputEdges, dmlOutputEdges, @@ -438,8 +563,6 @@ namespace DmlGraphFusionHelper executionFlags |= DML_EXECUTION_FLAG_DISABLE_META_COMMANDS; } - ComPtr device; - ORT_THROW_IF_FAILED(providerImpl->GetDmlDevice(device.GetAddressOf())); ComPtr device1; ORT_THROW_IF_FAILED(device.As(&device1)); @@ -460,6 +583,7 @@ namespace DmlGraphFusionHelper } void FusePartitionAndRegisterKernel( + const uint32_t partitionIndex, onnxruntime::Graph& graph, onnxruntime::KernelRegistry* registryForPartitionKernels, const std::unordered_map>& initializerNameToInitializerMap, @@ -467,8 +591,43 @@ namespace DmlGraphFusionHelper const onnxruntime::IndexedSubGraph& indexedSubGraph, std::vector&& isInputsUploadedByDmlEP, const GraphDescBuilder::GraphDesc& graphDesc, - Microsoft::WRL::ComPtr compiledExecutionPlanOperator) + Microsoft::WRL::ComPtr compiledExecutionPlanOperator, + const bool graphSerializationEnabled, + const std::unordered_map* serializedGraphInputIndexToSubgraphInputIndex, + const std::unordered_map* serializedGraphLargeConstantNameToSubgraphInputIndex) { + if (graphSerializationEnabled) + { + + const std::wstring modelName = GetModelName(graph.ModelPath()); + auto buffer = SerializeDmlGraph(graphDesc); + + const std::wstring partitionName = + L"Partition_" + + std::to_wstring(partitionIndex) + + L".bin"; + WriteToFile(modelName, partitionName, buffer.data(), buffer.size()); + + std::vector> rawData; + DmlSerializedGraphDesc deserializedGraphDesc = DeserializeDmlGraph(buffer.data(), rawData); + GraphDescBuilder::GraphDesc deserializedDmlGraphDesc = {}; + deserializedDmlGraphDesc.InputCount = deserializedGraphDesc.InputCount; + deserializedDmlGraphDesc.InputEdges = std::move(deserializedGraphDesc.InputEdges); + deserializedDmlGraphDesc.IntermediateEdges = std::move(deserializedGraphDesc.IntermediateEdges); + deserializedDmlGraphDesc.Nodes = std::move(deserializedGraphDesc.Nodes); + deserializedDmlGraphDesc.OutputCount = deserializedGraphDesc.OutputCount; + deserializedDmlGraphDesc.OutputEdges = std::move(deserializedGraphDesc.OutputEdges); + deserializedDmlGraphDesc.reuseCommandList = graphDesc.reuseCommandList; + deserializedDmlGraphDesc.outputShapes = graphDesc.outputShapes; + + compiledExecutionPlanOperator = DmlGraphFusionHelper::TryCreateCompiledOperator( + deserializedDmlGraphDesc, + indexedSubGraph, + providerImpl, + serializedGraphInputIndexToSubgraphInputIndex, + serializedGraphLargeConstantNameToSubgraphInputIndex); + } + auto& fusedNode = graph.BeginFuseSubGraph(indexedSubGraph, indexedSubGraph.GetMetaDef()->name); fusedNode.SetExecutionProviderType(onnxruntime::kDmlExecutionProvider); @@ -482,8 +641,10 @@ namespace DmlGraphFusionHelper std::vector inputsUsed; ProcessInputData( providerImpl, + graphSerializationEnabled, isInputsUploadedByDmlEP, - graphDesc.inputEdges, + serializedGraphInputIndexToSubgraphInputIndex, + serializedGraphLargeConstantNameToSubgraphInputIndex, indexedSubGraph.GetMetaDef()->inputs, initializerNameToInitializerMap, graph, diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionHelper.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionHelper.h index f8f6162aaa1e0..f1e9654021196 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionHelper.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionHelper.h @@ -45,12 +45,17 @@ namespace DmlGraphFusionHelper gsl::span> partitions ); + template void ConvertGraphDesc( const Dml::GraphDescBuilder::GraphDesc& graphDesc, - _Out_ DML_GRAPH_DESC& dmlGraphDesc, const uint32_t inputCount, const uint32_t outputCount, - _Inout_ std::vector& dmlOperatorGraphNodes, + IDMLDevice* device, + StackAllocator& allocator, + const std::unordered_map* serializedGraphInputIndexToSubgraphInputIndex, + const std::unordered_map* serializedGraphLargeConstantNameToSubgraphInputIndex, + _Out_ DML_GRAPH_DESC& dmlGraphDesc, + _Inout_ std::vector>& dmlOperators, _Inout_ std::vector& dmlGraphNodes, _Inout_ std::vector& dmlInputEdges, _Inout_ std::vector& dmlOutputEdges, @@ -69,9 +74,12 @@ namespace DmlGraphFusionHelper Microsoft::WRL::ComPtr TryCreateCompiledOperator( const GraphDescBuilder::GraphDesc& graphDesc, const onnxruntime::IndexedSubGraph& indexedSubGraph, - const ExecutionProviderImpl* providerImpl); + const ExecutionProviderImpl* providerImpl, + const std::unordered_map* serializedGraphInputIndexToSubgraphInputIndex, + const std::unordered_map* serializedGraphLargeConstantNameToSubgraphInputIndex); void FusePartitionAndRegisterKernel( + const uint32_t partitionIndex, onnxruntime::Graph& graph, onnxruntime::KernelRegistry* registryForPartitionKernels, const std::unordered_map>& initializerNameToInitializerMap, @@ -79,7 +87,10 @@ namespace DmlGraphFusionHelper const onnxruntime::IndexedSubGraph& indexedSubGraph, std::vector&& isInputsUploadedByDmlEP, const GraphDescBuilder::GraphDesc& graphDesc, - Microsoft::WRL::ComPtr compiledExecutionPlanOperator); + Microsoft::WRL::ComPtr compiledExecutionPlanOperator, + const bool graphSerializationEnabled, + const std::unordered_map* serializedGraphInputIndexToSubgraphInputIndex = nullptr, + const std::unordered_map* serializedGraphLargeConstantNameToSubgraphInputIndex = nullptr); void RegisterDynamicKernel( onnxruntime::Graph& graph, diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionTransformer.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionTransformer.cpp index 679738b639ec9..35a2c451a49a5 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionTransformer.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionTransformer.cpp @@ -24,15 +24,20 @@ namespace Dml std::vector isInputsUploadedByDmlEP; GraphDescBuilder::GraphDesc graphDesc; std::unordered_map> isInitializerTransferable; + std::vector> smallConstantData; // Need to keep it alive for maintaining lifetime + std::unordered_map serializedGraphInputIndexToSubgraphInputIndex; + std::unordered_map serializedGraphLargeConstantNameToSubgraphInputIndex; }; } DmlGraphFusionTransformer::DmlGraphFusionTransformer( const std::string& name, - const onnxruntime::IExecutionProvider* provider + const onnxruntime::IExecutionProvider* provider, + const bool graphSerializationEnabled ) :onnxruntime::GraphTransformer(name), - m_providerImpl(static_cast(provider)->GetImpl()) + m_providerImpl(static_cast(provider)->GetImpl()), + graphSerializationEnabled(graphSerializationEnabled) { } @@ -227,23 +232,39 @@ namespace Dml ComPtr device; ORT_THROW_IF_FAILED(m_providerImpl->GetDmlDevice(device.GetAddressOf())); + // This map will be used to transfer the initializer to D3D12 system heap memory. + // 'serializedDmlGraphDesc' will have constant input as intermediate edges, that's why + // we need a mapping between intermediateEdgeIndex and indexedSubGraph's (a given partition) + // input arg index. + // For ex: Let's say intermediate edge index = idx, then + // indexedSubGraphInputArgIdx = constantEdgeIdxToSubgraphInputArgIdxMap[idx]; + // corresponding constant tensor = initializerNameToInitializerMap[indexedSubGraph.GetMetaDef()->inputs[indexedSubGraphInputArgIdx]] + // We are using intermediate edge index as a key because same constant tensor can be used by + // multiple nodes. + std::unordered_map serializedGraphInputIndexToSubgraphInputIndex; + std::unordered_map serializedGraphLargeConstantNameToSubgraphInputIndex; + std::vector> smallConstantData; GraphDescBuilder::GraphDesc graphDesc = GraphDescBuilder::BuildGraphDesc( isInputsUploadedByDmlEP.data(), isInputsUploadedByDmlEP.size(), isInitializerTransferable, partitionNodePropsMap, - device.Get(), m_providerImpl, modelPath, subgraphNodes, subgraphInputs, - subgraphOutputs); + subgraphOutputs, + serializedGraphInputIndexToSubgraphInputIndex, + serializedGraphLargeConstantNameToSubgraphInputIndex, + smallConstantData); // Compile the operator auto compiledPartition = DmlGraphFusionHelper::TryCreateCompiledOperator( graphDesc, indexedSubGraph, - m_providerImpl); + m_providerImpl, + &serializedGraphInputIndexToSubgraphInputIndex, + &serializedGraphLargeConstantNameToSubgraphInputIndex); if (!compiledPartition) { @@ -264,6 +285,9 @@ namespace Dml compiledPartitionInfo->isInputsUploadedByDmlEP = std::move(isInputsUploadedByDmlEP); compiledPartitionInfo->graphDesc = std::move(graphDesc); compiledPartitionInfo->isInitializerTransferable = std::move(isInitializerTransferable); + compiledPartitionInfo->smallConstantData = std::move(smallConstantData); + compiledPartitionInfo->serializedGraphInputIndexToSubgraphInputIndex = std::move(serializedGraphInputIndexToSubgraphInputIndex); + compiledPartitionInfo->serializedGraphLargeConstantNameToSubgraphInputIndex = std::move(serializedGraphLargeConstantNameToSubgraphInputIndex); compiledPartitionInfos[partitionIndex] = std::move(compiledPartitionInfo); } } @@ -271,12 +295,14 @@ namespace Dml } while (!additionalSplittingNodes.empty()); + uint32_t partitionIndex = 0; for (auto&& compiledPartitionInfo : compiledPartitionInfos) { // Null compiled operators were not DML partitions if (compiledPartitionInfo) { DmlGraphFusionHelper::FusePartitionAndRegisterKernel( + partitionIndex++, graph, m_providerImpl->GetKernelRegistry().get(), compiledPartitionInfo->isInitializerTransferable, @@ -284,7 +310,10 @@ namespace Dml compiledPartitionInfo->indexedSubGraph, std::move(compiledPartitionInfo->isInputsUploadedByDmlEP), compiledPartitionInfo->graphDesc, - compiledPartitionInfo->compiledOperator); + compiledPartitionInfo->compiledOperator, + graphSerializationEnabled, + &compiledPartitionInfo->serializedGraphInputIndexToSubgraphInputIndex, + &compiledPartitionInfo->serializedGraphLargeConstantNameToSubgraphInputIndex); } } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionTransformer.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionTransformer.h index 19dab0c89943c..b370f3ef9043c 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionTransformer.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphFusionTransformer.h @@ -16,7 +16,8 @@ class DmlGraphFusionTransformer : public onnxruntime::GraphTransformer public: DmlGraphFusionTransformer( const std::string& name, - const onnxruntime::IExecutionProvider* provider + const onnxruntime::IExecutionProvider* provider, + const bool graphSerializationEnabled ); public: @@ -38,5 +39,6 @@ class DmlGraphFusionTransformer : public onnxruntime::GraphTransformer private: const ExecutionProviderImpl* m_providerImpl = nullptr; + const bool graphSerializationEnabled = false; }; } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphSerialization.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphSerialization.cpp new file mode 100644 index 0000000000000..ed406fa259fe6 --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlGraphSerialization.cpp @@ -0,0 +1,583 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. + +#pragma once +#include "precomp.h" + +template +T* ReadAs(uint8_t* base, size_t byteOffset) +{ + return reinterpret_cast(base + byteOffset); +} + +void SerializeAttributeDescs( + flatbuffers::FlatBufferBuilder& builder, + const AbstractOperatorDesc& operatorDesc, + /*out*/ std::vector>& attributeDescs); + +flatbuffers::Offset serializeActivation( + flatbuffers::FlatBufferBuilder& builder, + const AbstractOperatorDesc& activationOperatorDesc) +{ + std::vector> attributeDescs; + SerializeAttributeDescs(builder, activationOperatorDesc, attributeDescs); + + flatbuffers::Offset offset = dml::ir::operatorFieldTypes::CreateActivationDirect( + builder, + activationOperatorDesc.schema->OperatorName, + &attributeDescs); + return offset; +} + +void SerializeAttributeDescs( + flatbuffers::FlatBufferBuilder& builder, + const AbstractOperatorDesc& operatorDesc, + /*out*/ std::vector>& attributeDescs) +{ + for (const OperatorField& field : operatorDesc.fields) + { + if (field.GetSchema()->Kind == DML_SCHEMA_FIELD_KIND_INPUT_TENSOR || + field.GetSchema()->Kind == DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR) + { + continue; + } + + flatbuffers::Offset offset; + + if (std::holds_alternative(field.GetData())) + { + const OperatorFieldTypes::FusedActivationOperatorDesc& fusedActivation = field.AsFusedActivationOperatorDesc(); + if (!fusedActivation.has_value()) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + nullptr, + dml::ir::operatorFieldTypes::AttributeFieldVariant_Activation); + } + else + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_Activation, + serializeActivation(builder, fusedActivation.value()).Union()); + } + } + else if (std::holds_alternative(field.GetData())) + { + const OperatorFieldTypes::FusedActivationOperatorDescArray& fusedActivations = + field.AsFusedActivationOperatorDescArray(); + if (!fusedActivations.has_value()) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + nullptr, + dml::ir::operatorFieldTypes::AttributeFieldVariant_ActivationArray); + } + else + { + std::vector> fbActivations; + + for (AbstractOperatorDesc activationOpDesc : fusedActivations.value()) + { + flatbuffers::Offset fbActivation = + serializeActivation(builder, activationOpDesc); + fbActivations.push_back(fbActivation); + } + + flatbuffers::Offset activationOffset = + dml::ir::operatorFieldTypes::CreateActivationArrayDirect(builder, &fbActivations); + + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_ActivationArray, + activationOffset.Union()); + } + } + else if (std::holds_alternative(field.GetData())) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_UInt32, + builder.CreateStruct(dml::ir::operatorFieldTypes::UInt32(field.AsUInt())).Union()); + } + else if (std::holds_alternative(field.GetData())) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_UInt64, + builder.CreateStruct(dml::ir::operatorFieldTypes::UInt64(field.AsUInt64())).Union()); + } + else if (std::holds_alternative(field.GetData())) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_Int32, + builder.CreateStruct(dml::ir::operatorFieldTypes::Int32(field.AsInt())).Union()); + } + else if (std::holds_alternative(field.GetData())) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_Float32, + builder.CreateStruct(dml::ir::operatorFieldTypes::Float32(field.AsFloat())).Union()); + } + else if (std::holds_alternative(field.GetData())) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_UIntArray, + dml::ir::operatorFieldTypes::CreateUIntArray(builder, builder.CreateVector(field.AsUIntArray())).Union()); + } + else if (std::holds_alternative(field.GetData())) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_IntArray, + dml::ir::operatorFieldTypes::CreateIntArray(builder, builder.CreateVector(field.AsIntArray())).Union()); + } + else if (std::holds_alternative(field.GetData())) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_FloatArray, + dml::ir::operatorFieldTypes::CreateFloatArray(builder, builder.CreateVector(field.AsFloatArray())).Union()); + } + else if (std::holds_alternative(field.GetData())) + { + const OperatorFieldTypes::ScaleBias& scaleBias = field.AsScaleBias(); + if (!scaleBias.has_value()) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + nullptr, + dml::ir::operatorFieldTypes::AttributeFieldVariant_ScaleBias); + } + else + { + dml::ir::operatorFieldTypes::ScaleBias fbScaleBias(scaleBias.value().Scale, scaleBias.value().Bias); + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_ScaleBias, + builder.CreateStruct(fbScaleBias).Union()); + } + } + else if (std::holds_alternative(field.GetData())) + { + const DML_SIZE_2D size2d = field.AsSize2D(); + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_Size2D, + builder.CreateStruct(dml::ir::operatorFieldTypes::Size2D(size2d.Width, size2d.Height)).Union()); + } + else if (std::holds_alternative(field.GetData())) + { + OperatorFieldTypes::ScalarUnion scalarUnion = field.AsScalarUnion(); + dml::ir::operatorFieldTypes::ByteArray byteArr; + for (uint32_t index = 0; index < static_cast(sizeof(scalarUnion.Bytes)); index++) + { + byteArr.mutable_data()->Mutate(index, scalarUnion.Bytes[index]); + } + + flatbuffers::Offset scalarUnionOffset = + dml::ir::operatorFieldTypes::CreateScalarUnionData( + builder, + dml::ir::operatorFieldTypes::ScalarVariant_ByteArray, + builder.CreateStruct(byteArr).Union()); + + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_ScalarUnionData, + scalarUnionOffset.Union()); + } + else if (std::holds_alternative(field.GetData())) + { + offset = dml::ir::operatorFieldTypes::CreateAttributeDescDirect( + builder, + field.GetSchema()->Name, + dml::ir::operatorFieldTypes::AttributeFieldVariant_Bool, + builder.CreateStruct(dml::ir::operatorFieldTypes::Bool(field.AsBool())).Union()); + } + else + { + continue; + } + + attributeDescs.push_back(offset); + } +} + +flatbuffers::Offset SerializeDmlTensorDesc( + flatbuffers::FlatBufferBuilder& builder, + const DmlBufferTensorDesc* tensorDesc) +{ + const std::vector *strides = nullptr; + if (tensorDesc->strides.has_value()) + { + strides = &tensorDesc->strides.value(); + } + + flatbuffers::Offset offset = dml::ir::CreateDmlBufferTensorDescDirect( + builder, + ApiTraits::StringifyHelpers::ToString(tensorDesc->dataType), + &tensorDesc->sizes, + strides, + tensorDesc->totalTensorSizeInBytes); + return offset; +} + +flatbuffers::Offset SerializeOperatorNodeDesc( + flatbuffers::FlatBufferBuilder& builder, + const AbstractOperatorDesc& operatorDesc) +{ + const DML_OPERATOR_SCHEMA* operatorSchema = operatorDesc.schema; + + std::vector> inputTensorDescs; + std::vector> outputTensorDescs; + + for (const DmlBufferTensorDesc* tensorDesc : operatorDesc.GetInputTensors()) + { + if (tensorDesc == nullptr) + { + continue; + } + flatbuffers::Offset serializedDmlTensorDesc = SerializeDmlTensorDesc(builder, tensorDesc); + inputTensorDescs.push_back(serializedDmlTensorDesc); + } + + for (const DmlBufferTensorDesc* tensorDesc : operatorDesc.GetOutputTensors()) + { + if (tensorDesc == nullptr) + { + continue; + } + flatbuffers::Offset serializedDmlTensorDesc = SerializeDmlTensorDesc(builder, tensorDesc); + outputTensorDescs.push_back(serializedDmlTensorDesc); + } + + std::vector> attributeDescs; + SerializeAttributeDescs(builder, operatorDesc, attributeDescs); + + flatbuffers::Offset offset = dml::ir::CreateOperatorNodeDesc( + builder, + builder.CreateString(operatorSchema->OperatorName), + builder.CreateVector(inputTensorDescs), + builder.CreateVector(outputTensorDescs), + builder.CreateVector(attributeDescs)); + return offset.Union(); +} + +flatbuffers::Offset SerializeConstantNodeDesc( + flatbuffers::FlatBufferBuilder& builder, + uint32_t nodeIndex, + const DmlSerializedGraphNodeConstantVariant& constantNodeDesc) +{ + flatbuffers::Offset offset; + + if (std::holds_alternative(constantNodeDesc)) + { + auto& constantName = std::get(constantNodeDesc); + if (constantName.name.empty()) + { + throw std::invalid_argument("Graph constant node at index:" + std::to_string(nodeIndex) + + " doesn't have the constant data name."); + } + + flatbuffers::Offset constantNameOffset = dml::ir::CreateConstantName( + builder, + builder.CreateString(constantName.name)); + + offset = dml::ir::CreateConstantNodeDesc( + builder, + dml::ir::ConstantNodeDescDetail_ConstantName, + constantNameOffset.Union()); + } + else + { + auto& constantData = std::get(constantNodeDesc); + std::vector rawBytes; + std::transform(constantData.data, constantData.data + constantData.dataSize, + std::back_inserter(rawBytes), [](std::byte b) {return static_cast(b); }); + flatbuffers::Offset constantDataOffset = dml::ir::CreateConstantRawDataDirect( + builder, + &rawBytes); + + offset = dml::ir::CreateConstantNodeDesc( + builder, + dml::ir::ConstantNodeDescDetail_ConstantRawData, + constantDataOffset.Union()); + } + + return offset.Union(); +} + +flatbuffers::Offset SerializeNode( + flatbuffers::FlatBufferBuilder& builder, + const uint32_t nodeIndex, + const DmlSerializedGraphNode& graphNode, + const std::vector>& nodeInputNames, + const std::vector>& nodeOutputNames) +{ + if (graphNode.Name.empty()) + { + throw std::invalid_argument("Graph node at index:" + std::to_string(nodeIndex) + + " does not have any name."); + } + + flatbuffers::Offset offset; + if (std::holds_alternative(graphNode.Desc)) + { + auto& operatorNode = std::get(graphNode.Desc); + offset = dml::ir::CreateDmlGraphNode( + builder, + dml::ir::NodeDesc_OperatorNodeDesc, + SerializeOperatorNodeDesc(builder, operatorNode), + builder.CreateString(graphNode.Name), + builder.CreateVector(nodeInputNames), + builder.CreateVector(nodeOutputNames)); + } + else + { + auto& constantNodeVariant = std::get(graphNode.Desc); + offset = dml::ir::CreateDmlGraphNode( + builder, + dml::ir::NodeDesc_ConstantNodeDesc, + SerializeConstantNodeDesc(builder, nodeIndex, constantNodeVariant), + builder.CreateString(graphNode.Name), + builder.CreateVector(nodeInputNames), + builder.CreateVector(nodeOutputNames)); + } + return offset; +} + +/* +* validates input/output edges and throws exception if an edge +* does not have a name or if an edge has more than 1 names. +*/ +template +std::unordered_map> ConvertToEdgeIndexToNameMap( + const std::vector& edges, + flatbuffers::FlatBufferBuilder& builder) +{ + std::unordered_map> edgeIndexToNameMap; + for (auto& edge : edges) + { + uint32_t index; + if constexpr (std::is_same_v) + { + index = edge.GraphInputIndex; + } + else if constexpr (std::is_same_v) + { + index = edge.GraphOutputIndex; + } + + if (edge.Name.empty()) + { + throw std::invalid_argument("Graph input or output edge at index " + std::to_string(index) + " does not have name."); + } + + if (edgeIndexToNameMap.find(index) != edgeIndexToNameMap.end()) + { + flatbuffers::String* edgeName = ReadAs( + builder.GetCurrentBufferPointer(), + builder.GetSize() - edgeIndexToNameMap[index].o); + if (edge.Name != edgeName->str()) + { + throw std::invalid_argument("Graph input or output edge at index " + std::to_string(index) + " has more than 1 names."); + } + } + + edgeIndexToNameMap[index] = builder.CreateString(edge.Name); + } + return edgeIndexToNameMap; // NRVO will automatically move it. no need to use std::move +} + +void PopulateNonConstantNodeInputOutputCount( + const std::vector& nodes, + /*out*/ std::vector& nodeInputCounts, + /*out*/ std::vector& nodeOutputCounts) +{ + for (uint32_t nodeIndex = 0; nodeIndex < static_cast(nodes.size()); nodeIndex++) + { + auto& node = nodes[nodeIndex]; + if (std::holds_alternative(node.Desc)) + { + auto& operatorNode = std::get(node.Desc); + nodeInputCounts[nodeIndex] = std::max( + nodeInputCounts[nodeIndex], + static_cast(operatorNode.GetInputTensors().size())); + + nodeOutputCounts[nodeIndex] = std::max( + nodeOutputCounts[nodeIndex], + static_cast(operatorNode.GetOutputTensors().size())); + } + } +} + +void PopulateConstantNodeInputOutputCount( + const std::vector& edges, + /*out*/std::vector& maxInputIndexForNodes, + /*out*/std::vector& maxOutputIndexForNodes) +{ + for (auto& edge : edges) + { + maxInputIndexForNodes[edge.ToNodeIndex] = std::max(maxInputIndexForNodes[edge.ToNodeIndex], edge.ToNodeInputIndex + 1); + maxOutputIndexForNodes[edge.FromNodeIndex] = std::max(maxOutputIndexForNodes[edge.FromNodeIndex], edge.FromNodeOutputIndex + 1); + } +} + +/* +* validates intermediate edge and throws exception if an edge +* does not have a name or if an edge has more than 1 names. +*/ +void PopulateNodeInputOutputNames( + flatbuffers::FlatBufferBuilder& builder, + const DmlSerializedGraphDesc& graphDesc, + const std::unordered_map>& graphInputIndexToNameMap, + const std::unordered_map>& graphOutputIndexToNameMap, + /*out*/std::vector>>& nodeToInputNames, + /*out*/std::vector>>& nodeToOutputNames) +{ + for (auto& edge : graphDesc.InputEdges) + { + nodeToInputNames[edge.ToNodeIndex][edge.ToNodeInputIndex] = graphInputIndexToNameMap.at(edge.GraphInputIndex); + } + + for (auto& edge : graphDesc.OutputEdges) + { + nodeToOutputNames[edge.FromNodeIndex][edge.FromNodeOutputIndex] = graphOutputIndexToNameMap.at(edge.GraphOutputIndex); + } + + std::unordered_map>> intermediateEdgeNames; + for (uint32_t edgeIndex = 0; edgeIndex < static_cast(graphDesc.IntermediateEdges.size()); edgeIndex++) + { + auto& edge = graphDesc.IntermediateEdges[edgeIndex]; + if (edge.Name.empty()) + { + throw std::invalid_argument( + "Graph intermediate edge from nodeIndex:" + std::to_string(edge.FromNodeIndex) + + " & nodeOutputIndex:" + std::to_string(edge.FromNodeOutputIndex) + " doesn't have name."); + } + + if (intermediateEdgeNames.find(edge.FromNodeIndex) != intermediateEdgeNames.end() && + intermediateEdgeNames[edge.FromNodeIndex].find(edge.FromNodeOutputIndex) != intermediateEdgeNames[edge.FromNodeIndex].end()) + { + flatbuffers::Offset edgeNameOffset = intermediateEdgeNames[edge.FromNodeIndex][edge.FromNodeOutputIndex]; + flatbuffers::String* edgeName = ReadAs( + builder.GetCurrentBufferPointer(), + builder.GetSize() - edgeNameOffset.o); + + if (edgeName->str() != edge.Name) + { + throw std::invalid_argument( + "Graph intermediate edge from nodeIndex:" + std::to_string(edge.FromNodeIndex) + + " & nodeOutputIndex:" + std::to_string(edge.FromNodeOutputIndex) + " has more than 1 names."); + } + } + else + { + intermediateEdgeNames[edge.FromNodeIndex][edge.FromNodeOutputIndex] = builder.CreateString(edge.Name.c_str()); + } + nodeToInputNames[edge.ToNodeIndex][edge.ToNodeInputIndex] = intermediateEdgeNames[edge.FromNodeIndex][edge.FromNodeOutputIndex]; + nodeToOutputNames[edge.FromNodeIndex][edge.FromNodeOutputIndex] = intermediateEdgeNames[edge.FromNodeIndex][edge.FromNodeOutputIndex]; + } +} + + +/* +* - If an edge is connected to multiple nodes, then there will be multiple instances +* of input or intermediate edges, all with the same name. +* - The input will be validated incrementally throughout the execution +* of the method. +* - Handling of empty optional input/output/attibute for non-constant node: +* input/output +* - and will have an null entry +* but the actual OperatorNodeDesc variant's +* and will not have any entry. +* attribute +* - will have null entry +*/ +flatbuffers::DetachedBuffer SerializeDmlGraph(const DmlSerializedGraphDesc& graphDesc) +{ + + flatbuffers::FlatBufferBuilder builder(1024); + if (graphDesc.Nodes.empty()) + { + return builder.Release(); + } + + std::vector nodesInTopologicalOrder(graphDesc.Nodes.size()); + PerformTopologicalSortAndCheckIsAcyclic(graphDesc, nodesInTopologicalOrder); + + // create input/output edge index to name map + std::unordered_map> graphInputIndexToNameMap = + ConvertToEdgeIndexToNameMap(graphDesc.InputEdges, builder); + std::unordered_map> graphOutputIndexToNameMap = + ConvertToEdgeIndexToNameMap(graphDesc.OutputEdges, builder); + + /* + * - Calculate number of input/output for each operator to allocate + * appropriate amount of memory for each node to store input/output names. + * - Non-constant node's input/output count can be determined by the + * AbstractOperatorDesc. + * - Constant node will only have outgoing edges and those outgoing edges + * will be intermediate edges. + */ + std::vector nodeInputCounts(graphDesc.Nodes.size(), 0); + std::vector nodeOutputCounts(graphDesc.Nodes.size(), 0); + PopulateNonConstantNodeInputOutputCount(graphDesc.Nodes, nodeInputCounts, nodeOutputCounts); + PopulateConstantNodeInputOutputCount(graphDesc.IntermediateEdges, nodeInputCounts, nodeOutputCounts); + + // populate node input/output names. + std::vector>> nodeToInputNames(graphDesc.Nodes.size()); + std::vector>> nodeToOutputNames(graphDesc.Nodes.size()); + for (uint32_t nodeIndex = 0; nodeIndex < static_cast(graphDesc.Nodes.size()); nodeIndex++) + { + nodeToInputNames[nodeIndex].assign(nodeInputCounts[nodeIndex], builder.CreateString(nullptr, 0)); + nodeToOutputNames[nodeIndex].assign(nodeOutputCounts[nodeIndex], builder.CreateString(nullptr, 0)); + } + PopulateNodeInputOutputNames(builder, graphDesc, graphInputIndexToNameMap, graphOutputIndexToNameMap, nodeToInputNames, nodeToOutputNames); + + // Create flatbuffer node objects + std::vector> nodes(graphDesc.Nodes.size()); + for (uint32_t nodeIndex = 0; nodeIndex < static_cast(nodesInTopologicalOrder.size()); nodeIndex++) + { + nodes[nodeIndex] = SerializeNode( + builder, + nodesInTopologicalOrder[nodeIndex], + graphDesc.Nodes[nodesInTopologicalOrder[nodeIndex]], + nodeToInputNames[nodesInTopologicalOrder[nodeIndex]], + nodeToOutputNames[nodesInTopologicalOrder[nodeIndex]]); + } + + // Convert to std::vector to create the object. + std::vector> graphInputNames(graphDesc.InputCount, builder.CreateString(nullptr, 0)); + std::vector> graphOutputNames(graphDesc.OutputCount, builder.CreateString(nullptr, 0)); + for (const auto& [key, value] : graphInputIndexToNameMap) + { + graphInputNames[key] = value; + } + for (const auto& [key, value] : graphOutputIndexToNameMap) + { + graphOutputNames[key] = value; + } + + flatbuffers::Offset dmlGraphDescOffset = dml::ir::CreateDmlGraphDescDirect( + builder, + &nodes, + &graphInputNames, + &graphOutputNames); + builder.Finish(dmlGraphDescOffset); + return builder.Release(); +} diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlRuntimeFusedGraphKernel.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlRuntimeFusedGraphKernel.cpp index 5c7b7bff1e370..0f0d445a95bae 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlRuntimeFusedGraphKernel.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/DmlRuntimeFusedGraphKernel.cpp @@ -180,32 +180,50 @@ namespace Dml // Convert partitionONNXGraph into DML EP GraphDesc ComPtr device; ORT_THROW_IF_FAILED(providerImpl->GetDmlDevice(device.GetAddressOf())); + // This map will be used to transfer the initializer to D3D12 system heap memory. + // 'serializedDmlGraphDesc' will have constant input as intermediate edges, that's why + // we need a mapping between intermediateEdgeIndex and indexedSubGraph's (a given partition) + // input arg index. + // For ex: Let's say intermediate edge index = idx, then + // indexedSubGraphInputArgIdx = constantEdgeIdxToSubgraphInputArgIdxMap[idx]; + // corresponding constant tensor = initializerNameToInitializerMap[indexedSubGraph.GetMetaDef()->inputs[indexedSubGraphInputArgIdx]] + // We are using intermediate edge index as a key because same constant tensor can be used by + // multiple nodes. + std::unordered_map serializedGraphInputIndexToSubgraphInputIndex; + std::unordered_map serializedGraphLargeConstantNameToSubgraphInputIndex; + std::vector> smallConstantData; GraphDescBuilder::GraphDesc graphDesc = GraphDescBuilder::BuildGraphDesc( isInputsUploadedByDmlEP.data(), isInputsUploadedByDmlEP.size(), m_isInitializerTransferable, m_partitionNodePropsMap, - device.Get(), providerImpl, m_modelPath, m_subgraphNodePointers, m_subgraphInputs, - m_subgraphOutputs); + m_subgraphOutputs, + serializedGraphInputIndexToSubgraphInputIndex, + serializedGraphLargeConstantNameToSubgraphInputIndex, + smallConstantData); m_outputShapes = graphDesc.outputShapes; // Walk through each graph edge and mark used inputs m_inputsUsed.resize(fusedNodeInputCount, false); - for (const DML_INPUT_GRAPH_EDGE_DESC& edge : graphDesc.inputEdges) - { - m_inputsUsed[edge.GraphInputIndex] = true; + for (auto it = serializedGraphInputIndexToSubgraphInputIndex.begin(); it != serializedGraphInputIndexToSubgraphInputIndex.end(); it++) { + m_inputsUsed[it->second] = true; + } + for (auto it = serializedGraphLargeConstantNameToSubgraphInputIndex.begin(); it != serializedGraphLargeConstantNameToSubgraphInputIndex.end(); it++) { + m_inputsUsed[it->second] = true; } // Compile the operator m_compiledExecutionPlanOperator = DmlGraphFusionHelper::TryCreateCompiledOperator( graphDesc, *m_indexedSubGraph, - providerImpl); + providerImpl, + &serializedGraphInputIndexToSubgraphInputIndex, + &serializedGraphLargeConstantNameToSubgraphInputIndex); // Queue references to objects which must be kept alive until resulting GPU work completes m_winmlProvider->QueueReference(m_compiledExecutionPlanOperator.Get()); diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ExecutionProvider.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ExecutionProvider.cpp index 9c275f88be4cb..06bb4d3995f66 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ExecutionProvider.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ExecutionProvider.cpp @@ -142,13 +142,7 @@ namespace Dml } } -// ORT release pipelines agent pools do not have 19H1 SDK installed which defines D3D_FEATURE_LEVEL_1_0_CORE. -// Once ORT/WinML github project can be built with VS2019, we can update these pools to use install the 19H1 SDK -// using the command line installer tool with VS2019 -// Task 24384515: Update ORT AIInfra release agent pool to install 19H1 SDK on VM bootstrap -#define D3D_FEATURE_LEVEL_1_0_CORE_PRIVATE ((D3D_FEATURE_LEVEL)0x1000) - - ExecutionProviderImpl::ExecutionProviderImpl(IDMLDevice* dmlDevice, ID3D12Device* d3d12Device, ID3D12CommandQueue* queue, bool enableMetacommands, bool enableDynamicGraphFusion) +ExecutionProviderImpl::ExecutionProviderImpl(IDMLDevice* dmlDevice, ID3D12Device* d3d12Device, ID3D12CommandQueue* queue, bool enableMetacommands, bool enableDynamicGraphFusion) : m_d3d12Device(d3d12Device), m_dmlDevice(dmlDevice), m_areMetacommandsEnabled(enableMetacommands), @@ -157,7 +151,10 @@ namespace Dml D3D12_FEATURE_DATA_FEATURE_LEVELS featureLevels = {}; D3D_FEATURE_LEVEL featureLevelsList[] = { - D3D_FEATURE_LEVEL_1_0_CORE_PRIVATE, + #ifndef _GAMING_XBOX + D3D_FEATURE_LEVEL_1_0_GENERIC, + #endif + D3D_FEATURE_LEVEL_1_0_CORE, D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_11_1, D3D_FEATURE_LEVEL_12_0, @@ -181,7 +178,7 @@ namespace Dml m_native16BitShaderOpsSupported = featureOptions.Native16BitShaderOpsSupported; } - m_isMcdmDevice = (featureLevels.MaxSupportedFeatureLevel == D3D_FEATURE_LEVEL_1_0_CORE_PRIVATE); + m_isMcdmDevice = (featureLevels.MaxSupportedFeatureLevel <= D3D_FEATURE_LEVEL_1_0_CORE); m_areCustomHeapsSupported = !m_isMcdmDevice; if (m_isMcdmDevice) @@ -776,8 +773,14 @@ namespace Dml !native16BitShaderOpsSupported && IsCustomOpShader(node)) { - nodeContainsSupportedDataTypes = false; - return; + // STFT is a special case since it has a dml ep registered + // graph transformation that will decompose fp16 STFT into convolution + // and so it is OK to register for fp16. + if (strcmp("STFT", node.OpType().c_str()) != 0) + { + nodeContainsSupportedDataTypes = false; + return; + } } // Allow nodeArgs that are SequenceTensor when they are actually implemented by CPU Kernels. diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ExecutionProvider.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ExecutionProvider.h index b8dd67ad6556d..15e56bb4f58b3 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ExecutionProvider.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/ExecutionProvider.h @@ -271,7 +271,7 @@ namespace Dml return m_impl->OnSessionInitializationEnd(); } - virtual onnxruntime::Status Sync() const final override + onnxruntime::Status Sync() const final override { // Completely wait until the device has completed all preceding tasks. // The application could have called SynchronizeBoundOutputs(). @@ -279,7 +279,7 @@ namespace Dml return Status::OK(); } - virtual onnxruntime::Status OnRunEnd(bool /*sync_stream*/) final override + onnxruntime::Status OnRunEnd(bool /*sync_stream*/, const onnxruntime::RunOptions& /*run_options*/) final override { // Flush any pending work to the GPU, but don't block for completion, permitting it // to overlap other work. diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/ApiTraits.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/ApiTraits.h index 15e06af1d2f25..9bb9707ed87a6 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/ApiTraits.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/ApiTraits.h @@ -24,8 +24,8 @@ struct EnumTraits template <> struct EnumTraits { - static constexpr auto ValueCount = 161; - static constexpr size_t ActivationFunctionCount = 24; + static constexpr auto ValueCount = 168; + static constexpr size_t ActivationFunctionCount = 26; }; template <> @@ -62,7 +62,7 @@ struct EnumTraits template <> struct EnumTraits { - static constexpr auto ValueCount = 4; + static constexpr auto ValueCount = 5; }; template <> @@ -86,7 +86,7 @@ struct EnumTraits template <> struct EnumTraits { - static constexpr auto ValueCount = 8; + static constexpr auto ValueCount = 13; }; template <> @@ -119,6 +119,12 @@ struct EnumTraits static constexpr auto ValueCount = 1; }; +template <> +struct EnumTraits +{ + static constexpr auto ValueCount = 5; +}; + template constexpr auto EnumValueCount = EnumTraits::ValueCount; @@ -495,12 +501,6 @@ struct OperatorDescTraits static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_ROI_POOLING; }; -template <> -struct OperatorDescTraits -{ - static constexpr DML_OPERATOR_TYPE Type = (DML_OPERATOR_TYPE) DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING; -}; - template <> struct OperatorDescTraits { @@ -885,6 +885,12 @@ struct OperatorDescTraits static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_QUANTIZED_LINEAR_MATRIX_MULTIPLY; }; +template <> +struct OperatorDescTraits +{ + static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT; +}; + template <> struct OperatorDescTraits { @@ -1035,6 +1041,18 @@ struct OperatorDescTraits static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_DIAGONAL_MATRIX1; }; +template <> +struct OperatorDescTraits +{ + static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_MULTIHEAD_ATTENTION; +}; + +template <> +struct OperatorDescTraits +{ + static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING; +}; + template <> struct OperatorDescTraits { @@ -1180,9 +1198,15 @@ struct OperatorDescTraits }; template <> -struct OperatorDescTraits +struct OperatorDescTraits { - static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_MULTIHEAD_ATTENTION; + static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_ACTIVATION_SWISH; +}; + +template <> +struct OperatorDescTraits +{ + static constexpr DML_OPERATOR_TYPE Type = DML_OPERATOR_ACTIVATION_HARD_SWISH; }; template <> @@ -1526,12 +1550,6 @@ struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_ROI_POOLING> using DescType = DML_ROI_POOLING_OPERATOR_DESC; }; -template <> -struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING> -{ - using DescType = DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_DESC; -}; - template <> struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_SLICE> { @@ -2066,6 +2084,24 @@ struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_DIAGONAL_MATRIX1> using DescType = DML_DIAGONAL_MATRIX1_OPERATOR_DESC; }; +template <> +struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_MULTIHEAD_ATTENTION> +{ + using DescType = DML_MULTIHEAD_ATTENTION_OPERATOR_DESC; +}; + +template <> +struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING> +{ + using DescType = DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_DESC; +}; + +template <> +struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT> +{ + using DescType = DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_DESC; +}; + template <> struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_ACTIVATION_ELU> { @@ -2211,9 +2247,15 @@ struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_ACTIVATION_GELU> }; template <> -struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_MULTIHEAD_ATTENTION> +struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_ACTIVATION_SWISH> { - using DescType = DML_MULTIHEAD_ATTENTION_OPERATOR_DESC; + using DescType = DML_ACTIVATION_SWISH_OPERATOR_DESC; +}; + +template <> +struct OperatorTypeTraits<(DML_OPERATOR_TYPE)DML_OPERATOR_ACTIVATION_HARD_SWISH> +{ + using DescType = DML_ACTIVATION_HARD_SWISH_OPERATOR_DESC; }; template <> @@ -2541,6 +2583,10 @@ auto OperatorTypeVisitor(DML_OPERATOR_TYPE type, Visitor&& visitor, Ts&&... args return std::invoke(std::forward(visitor), DML_QUANTIZE_OPERATOR_DESC{}, std::forward(args)...); case DML_OPERATOR_DEQUANTIZE: return std::invoke(std::forward(visitor), DML_DEQUANTIZE_OPERATOR_DESC{}, std::forward(args)...); + case DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING: + return std::invoke(std::forward(visitor), DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_DESC{}, std::forward(args)...); + case DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT: + return std::invoke(std::forward(visitor), DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_DESC{}, std::forward(args)...); case DML_OPERATOR_ACTIVATION_ELU: return std::invoke(std::forward(visitor), DML_ACTIVATION_ELU_OPERATOR_DESC{}, std::forward(args)...); case DML_OPERATOR_ACTIVATION_CELU: @@ -2589,13 +2635,10 @@ auto OperatorTypeVisitor(DML_OPERATOR_TYPE type, Visitor&& visitor, Ts&&... args return std::invoke(std::forward(visitor), DML_ACTIVATION_SHRINK_OPERATOR_DESC{}, std::forward(args)...); case DML_OPERATOR_ACTIVATION_GELU: return std::invoke(std::forward(visitor), DML_ACTIVATION_GELU_OPERATOR_DESC{}, std::forward(args)...); - -#pragma warning(push) -#pragma warning(disable: 4063) - case DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING: - return std::invoke(std::forward(visitor), DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_DESC{}, std::forward(args)...); -#pragma warning(pop) - + case DML_OPERATOR_ACTIVATION_SWISH: + return std::invoke(std::forward(visitor), DML_ACTIVATION_SWISH_OPERATOR_DESC{}, std::forward(args)...); + case DML_OPERATOR_ACTIVATION_HARD_SWISH: + return std::invoke(std::forward(visitor), DML_ACTIVATION_HARD_SWISH_OPERATOR_DESC{}, std::forward(args)...); default: ORT_THROW_HR(E_INVALIDARG); return std::invoke(std::forward(visitor), DML_ACTIVATION_RELU_OPERATOR_DESC{}, std::forward(args)...); @@ -2603,7 +2646,57 @@ auto OperatorTypeVisitor(DML_OPERATOR_TYPE type, Visitor&& visitor, Ts&&... args } #pragma warning(pop) +namespace StringifyHelpers +{ +template +inline gsl::czstring ToString(T value) +{ +#ifndef WAI_BUILD_LINUX + // Clang will instantiate this template even if it isn't used, + // so this static_assert will always fire and break the build. + static_assert(false, "Not implemented for this type"); +#endif +} + +template <> +inline gsl::czstring ToString(DML_TENSOR_DATA_TYPE value) +{ + switch (value) + { + case DML_TENSOR_DATA_TYPE_UNKNOWN: return "DML_TENSOR_DATA_TYPE_UNKNOWN"; + case DML_TENSOR_DATA_TYPE_FLOAT32: return "DML_TENSOR_DATA_TYPE_FLOAT32"; + case DML_TENSOR_DATA_TYPE_FLOAT16: return "DML_TENSOR_DATA_TYPE_FLOAT16"; + case DML_TENSOR_DATA_TYPE_UINT32: return "DML_TENSOR_DATA_TYPE_UINT32"; + case DML_TENSOR_DATA_TYPE_UINT16: return "DML_TENSOR_DATA_TYPE_UINT16"; + case DML_TENSOR_DATA_TYPE_UINT8: return "DML_TENSOR_DATA_TYPE_UINT8"; + case DML_TENSOR_DATA_TYPE_INT32: return "DML_TENSOR_DATA_TYPE_INT32"; + case DML_TENSOR_DATA_TYPE_INT16: return "DML_TENSOR_DATA_TYPE_INT16"; + case DML_TENSOR_DATA_TYPE_INT8: return "DML_TENSOR_DATA_TYPE_INT8"; + case DML_TENSOR_DATA_TYPE_FLOAT64: return "DML_TENSOR_DATA_TYPE_FLOAT64"; + case DML_TENSOR_DATA_TYPE_UINT64: return "DML_TENSOR_DATA_TYPE_UINT64"; + case DML_TENSOR_DATA_TYPE_INT64: return "DML_TENSOR_DATA_TYPE_INT64"; + case DML_TENSOR_DATA_TYPE_UINT4: return "DML_TENSOR_DATA_TYPE_UINT4"; + case DML_TENSOR_DATA_TYPE_INT4: return "DML_TENSOR_DATA_TYPE_INT4"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_TENSOR_TYPE value) +{ + switch (value) + { + case DML_TENSOR_TYPE_INVALID: return "DML_TENSOR_TYPE_INVALID"; + case DML_TENSOR_TYPE_BUFFER: return "DML_TENSOR_TYPE_BUFFER"; + default: + assert(false); + return ""; + } +} +template <> inline gsl::czstring ToString(DML_OPERATOR_TYPE value) { switch (value) @@ -2617,9 +2710,6 @@ inline gsl::czstring ToString(DML_OPERATOR_TYPE value) case DML_OPERATOR_ELEMENT_WISE_ATAN: return "DML_OPERATOR_ELEMENT_WISE_ATAN"; case DML_OPERATOR_ELEMENT_WISE_CEIL: return "DML_OPERATOR_ELEMENT_WISE_CEIL"; case DML_OPERATOR_ELEMENT_WISE_CLIP: return "DML_OPERATOR_ELEMENT_WISE_CLIP"; - case DML_OPERATOR_ELEMENT_WISE_CLIP1: return "DML_OPERATOR_ELEMENT_WISE_CLIP1"; - case DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD: return "DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD"; - case DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD1: return "DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD1"; case DML_OPERATOR_ELEMENT_WISE_COS: return "DML_OPERATOR_ELEMENT_WISE_COS"; case DML_OPERATOR_ELEMENT_WISE_DIVIDE: return "DML_OPERATOR_ELEMENT_WISE_DIVIDE"; case DML_OPERATOR_ELEMENT_WISE_EXP: return "DML_OPERATOR_ELEMENT_WISE_EXP"; @@ -2643,24 +2733,41 @@ inline gsl::czstring ToString(DML_OPERATOR_TYPE value) case DML_OPERATOR_ELEMENT_WISE_RECIP: return "DML_OPERATOR_ELEMENT_WISE_RECIP"; case DML_OPERATOR_ELEMENT_WISE_SIN: return "DML_OPERATOR_ELEMENT_WISE_SIN"; case DML_OPERATOR_ELEMENT_WISE_SQRT: return "DML_OPERATOR_ELEMENT_WISE_SQRT"; - case DML_OPERATOR_ELEMENT_WISE_DIFFERENCE_SQUARE: return "DML_OPERATOR_ELEMENT_WISE_DIFFERENCE_SQUARE"; - case DML_OPERATOR_ELEMENT_WISE_ATAN_YX: return "DML_OPERATOR_ELEMENT_WISE_ATAN_YX"; case DML_OPERATOR_ELEMENT_WISE_SUBTRACT: return "DML_OPERATOR_ELEMENT_WISE_SUBTRACT"; case DML_OPERATOR_ELEMENT_WISE_TAN: return "DML_OPERATOR_ELEMENT_WISE_TAN"; case DML_OPERATOR_ELEMENT_WISE_THRESHOLD: return "DML_OPERATOR_ELEMENT_WISE_THRESHOLD"; case DML_OPERATOR_ELEMENT_WISE_QUANTIZE_LINEAR: return "DML_OPERATOR_ELEMENT_WISE_QUANTIZE_LINEAR"; case DML_OPERATOR_ELEMENT_WISE_DEQUANTIZE_LINEAR: return "DML_OPERATOR_ELEMENT_WISE_DEQUANTIZE_LINEAR"; + case DML_OPERATOR_ACTIVATION_ELU: return "DML_OPERATOR_ACTIVATION_ELU"; + case DML_OPERATOR_ACTIVATION_CELU: return "DML_OPERATOR_ACTIVATION_CELU"; + case DML_OPERATOR_ACTIVATION_HARDMAX: return "DML_OPERATOR_ACTIVATION_HARDMAX"; + case DML_OPERATOR_ACTIVATION_HARDMAX1: return "DML_OPERATOR_ACTIVATION_HARDMAX1"; + case DML_OPERATOR_ACTIVATION_HARD_SIGMOID: return "DML_OPERATOR_ACTIVATION_HARD_SIGMOID"; + case DML_OPERATOR_ACTIVATION_IDENTITY: return "DML_OPERATOR_ACTIVATION_IDENTITY"; + case DML_OPERATOR_ACTIVATION_LEAKY_RELU: return "DML_OPERATOR_ACTIVATION_LEAKY_RELU"; + case DML_OPERATOR_ACTIVATION_LINEAR: return "DML_OPERATOR_ACTIVATION_LINEAR"; + case DML_OPERATOR_ACTIVATION_LOG_SOFTMAX: return "DML_OPERATOR_ACTIVATION_LOG_SOFTMAX"; + case DML_OPERATOR_ACTIVATION_LOG_SOFTMAX1: return "DML_OPERATOR_ACTIVATION_LOG_SOFTMAX1"; + case DML_OPERATOR_ACTIVATION_PARAMETERIZED_RELU: return "DML_OPERATOR_ACTIVATION_PARAMETERIZED_RELU"; + case DML_OPERATOR_ACTIVATION_PARAMETRIC_SOFTPLUS: return "DML_OPERATOR_ACTIVATION_PARAMETRIC_SOFTPLUS"; + case DML_OPERATOR_ACTIVATION_RELU: return "DML_OPERATOR_ACTIVATION_RELU"; + case DML_OPERATOR_ACTIVATION_SCALED_ELU: return "DML_OPERATOR_ACTIVATION_SCALED_ELU"; + case DML_OPERATOR_ACTIVATION_SCALED_TANH: return "DML_OPERATOR_ACTIVATION_SCALED_TANH"; + case DML_OPERATOR_ACTIVATION_SIGMOID: return "DML_OPERATOR_ACTIVATION_SIGMOID"; + case DML_OPERATOR_ACTIVATION_SOFTMAX: return "DML_OPERATOR_ACTIVATION_SOFTMAX"; + case DML_OPERATOR_ACTIVATION_SOFTMAX1: return "DML_OPERATOR_ACTIVATION_SOFTMAX1"; + case DML_OPERATOR_ACTIVATION_SOFTPLUS: return "DML_OPERATOR_ACTIVATION_SOFTPLUS"; + case DML_OPERATOR_ACTIVATION_SOFTSIGN: return "DML_OPERATOR_ACTIVATION_SOFTSIGN"; + case DML_OPERATOR_ACTIVATION_TANH: return "DML_OPERATOR_ACTIVATION_TANH"; + case DML_OPERATOR_ACTIVATION_THRESHOLDED_RELU: return "DML_OPERATOR_ACTIVATION_THRESHOLDED_RELU"; case DML_OPERATOR_CONVOLUTION: return "DML_OPERATOR_CONVOLUTION"; case DML_OPERATOR_GEMM: return "DML_OPERATOR_GEMM"; case DML_OPERATOR_REDUCE: return "DML_OPERATOR_REDUCE"; - case DML_OPERATOR_ARGMIN: return "DML_OPERATOR_ARGMIN"; - case DML_OPERATOR_ARGMAX: return "DML_OPERATOR_ARGMAX"; case DML_OPERATOR_AVERAGE_POOLING: return "DML_OPERATOR_AVERAGE_POOLING"; case DML_OPERATOR_AVERAGE_POOLING1: return "DML_OPERATOR_AVERAGE_POOLING1"; case DML_OPERATOR_LP_POOLING: return "DML_OPERATOR_LP_POOLING"; case DML_OPERATOR_LP_POOLING1: return "DML_OPERATOR_LP_POOLING1"; case DML_OPERATOR_MAX_POOLING: return "DML_OPERATOR_MAX_POOLING"; - case DML_OPERATOR_MAX_POOLING1: return "DML_OPERATOR_MAX_POOLING1"; case DML_OPERATOR_ROI_POOLING: return "DML_OPERATOR_ROI_POOLING"; case DML_OPERATOR_SLICE: return "DML_OPERATOR_SLICE"; case DML_OPERATOR_CAST: return "DML_OPERATOR_CAST"; @@ -2676,18 +2783,15 @@ inline gsl::czstring ToString(DML_OPERATOR_TYPE value) case DML_OPERATOR_TILE: return "DML_OPERATOR_TILE"; case DML_OPERATOR_TOP_K: return "DML_OPERATOR_TOP_K"; case DML_OPERATOR_BATCH_NORMALIZATION: return "DML_OPERATOR_BATCH_NORMALIZATION"; - case DML_OPERATOR_BATCH_NORMALIZATION_GRAD: return "DML_OPERATOR_BATCH_NORMALIZATION_GRAD"; - case DML_OPERATOR_BATCH_NORMALIZATION_TRAINING_GRAD: return "DML_OPERATOR_BATCH_NORMALIZATION_TRAINING_GRAD"; + case DML_OPERATOR_BATCH_NORMALIZATION_TRAINING: return "DML_OPERATOR_BATCH_NORMALIZATION_TRAINING"; case DML_OPERATOR_MEAN_VARIANCE_NORMALIZATION: return "DML_OPERATOR_MEAN_VARIANCE_NORMALIZATION"; case DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION: return "DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION"; - case DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION_GRAD: return "DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION_GRAD"; case DML_OPERATOR_LP_NORMALIZATION: return "DML_OPERATOR_LP_NORMALIZATION"; case DML_OPERATOR_RNN: return "DML_OPERATOR_RNN"; case DML_OPERATOR_LSTM: return "DML_OPERATOR_LSTM"; case DML_OPERATOR_GRU: return "DML_OPERATOR_GRU"; case DML_OPERATOR_ELEMENT_WISE_SIGN: return "DML_OPERATOR_ELEMENT_WISE_SIGN"; case DML_OPERATOR_ELEMENT_WISE_IS_NAN: return "DML_OPERATOR_ELEMENT_WISE_IS_NAN"; - case DML_OPERATOR_ELEMENT_WISE_NEGATE: return "DML_OPERATOR_ELEMENT_WISE_NEGATE"; case DML_OPERATOR_ELEMENT_WISE_ERF: return "DML_OPERATOR_ELEMENT_WISE_ERF"; case DML_OPERATOR_ELEMENT_WISE_SINH: return "DML_OPERATOR_ELEMENT_WISE_SINH"; case DML_OPERATOR_ELEMENT_WISE_COSH: return "DML_OPERATOR_ELEMENT_WISE_COSH"; @@ -2697,6 +2801,8 @@ inline gsl::czstring ToString(DML_OPERATOR_TYPE value) case DML_OPERATOR_ELEMENT_WISE_ATANH: return "DML_OPERATOR_ELEMENT_WISE_ATANH"; case DML_OPERATOR_ELEMENT_WISE_IF: return "DML_OPERATOR_ELEMENT_WISE_IF"; case DML_OPERATOR_ELEMENT_WISE_ADD1: return "DML_OPERATOR_ELEMENT_WISE_ADD1"; + case DML_OPERATOR_ACTIVATION_SHRINK: return "DML_OPERATOR_ACTIVATION_SHRINK"; + case DML_OPERATOR_MAX_POOLING1: return "DML_OPERATOR_MAX_POOLING1"; case DML_OPERATOR_MAX_UNPOOLING: return "DML_OPERATOR_MAX_UNPOOLING"; case DML_OPERATOR_DIAGONAL_MATRIX: return "DML_OPERATOR_DIAGONAL_MATRIX"; case DML_OPERATOR_SCATTER: return "DML_OPERATOR_SCATTER"; @@ -2708,10 +2814,9 @@ inline gsl::czstring ToString(DML_OPERATOR_TYPE value) case DML_OPERATOR_ELEMENT_WISE_IS_INFINITY: return "DML_OPERATOR_ELEMENT_WISE_IS_INFINITY"; case DML_OPERATOR_ELEMENT_WISE_MODULUS_TRUNCATE: return "DML_OPERATOR_ELEMENT_WISE_MODULUS_TRUNCATE"; case DML_OPERATOR_ELEMENT_WISE_MODULUS_FLOOR: return "DML_OPERATOR_ELEMENT_WISE_MODULUS_FLOOR"; - case DML_OPERATOR_FILL_VALUE_CONSTANT: return "DML_OPERATOR_FILL_VALUE_CONSTANT"; case DML_OPERATOR_FILL_VALUE_SEQUENCE: return "DML_OPERATOR_FILL_VALUE_SEQUENCE"; + case DML_OPERATOR_FILL_VALUE_CONSTANT: return "DML_OPERATOR_FILL_VALUE_CONSTANT"; case DML_OPERATOR_CUMULATIVE_SUMMATION: return "DML_OPERATOR_CUMULATIVE_SUMMATION"; - case DML_OPERATOR_CUMULATIVE_PRODUCT: return "DML_OPERATOR_CUMULATIVE_PRODUCT"; case DML_OPERATOR_REVERSE_SUBSEQUENCES: return "DML_OPERATOR_REVERSE_SUBSEQUENCES"; case DML_OPERATOR_GATHER_ELEMENTS: return "DML_OPERATOR_GATHER_ELEMENTS"; case DML_OPERATOR_GATHER_ND: return "DML_OPERATOR_GATHER_ND"; @@ -2744,20 +2849,281 @@ inline gsl::czstring ToString(DML_OPERATOR_TYPE value) case DML_OPERATOR_RESAMPLE_GRAD: return "DML_OPERATOR_RESAMPLE_GRAD"; case DML_OPERATOR_SLICE_GRAD: return "DML_OPERATOR_SLICE_GRAD"; case DML_OPERATOR_ADAM_OPTIMIZER: return "DML_OPERATOR_ADAM_OPTIMIZER"; + case DML_OPERATOR_ARGMIN: return "DML_OPERATOR_ARGMIN"; + case DML_OPERATOR_ARGMAX: return "DML_OPERATOR_ARGMAX"; case DML_OPERATOR_ROI_ALIGN: return "DML_OPERATOR_ROI_ALIGN"; - case DML_OPERATOR_ROI_ALIGN1: return "DML_OPERATOR_ROI_ALIGN1"; case DML_OPERATOR_GATHER_ND1: return "DML_OPERATOR_GATHER_ND1"; - case DML_OPERATOR_DYNAMIC_QUANTIZE_LINEAR: return "DML_OPERATOR_DYNAMIC_QUANTIZE_LINEAR"; + case DML_OPERATOR_ELEMENT_WISE_ATAN_YX: return "DML_OPERATOR_ELEMENT_WISE_ATAN_YX"; + case DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD: return "DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD"; + case DML_OPERATOR_ELEMENT_WISE_DIFFERENCE_SQUARE: return "DML_OPERATOR_ELEMENT_WISE_DIFFERENCE_SQUARE"; + case DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION_GRAD: return "DML_OPERATOR_LOCAL_RESPONSE_NORMALIZATION_GRAD"; + case DML_OPERATOR_CUMULATIVE_PRODUCT: return "DML_OPERATOR_CUMULATIVE_PRODUCT"; + case DML_OPERATOR_BATCH_NORMALIZATION_GRAD: return "DML_OPERATOR_BATCH_NORMALIZATION_GRAD"; + case DML_OPERATOR_BATCH_NORMALIZATION_TRAINING_GRAD: return "DML_OPERATOR_BATCH_NORMALIZATION_TRAINING_GRAD"; case DML_OPERATOR_ELEMENT_WISE_QUANTIZED_LINEAR_ADD: return "DML_OPERATOR_ELEMENT_WISE_QUANTIZED_LINEAR_ADD"; - case DML_OPERATOR_ROI_ALIGN_GRAD: return "DML_OPERATOR_ROI_ALIGN_GRAD"; - case DML_OPERATOR_BATCH_NORMALIZATION_TRAINING: return "DML_OPERATOR_BATCH_NORMALIZATION_TRAINING"; + case DML_OPERATOR_DYNAMIC_QUANTIZE_LINEAR: return "DML_OPERATOR_DYNAMIC_QUANTIZE_LINEAR"; + case DML_OPERATOR_ROI_ALIGN1: return "DML_OPERATOR_ROI_ALIGN1"; + case DML_OPERATOR_ELEMENT_WISE_CLIP1: return "DML_OPERATOR_ELEMENT_WISE_CLIP1"; + case DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD1: return "DML_OPERATOR_ELEMENT_WISE_CLIP_GRAD1"; + case DML_OPERATOR_ELEMENT_WISE_NEGATE: return "DML_OPERATOR_ELEMENT_WISE_NEGATE"; + case DML_OPERATOR_ACTIVATION_GELU: return "DML_OPERATOR_ACTIVATION_GELU"; + case DML_OPERATOR_ACTIVATION_SWISH: return "DML_OPERATOR_ACTIVATION_SWISH"; + case DML_OPERATOR_ACTIVATION_HARD_SWISH: return "DML_OPERATOR_ACTIVATION_HARD_SWISH"; case DML_OPERATOR_RESAMPLE2: return "DML_OPERATOR_RESAMPLE2"; case DML_OPERATOR_RESAMPLE_GRAD1: return "DML_OPERATOR_RESAMPLE_GRAD1"; case DML_OPERATOR_DIAGONAL_MATRIX1: return "DML_OPERATOR_DIAGONAL_MATRIX1"; case DML_OPERATOR_MULTIHEAD_ATTENTION: return "DML_OPERATOR_MULTIHEAD_ATTENTION"; + case DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING: return "DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING"; + case DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT: return "DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT"; + case DML_OPERATOR_RESAMPLE3: return "DML_OPERATOR_RESAMPLE3"; + case DML_OPERATOR_FOLD: return "DML_OPERATOR_FOLD"; + case DML_OPERATOR_UNFOLD: return "DML_OPERATOR_UNFOLD"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_BINDING_TYPE value) +{ + switch (value) + { + case DML_BINDING_TYPE_NONE: return "DML_BINDING_TYPE_NONE"; + case DML_BINDING_TYPE_BUFFER: return "DML_BINDING_TYPE_BUFFER"; + case DML_BINDING_TYPE_BUFFER_ARRAY: return "DML_BINDING_TYPE_BUFFER_ARRAY"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_REDUCE_FUNCTION value) +{ + switch (value) + { + case DML_REDUCE_FUNCTION_ARGMAX: return "DML_REDUCE_FUNCTION_ARGMAX"; + case DML_REDUCE_FUNCTION_ARGMIN: return "DML_REDUCE_FUNCTION_ARGMIN"; + case DML_REDUCE_FUNCTION_AVERAGE: return "DML_REDUCE_FUNCTION_AVERAGE"; + case DML_REDUCE_FUNCTION_L1: return "DML_REDUCE_FUNCTION_L1"; + case DML_REDUCE_FUNCTION_L2: return "DML_REDUCE_FUNCTION_L2"; + case DML_REDUCE_FUNCTION_LOG_SUM: return "DML_REDUCE_FUNCTION_LOG_SUM"; + case DML_REDUCE_FUNCTION_LOG_SUM_EXP: return "DML_REDUCE_FUNCTION_LOG_SUM_EXP"; + case DML_REDUCE_FUNCTION_MAX: return "DML_REDUCE_FUNCTION_MAX"; + case DML_REDUCE_FUNCTION_MIN: return "DML_REDUCE_FUNCTION_MIN"; + case DML_REDUCE_FUNCTION_MULTIPLY: return "DML_REDUCE_FUNCTION_MULTIPLY"; + case DML_REDUCE_FUNCTION_SUM: return "DML_REDUCE_FUNCTION_SUM"; + case DML_REDUCE_FUNCTION_SUM_SQUARE: return "DML_REDUCE_FUNCTION_SUM_SQUARE"; default: assert(false); return ""; } } + +template <> +inline gsl::czstring ToString(DML_MATRIX_TRANSFORM value) +{ + switch (value) + { + case DML_MATRIX_TRANSFORM_NONE: return "DML_MATRIX_TRANSFORM_NONE"; + case DML_MATRIX_TRANSFORM_TRANSPOSE: return "DML_MATRIX_TRANSFORM_TRANSPOSE"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_CONVOLUTION_MODE value) +{ + switch (value) + { + case DML_CONVOLUTION_MODE_CONVOLUTION: return "DML_CONVOLUTION_MODE_CONVOLUTION"; + case DML_CONVOLUTION_MODE_CROSS_CORRELATION: return "DML_CONVOLUTION_MODE_CROSS_CORRELATION"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_CONVOLUTION_DIRECTION value) +{ + switch (value) + { + case DML_CONVOLUTION_DIRECTION_FORWARD: return "DML_CONVOLUTION_DIRECTION_FORWARD"; + case DML_CONVOLUTION_DIRECTION_BACKWARD: return "DML_CONVOLUTION_DIRECTION_BACKWARD"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_PADDING_MODE value) +{ + switch (value) + { + case DML_PADDING_MODE_CONSTANT: return "DML_PADDING_MODE_CONSTANT"; + case DML_PADDING_MODE_EDGE: return "DML_PADDING_MODE_EDGE"; + case DML_PADDING_MODE_REFLECTION: return "DML_PADDING_MODE_REFLECTION"; + case DML_PADDING_MODE_SYMMETRIC: return "DML_PADDING_MODE_SYMMETRIC"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_INTERPOLATION_MODE value) +{ + switch (value) + { + case DML_INTERPOLATION_MODE_NEAREST_NEIGHBOR: return "DML_INTERPOLATION_MODE_NEAREST_NEIGHBOR"; + case DML_INTERPOLATION_MODE_LINEAR: return "DML_INTERPOLATION_MODE_LINEAR"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_RECURRENT_NETWORK_DIRECTION value) +{ + switch (value) + { + case DML_RECURRENT_NETWORK_DIRECTION_FORWARD: return "DML_RECURRENT_NETWORK_DIRECTION_FORWARD"; + case DML_RECURRENT_NETWORK_DIRECTION_BACKWARD: return "DML_RECURRENT_NETWORK_DIRECTION_BACKWARD"; + case DML_RECURRENT_NETWORK_DIRECTION_BIDIRECTIONAL: return "DML_RECURRENT_NETWORK_DIRECTION_BIDIRECTIONAL"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_FEATURE value) +{ + switch (value) + { + case DML_FEATURE_TENSOR_DATA_TYPE_SUPPORT: return "DML_FEATURE_TENSOR_DATA_TYPE_SUPPORT"; + case DML_FEATURE_FEATURE_LEVELS: return "DML_FEATURE_FEATURE_LEVELS"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_FEATURE_LEVEL value) +{ + switch (value) + { + case DML_FEATURE_LEVEL_1_0: return "DML_FEATURE_LEVEL_1_0"; + case DML_FEATURE_LEVEL_2_0: return "DML_FEATURE_LEVEL_2_0"; + case DML_FEATURE_LEVEL_2_1: return "DML_FEATURE_LEVEL_2_1"; + case DML_FEATURE_LEVEL_3_0: return "DML_FEATURE_LEVEL_3_0"; + case DML_FEATURE_LEVEL_3_1: return "DML_FEATURE_LEVEL_3_1"; + case DML_FEATURE_LEVEL_4_0: return "DML_FEATURE_LEVEL_4_0"; + case DML_FEATURE_LEVEL_4_1: return "DML_FEATURE_LEVEL_4_1"; + case DML_FEATURE_LEVEL_5_0: return "DML_FEATURE_LEVEL_5_0"; + case DML_FEATURE_LEVEL_5_1: return "DML_FEATURE_LEVEL_5_1"; + case DML_FEATURE_LEVEL_5_2: return "DML_FEATURE_LEVEL_5_2"; + case DML_FEATURE_LEVEL_6_0: return "DML_FEATURE_LEVEL_6_0"; + case DML_FEATURE_LEVEL_6_1: return "DML_FEATURE_LEVEL_6_1"; + case DML_FEATURE_LEVEL_6_2: return "DML_FEATURE_LEVEL_6_2"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_IS_INFINITY_MODE value) +{ + switch (value) + { + case DML_IS_INFINITY_MODE_EITHER: return "DML_IS_INFINITY_MODE_EITHER"; + case DML_IS_INFINITY_MODE_POSITIVE: return "DML_IS_INFINITY_MODE_POSITIVE"; + case DML_IS_INFINITY_MODE_NEGATIVE: return "DML_IS_INFINITY_MODE_NEGATIVE"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_DEPTH_SPACE_ORDER value) +{ + switch (value) + { + case DML_DEPTH_SPACE_ORDER_DEPTH_COLUMN_ROW: return "DML_DEPTH_SPACE_ORDER_DEPTH_COLUMN_ROW"; + case DML_DEPTH_SPACE_ORDER_COLUMN_ROW_DEPTH: return "DML_DEPTH_SPACE_ORDER_COLUMN_ROW_DEPTH"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_AXIS_DIRECTION value) +{ + switch (value) + { + case DML_AXIS_DIRECTION_INCREASING: return "DML_AXIS_DIRECTION_INCREASING"; + case DML_AXIS_DIRECTION_DECREASING: return "DML_AXIS_DIRECTION_DECREASING"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_ROUNDING_MODE value) +{ + switch (value) + { + case DML_ROUNDING_MODE_HALVES_TO_NEAREST_EVEN: return "DML_ROUNDING_MODE_HALVES_TO_NEAREST_EVEN"; + case DML_ROUNDING_MODE_TOWARD_ZERO: return "DML_ROUNDING_MODE_TOWARD_ZERO"; + case DML_ROUNDING_MODE_TOWARD_INFINITY: return "DML_ROUNDING_MODE_TOWARD_INFINITY"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_RANDOM_GENERATOR_TYPE value) +{ + switch (value) + { + case DML_RANDOM_GENERATOR_TYPE_PHILOX_4X32_10: return "DML_RANDOM_GENERATOR_TYPE_PHILOX_4X32_10"; + default: + assert(false); + return ""; + } +} + +template <> +inline gsl::czstring ToString(DML_MULTIHEAD_ATTENTION_MASK_TYPE value) +{ + switch (value) + { + case DML_MULTIHEAD_ATTENTION_MASK_TYPE_NONE: return "DML_MULTIHEAD_ATTENTION_MASK_TYPE_NONE"; + case DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_LENGTH: return "DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_LENGTH"; + case DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_END_START: return "DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_END_START"; + case DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_QUERY_SEQUENCE_LENGTH_START_END: return "DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_QUERY_SEQUENCE_LENGTH_START_END"; + case DML_MULTIHEAD_ATTENTION_MASK_TYPE_BOOLEAN: return "DML_MULTIHEAD_ATTENTION_MASK_TYPE_BOOLEAN"; + default: + assert(false); + return ""; + } +} + + +template +T FromString(std::string_view value); + +} } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DirectMLSchema.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DirectMLSchema.h index 50e0912a9a9b7..1d30bfe59ce3d 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DirectMLSchema.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DirectMLSchema.h @@ -618,7 +618,7 @@ constexpr DML_OPERATOR_SCHEMA DML_ELEMENT_WISE_THRESHOLD_OPERATOR_SCHEMA { constexpr DML_SCHEMA_FIELD DML_ELEMENT_WISE_QUANTIZE_LINEAR_OPERATOR_SCHEMA_FIELDS[4] { DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "ScaleTensor", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "ZeroPointTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "ZeroPointTensor", true }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, }; @@ -633,7 +633,7 @@ constexpr DML_OPERATOR_SCHEMA DML_ELEMENT_WISE_QUANTIZE_LINEAR_OPERATOR_SCHEMA { constexpr DML_SCHEMA_FIELD DML_ELEMENT_WISE_DEQUANTIZE_LINEAR_OPERATOR_SCHEMA_FIELDS[4] { DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "ScaleTensor", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "ZeroPointTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "ZeroPointTensor", true }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, }; @@ -869,31 +869,6 @@ constexpr DML_OPERATOR_SCHEMA DML_ROI_POOLING_OPERATOR_SCHEMA { DML_ROI_POOLING_OPERATOR_SCHEMA_FIELDS, }; - -constexpr DML_SCHEMA_FIELD DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA_FIELDS[13] { - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputScaleTensor", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputZeroPointTensor", true }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputScaleTensor", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputZeroPointTensor", true }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT, "DimensionCount", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "Strides", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "WindowSize", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "StartPadding", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "EndPadding", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "Dilations", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT, "IncludePadding", false }, -}; - -constexpr DML_OPERATOR_SCHEMA DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA { - "DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING", - static_cast(DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING), - DML_SCHEMA_OPERATOR_SUPPORT_FLAG_NONE, - 13, - DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA_FIELDS, -}; - constexpr DML_SCHEMA_FIELD DML_SLICE_OPERATOR_SCHEMA_FIELDS[6] { DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, @@ -1146,7 +1121,7 @@ constexpr DML_SCHEMA_FIELD DML_BATCH_NORMALIZATION_TRAINING_GRAD_OPERATOR_SCHEMA DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputGradientTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputScaleGradientTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputBiasGradientTensor", false }, - DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_FLOAT, "Epsilon", true }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_FLOAT, "Epsilon", false }, }; constexpr DML_OPERATOR_SCHEMA DML_BATCH_NORMALIZATION_TRAINING_GRAD_OPERATOR_SCHEMA { @@ -1911,6 +1886,25 @@ constexpr DML_OPERATOR_SCHEMA DML_MATRIX_MULTIPLY_INTEGER_OPERATOR_SCHEMA { DML_MATRIX_MULTIPLY_INTEGER_OPERATOR_SCHEMA_FIELDS, }; +constexpr DML_SCHEMA_FIELD DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA_FIELDS[8] { + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "ATensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "AScaleTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "AZeroPointTensor", true }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "BTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "BScaleTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "BZeroPointTensor", true }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "BiasTensor", true }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, +}; + +constexpr DML_OPERATOR_SCHEMA DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA { + "DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT", + static_cast(DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT), + DML_SCHEMA_OPERATOR_SUPPORT_FLAG_NONE, + 8, + DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA_FIELDS, +}; + constexpr DML_SCHEMA_FIELD DML_QUANTIZED_LINEAR_MATRIX_MULTIPLY_OPERATOR_SCHEMA_FIELDS[9] { DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "ATensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "AScaleTensor", false }, @@ -2333,7 +2327,7 @@ constexpr DML_OPERATOR_SCHEMA DML_BATCH_NORMALIZATION_TRAINING_OPERATOR_SCHEMA { DML_BATCH_NORMALIZATION_TRAINING_OPERATOR_SCHEMA_FIELDS, }; -constexpr DML_SCHEMA_FIELD DML_RESAMPLE2_OPERATOR_SCHEMA_FIELDS[8]{ +constexpr DML_SCHEMA_FIELD DML_RESAMPLE2_OPERATOR_SCHEMA_FIELDS[8] { DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT, "InterpolationMode", false }, @@ -2344,7 +2338,7 @@ constexpr DML_SCHEMA_FIELD DML_RESAMPLE2_OPERATOR_SCHEMA_FIELDS[8]{ DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_FLOAT_ARRAY, "OutputPixelOffsets", false }, }; -constexpr DML_OPERATOR_SCHEMA DML_RESAMPLE2_OPERATOR_SCHEMA{ +constexpr DML_OPERATOR_SCHEMA DML_RESAMPLE2_OPERATOR_SCHEMA { "DML_OPERATOR_RESAMPLE2", DML_OPERATOR_RESAMPLE2, DML_SCHEMA_OPERATOR_SUPPORT_FLAG_NONE, @@ -2363,7 +2357,7 @@ constexpr DML_SCHEMA_FIELD DML_RESAMPLE_GRAD1_OPERATOR_SCHEMA_FIELDS[8]{ DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_FLOAT_ARRAY, "OutputPixelOffsets", false }, }; -constexpr DML_OPERATOR_SCHEMA DML_RESAMPLE_GRAD1_OPERATOR_SCHEMA{ +constexpr DML_OPERATOR_SCHEMA DML_RESAMPLE_GRAD1_OPERATOR_SCHEMA { "DML_OPERATOR_RESAMPLE_GRAD1", DML_OPERATOR_RESAMPLE_GRAD1, DML_SCHEMA_OPERATOR_SUPPORT_FLAG_NONE, @@ -2371,7 +2365,7 @@ constexpr DML_OPERATOR_SCHEMA DML_RESAMPLE_GRAD1_OPERATOR_SCHEMA{ DML_RESAMPLE_GRAD1_OPERATOR_SCHEMA_FIELDS, }; -constexpr DML_SCHEMA_FIELD DML_DIAGONAL_MATRIX1_OPERATOR_SCHEMA_FIELDS[6]{ +constexpr DML_SCHEMA_FIELD DML_DIAGONAL_MATRIX1_OPERATOR_SCHEMA_FIELDS[6] { DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", true }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT, "ValueDataType", false }, @@ -2380,7 +2374,7 @@ constexpr DML_SCHEMA_FIELD DML_DIAGONAL_MATRIX1_OPERATOR_SCHEMA_FIELDS[6]{ DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_INT, "DiagonalFillEnd", false }, }; -constexpr DML_OPERATOR_SCHEMA DML_DIAGONAL_MATRIX1_OPERATOR_SCHEMA{ +constexpr DML_OPERATOR_SCHEMA DML_DIAGONAL_MATRIX1_OPERATOR_SCHEMA { "DML_OPERATOR_DIAGONAL_MATRIX1", DML_OPERATOR_DIAGONAL_MATRIX1, DML_SCHEMA_OPERATOR_SUPPORT_FLAG_NONE, @@ -2479,6 +2473,29 @@ constexpr DML_OPERATOR_SCHEMA DML_DEQUANTIZE_OPERATOR_SCHEMA { 5, DML_DEQUANTIZE_OPERATOR_SCHEMA_FIELDS, }; +constexpr DML_SCHEMA_FIELD DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA_FIELDS[13] { + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputScaleTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputZeroPointTensor", true }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputScaleTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputZeroPointTensor", true }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT, "DimensionCount", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "Strides", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "WindowSize", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "StartPadding", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "EndPadding", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT_ARRAY, "Dilations", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_UINT, "IncludePadding", false }, +}; + +constexpr DML_OPERATOR_SCHEMA DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA { + "DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING", + DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING, + DML_SCHEMA_OPERATOR_SUPPORT_FLAG_NONE, + 13, + DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA_FIELDS, +}; constexpr DML_SCHEMA_FIELD DML_ACTIVATION_ELU_OPERATOR_SCHEMA_FIELDS[3] { DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, @@ -2816,6 +2833,35 @@ constexpr DML_OPERATOR_SCHEMA DML_ACTIVATION_GELU_OPERATOR_SCHEMA { DML_ACTIVATION_GELU_OPERATOR_SCHEMA_FIELDS, }; +constexpr DML_SCHEMA_FIELD DML_ACTIVATION_SWISH_OPERATOR_SCHEMA_FIELDS[3] { + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_FLOAT, "SigmoidInputScale", false }, +}; + +constexpr DML_OPERATOR_SCHEMA DML_ACTIVATION_SWISH_OPERATOR_SCHEMA { + "DML_OPERATOR_ACTIVATION_SWISH", + DML_OPERATOR_ACTIVATION_SWISH, + DML_SCHEMA_OPERATOR_SUPPORT_FLAG_NONE, + 3, + DML_ACTIVATION_SWISH_OPERATOR_SCHEMA_FIELDS, +}; + +constexpr DML_SCHEMA_FIELD DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA_FIELDS[4] { + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_OUTPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "OutputTensor", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_FLOAT, "Alpha", false }, + DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_ATTRIBUTE, DML_SCHEMA_FIELD_TYPE_FLOAT, "Beta", false }, +}; + +constexpr DML_OPERATOR_SCHEMA DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA { + "DML_OPERATOR_ACTIVATION_HARD_SWISH", + DML_OPERATOR_ACTIVATION_HARD_SWISH, + DML_SCHEMA_OPERATOR_SUPPORT_FLAG_NONE, + 4, + DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA_FIELDS, +}; + constexpr DML_SCHEMA_FIELD DML_RNN_ZERO_OPERATOR_SCHEMA_FIELDS[3] { DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "InputTensor", false }, DML_SCHEMA_FIELD { DML_SCHEMA_FIELD_KIND_INPUT_TENSOR, DML_SCHEMA_FIELD_TYPE_TENSOR_DESC, "SequenceLengthsTensor", false }, diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphDesc_generated.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphDesc_generated.h new file mode 100644 index 0000000000000..df485396f1e47 --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphDesc_generated.h @@ -0,0 +1,850 @@ +// automatically generated by the FlatBuffers compiler, do not modify + + +#ifndef FLATBUFFERS_GENERATED_DMLGRAPHDESC_DML_IR_H_ +#define FLATBUFFERS_GENERATED_DMLGRAPHDESC_DML_IR_H_ + +#include "core/common/flatbuffers.h" + +// Ensure the included flatbuffers.h is the same version as when this file was +// generated, otherwise it may not be compatible. +static_assert(FLATBUFFERS_VERSION_MAJOR == 23 && + FLATBUFFERS_VERSION_MINOR == 5 && + FLATBUFFERS_VERSION_REVISION == 26, + "Non-compatible flatbuffers version included"); + +#include "OperatorFieldTypes_generated.h" + +namespace dml { +namespace ir { + +struct ConstantRawData; +struct ConstantRawDataBuilder; + +struct ConstantName; +struct ConstantNameBuilder; + +struct ConstantNodeDesc; +struct ConstantNodeDescBuilder; + +struct DmlBufferTensorDesc; +struct DmlBufferTensorDescBuilder; + +struct OperatorNodeDesc; +struct OperatorNodeDescBuilder; + +struct DmlGraphNode; +struct DmlGraphNodeBuilder; + +struct DmlGraphDesc; +struct DmlGraphDescBuilder; + +enum ConstantNodeDescDetail : uint8_t { + ConstantNodeDescDetail_NONE = 0, + ConstantNodeDescDetail_ConstantName = 1, + ConstantNodeDescDetail_ConstantRawData = 2, + ConstantNodeDescDetail_MIN = ConstantNodeDescDetail_NONE, + ConstantNodeDescDetail_MAX = ConstantNodeDescDetail_ConstantRawData +}; + +inline const ConstantNodeDescDetail (&EnumValuesConstantNodeDescDetail())[3] { + static const ConstantNodeDescDetail values[] = { + ConstantNodeDescDetail_NONE, + ConstantNodeDescDetail_ConstantName, + ConstantNodeDescDetail_ConstantRawData + }; + return values; +} + +inline const char * const *EnumNamesConstantNodeDescDetail() { + static const char * const names[4] = { + "NONE", + "ConstantName", + "ConstantRawData", + nullptr + }; + return names; +} + +inline const char *EnumNameConstantNodeDescDetail(ConstantNodeDescDetail e) { + if (::flatbuffers::IsOutRange(e, ConstantNodeDescDetail_NONE, ConstantNodeDescDetail_ConstantRawData)) return ""; + const size_t index = static_cast(e); + return EnumNamesConstantNodeDescDetail()[index]; +} + +template struct ConstantNodeDescDetailTraits { + static const ConstantNodeDescDetail enum_value = ConstantNodeDescDetail_NONE; +}; + +template<> struct ConstantNodeDescDetailTraits { + static const ConstantNodeDescDetail enum_value = ConstantNodeDescDetail_ConstantName; +}; + +template<> struct ConstantNodeDescDetailTraits { + static const ConstantNodeDescDetail enum_value = ConstantNodeDescDetail_ConstantRawData; +}; + +bool VerifyConstantNodeDescDetail(::flatbuffers::Verifier &verifier, const void *obj, ConstantNodeDescDetail type); +bool VerifyConstantNodeDescDetailVector(::flatbuffers::Verifier &verifier, const ::flatbuffers::Vector<::flatbuffers::Offset> *values, const ::flatbuffers::Vector *types); + +enum NodeDesc : uint8_t { + NodeDesc_NONE = 0, + NodeDesc_OperatorNodeDesc = 1, + NodeDesc_ConstantNodeDesc = 2, + NodeDesc_MIN = NodeDesc_NONE, + NodeDesc_MAX = NodeDesc_ConstantNodeDesc +}; + +inline const NodeDesc (&EnumValuesNodeDesc())[3] { + static const NodeDesc values[] = { + NodeDesc_NONE, + NodeDesc_OperatorNodeDesc, + NodeDesc_ConstantNodeDesc + }; + return values; +} + +inline const char * const *EnumNamesNodeDesc() { + static const char * const names[4] = { + "NONE", + "OperatorNodeDesc", + "ConstantNodeDesc", + nullptr + }; + return names; +} + +inline const char *EnumNameNodeDesc(NodeDesc e) { + if (::flatbuffers::IsOutRange(e, NodeDesc_NONE, NodeDesc_ConstantNodeDesc)) return ""; + const size_t index = static_cast(e); + return EnumNamesNodeDesc()[index]; +} + +template struct NodeDescTraits { + static const NodeDesc enum_value = NodeDesc_NONE; +}; + +template<> struct NodeDescTraits { + static const NodeDesc enum_value = NodeDesc_OperatorNodeDesc; +}; + +template<> struct NodeDescTraits { + static const NodeDesc enum_value = NodeDesc_ConstantNodeDesc; +}; + +bool VerifyNodeDesc(::flatbuffers::Verifier &verifier, const void *obj, NodeDesc type); +bool VerifyNodeDescVector(::flatbuffers::Verifier &verifier, const ::flatbuffers::Vector<::flatbuffers::Offset> *values, const ::flatbuffers::Vector *types); + +struct ConstantRawData FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef ConstantRawDataBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATA = 4 + }; + const ::flatbuffers::Vector *data() const { + return GetPointer *>(VT_DATA); + } + ::flatbuffers::Vector *mutable_data() { + return GetPointer<::flatbuffers::Vector *>(VT_DATA); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_DATA) && + verifier.VerifyVector(data()) && + verifier.EndTable(); + } +}; + +struct ConstantRawDataBuilder { + typedef ConstantRawData Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_data(::flatbuffers::Offset<::flatbuffers::Vector> data) { + fbb_.AddOffset(ConstantRawData::VT_DATA, data); + } + explicit ConstantRawDataBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateConstantRawData( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::Vector> data = 0) { + ConstantRawDataBuilder builder_(_fbb); + builder_.add_data(data); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateConstantRawDataDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *data = nullptr) { + auto data__ = data ? _fbb.CreateVector(*data) : 0; + return dml::ir::CreateConstantRawData( + _fbb, + data__); +} + +struct ConstantName FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef ConstantNameBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NAME = 4 + }; + const ::flatbuffers::String *name() const { + return GetPointer(VT_NAME); + } + ::flatbuffers::String *mutable_name() { + return GetPointer<::flatbuffers::String *>(VT_NAME); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_NAME) && + verifier.VerifyString(name()) && + verifier.EndTable(); + } +}; + +struct ConstantNameBuilder { + typedef ConstantName Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_name(::flatbuffers::Offset<::flatbuffers::String> name) { + fbb_.AddOffset(ConstantName::VT_NAME, name); + } + explicit ConstantNameBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateConstantName( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::String> name = 0) { + ConstantNameBuilder builder_(_fbb); + builder_.add_name(name); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateConstantNameDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const char *name = nullptr) { + auto name__ = name ? _fbb.CreateString(name) : 0; + return dml::ir::CreateConstantName( + _fbb, + name__); +} + +struct ConstantNodeDesc FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef ConstantNodeDescBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATA_TYPE = 4, + VT_DATA = 6 + }; + dml::ir::ConstantNodeDescDetail data_type() const { + return static_cast(GetField(VT_DATA_TYPE, 0)); + } + const void *data() const { + return GetPointer(VT_DATA); + } + template const T *data_as() const; + const dml::ir::ConstantName *data_as_ConstantName() const { + return data_type() == dml::ir::ConstantNodeDescDetail_ConstantName ? static_cast(data()) : nullptr; + } + const dml::ir::ConstantRawData *data_as_ConstantRawData() const { + return data_type() == dml::ir::ConstantNodeDescDetail_ConstantRawData ? static_cast(data()) : nullptr; + } + void *mutable_data() { + return GetPointer(VT_DATA); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_DATA_TYPE, 1) && + VerifyOffset(verifier, VT_DATA) && + VerifyConstantNodeDescDetail(verifier, data(), data_type()) && + verifier.EndTable(); + } +}; + +template<> inline const dml::ir::ConstantName *ConstantNodeDesc::data_as() const { + return data_as_ConstantName(); +} + +template<> inline const dml::ir::ConstantRawData *ConstantNodeDesc::data_as() const { + return data_as_ConstantRawData(); +} + +struct ConstantNodeDescBuilder { + typedef ConstantNodeDesc Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_data_type(dml::ir::ConstantNodeDescDetail data_type) { + fbb_.AddElement(ConstantNodeDesc::VT_DATA_TYPE, static_cast(data_type), 0); + } + void add_data(::flatbuffers::Offset data) { + fbb_.AddOffset(ConstantNodeDesc::VT_DATA, data); + } + explicit ConstantNodeDescBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateConstantNodeDesc( + ::flatbuffers::FlatBufferBuilder &_fbb, + dml::ir::ConstantNodeDescDetail data_type = dml::ir::ConstantNodeDescDetail_NONE, + ::flatbuffers::Offset data = 0) { + ConstantNodeDescBuilder builder_(_fbb); + builder_.add_data(data); + builder_.add_data_type(data_type); + return builder_.Finish(); +} + +struct DmlBufferTensorDesc FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef DmlBufferTensorDescBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATATYPE = 4, + VT_SIZES = 6, + VT_STRIDES = 8, + VT_TOTALTENSORSIZEINBYTES = 10 + }; + const ::flatbuffers::String *dataType() const { + return GetPointer(VT_DATATYPE); + } + ::flatbuffers::String *mutable_dataType() { + return GetPointer<::flatbuffers::String *>(VT_DATATYPE); + } + const ::flatbuffers::Vector *sizes() const { + return GetPointer *>(VT_SIZES); + } + ::flatbuffers::Vector *mutable_sizes() { + return GetPointer<::flatbuffers::Vector *>(VT_SIZES); + } + const ::flatbuffers::Vector *strides() const { + return GetPointer *>(VT_STRIDES); + } + ::flatbuffers::Vector *mutable_strides() { + return GetPointer<::flatbuffers::Vector *>(VT_STRIDES); + } + uint64_t totalTensorSizeInBytes() const { + return GetField(VT_TOTALTENSORSIZEINBYTES, 0); + } + bool mutate_totalTensorSizeInBytes(uint64_t _totalTensorSizeInBytes = 0) { + return SetField(VT_TOTALTENSORSIZEINBYTES, _totalTensorSizeInBytes, 0); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_DATATYPE) && + verifier.VerifyString(dataType()) && + VerifyOffset(verifier, VT_SIZES) && + verifier.VerifyVector(sizes()) && + VerifyOffset(verifier, VT_STRIDES) && + verifier.VerifyVector(strides()) && + VerifyField(verifier, VT_TOTALTENSORSIZEINBYTES, 8) && + verifier.EndTable(); + } +}; + +struct DmlBufferTensorDescBuilder { + typedef DmlBufferTensorDesc Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_dataType(::flatbuffers::Offset<::flatbuffers::String> dataType) { + fbb_.AddOffset(DmlBufferTensorDesc::VT_DATATYPE, dataType); + } + void add_sizes(::flatbuffers::Offset<::flatbuffers::Vector> sizes) { + fbb_.AddOffset(DmlBufferTensorDesc::VT_SIZES, sizes); + } + void add_strides(::flatbuffers::Offset<::flatbuffers::Vector> strides) { + fbb_.AddOffset(DmlBufferTensorDesc::VT_STRIDES, strides); + } + void add_totalTensorSizeInBytes(uint64_t totalTensorSizeInBytes) { + fbb_.AddElement(DmlBufferTensorDesc::VT_TOTALTENSORSIZEINBYTES, totalTensorSizeInBytes, 0); + } + explicit DmlBufferTensorDescBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateDmlBufferTensorDesc( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::String> dataType = 0, + ::flatbuffers::Offset<::flatbuffers::Vector> sizes = 0, + ::flatbuffers::Offset<::flatbuffers::Vector> strides = 0, + uint64_t totalTensorSizeInBytes = 0) { + DmlBufferTensorDescBuilder builder_(_fbb); + builder_.add_totalTensorSizeInBytes(totalTensorSizeInBytes); + builder_.add_strides(strides); + builder_.add_sizes(sizes); + builder_.add_dataType(dataType); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateDmlBufferTensorDescDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const char *dataType = nullptr, + const std::vector *sizes = nullptr, + const std::vector *strides = nullptr, + uint64_t totalTensorSizeInBytes = 0) { + auto dataType__ = dataType ? _fbb.CreateString(dataType) : 0; + auto sizes__ = sizes ? _fbb.CreateVector(*sizes) : 0; + auto strides__ = strides ? _fbb.CreateVector(*strides) : 0; + return dml::ir::CreateDmlBufferTensorDesc( + _fbb, + dataType__, + sizes__, + strides__, + totalTensorSizeInBytes); +} + +struct OperatorNodeDesc FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef OperatorNodeDescBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_TYPE = 4, + VT_INPUTS = 6, + VT_OUTPUTS = 8, + VT_ATTRIBUTES = 10 + }; + const ::flatbuffers::String *type() const { + return GetPointer(VT_TYPE); + } + ::flatbuffers::String *mutable_type() { + return GetPointer<::flatbuffers::String *>(VT_TYPE); + } + const ::flatbuffers::Vector<::flatbuffers::Offset> *inputs() const { + return GetPointer> *>(VT_INPUTS); + } + ::flatbuffers::Vector<::flatbuffers::Offset> *mutable_inputs() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset> *>(VT_INPUTS); + } + const ::flatbuffers::Vector<::flatbuffers::Offset> *outputs() const { + return GetPointer> *>(VT_OUTPUTS); + } + ::flatbuffers::Vector<::flatbuffers::Offset> *mutable_outputs() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset> *>(VT_OUTPUTS); + } + const ::flatbuffers::Vector<::flatbuffers::Offset> *attributes() const { + return GetPointer> *>(VT_ATTRIBUTES); + } + ::flatbuffers::Vector<::flatbuffers::Offset> *mutable_attributes() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset> *>(VT_ATTRIBUTES); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_TYPE) && + verifier.VerifyString(type()) && + VerifyOffset(verifier, VT_INPUTS) && + verifier.VerifyVector(inputs()) && + verifier.VerifyVectorOfTables(inputs()) && + VerifyOffset(verifier, VT_OUTPUTS) && + verifier.VerifyVector(outputs()) && + verifier.VerifyVectorOfTables(outputs()) && + VerifyOffset(verifier, VT_ATTRIBUTES) && + verifier.VerifyVector(attributes()) && + verifier.VerifyVectorOfTables(attributes()) && + verifier.EndTable(); + } +}; + +struct OperatorNodeDescBuilder { + typedef OperatorNodeDesc Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_type(::flatbuffers::Offset<::flatbuffers::String> type) { + fbb_.AddOffset(OperatorNodeDesc::VT_TYPE, type); + } + void add_inputs(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> inputs) { + fbb_.AddOffset(OperatorNodeDesc::VT_INPUTS, inputs); + } + void add_outputs(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> outputs) { + fbb_.AddOffset(OperatorNodeDesc::VT_OUTPUTS, outputs); + } + void add_attributes(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> attributes) { + fbb_.AddOffset(OperatorNodeDesc::VT_ATTRIBUTES, attributes); + } + explicit OperatorNodeDescBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateOperatorNodeDesc( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::String> type = 0, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> inputs = 0, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> outputs = 0, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> attributes = 0) { + OperatorNodeDescBuilder builder_(_fbb); + builder_.add_attributes(attributes); + builder_.add_outputs(outputs); + builder_.add_inputs(inputs); + builder_.add_type(type); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateOperatorNodeDescDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const char *type = nullptr, + const std::vector<::flatbuffers::Offset> *inputs = nullptr, + const std::vector<::flatbuffers::Offset> *outputs = nullptr, + const std::vector<::flatbuffers::Offset> *attributes = nullptr) { + auto type__ = type ? _fbb.CreateString(type) : 0; + auto inputs__ = inputs ? _fbb.CreateVector<::flatbuffers::Offset>(*inputs) : 0; + auto outputs__ = outputs ? _fbb.CreateVector<::flatbuffers::Offset>(*outputs) : 0; + auto attributes__ = attributes ? _fbb.CreateVector<::flatbuffers::Offset>(*attributes) : 0; + return dml::ir::CreateOperatorNodeDesc( + _fbb, + type__, + inputs__, + outputs__, + attributes__); +} + +struct DmlGraphNode FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef DmlGraphNodeBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DESC_TYPE = 4, + VT_DESC = 6, + VT_NAME = 8, + VT_INPUTNAMES = 10, + VT_OUTPUTNAMES = 12 + }; + dml::ir::NodeDesc desc_type() const { + return static_cast(GetField(VT_DESC_TYPE, 0)); + } + const void *desc() const { + return GetPointer(VT_DESC); + } + template const T *desc_as() const; + const dml::ir::OperatorNodeDesc *desc_as_OperatorNodeDesc() const { + return desc_type() == dml::ir::NodeDesc_OperatorNodeDesc ? static_cast(desc()) : nullptr; + } + const dml::ir::ConstantNodeDesc *desc_as_ConstantNodeDesc() const { + return desc_type() == dml::ir::NodeDesc_ConstantNodeDesc ? static_cast(desc()) : nullptr; + } + void *mutable_desc() { + return GetPointer(VT_DESC); + } + const ::flatbuffers::String *name() const { + return GetPointer(VT_NAME); + } + ::flatbuffers::String *mutable_name() { + return GetPointer<::flatbuffers::String *>(VT_NAME); + } + const ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *inputNames() const { + return GetPointer> *>(VT_INPUTNAMES); + } + ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *mutable_inputNames() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *>(VT_INPUTNAMES); + } + const ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *outputNames() const { + return GetPointer> *>(VT_OUTPUTNAMES); + } + ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *mutable_outputNames() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *>(VT_OUTPUTNAMES); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_DESC_TYPE, 1) && + VerifyOffset(verifier, VT_DESC) && + VerifyNodeDesc(verifier, desc(), desc_type()) && + VerifyOffset(verifier, VT_NAME) && + verifier.VerifyString(name()) && + VerifyOffset(verifier, VT_INPUTNAMES) && + verifier.VerifyVector(inputNames()) && + verifier.VerifyVectorOfStrings(inputNames()) && + VerifyOffset(verifier, VT_OUTPUTNAMES) && + verifier.VerifyVector(outputNames()) && + verifier.VerifyVectorOfStrings(outputNames()) && + verifier.EndTable(); + } +}; + +template<> inline const dml::ir::OperatorNodeDesc *DmlGraphNode::desc_as() const { + return desc_as_OperatorNodeDesc(); +} + +template<> inline const dml::ir::ConstantNodeDesc *DmlGraphNode::desc_as() const { + return desc_as_ConstantNodeDesc(); +} + +struct DmlGraphNodeBuilder { + typedef DmlGraphNode Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_desc_type(dml::ir::NodeDesc desc_type) { + fbb_.AddElement(DmlGraphNode::VT_DESC_TYPE, static_cast(desc_type), 0); + } + void add_desc(::flatbuffers::Offset desc) { + fbb_.AddOffset(DmlGraphNode::VT_DESC, desc); + } + void add_name(::flatbuffers::Offset<::flatbuffers::String> name) { + fbb_.AddOffset(DmlGraphNode::VT_NAME, name); + } + void add_inputNames(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> inputNames) { + fbb_.AddOffset(DmlGraphNode::VT_INPUTNAMES, inputNames); + } + void add_outputNames(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> outputNames) { + fbb_.AddOffset(DmlGraphNode::VT_OUTPUTNAMES, outputNames); + } + explicit DmlGraphNodeBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateDmlGraphNode( + ::flatbuffers::FlatBufferBuilder &_fbb, + dml::ir::NodeDesc desc_type = dml::ir::NodeDesc_NONE, + ::flatbuffers::Offset desc = 0, + ::flatbuffers::Offset<::flatbuffers::String> name = 0, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> inputNames = 0, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> outputNames = 0) { + DmlGraphNodeBuilder builder_(_fbb); + builder_.add_outputNames(outputNames); + builder_.add_inputNames(inputNames); + builder_.add_name(name); + builder_.add_desc(desc); + builder_.add_desc_type(desc_type); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateDmlGraphNodeDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + dml::ir::NodeDesc desc_type = dml::ir::NodeDesc_NONE, + ::flatbuffers::Offset desc = 0, + const char *name = nullptr, + const std::vector<::flatbuffers::Offset<::flatbuffers::String>> *inputNames = nullptr, + const std::vector<::flatbuffers::Offset<::flatbuffers::String>> *outputNames = nullptr) { + auto name__ = name ? _fbb.CreateString(name) : 0; + auto inputNames__ = inputNames ? _fbb.CreateVector<::flatbuffers::Offset<::flatbuffers::String>>(*inputNames) : 0; + auto outputNames__ = outputNames ? _fbb.CreateVector<::flatbuffers::Offset<::flatbuffers::String>>(*outputNames) : 0; + return dml::ir::CreateDmlGraphNode( + _fbb, + desc_type, + desc, + name__, + inputNames__, + outputNames__); +} + +struct DmlGraphDesc FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef DmlGraphDescBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NODES = 4, + VT_GRAPHINPUTNAMES = 6, + VT_GRAPHOUTPUTNAMES = 8 + }; + const ::flatbuffers::Vector<::flatbuffers::Offset> *nodes() const { + return GetPointer> *>(VT_NODES); + } + ::flatbuffers::Vector<::flatbuffers::Offset> *mutable_nodes() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset> *>(VT_NODES); + } + const ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *graphInputNames() const { + return GetPointer> *>(VT_GRAPHINPUTNAMES); + } + ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *mutable_graphInputNames() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *>(VT_GRAPHINPUTNAMES); + } + const ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *graphOutputNames() const { + return GetPointer> *>(VT_GRAPHOUTPUTNAMES); + } + ::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *mutable_graphOutputNames() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>> *>(VT_GRAPHOUTPUTNAMES); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_NODES) && + verifier.VerifyVector(nodes()) && + verifier.VerifyVectorOfTables(nodes()) && + VerifyOffset(verifier, VT_GRAPHINPUTNAMES) && + verifier.VerifyVector(graphInputNames()) && + verifier.VerifyVectorOfStrings(graphInputNames()) && + VerifyOffset(verifier, VT_GRAPHOUTPUTNAMES) && + verifier.VerifyVector(graphOutputNames()) && + verifier.VerifyVectorOfStrings(graphOutputNames()) && + verifier.EndTable(); + } +}; + +struct DmlGraphDescBuilder { + typedef DmlGraphDesc Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_nodes(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> nodes) { + fbb_.AddOffset(DmlGraphDesc::VT_NODES, nodes); + } + void add_graphInputNames(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> graphInputNames) { + fbb_.AddOffset(DmlGraphDesc::VT_GRAPHINPUTNAMES, graphInputNames); + } + void add_graphOutputNames(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> graphOutputNames) { + fbb_.AddOffset(DmlGraphDesc::VT_GRAPHOUTPUTNAMES, graphOutputNames); + } + explicit DmlGraphDescBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateDmlGraphDesc( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> nodes = 0, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> graphInputNames = 0, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> graphOutputNames = 0) { + DmlGraphDescBuilder builder_(_fbb); + builder_.add_graphOutputNames(graphOutputNames); + builder_.add_graphInputNames(graphInputNames); + builder_.add_nodes(nodes); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateDmlGraphDescDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const std::vector<::flatbuffers::Offset> *nodes = nullptr, + const std::vector<::flatbuffers::Offset<::flatbuffers::String>> *graphInputNames = nullptr, + const std::vector<::flatbuffers::Offset<::flatbuffers::String>> *graphOutputNames = nullptr) { + auto nodes__ = nodes ? _fbb.CreateVector<::flatbuffers::Offset>(*nodes) : 0; + auto graphInputNames__ = graphInputNames ? _fbb.CreateVector<::flatbuffers::Offset<::flatbuffers::String>>(*graphInputNames) : 0; + auto graphOutputNames__ = graphOutputNames ? _fbb.CreateVector<::flatbuffers::Offset<::flatbuffers::String>>(*graphOutputNames) : 0; + return dml::ir::CreateDmlGraphDesc( + _fbb, + nodes__, + graphInputNames__, + graphOutputNames__); +} + +inline bool VerifyConstantNodeDescDetail(::flatbuffers::Verifier &verifier, const void *obj, ConstantNodeDescDetail type) { + switch (type) { + case ConstantNodeDescDetail_NONE: { + return true; + } + case ConstantNodeDescDetail_ConstantName: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case ConstantNodeDescDetail_ConstantRawData: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + default: return true; + } +} + +inline bool VerifyConstantNodeDescDetailVector(::flatbuffers::Verifier &verifier, const ::flatbuffers::Vector<::flatbuffers::Offset> *values, const ::flatbuffers::Vector *types) { + if (!values || !types) return !values && !types; + if (values->size() != types->size()) return false; + for (::flatbuffers::uoffset_t i = 0; i < values->size(); ++i) { + if (!VerifyConstantNodeDescDetail( + verifier, values->Get(i), types->GetEnum(i))) { + return false; + } + } + return true; +} + +inline bool VerifyNodeDesc(::flatbuffers::Verifier &verifier, const void *obj, NodeDesc type) { + switch (type) { + case NodeDesc_NONE: { + return true; + } + case NodeDesc_OperatorNodeDesc: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case NodeDesc_ConstantNodeDesc: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + default: return true; + } +} + +inline bool VerifyNodeDescVector(::flatbuffers::Verifier &verifier, const ::flatbuffers::Vector<::flatbuffers::Offset> *values, const ::flatbuffers::Vector *types) { + if (!values || !types) return !values && !types; + if (values->size() != types->size()) return false; + for (::flatbuffers::uoffset_t i = 0; i < values->size(); ++i) { + if (!VerifyNodeDesc( + verifier, values->Get(i), types->GetEnum(i))) { + return false; + } + } + return true; +} + +inline const dml::ir::DmlGraphDesc *GetDmlGraphDesc(const void *buf) { + return ::flatbuffers::GetRoot(buf); +} + +inline const dml::ir::DmlGraphDesc *GetSizePrefixedDmlGraphDesc(const void *buf) { + return ::flatbuffers::GetSizePrefixedRoot(buf); +} + +inline DmlGraphDesc *GetMutableDmlGraphDesc(void *buf) { + return ::flatbuffers::GetMutableRoot(buf); +} + +inline dml::ir::DmlGraphDesc *GetMutableSizePrefixedDmlGraphDesc(void *buf) { + return ::flatbuffers::GetMutableSizePrefixedRoot(buf); +} + +inline bool VerifyDmlGraphDescBuffer( + ::flatbuffers::Verifier &verifier) { + return verifier.VerifyBuffer(nullptr); +} + +inline bool VerifySizePrefixedDmlGraphDescBuffer( + ::flatbuffers::Verifier &verifier) { + return verifier.VerifySizePrefixedBuffer(nullptr); +} + +inline void FinishDmlGraphDescBuffer( + ::flatbuffers::FlatBufferBuilder &fbb, + ::flatbuffers::Offset root) { + fbb.Finish(root); +} + +inline void FinishSizePrefixedDmlGraphDescBuffer( + ::flatbuffers::FlatBufferBuilder &fbb, + ::flatbuffers::Offset root) { + fbb.FinishSizePrefixed(root); +} + +} // namespace ir +} // namespace dml + +#endif // FLATBUFFERS_GENERATED_DMLGRAPHDESC_DML_IR_H_ diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphDeserialization.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphDeserialization.h new file mode 100644 index 0000000000000..9decf0dce1bb2 --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphDeserialization.h @@ -0,0 +1,14 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. + +#pragma once +#include "DmlSerializedGraphDesc.h" + +struct NodeIndex +{ + uint32_t nodeIndex; + uint32_t nodeOutputIndex; +}; + +DmlSerializedGraphDesc DeserializeDmlGraph( + const uint8_t* flatbufferGraphDescBlob, + /*out*/ std::vector>& rawData); \ No newline at end of file diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphHelper.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphHelper.h new file mode 100644 index 0000000000000..d2dd7cd8eff1b --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphHelper.h @@ -0,0 +1,52 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. + +#pragma once +#include + +inline void PerformTopologicalSortAndCheckIsAcyclic( + const DmlSerializedGraphDesc& graphDesc, + std::vector& nodesInTopologicalOrder) +{ + uint32_t nodeCount = static_cast(graphDesc.Nodes.size()); + std::queue queue; + std::vector inDegree(nodeCount, 0); + std::vector> children(nodeCount); + + // Don't need to iterate through InputEdges because those inputs don't represent any node + // and the purpose of this topological sort is to come up with a order to correctly iterate + // through nodes . + for (const DmlIntermediateSerializedGraphEdge& intermediateEdge : graphDesc.IntermediateEdges) + { + inDegree[intermediateEdge.ToNodeIndex]++; + children[intermediateEdge.FromNodeIndex].push_back(intermediateEdge.ToNodeIndex); + } + + for (uint32_t nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) + { + if (inDegree[nodeIndex] == 0) + { + queue.push(nodeIndex); + } + } + + uint32_t nodeIndex = 0; + while (!queue.empty()) + { + if (nodeIndex >= nodeCount) + { + throw std::invalid_argument("Given graph is not acyclic."); + } + + uint32_t currNodeIndex = queue.front(); + queue.pop(); + nodesInTopologicalOrder[nodeIndex++] = currNodeIndex; + + for (uint32_t child : children[currNodeIndex]) + { + if (--inDegree[child] == 0) + { + queue.push(child); + } + } + } +} diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphSerialization.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphSerialization.h new file mode 100644 index 0000000000000..d8d069da906b7 --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlGraphSerialization.h @@ -0,0 +1,8 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. + +#pragma once +#include "DmlGraphDesc_generated.h" + +struct DmlSerializedGraphDesc; + +flatbuffers::DetachedBuffer SerializeDmlGraph(const DmlSerializedGraphDesc& graphDesc); diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlSerializedGraphDesc.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlSerializedGraphDesc.h new file mode 100644 index 0000000000000..51c3d6c81244b --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/DmlSerializedGraphDesc.h @@ -0,0 +1,73 @@ +//----------------------------------------------------------------------------- +// +// Copyright (c) Microsoft Corporation. All rights reserved. +// +//----------------------------------------------------------------------------- + +#pragma once + +struct ConstantName +{ + std::string name; +}; + +struct ConstantData +{ + std::byte* data; + uint64_t dataSize; +}; + +using DmlSerializedGraphNodeConstantVariant = std::variant< + ConstantName, + ConstantData +>; + +using DmlSerializedGraphNodeDescVariant = std::variant< + AbstractOperatorDesc, + DmlSerializedGraphNodeConstantVariant +>; + +struct DmlSerializedGraphNode +{ + DmlSerializedGraphNodeDescVariant Desc; + std::string Name; +}; + +struct DmlInputSerializedGraphEdge +{ + uint32_t GraphInputIndex; + uint32_t ToNodeIndex; + uint32_t ToNodeInputIndex; + std::string Name; +}; + +struct DmlOutputSerializedGraphEdge +{ + uint32_t FromNodeIndex; + uint32_t FromNodeOutputIndex; + uint32_t GraphOutputIndex; + std::string Name; +}; + +struct DmlIntermediateSerializedGraphEdge +{ + uint32_t FromNodeIndex; + uint32_t FromNodeOutputIndex; + uint32_t ToNodeIndex; + uint32_t ToNodeInputIndex; + std::string Name; +}; + +struct DmlSerializedGraphDesc +{ + uint32_t InputCount; + uint32_t OutputCount; + // nodes must be present in topological order for deserialization to work + // because while creating a intermediate edge during deserialization, node (from + // which given intermediate edge is outputting) must be visited before than the node + // (to which given intermediate edge is inputting) + std::vector Nodes; + std::vector InputEdges; + std::vector OutputEdges; + std::vector IntermediateEdges; +}; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/GeneratedSchemaHelpers.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/GeneratedSchemaHelpers.h index 9472d7dec58c6..af3a16481eada 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/GeneratedSchemaHelpers.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/GeneratedSchemaHelpers.h @@ -425,7 +425,6 @@ inline std::vector GetFields(const DML_AVERAGE_POOLING_OPERATOR_D OperatorField(&DML_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[7], ToOperatorFieldType(static_cast(desc.IncludePadding))), }; } - inline std::vector GetFields(const DML_AVERAGE_POOLING1_OPERATOR_DESC& desc) { return { @@ -502,24 +501,6 @@ inline std::vector GetFields(const DML_ROI_POOLING_OPERATOR_DESC& OperatorField(&DML_ROI_POOLING_OPERATOR_SCHEMA.Fields[4], ToOperatorFieldType(static_cast(desc.PooledSize))), }; } -inline std::vector GetFields(const DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_DESC& desc) -{ - return { - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[0], ToOperatorFieldType(static_cast(desc.InputTensor))), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[1], ToOperatorFieldType(static_cast(desc.InputScaleTensor))), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[2], ToOperatorFieldType(static_cast(desc.InputZeroPointTensor))), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[3], ToOperatorFieldType(static_cast(desc.OutputScaleTensor))), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[4], ToOperatorFieldType(static_cast(desc.OutputZeroPointTensor))), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[5], ToOperatorFieldType(static_cast(desc.OutputTensor))), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[6], ToOperatorFieldType(static_cast(desc.DimensionCount))), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[7], ToOperatorFieldType(static_cast(desc.Strides), desc.DimensionCount)), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[8], ToOperatorFieldType(static_cast(desc.WindowSize), desc.DimensionCount)), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[9], ToOperatorFieldType(static_cast(desc.StartPadding), desc.DimensionCount)), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[10], ToOperatorFieldType(static_cast(desc.EndPadding), desc.DimensionCount)), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[11], ToOperatorFieldType(static_cast(desc.Dilations), desc.DimensionCount)), - OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[12], ToOperatorFieldType(static_cast(desc.IncludePadding))), - }; -} inline std::vector GetFields(const DML_SLICE_OPERATOR_DESC& desc) { return { @@ -1173,6 +1154,19 @@ inline std::vector GetFields(const DML_QUANTIZED_LINEAR_MATRIX_MU OperatorField(&DML_QUANTIZED_LINEAR_MATRIX_MULTIPLY_OPERATOR_SCHEMA.Fields[8], ToOperatorFieldType(static_cast(desc.OutputTensor))), }; } +inline std::vector GetFields(const DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_DESC& desc) +{ + return { + OperatorField(&DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA.Fields[0], ToOperatorFieldType(static_cast(desc.ATensor))), + OperatorField(&DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA.Fields[1], ToOperatorFieldType(static_cast(desc.AScaleTensor))), + OperatorField(&DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA.Fields[2], ToOperatorFieldType(static_cast(desc.AZeroPointTensor))), + OperatorField(&DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA.Fields[3], ToOperatorFieldType(static_cast(desc.BTensor))), + OperatorField(&DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA.Fields[4], ToOperatorFieldType(static_cast(desc.BScaleTensor))), + OperatorField(&DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA.Fields[5], ToOperatorFieldType(static_cast(desc.BZeroPointTensor))), + OperatorField(&DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA.Fields[6], ToOperatorFieldType(static_cast(desc.BiasTensor))), + OperatorField(&DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA.Fields[7], ToOperatorFieldType(static_cast(desc.OutputTensor))), + }; +} inline std::vector GetFields(const DML_CONVOLUTION_INTEGER_OPERATOR_DESC& desc) { return { @@ -1548,6 +1542,24 @@ inline std::vector GetFields(const DML_DEQUANTIZE_OPERATOR_DESC& OperatorField(&DML_DEQUANTIZE_OPERATOR_SCHEMA.Fields[4], ToOperatorFieldType(static_cast(desc.OutputTensor))), }; } +inline std::vector GetFields(const DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_DESC& desc) +{ + return { + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[0], ToOperatorFieldType(static_cast(desc.InputTensor))), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[1], ToOperatorFieldType(static_cast(desc.InputScaleTensor))), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[2], ToOperatorFieldType(static_cast(desc.InputZeroPointTensor))), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[3], ToOperatorFieldType(static_cast(desc.OutputScaleTensor))), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[4], ToOperatorFieldType(static_cast(desc.OutputZeroPointTensor))), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[5], ToOperatorFieldType(static_cast(desc.OutputTensor))), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[6], ToOperatorFieldType(static_cast(desc.DimensionCount))), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[7], ToOperatorFieldType(static_cast(desc.Strides), desc.DimensionCount)), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[8], ToOperatorFieldType(static_cast(desc.WindowSize), desc.DimensionCount)), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[9], ToOperatorFieldType(static_cast(desc.StartPadding), desc.DimensionCount)), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[10], ToOperatorFieldType(static_cast(desc.EndPadding), desc.DimensionCount)), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[11], ToOperatorFieldType(static_cast(desc.Dilations), desc.DimensionCount)), + OperatorField(&DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA.Fields[12], ToOperatorFieldType(static_cast(desc.IncludePadding))), + }; +} inline std::vector GetFields(const DML_ACTIVATION_ELU_OPERATOR_DESC& desc) { return { @@ -1740,6 +1752,23 @@ inline std::vector GetFields(const DML_ACTIVATION_GELU_OPERATOR_D OperatorField(&DML_ACTIVATION_GELU_OPERATOR_SCHEMA.Fields[1], ToOperatorFieldType(static_cast(desc.OutputTensor))), }; } +inline std::vector GetFields(const DML_ACTIVATION_SWISH_OPERATOR_DESC& desc) +{ + return { + OperatorField(&DML_ACTIVATION_SWISH_OPERATOR_SCHEMA.Fields[0], ToOperatorFieldType(static_cast(desc.InputTensor))), + OperatorField(&DML_ACTIVATION_SWISH_OPERATOR_SCHEMA.Fields[1], ToOperatorFieldType(static_cast(desc.OutputTensor))), + OperatorField(&DML_ACTIVATION_SWISH_OPERATOR_SCHEMA.Fields[2], ToOperatorFieldType(static_cast(desc.SigmoidInputScale))), + }; +} +inline std::vector GetFields(const DML_ACTIVATION_HARD_SWISH_OPERATOR_DESC& desc) +{ + return { + OperatorField(&DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA.Fields[0], ToOperatorFieldType(static_cast(desc.InputTensor))), + OperatorField(&DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA.Fields[1], ToOperatorFieldType(static_cast(desc.OutputTensor))), + OperatorField(&DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA.Fields[2], ToOperatorFieldType(static_cast(desc.Alpha))), + OperatorField(&DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA.Fields[3], ToOperatorFieldType(static_cast(desc.Beta))), + }; +} inline const DML_OPERATOR_SCHEMA& GetSchema(DML_OPERATOR_TYPE operatorType) { switch (operatorType) @@ -1861,6 +1890,7 @@ inline const DML_OPERATOR_SCHEMA& GetSchema(DML_OPERATOR_TYPE operatorType) case DML_OPERATOR_RESAMPLE1: return DML_RESAMPLE1_OPERATOR_SCHEMA; case DML_OPERATOR_MATRIX_MULTIPLY_INTEGER: return DML_MATRIX_MULTIPLY_INTEGER_OPERATOR_SCHEMA; case DML_OPERATOR_QUANTIZED_LINEAR_MATRIX_MULTIPLY: return DML_QUANTIZED_LINEAR_MATRIX_MULTIPLY_OPERATOR_SCHEMA; + case DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT: return DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA; case DML_OPERATOR_CONVOLUTION_INTEGER: return DML_CONVOLUTION_INTEGER_OPERATOR_SCHEMA; case DML_OPERATOR_QUANTIZED_LINEAR_CONVOLUTION: return DML_QUANTIZED_LINEAR_CONVOLUTION_OPERATOR_SCHEMA; case DML_OPERATOR_ELEMENT_WISE_BIT_AND: return DML_ELEMENT_WISE_BIT_AND_OPERATOR_SCHEMA; @@ -1890,6 +1920,7 @@ inline const DML_OPERATOR_SCHEMA& GetSchema(DML_OPERATOR_TYPE operatorType) case DML_OPERATOR_MULTIHEAD_ATTENTION1: return DML_MULTIHEAD_ATTENTION1_OPERATOR_SCHEMA; case DML_OPERATOR_QUANTIZE: return DML_QUANTIZE_OPERATOR_SCHEMA; case DML_OPERATOR_DEQUANTIZE: return DML_DEQUANTIZE_OPERATOR_SCHEMA; + case DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING: return DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA; case DML_OPERATOR_ACTIVATION_ELU: return DML_ACTIVATION_ELU_OPERATOR_SCHEMA; case DML_OPERATOR_ACTIVATION_CELU: return DML_ACTIVATION_CELU_OPERATOR_SCHEMA; case DML_OPERATOR_ACTIVATION_HARDMAX: return DML_ACTIVATION_HARDMAX_OPERATOR_SCHEMA; @@ -1914,6 +1945,8 @@ inline const DML_OPERATOR_SCHEMA& GetSchema(DML_OPERATOR_TYPE operatorType) case DML_OPERATOR_ACTIVATION_THRESHOLDED_RELU: return DML_ACTIVATION_THRESHOLDED_RELU_OPERATOR_SCHEMA; case DML_OPERATOR_ACTIVATION_SHRINK: return DML_ACTIVATION_SHRINK_OPERATOR_SCHEMA; case DML_OPERATOR_ACTIVATION_GELU: return DML_ACTIVATION_GELU_OPERATOR_SCHEMA; + case DML_OPERATOR_ACTIVATION_SWISH: return DML_ACTIVATION_SWISH_OPERATOR_SCHEMA; + case DML_OPERATOR_ACTIVATION_HARD_SWISH: return DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA; default: ORT_THROW_HR(E_INVALIDARG); @@ -2395,6 +2428,10 @@ inline AbstractOperatorDesc ConvertOperatorDesc(const DML_OPERATOR_DESC& opDesc) return AbstractOperatorDesc( &DML_QUANTIZED_LINEAR_MATRIX_MULTIPLY_OPERATOR_SCHEMA, GetFields(*static_cast(opDesc.Desc))); + case DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT: + return AbstractOperatorDesc( + &DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_SCHEMA, + GetFields(*static_cast(opDesc.Desc))); case DML_OPERATOR_CONVOLUTION_INTEGER: return AbstractOperatorDesc( &DML_CONVOLUTION_INTEGER_OPERATOR_SCHEMA, @@ -2511,6 +2548,10 @@ inline AbstractOperatorDesc ConvertOperatorDesc(const DML_OPERATOR_DESC& opDesc) return AbstractOperatorDesc( &DML_DEQUANTIZE_OPERATOR_SCHEMA, GetFields(*static_cast(opDesc.Desc))); + case DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING: + return AbstractOperatorDesc( + &DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA, + GetFields(*static_cast(opDesc.Desc))); case DML_OPERATOR_ACTIVATION_ELU: return AbstractOperatorDesc( &DML_ACTIVATION_ELU_OPERATOR_SCHEMA, @@ -2607,13 +2648,14 @@ inline AbstractOperatorDesc ConvertOperatorDesc(const DML_OPERATOR_DESC& opDesc) return AbstractOperatorDesc( &DML_ACTIVATION_GELU_OPERATOR_SCHEMA, GetFields(*static_cast(opDesc.Desc))); -#pragma warning(push) -#pragma warning(disable: 4063) - case DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING: + case DML_OPERATOR_ACTIVATION_SWISH: return AbstractOperatorDesc( - &DML_QUANTIZED_LINEAR_AVERAGE_POOLING_OPERATOR_SCHEMA, - GetFields(*static_cast(opDesc.Desc))); -#pragma warning(pop) + &DML_ACTIVATION_SWISH_OPERATOR_SCHEMA, + GetFields(*static_cast(opDesc.Desc))); + case DML_OPERATOR_ACTIVATION_HARD_SWISH: + return AbstractOperatorDesc( + &DML_ACTIVATION_HARD_SWISH_OPERATOR_SCHEMA, + GetFields(*static_cast(opDesc.Desc))); default: ORT_THROW_HR(E_INVALIDARG); diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/GeneratedSchemaTypes.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/GeneratedSchemaTypes.h index 25f0dd26c6067..a94bb67b68d36 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/GeneratedSchemaTypes.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/GeneratedSchemaTypes.h @@ -15,32 +15,34 @@ using ApiAttributeVariant = std::variant< const FLOAT*, const DML_SCALE_BIAS*, DML_SIZE_2D, - DML_SCALAR_UNION + DML_SCALAR_UNION, + BOOL >; namespace OperatorFieldTypes { using TensorDesc = std::optional; // DML_SCHEMA_FIELD_TYPE_TENSOR_DESC using TensorDescArray = std::optional>; // DML_SCHEMA_FIELD_TYPE_TENSOR_DESC_ARRAY - using OperatorDesc = std::optional; // DML_SCHEMA_FIELD_TYPE_OPERATOR_DESC - using OperatorDescArray = std::optional>; // DML_SCHEMA_FIELD_TYPE_OPERATOR_DESC_ARRAY + using FusedActivationOperatorDesc = std::optional; // DML_SCHEMA_FIELD_TYPE_OPERATOR_DESC + using FusedActivationOperatorDescArray = std::optional>; // DML_SCHEMA_FIELD_TYPE_OPERATOR_DESC_ARRAY using UInt = uint32_t; // DML_SCHEMA_FIELD_TYPE_UINT using UInt64 = uint64_t; // DML_SCHEMA_FIELD_TYPE_UINT64 using Int = int32_t; // DML_SCHEMA_FIELD_TYPE_INT using Float = float; // DML_SCHEMA_FIELD_TYPE_FLOAT - using UIntArray = std::optional>; // DML_SCHEMA_FIELD_TYPE_UINT_ARRAY - using IntArray = std::optional>; // DML_SCHEMA_FIELD_TYPE_INT_ARRAY - using FloatArray = std::optional>; // DML_SCHEMA_FIELD_TYPE_FLOAT_ARRAY + using UIntArray = std::vector; // DML_SCHEMA_FIELD_TYPE_UINT_ARRAY + using IntArray = std::vector; // DML_SCHEMA_FIELD_TYPE_INT_ARRAY + using FloatArray = std::vector; // DML_SCHEMA_FIELD_TYPE_FLOAT_ARRAY using ScaleBias = std::optional; // DML_SCHEMA_FIELD_TYPE_SCALE_BIAS using Size2D = DML_SIZE_2D; // DML_SCHEMA_FIELD_TYPE_SIZE_2D using ScalarUnion = DML_SCALAR_UNION; // DML_SCHEMA_FIELD_TYPE_SCALAR_UNION + using Bool = bool; // DML_SCHEMA_FIELD_TYPE_BOOL } using OperatorFieldVariant = std::variant< OperatorFieldTypes::TensorDesc, OperatorFieldTypes::TensorDescArray, - OperatorFieldTypes::OperatorDesc, - OperatorFieldTypes::OperatorDescArray, + OperatorFieldTypes::FusedActivationOperatorDesc, + OperatorFieldTypes::FusedActivationOperatorDescArray, OperatorFieldTypes::UInt, OperatorFieldTypes::UInt64, OperatorFieldTypes::Int, @@ -50,7 +52,8 @@ using OperatorFieldVariant = std::variant< OperatorFieldTypes::FloatArray, OperatorFieldTypes::ScaleBias, OperatorFieldTypes::Size2D, - OperatorFieldTypes::ScalarUnion + OperatorFieldTypes::ScalarUnion, + OperatorFieldTypes::Bool >; class OperatorField @@ -80,11 +83,11 @@ class OperatorField const OperatorFieldTypes::TensorDescArray& AsTensorDescArray() const { return std::get(m_data); } OperatorFieldTypes::TensorDescArray& AsTensorDescArray() { return std::get(m_data); } - const OperatorFieldTypes::OperatorDesc& AsOperatorDesc() const { return std::get(m_data); } - OperatorFieldTypes::OperatorDesc& AsOperatorDesc() { return std::get(m_data); } + const OperatorFieldTypes::FusedActivationOperatorDesc& AsFusedActivationOperatorDesc() const { return std::get(m_data); } + OperatorFieldTypes::FusedActivationOperatorDesc& AsFusedActivationOperatorDesc() { return std::get(m_data); } - const OperatorFieldTypes::OperatorDescArray& AsOperatorDescArray() const { return std::get(m_data); } - OperatorFieldTypes::OperatorDescArray& AsOperatorDescArray() { return std::get(m_data); } + const OperatorFieldTypes::FusedActivationOperatorDescArray& AsFusedActivationOperatorDescArray() const { return std::get(m_data); } + OperatorFieldTypes::FusedActivationOperatorDescArray& AsFusedActivationOperatorDescArray() { return std::get(m_data); } const OperatorFieldTypes::UInt& AsUInt() const { return std::get(m_data); } OperatorFieldTypes::UInt& AsUInt() { return std::get(m_data); } @@ -116,6 +119,9 @@ class OperatorField const OperatorFieldTypes::ScalarUnion& AsScalarUnion() const { return std::get(m_data); } OperatorFieldTypes::ScalarUnion& AsScalarUnion() { return std::get(m_data); } + const OperatorFieldTypes::Bool& AsBool() const { return std::get(m_data); } + OperatorFieldTypes::Bool& AsBool() { return std::get(m_data); } + private: const DML_SCHEMA_FIELD* m_schema; OperatorFieldVariant m_data; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/OperatorFieldTypes_generated.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/OperatorFieldTypes_generated.h new file mode 100644 index 0000000000000..639c31f0dc5c8 --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/OperatorFieldTypes_generated.h @@ -0,0 +1,1323 @@ +// automatically generated by the FlatBuffers compiler, do not modify + + +#ifndef FLATBUFFERS_GENERATED_OPERATORFIELDTYPES_DML_IR_OPERATORFIELDTYPES_H_ +#define FLATBUFFERS_GENERATED_OPERATORFIELDTYPES_DML_IR_OPERATORFIELDTYPES_H_ + +#include "core/common/flatbuffers.h" + +// Ensure the included flatbuffers.h is the same version as when this file was +// generated, otherwise it may not be compatible. +static_assert(FLATBUFFERS_VERSION_MAJOR == 23 && + FLATBUFFERS_VERSION_MINOR == 5 && + FLATBUFFERS_VERSION_REVISION == 26, + "Non-compatible flatbuffers version included"); + +namespace dml { +namespace ir { +namespace operatorFieldTypes { + +struct AttributeDesc; +struct AttributeDescBuilder; + +struct Activation; +struct ActivationBuilder; + +struct ActivationArray; +struct ActivationArrayBuilder; + +struct UInt8; + +struct UInt16; + +struct UInt32; + +struct UInt64; + +struct Int8; + +struct Int16; + +struct Int32; + +struct Int64; + +struct Float32; + +struct Float64; + +struct UIntArray; +struct UIntArrayBuilder; + +struct IntArray; +struct IntArrayBuilder; + +struct FloatArray; +struct FloatArrayBuilder; + +struct ScaleBias; + +struct Size2D; + +struct ByteArray; + +struct ScalarUnionData; +struct ScalarUnionDataBuilder; + +struct Bool; + +enum AttributeFieldVariant : uint8_t { + AttributeFieldVariant_NONE = 0, + AttributeFieldVariant_Activation = 1, + AttributeFieldVariant_ActivationArray = 2, + AttributeFieldVariant_UInt32 = 3, + AttributeFieldVariant_UInt64 = 4, + AttributeFieldVariant_Int32 = 5, + AttributeFieldVariant_Float32 = 6, + AttributeFieldVariant_UIntArray = 7, + AttributeFieldVariant_IntArray = 8, + AttributeFieldVariant_FloatArray = 9, + AttributeFieldVariant_ScaleBias = 10, + AttributeFieldVariant_Size2D = 11, + AttributeFieldVariant_ScalarUnionData = 12, + AttributeFieldVariant_Bool = 13, + AttributeFieldVariant_MIN = AttributeFieldVariant_NONE, + AttributeFieldVariant_MAX = AttributeFieldVariant_Bool +}; + +inline const AttributeFieldVariant (&EnumValuesAttributeFieldVariant())[14] { + static const AttributeFieldVariant values[] = { + AttributeFieldVariant_NONE, + AttributeFieldVariant_Activation, + AttributeFieldVariant_ActivationArray, + AttributeFieldVariant_UInt32, + AttributeFieldVariant_UInt64, + AttributeFieldVariant_Int32, + AttributeFieldVariant_Float32, + AttributeFieldVariant_UIntArray, + AttributeFieldVariant_IntArray, + AttributeFieldVariant_FloatArray, + AttributeFieldVariant_ScaleBias, + AttributeFieldVariant_Size2D, + AttributeFieldVariant_ScalarUnionData, + AttributeFieldVariant_Bool + }; + return values; +} + +inline const char * const *EnumNamesAttributeFieldVariant() { + static const char * const names[15] = { + "NONE", + "Activation", + "ActivationArray", + "UInt32", + "UInt64", + "Int32", + "Float32", + "UIntArray", + "IntArray", + "FloatArray", + "ScaleBias", + "Size2D", + "ScalarUnionData", + "Bool", + nullptr + }; + return names; +} + +inline const char *EnumNameAttributeFieldVariant(AttributeFieldVariant e) { + if (::flatbuffers::IsOutRange(e, AttributeFieldVariant_NONE, AttributeFieldVariant_Bool)) return ""; + const size_t index = static_cast(e); + return EnumNamesAttributeFieldVariant()[index]; +} + +template struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_NONE; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_Activation; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_ActivationArray; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_UInt32; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_UInt64; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_Int32; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_Float32; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_UIntArray; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_IntArray; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_FloatArray; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_ScaleBias; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_Size2D; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_ScalarUnionData; +}; + +template<> struct AttributeFieldVariantTraits { + static const AttributeFieldVariant enum_value = AttributeFieldVariant_Bool; +}; + +bool VerifyAttributeFieldVariant(::flatbuffers::Verifier &verifier, const void *obj, AttributeFieldVariant type); +bool VerifyAttributeFieldVariantVector(::flatbuffers::Verifier &verifier, const ::flatbuffers::Vector<::flatbuffers::Offset> *values, const ::flatbuffers::Vector *types); + +enum ScalarVariant : uint8_t { + ScalarVariant_NONE = 0, + ScalarVariant_ByteArray = 1, + ScalarVariant_Int8 = 2, + ScalarVariant_UInt8 = 3, + ScalarVariant_Int16 = 4, + ScalarVariant_UInt16 = 5, + ScalarVariant_Int32 = 6, + ScalarVariant_UInt32 = 7, + ScalarVariant_Int64 = 8, + ScalarVariant_UInt64 = 9, + ScalarVariant_Float32 = 10, + ScalarVariant_Float64 = 11, + ScalarVariant_MIN = ScalarVariant_NONE, + ScalarVariant_MAX = ScalarVariant_Float64 +}; + +inline const ScalarVariant (&EnumValuesScalarVariant())[12] { + static const ScalarVariant values[] = { + ScalarVariant_NONE, + ScalarVariant_ByteArray, + ScalarVariant_Int8, + ScalarVariant_UInt8, + ScalarVariant_Int16, + ScalarVariant_UInt16, + ScalarVariant_Int32, + ScalarVariant_UInt32, + ScalarVariant_Int64, + ScalarVariant_UInt64, + ScalarVariant_Float32, + ScalarVariant_Float64 + }; + return values; +} + +inline const char * const *EnumNamesScalarVariant() { + static const char * const names[13] = { + "NONE", + "ByteArray", + "Int8", + "UInt8", + "Int16", + "UInt16", + "Int32", + "UInt32", + "Int64", + "UInt64", + "Float32", + "Float64", + nullptr + }; + return names; +} + +inline const char *EnumNameScalarVariant(ScalarVariant e) { + if (::flatbuffers::IsOutRange(e, ScalarVariant_NONE, ScalarVariant_Float64)) return ""; + const size_t index = static_cast(e); + return EnumNamesScalarVariant()[index]; +} + +template struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_NONE; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_ByteArray; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_Int8; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_UInt8; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_Int16; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_UInt16; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_Int32; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_UInt32; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_Int64; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_UInt64; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_Float32; +}; + +template<> struct ScalarVariantTraits { + static const ScalarVariant enum_value = ScalarVariant_Float64; +}; + +bool VerifyScalarVariant(::flatbuffers::Verifier &verifier, const void *obj, ScalarVariant type); +bool VerifyScalarVariantVector(::flatbuffers::Verifier &verifier, const ::flatbuffers::Vector<::flatbuffers::Offset> *values, const ::flatbuffers::Vector *types); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(1) UInt8 FLATBUFFERS_FINAL_CLASS { + private: + uint8_t data_; + + public: + UInt8() + : data_(0) { + } + UInt8(uint8_t _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + uint8_t data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(uint8_t _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(UInt8, 1); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(2) UInt16 FLATBUFFERS_FINAL_CLASS { + private: + uint16_t data_; + + public: + UInt16() + : data_(0) { + } + UInt16(uint16_t _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + uint16_t data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(uint16_t _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(UInt16, 2); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(4) UInt32 FLATBUFFERS_FINAL_CLASS { + private: + uint32_t data_; + + public: + UInt32() + : data_(0) { + } + UInt32(uint32_t _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + uint32_t data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(uint32_t _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(UInt32, 4); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(8) UInt64 FLATBUFFERS_FINAL_CLASS { + private: + uint64_t data_; + + public: + UInt64() + : data_(0) { + } + UInt64(uint64_t _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + uint64_t data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(uint64_t _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(UInt64, 8); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(1) Int8 FLATBUFFERS_FINAL_CLASS { + private: + int8_t data_; + + public: + Int8() + : data_(0) { + } + Int8(int8_t _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + int8_t data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(int8_t _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(Int8, 1); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(2) Int16 FLATBUFFERS_FINAL_CLASS { + private: + int16_t data_; + + public: + Int16() + : data_(0) { + } + Int16(int16_t _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + int16_t data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(int16_t _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(Int16, 2); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(4) Int32 FLATBUFFERS_FINAL_CLASS { + private: + int32_t data_; + + public: + Int32() + : data_(0) { + } + Int32(int32_t _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + int32_t data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(int32_t _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(Int32, 4); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(8) Int64 FLATBUFFERS_FINAL_CLASS { + private: + int64_t data_; + + public: + Int64() + : data_(0) { + } + Int64(int64_t _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + int64_t data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(int64_t _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(Int64, 8); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(4) Float32 FLATBUFFERS_FINAL_CLASS { + private: + float data_; + + public: + Float32() + : data_(0) { + } + Float32(float _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + float data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(float _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(Float32, 4); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(8) Float64 FLATBUFFERS_FINAL_CLASS { + private: + double data_; + + public: + Float64() + : data_(0) { + } + Float64(double _data) + : data_(::flatbuffers::EndianScalar(_data)) { + } + double data() const { + return ::flatbuffers::EndianScalar(data_); + } + void mutate_data(double _data) { + ::flatbuffers::WriteScalar(&data_, _data); + } +}; +FLATBUFFERS_STRUCT_END(Float64, 8); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(4) ScaleBias FLATBUFFERS_FINAL_CLASS { + private: + float scale_; + float bias_; + + public: + ScaleBias() + : scale_(0), + bias_(0) { + } + ScaleBias(float _scale, float _bias) + : scale_(::flatbuffers::EndianScalar(_scale)), + bias_(::flatbuffers::EndianScalar(_bias)) { + } + float scale() const { + return ::flatbuffers::EndianScalar(scale_); + } + void mutate_scale(float _scale) { + ::flatbuffers::WriteScalar(&scale_, _scale); + } + float bias() const { + return ::flatbuffers::EndianScalar(bias_); + } + void mutate_bias(float _bias) { + ::flatbuffers::WriteScalar(&bias_, _bias); + } +}; +FLATBUFFERS_STRUCT_END(ScaleBias, 8); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(4) Size2D FLATBUFFERS_FINAL_CLASS { + private: + uint32_t width_; + uint32_t height_; + + public: + Size2D() + : width_(0), + height_(0) { + } + Size2D(uint32_t _width, uint32_t _height) + : width_(::flatbuffers::EndianScalar(_width)), + height_(::flatbuffers::EndianScalar(_height)) { + } + uint32_t width() const { + return ::flatbuffers::EndianScalar(width_); + } + void mutate_width(uint32_t _width) { + ::flatbuffers::WriteScalar(&width_, _width); + } + uint32_t height() const { + return ::flatbuffers::EndianScalar(height_); + } + void mutate_height(uint32_t _height) { + ::flatbuffers::WriteScalar(&height_, _height); + } +}; +FLATBUFFERS_STRUCT_END(Size2D, 8); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(1) ByteArray FLATBUFFERS_FINAL_CLASS { + private: + uint8_t data_[8]; + + public: + ByteArray() + : data_() { + } + ByteArray(::flatbuffers::span _data) { + ::flatbuffers::CastToArray(data_).CopyFromSpan(_data); + } + const ::flatbuffers::Array *data() const { + return &::flatbuffers::CastToArray(data_); + } + ::flatbuffers::Array *mutable_data() { + return &::flatbuffers::CastToArray(data_); + } +}; +FLATBUFFERS_STRUCT_END(ByteArray, 8); + +FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(1) Bool FLATBUFFERS_FINAL_CLASS { + private: + uint8_t data_; + + public: + Bool() + : data_(0) { + } + Bool(bool _data) + : data_(::flatbuffers::EndianScalar(static_cast(_data))) { + } + bool data() const { + return ::flatbuffers::EndianScalar(data_) != 0; + } + void mutate_data(bool _data) { + ::flatbuffers::WriteScalar(&data_, static_cast(_data)); + } +}; +FLATBUFFERS_STRUCT_END(Bool, 1); + +struct AttributeDesc FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef AttributeDescBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NAME = 4, + VT_VAL_TYPE = 6, + VT_VAL = 8 + }; + const ::flatbuffers::String *name() const { + return GetPointer(VT_NAME); + } + ::flatbuffers::String *mutable_name() { + return GetPointer<::flatbuffers::String *>(VT_NAME); + } + dml::ir::operatorFieldTypes::AttributeFieldVariant val_type() const { + return static_cast(GetField(VT_VAL_TYPE, 0)); + } + const void *val() const { + return GetPointer(VT_VAL); + } + template const T *val_as() const; + const dml::ir::operatorFieldTypes::Activation *val_as_Activation() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_Activation ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::ActivationArray *val_as_ActivationArray() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_ActivationArray ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::UInt32 *val_as_UInt32() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_UInt32 ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::UInt64 *val_as_UInt64() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_UInt64 ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::Int32 *val_as_Int32() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_Int32 ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::Float32 *val_as_Float32() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_Float32 ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::UIntArray *val_as_UIntArray() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_UIntArray ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::IntArray *val_as_IntArray() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_IntArray ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::FloatArray *val_as_FloatArray() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_FloatArray ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::ScaleBias *val_as_ScaleBias() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_ScaleBias ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::Size2D *val_as_Size2D() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_Size2D ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::ScalarUnionData *val_as_ScalarUnionData() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_ScalarUnionData ? static_cast(val()) : nullptr; + } + const dml::ir::operatorFieldTypes::Bool *val_as_Bool() const { + return val_type() == dml::ir::operatorFieldTypes::AttributeFieldVariant_Bool ? static_cast(val()) : nullptr; + } + void *mutable_val() { + return GetPointer(VT_VAL); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_NAME) && + verifier.VerifyString(name()) && + VerifyField(verifier, VT_VAL_TYPE, 1) && + VerifyOffset(verifier, VT_VAL) && + VerifyAttributeFieldVariant(verifier, val(), val_type()) && + verifier.EndTable(); + } +}; + +template<> inline const dml::ir::operatorFieldTypes::Activation *AttributeDesc::val_as() const { + return val_as_Activation(); +} + +template<> inline const dml::ir::operatorFieldTypes::ActivationArray *AttributeDesc::val_as() const { + return val_as_ActivationArray(); +} + +template<> inline const dml::ir::operatorFieldTypes::UInt32 *AttributeDesc::val_as() const { + return val_as_UInt32(); +} + +template<> inline const dml::ir::operatorFieldTypes::UInt64 *AttributeDesc::val_as() const { + return val_as_UInt64(); +} + +template<> inline const dml::ir::operatorFieldTypes::Int32 *AttributeDesc::val_as() const { + return val_as_Int32(); +} + +template<> inline const dml::ir::operatorFieldTypes::Float32 *AttributeDesc::val_as() const { + return val_as_Float32(); +} + +template<> inline const dml::ir::operatorFieldTypes::UIntArray *AttributeDesc::val_as() const { + return val_as_UIntArray(); +} + +template<> inline const dml::ir::operatorFieldTypes::IntArray *AttributeDesc::val_as() const { + return val_as_IntArray(); +} + +template<> inline const dml::ir::operatorFieldTypes::FloatArray *AttributeDesc::val_as() const { + return val_as_FloatArray(); +} + +template<> inline const dml::ir::operatorFieldTypes::ScaleBias *AttributeDesc::val_as() const { + return val_as_ScaleBias(); +} + +template<> inline const dml::ir::operatorFieldTypes::Size2D *AttributeDesc::val_as() const { + return val_as_Size2D(); +} + +template<> inline const dml::ir::operatorFieldTypes::ScalarUnionData *AttributeDesc::val_as() const { + return val_as_ScalarUnionData(); +} + +template<> inline const dml::ir::operatorFieldTypes::Bool *AttributeDesc::val_as() const { + return val_as_Bool(); +} + +struct AttributeDescBuilder { + typedef AttributeDesc Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_name(::flatbuffers::Offset<::flatbuffers::String> name) { + fbb_.AddOffset(AttributeDesc::VT_NAME, name); + } + void add_val_type(dml::ir::operatorFieldTypes::AttributeFieldVariant val_type) { + fbb_.AddElement(AttributeDesc::VT_VAL_TYPE, static_cast(val_type), 0); + } + void add_val(::flatbuffers::Offset val) { + fbb_.AddOffset(AttributeDesc::VT_VAL, val); + } + explicit AttributeDescBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateAttributeDesc( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::String> name = 0, + dml::ir::operatorFieldTypes::AttributeFieldVariant val_type = dml::ir::operatorFieldTypes::AttributeFieldVariant_NONE, + ::flatbuffers::Offset val = 0) { + AttributeDescBuilder builder_(_fbb); + builder_.add_val(val); + builder_.add_name(name); + builder_.add_val_type(val_type); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateAttributeDescDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const char *name = nullptr, + dml::ir::operatorFieldTypes::AttributeFieldVariant val_type = dml::ir::operatorFieldTypes::AttributeFieldVariant_NONE, + ::flatbuffers::Offset val = 0) { + auto name__ = name ? _fbb.CreateString(name) : 0; + return dml::ir::operatorFieldTypes::CreateAttributeDesc( + _fbb, + name__, + val_type, + val); +} + +struct Activation FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef ActivationBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_TYPE = 4, + VT_ATTRIBUTES = 6 + }; + const ::flatbuffers::String *type() const { + return GetPointer(VT_TYPE); + } + ::flatbuffers::String *mutable_type() { + return GetPointer<::flatbuffers::String *>(VT_TYPE); + } + const ::flatbuffers::Vector<::flatbuffers::Offset> *attributes() const { + return GetPointer> *>(VT_ATTRIBUTES); + } + ::flatbuffers::Vector<::flatbuffers::Offset> *mutable_attributes() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset> *>(VT_ATTRIBUTES); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_TYPE) && + verifier.VerifyString(type()) && + VerifyOffset(verifier, VT_ATTRIBUTES) && + verifier.VerifyVector(attributes()) && + verifier.VerifyVectorOfTables(attributes()) && + verifier.EndTable(); + } +}; + +struct ActivationBuilder { + typedef Activation Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_type(::flatbuffers::Offset<::flatbuffers::String> type) { + fbb_.AddOffset(Activation::VT_TYPE, type); + } + void add_attributes(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> attributes) { + fbb_.AddOffset(Activation::VT_ATTRIBUTES, attributes); + } + explicit ActivationBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateActivation( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::String> type = 0, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> attributes = 0) { + ActivationBuilder builder_(_fbb); + builder_.add_attributes(attributes); + builder_.add_type(type); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateActivationDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const char *type = nullptr, + const std::vector<::flatbuffers::Offset> *attributes = nullptr) { + auto type__ = type ? _fbb.CreateString(type) : 0; + auto attributes__ = attributes ? _fbb.CreateVector<::flatbuffers::Offset>(*attributes) : 0; + return dml::ir::operatorFieldTypes::CreateActivation( + _fbb, + type__, + attributes__); +} + +struct ActivationArray FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef ActivationArrayBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATA = 4 + }; + const ::flatbuffers::Vector<::flatbuffers::Offset> *data() const { + return GetPointer> *>(VT_DATA); + } + ::flatbuffers::Vector<::flatbuffers::Offset> *mutable_data() { + return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset> *>(VT_DATA); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_DATA) && + verifier.VerifyVector(data()) && + verifier.VerifyVectorOfTables(data()) && + verifier.EndTable(); + } +}; + +struct ActivationArrayBuilder { + typedef ActivationArray Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_data(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> data) { + fbb_.AddOffset(ActivationArray::VT_DATA, data); + } + explicit ActivationArrayBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateActivationArray( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset>> data = 0) { + ActivationArrayBuilder builder_(_fbb); + builder_.add_data(data); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateActivationArrayDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const std::vector<::flatbuffers::Offset> *data = nullptr) { + auto data__ = data ? _fbb.CreateVector<::flatbuffers::Offset>(*data) : 0; + return dml::ir::operatorFieldTypes::CreateActivationArray( + _fbb, + data__); +} + +struct UIntArray FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef UIntArrayBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATA = 4 + }; + const ::flatbuffers::Vector *data() const { + return GetPointer *>(VT_DATA); + } + ::flatbuffers::Vector *mutable_data() { + return GetPointer<::flatbuffers::Vector *>(VT_DATA); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_DATA) && + verifier.VerifyVector(data()) && + verifier.EndTable(); + } +}; + +struct UIntArrayBuilder { + typedef UIntArray Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_data(::flatbuffers::Offset<::flatbuffers::Vector> data) { + fbb_.AddOffset(UIntArray::VT_DATA, data); + } + explicit UIntArrayBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateUIntArray( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::Vector> data = 0) { + UIntArrayBuilder builder_(_fbb); + builder_.add_data(data); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateUIntArrayDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *data = nullptr) { + auto data__ = data ? _fbb.CreateVector(*data) : 0; + return dml::ir::operatorFieldTypes::CreateUIntArray( + _fbb, + data__); +} + +struct IntArray FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef IntArrayBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATA = 4 + }; + const ::flatbuffers::Vector *data() const { + return GetPointer *>(VT_DATA); + } + ::flatbuffers::Vector *mutable_data() { + return GetPointer<::flatbuffers::Vector *>(VT_DATA); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_DATA) && + verifier.VerifyVector(data()) && + verifier.EndTable(); + } +}; + +struct IntArrayBuilder { + typedef IntArray Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_data(::flatbuffers::Offset<::flatbuffers::Vector> data) { + fbb_.AddOffset(IntArray::VT_DATA, data); + } + explicit IntArrayBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateIntArray( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::Vector> data = 0) { + IntArrayBuilder builder_(_fbb); + builder_.add_data(data); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateIntArrayDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *data = nullptr) { + auto data__ = data ? _fbb.CreateVector(*data) : 0; + return dml::ir::operatorFieldTypes::CreateIntArray( + _fbb, + data__); +} + +struct FloatArray FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef FloatArrayBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATA = 4 + }; + const ::flatbuffers::Vector *data() const { + return GetPointer *>(VT_DATA); + } + ::flatbuffers::Vector *mutable_data() { + return GetPointer<::flatbuffers::Vector *>(VT_DATA); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_DATA) && + verifier.VerifyVector(data()) && + verifier.EndTable(); + } +}; + +struct FloatArrayBuilder { + typedef FloatArray Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_data(::flatbuffers::Offset<::flatbuffers::Vector> data) { + fbb_.AddOffset(FloatArray::VT_DATA, data); + } + explicit FloatArrayBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateFloatArray( + ::flatbuffers::FlatBufferBuilder &_fbb, + ::flatbuffers::Offset<::flatbuffers::Vector> data = 0) { + FloatArrayBuilder builder_(_fbb); + builder_.add_data(data); + return builder_.Finish(); +} + +inline ::flatbuffers::Offset CreateFloatArrayDirect( + ::flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *data = nullptr) { + auto data__ = data ? _fbb.CreateVector(*data) : 0; + return dml::ir::operatorFieldTypes::CreateFloatArray( + _fbb, + data__); +} + +struct ScalarUnionData FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table { + typedef ScalarUnionDataBuilder Builder; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATA_TYPE = 4, + VT_DATA = 6 + }; + dml::ir::operatorFieldTypes::ScalarVariant data_type() const { + return static_cast(GetField(VT_DATA_TYPE, 0)); + } + const void *data() const { + return GetPointer(VT_DATA); + } + template const T *data_as() const; + const dml::ir::operatorFieldTypes::ByteArray *data_as_ByteArray() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_ByteArray ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::Int8 *data_as_Int8() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_Int8 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::UInt8 *data_as_UInt8() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_UInt8 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::Int16 *data_as_Int16() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_Int16 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::UInt16 *data_as_UInt16() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_UInt16 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::Int32 *data_as_Int32() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_Int32 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::UInt32 *data_as_UInt32() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_UInt32 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::Int64 *data_as_Int64() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_Int64 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::UInt64 *data_as_UInt64() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_UInt64 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::Float32 *data_as_Float32() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_Float32 ? static_cast(data()) : nullptr; + } + const dml::ir::operatorFieldTypes::Float64 *data_as_Float64() const { + return data_type() == dml::ir::operatorFieldTypes::ScalarVariant_Float64 ? static_cast(data()) : nullptr; + } + void *mutable_data() { + return GetPointer(VT_DATA); + } + bool Verify(::flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_DATA_TYPE, 1) && + VerifyOffset(verifier, VT_DATA) && + VerifyScalarVariant(verifier, data(), data_type()) && + verifier.EndTable(); + } +}; + +template<> inline const dml::ir::operatorFieldTypes::ByteArray *ScalarUnionData::data_as() const { + return data_as_ByteArray(); +} + +template<> inline const dml::ir::operatorFieldTypes::Int8 *ScalarUnionData::data_as() const { + return data_as_Int8(); +} + +template<> inline const dml::ir::operatorFieldTypes::UInt8 *ScalarUnionData::data_as() const { + return data_as_UInt8(); +} + +template<> inline const dml::ir::operatorFieldTypes::Int16 *ScalarUnionData::data_as() const { + return data_as_Int16(); +} + +template<> inline const dml::ir::operatorFieldTypes::UInt16 *ScalarUnionData::data_as() const { + return data_as_UInt16(); +} + +template<> inline const dml::ir::operatorFieldTypes::Int32 *ScalarUnionData::data_as() const { + return data_as_Int32(); +} + +template<> inline const dml::ir::operatorFieldTypes::UInt32 *ScalarUnionData::data_as() const { + return data_as_UInt32(); +} + +template<> inline const dml::ir::operatorFieldTypes::Int64 *ScalarUnionData::data_as() const { + return data_as_Int64(); +} + +template<> inline const dml::ir::operatorFieldTypes::UInt64 *ScalarUnionData::data_as() const { + return data_as_UInt64(); +} + +template<> inline const dml::ir::operatorFieldTypes::Float32 *ScalarUnionData::data_as() const { + return data_as_Float32(); +} + +template<> inline const dml::ir::operatorFieldTypes::Float64 *ScalarUnionData::data_as() const { + return data_as_Float64(); +} + +struct ScalarUnionDataBuilder { + typedef ScalarUnionData Table; + ::flatbuffers::FlatBufferBuilder &fbb_; + ::flatbuffers::uoffset_t start_; + void add_data_type(dml::ir::operatorFieldTypes::ScalarVariant data_type) { + fbb_.AddElement(ScalarUnionData::VT_DATA_TYPE, static_cast(data_type), 0); + } + void add_data(::flatbuffers::Offset data) { + fbb_.AddOffset(ScalarUnionData::VT_DATA, data); + } + explicit ScalarUnionDataBuilder(::flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ::flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = ::flatbuffers::Offset(end); + return o; + } +}; + +inline ::flatbuffers::Offset CreateScalarUnionData( + ::flatbuffers::FlatBufferBuilder &_fbb, + dml::ir::operatorFieldTypes::ScalarVariant data_type = dml::ir::operatorFieldTypes::ScalarVariant_NONE, + ::flatbuffers::Offset data = 0) { + ScalarUnionDataBuilder builder_(_fbb); + builder_.add_data(data); + builder_.add_data_type(data_type); + return builder_.Finish(); +} + +inline bool VerifyAttributeFieldVariant(::flatbuffers::Verifier &verifier, const void *obj, AttributeFieldVariant type) { + switch (type) { + case AttributeFieldVariant_NONE: { + return true; + } + case AttributeFieldVariant_Activation: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case AttributeFieldVariant_ActivationArray: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case AttributeFieldVariant_UInt32: { + return verifier.VerifyField(static_cast(obj), 0, 4); + } + case AttributeFieldVariant_UInt64: { + return verifier.VerifyField(static_cast(obj), 0, 8); + } + case AttributeFieldVariant_Int32: { + return verifier.VerifyField(static_cast(obj), 0, 4); + } + case AttributeFieldVariant_Float32: { + return verifier.VerifyField(static_cast(obj), 0, 4); + } + case AttributeFieldVariant_UIntArray: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case AttributeFieldVariant_IntArray: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case AttributeFieldVariant_FloatArray: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case AttributeFieldVariant_ScaleBias: { + return verifier.VerifyField(static_cast(obj), 0, 4); + } + case AttributeFieldVariant_Size2D: { + return verifier.VerifyField(static_cast(obj), 0, 4); + } + case AttributeFieldVariant_ScalarUnionData: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case AttributeFieldVariant_Bool: { + return verifier.VerifyField(static_cast(obj), 0, 1); + } + default: return true; + } +} + +inline bool VerifyAttributeFieldVariantVector(::flatbuffers::Verifier &verifier, const ::flatbuffers::Vector<::flatbuffers::Offset> *values, const ::flatbuffers::Vector *types) { + if (!values || !types) return !values && !types; + if (values->size() != types->size()) return false; + for (::flatbuffers::uoffset_t i = 0; i < values->size(); ++i) { + if (!VerifyAttributeFieldVariant( + verifier, values->Get(i), types->GetEnum(i))) { + return false; + } + } + return true; +} + +inline bool VerifyScalarVariant(::flatbuffers::Verifier &verifier, const void *obj, ScalarVariant type) { + switch (type) { + case ScalarVariant_NONE: { + return true; + } + case ScalarVariant_ByteArray: { + return verifier.VerifyField(static_cast(obj), 0, 1); + } + case ScalarVariant_Int8: { + return verifier.VerifyField(static_cast(obj), 0, 1); + } + case ScalarVariant_UInt8: { + return verifier.VerifyField(static_cast(obj), 0, 1); + } + case ScalarVariant_Int16: { + return verifier.VerifyField(static_cast(obj), 0, 2); + } + case ScalarVariant_UInt16: { + return verifier.VerifyField(static_cast(obj), 0, 2); + } + case ScalarVariant_Int32: { + return verifier.VerifyField(static_cast(obj), 0, 4); + } + case ScalarVariant_UInt32: { + return verifier.VerifyField(static_cast(obj), 0, 4); + } + case ScalarVariant_Int64: { + return verifier.VerifyField(static_cast(obj), 0, 8); + } + case ScalarVariant_UInt64: { + return verifier.VerifyField(static_cast(obj), 0, 8); + } + case ScalarVariant_Float32: { + return verifier.VerifyField(static_cast(obj), 0, 4); + } + case ScalarVariant_Float64: { + return verifier.VerifyField(static_cast(obj), 0, 8); + } + default: return true; + } +} + +inline bool VerifyScalarVariantVector(::flatbuffers::Verifier &verifier, const ::flatbuffers::Vector<::flatbuffers::Offset> *values, const ::flatbuffers::Vector *types) { + if (!values || !types) return !values && !types; + if (values->size() != types->size()) return false; + for (::flatbuffers::uoffset_t i = 0; i < values->size(); ++i) { + if (!VerifyScalarVariant( + verifier, values->Get(i), types->GetEnum(i))) { + return false; + } + } + return true; +} + +} // namespace operatorFieldTypes +} // namespace ir +} // namespace dml + +#endif // FLATBUFFERS_GENERATED_OPERATORFIELDTYPES_DML_IR_OPERATORFIELDTYPES_H_ diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/SchemaHelpers.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/SchemaHelpers.h index 5285481485184..1bc694dfe90c2 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/SchemaHelpers.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/External/DirectMLHelpers/SchemaHelpers.h @@ -26,14 +26,14 @@ namespace SchemaHelpers return field; } - inline OperatorFieldTypes::OperatorDesc ToOperatorFieldType(const DML_OPERATOR_DESC* value) + inline OperatorFieldTypes::FusedActivationOperatorDesc ToOperatorFieldType(const DML_OPERATOR_DESC* value) { - return value ? OperatorFieldTypes::OperatorDesc(ConvertOperatorDesc(*value)) : std::nullopt; + return value ? OperatorFieldTypes::FusedActivationOperatorDesc(ConvertOperatorDesc(*value)) : std::nullopt; } - inline OperatorFieldTypes::OperatorDescArray ToOperatorFieldType(const DML_OPERATOR_DESC* values, uint32_t count) + inline OperatorFieldTypes::FusedActivationOperatorDescArray ToOperatorFieldType(const DML_OPERATOR_DESC* values, uint32_t count) { - OperatorFieldTypes::OperatorDescArray field; + OperatorFieldTypes::FusedActivationOperatorDescArray field; if (values && count != 0) { field.emplace(count); @@ -65,13 +65,17 @@ namespace SchemaHelpers return value; } + inline OperatorFieldTypes::Bool ToOperatorFieldType(bool value) + { + return value; + } + inline OperatorFieldTypes::UIntArray ToOperatorFieldType(const uint32_t* values, uint32_t count) { OperatorFieldTypes::UIntArray field; if (values && count != 0) { - field.emplace(count); - std::copy_n(values, count, field->begin()); + field.assign(values, values + count); } return field; } @@ -81,8 +85,7 @@ namespace SchemaHelpers OperatorFieldTypes::IntArray field; if (values && count != 0) { - field.emplace(count); - std::copy_n(values, count, field->begin()); + field.assign(values, values + count); } return field; } @@ -92,8 +95,7 @@ namespace SchemaHelpers OperatorFieldTypes::FloatArray field; if (values && count != 0) { - field.emplace(count); - std::copy_n(values, count, field->begin()); + field.assign(values, values + count); } return field; } @@ -237,7 +239,7 @@ namespace SchemaHelpers { DML_OPERATOR_DESC* desc = nullptr; - const auto& value = field.AsOperatorDesc(); + const auto& value = field.AsFusedActivationOperatorDesc(); if (value) { desc = allocator->template Allocate(); @@ -251,7 +253,7 @@ namespace SchemaHelpers { DML_OPERATOR_DESC* descs = nullptr; - const auto& values = field.AsOperatorDescArray(); + const auto& values = field.AsFusedActivationOperatorDescArray(); if (values) { descs = allocator->template Allocate(values->size()); @@ -288,16 +290,20 @@ namespace SchemaHelpers dst->Write(value); } break; + case DML_SCHEMA_FIELD_TYPE_BOOL: + { + // OperatorFieldTypes::Bool is a 'bool' (1 byte) but written as 'BOOL' in op descs (4 bytes). + BOOL value = static_cast(field.AsBool()); + dst->Write(value); + } break; + case DML_SCHEMA_FIELD_TYPE_UINT_ARRAY: { uint32_t* arrayPtr = nullptr; const auto& values = field.AsUIntArray(); - if (values) - { - arrayPtr = allocator->template Allocate(values->size()); - std::copy(values->begin(), values->end(), arrayPtr); - } + arrayPtr = allocator->template Allocate(values.size()); + std::copy(values.begin(), values.end(), arrayPtr); dst->Write(arrayPtr); } break; @@ -307,11 +313,8 @@ namespace SchemaHelpers int32_t* arrayPtr = nullptr; const auto& values = field.AsIntArray(); - if (values) - { - arrayPtr = allocator->template Allocate(values->size()); - std::copy(values->begin(), values->end(), arrayPtr); - } + arrayPtr = allocator->template Allocate(values.size()); + std::copy(values.begin(), values.end(), arrayPtr); dst->Write(arrayPtr); } break; @@ -321,11 +324,8 @@ namespace SchemaHelpers float* arrayPtr = nullptr; const auto& values = field.AsFloatArray(); - if (values) - { - arrayPtr = allocator->template Allocate(values->size()); - std::copy(values->begin(), values->end(), arrayPtr); - } + arrayPtr = allocator->template Allocate(values.size()); + std::copy(values.begin(), values.end(), arrayPtr); dst->Write(arrayPtr); } break; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/GraphDescBuilder.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/GraphDescBuilder.cpp index 5428eb962cdbc..c53cf8487829c 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/GraphDescBuilder.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/GraphDescBuilder.cpp @@ -33,10 +33,12 @@ namespace Dml::GraphDescBuilder #pragma warning(pop) static void RemoveUnconnectedNodes( - std::vector& graphNodes, - std::vector& graphInputEdges, - std::vector& graphIntermediateEdges, - std::vector& graphOutputEdges) + std::vector& graphNodes, + std::vector& graphInputEdges, + std::vector& graphIntermediateEdges, + std::vector& graphOutputEdges, + std::unordered_map& serializedGraphInputIndexToSubgraphInputIndex, + std::unordered_map& serializedGraphLargeConstantNameToSubgraphInputIndex) { enum class NodeState { @@ -52,7 +54,7 @@ namespace Dml::GraphDescBuilder }; std::vector nodesData(graphNodes.size()); - for (const DML_INTERMEDIATE_GRAPH_EDGE_DESC& intermediateEdge : graphIntermediateEdges) + for (const DmlIntermediateSerializedGraphEdge& intermediateEdge : graphIntermediateEdges) { nodesData[intermediateEdge.ToNodeIndex].predecessorIndices.push_back(intermediateEdge.FromNodeIndex); } @@ -60,7 +62,7 @@ namespace Dml::GraphDescBuilder std::stack nodeIndicesToVisit; // Start from the outputs of the graph and traverse upwards - for (const DML_OUTPUT_GRAPH_EDGE_DESC& outputEdge : graphOutputEdges) + for (const DmlOutputSerializedGraphEdge& outputEdge : graphOutputEdges) { nodeIndicesToVisit.push(outputEdge.FromNodeIndex); } @@ -134,8 +136,10 @@ namespace Dml::GraphDescBuilder graphInputEdges.erase(inputEdgesEndIter, graphInputEdges.end()); // Adjust the node indices in the input edges + std::unordered_set usedInputEdgeIndex; for (auto& inputEdge : graphInputEdges) { + usedInputEdgeIndex.insert(inputEdge.GraphInputIndex); inputEdge.ToNodeIndex = shiftedIndicesMapping[inputEdge.ToNodeIndex]; } @@ -146,24 +150,95 @@ namespace Dml::GraphDescBuilder } // Adjust the node indices in the intermediate edges + std::unordered_set usedLargeConstantNames; for (auto& intermediateEdge : graphIntermediateEdges) { intermediateEdge.FromNodeIndex = shiftedIndicesMapping[intermediateEdge.FromNodeIndex]; intermediateEdge.ToNodeIndex = shiftedIndicesMapping[intermediateEdge.ToNodeIndex]; + // We need to update the edge name only when the name contains the intermediateEdge.FromNodeIndex + size_t pos = intermediateEdge.Name.find("nodeIdx:"); + if (pos != std::string::npos) + { + if (pos != 0) + { + std::string constantNamePartComingFromModel = intermediateEdge.Name.substr(0, pos - 1); + usedLargeConstantNames.insert(constantNamePartComingFromModel); // need part of name which is coming from the model. + intermediateEdge.Name = constantNamePartComingFromModel; + intermediateEdge.Name += "-nodeIdx:" + std::to_string(intermediateEdge.FromNodeIndex) + "-outputIdx:" + std::to_string(intermediateEdge.FromNodeOutputIndex); + } + else + { + intermediateEdge.Name = "nodeIdx:" + std::to_string(intermediateEdge.FromNodeIndex) + "-outputIdx:" + std::to_string(intermediateEdge.FromNodeOutputIndex); + } + } + } + + + // Erase the mapping if the input Edge is not used by any node + for (auto it = serializedGraphInputIndexToSubgraphInputIndex.begin(); it != serializedGraphInputIndexToSubgraphInputIndex.end();) + { + if (!usedInputEdgeIndex.count(it->first)) + { + it = serializedGraphInputIndexToSubgraphInputIndex.erase(it); + } + else + { + it++; + } + } + + // Erase the mapping if the input Edge is not used by any node + for (auto it = serializedGraphLargeConstantNameToSubgraphInputIndex.begin(); it != serializedGraphLargeConstantNameToSubgraphInputIndex.end();) + { + if (!usedLargeConstantNames.count(std::string(it->first))) + { + it = serializedGraphLargeConstantNameToSubgraphInputIndex.erase(it); + } + else + { + it++; + } } } + + uint32_t SetAndGetDmlGraphNodeIndex( + const uint32_t operatorDmlGraphNodeIndex, + const std::string& nodeNamePrefix, + AbstractOperatorDesc& operatorDesc, + /*in_out*/std::unordered_map& operatorDmlGraphToDmlGraphNodeIndexMap, + /*in_out*/std::vector& dmlGraphNodes) + { + auto iter = operatorDmlGraphToDmlGraphNodeIndexMap.find(operatorDmlGraphNodeIndex); + if (iter != operatorDmlGraphToDmlGraphNodeIndexMap.end()) + { + return iter->second; + } + operatorDmlGraphToDmlGraphNodeIndexMap[operatorDmlGraphNodeIndex] = static_cast(dmlGraphNodes.size()); + dmlGraphNodes.push_back({operatorDesc, nodeNamePrefix + std::to_string(operatorDmlGraphNodeIndex)}); + return operatorDmlGraphToDmlGraphNodeIndexMap[operatorDmlGraphNodeIndex]; + } + + // Terminology: + // Subgraph: partitioned ONNX graph from the original (main) ONNX graph + // DmlGraph: a graph in DML currency converted from subgraph. + // operatorDmlGraph: a graph in DML currency for a given node or operator + // Main Points to note: + // - GraphDesc will always has sequential indices for input and intermediate edges. + // - 1 onnx node can be converted to one or more dml nodes. GraphDesc BuildGraphDesc( const uint8_t* isConstGpuGraphInput, const size_t isConstGpuGraphInputCount, const std::unordered_map>& isInitializerTransferable, const std::unordered_map& graphNodePropertyMap, - IDMLDevice* device, const ExecutionProviderImpl* executionHandle, const onnxruntime::Path& modelPath, gsl::span subgraphNodes, gsl::span subgraphInputs, - gsl::span subgraphOutputs) + gsl::span subgraphOutputs, + /*out*/ std::unordered_map& serializedGraphInputIndexToSubgraphInputIndex, + /*out*/ std::unordered_map& serializedGraphLargeConstantNameToSubgraphInputIndex, + /*out*/ std::vector>& smallConstantData) { struct NodeAndIndex { @@ -171,19 +246,34 @@ namespace Dml::GraphDescBuilder uint32_t targetIndex; // The index of the input/output on the node (e.g. 1 for the second input on a node) }; - // Map from Lotus node argument names to the new node and index where it will be produced - std::unordered_map nameToNodeAndIndexMap; - std::unordered_map nodeOutputShapes; - // Map from Lotus node argument names to input indices of the fused kernel node. - std::unordered_map nameToDmlFusedNodeInputIndex; + // Map from ORT subgraph input names to indices + std::unordered_map subgraphInputNameToIndexMap; + + // - Map from ORT node's output names to DmlGraph . + // - Once a given ORT node (or operator) will be transformed into a operatorDmlGraph, + // then ORT node's output names will become output edges for the operatorDmlGraph. + // - This map will be populated for those output edges. + std::unordered_map dmlGraphNodeOutputNameToNodeAndIndexMap; + + // This map will be used to re-index an subGraphInputIndex to sequential input index + // for DmlGraph + std::unordered_map subGraphInputIndexToDmlGraphInputIndex; + + // Iterate through each node and create a corresponding node in the new graph + // We can iterate the nodes in any order because the edge connectivity will take care of the topological order + std::unordered_map> inferredOutputShapes; + + std::vector dmlGraphNodes; + std::vector dmlGraphInputEdges; + std::vector dmlGraphIntermediateEdges; + std::vector dmlGraphOutputEdges; for (size_t inputIndex = 0; inputIndex < subgraphInputs.size(); ++inputIndex) { - const onnxruntime::NodeArg* graphInput = subgraphInputs[inputIndex]; - - if (!graphInput) + const onnxruntime::NodeArg* subgraphInput = subgraphInputs[inputIndex]; + if (!subgraphInput) { // This is a workaround for when node inputs get manipulated by transformers outside of our control, // which then causes them to have a different name. If that happens we can't figure out how to @@ -191,45 +281,21 @@ namespace Dml::GraphDescBuilder // just bail early. ORT_THROW_HR(E_UNEXPECTED); } - - nameToDmlFusedNodeInputIndex.emplace(graphInput->Name(), gsl::narrow_cast(inputIndex)); - } - - StackAllocator<1024> allocator; // Used for converting abstract operator descs into DML_OPERATOR_DESC - - std::vector graphNodes; - std::vector graphInputEdges; - std::vector graphIntermediateEdges; - std::vector graphOutputEdges; - - // Avoid using separate command lists for small graphs. This value can be reduced by tuning the - // flushing behavior of DmlCommandRecorder. Its current behavior is to assume that graphs contain - // enough GPU work to be worth flushing immediately. - const uint32_t minNodeCountToReuseCommandList = 5; - bool reuseCommandList = false; - - if (subgraphNodes.size() >= minNodeCountToReuseCommandList || executionHandle->IsMcdmDevice()) - { - reuseCommandList = true; + subgraphInputNameToIndexMap.emplace(subgraphInput->Name(), gsl::narrow_cast(inputIndex)); } auto constantCpuGraphInputGetter = [&isInitializerTransferable, &modelPath](const std::string& argName) { ComPtr tensorWrapper; - auto iter = isInitializerTransferable.find(argName); if (iter != isInitializerTransferable.end()) { // Using const_cast here is simpler than making surrounding code const correct. tensorWrapper = wil::MakeOrThrow(const_cast(iter->second.first), modelPath); } - return tensorWrapper; }; - // Iterate through each node and create a corresponding node in the new graph - // We can iterate the nodes in any order because the edge connectivity will take care of the topological order - std::unordered_map> inferredOutputShapes; for (const onnxruntime::Node* subgraphNode : subgraphNodes) { @@ -287,195 +353,206 @@ namespace Dml::GraphDescBuilder } EdgeShapes outputShapes; - DmlGraphNodeCreateInfo graphNodeCreateInfo; + DmlGraphNodeCreateInfo operatorDmlGraphCreateInfo; graphNodeProps.internalRegInfo->graphNodeFactoryRegistration->factory( node, constantCpuNodeInputGetter, executionHandle, &inputShapesOverrides, /*out*/ &outputShapes, - /*out*/ &graphNodeCreateInfo + /*out*/ &operatorDmlGraphCreateInfo ); ORT_THROW_HR_IF(E_UNEXPECTED, outputShapes.EdgeCount() != node.OutputDefs().size()); for (int i = 0; i < node.OutputDefs().size(); ++i) { inferredOutputShapes[node.OutputDefs()[i]->Name()] = outputShapes.GetShape(i); - } - - // Create a map between operatorGraphNodeIndex to mainGraphNodeIndex. - std::unordered_map operatorGraphNodeIndexToMainGraphNodeIndexMap; - uint32_t graphNodeCount = gsl::narrow_cast(graphNodes.size()); - const bool isNodeAsOpDesc = graphNodeCreateInfo.nodesAsOperatorDesc.size() > 0; - size_t firstOpDescGraphNodeIndex = graphNodes.size(); - - if (isNodeAsOpDesc) + } + + // Algorithm: + // 1. Create constant nodes by iterating through operatorDmlGraph's input edges and keep a map of it, + // because there would be an intermediate edge from the constantNode and source of the intermediate edge + // should come before the destination. + // 2. Again iterate through operatorDmlGraph's input edges to create mainGraph's input and intermediate edges. + // 3. Iterate through operatorDmlGraph's intermediate edges to create mainGraph's intermediate edges. + // 4. Iterate through operatorDmlGraph's output edges to populate outputEdgeNameToDmlGraphNodeAndIndex + // 5. While performing step 2, 3, and 4, insert operatorDmlGraphNode to the mainDmlGraphNode list. + + for (auto& operatorDmlGraphInputEdge : operatorDmlGraphCreateInfo.inputEdges) { - // Can't populate graphNodes vector at this point, because operatorDesc may get modified later. - for (uint32_t nodeIndex = 0; nodeIndex < graphNodeCreateInfo.nodeCount; nodeIndex++) + const onnxruntime::NodeArg* arg = node.InputDefs()[operatorDmlGraphInputEdge.GraphInputIndex]; + if (arg->Exists()) { - ORT_THROW_HR_IF(E_UNEXPECTED, !graphNodeCreateInfo.nodesAsOperatorDesc[nodeIndex]); - operatorGraphNodeIndexToMainGraphNodeIndexMap.emplace(nodeIndex, graphNodeCount++); - } + auto iter = subgraphInputNameToIndexMap.find(arg->Name()); + if (iter != subgraphInputNameToIndexMap.end() && + iter->second < isConstGpuGraphInputCount && + isConstGpuGraphInput[iter->second]) + { + DmlSerializedGraphNode constantNode = {}; + constantNode.Name = arg->Name(); + + // This is a highly inefficient approach to generating constant nodes. It duplicates constant data + // across the graph input as well as every consumer's unique constant node. However it is currently + // only used for small inputs. + auto& operatorDmlGraphInputNode = operatorDmlGraphCreateInfo.nodes[operatorDmlGraphInputEdge.ToNodeIndex]; + std::vector toNodeInputTensorDescs = operatorDmlGraphInputNode->GetInputTensors(); + DmlBufferTensorDesc* tensorDesc = toNodeInputTensorDescs[operatorDmlGraphInputEdge.ToNodeInputIndex]; + ComPtr constantInput; + + if (tensorDesc->totalTensorSizeInBytes < c_maxConstNodeDataSize) + { + constantInput = constantCpuGraphInputGetter(arg->Name()); + } - graphNodes.resize(graphNodes.size() + graphNodeCreateInfo.nodeCount); - } - else - { - for (uint32_t nodeIndex = 0; nodeIndex < graphNodeCreateInfo.nodeCount; nodeIndex++) - { - ORT_THROW_HR_IF(E_UNEXPECTED, !graphNodeCreateInfo.nodesAsIDMLOperator[nodeIndex].Get()); - operatorGraphNodeIndexToMainGraphNodeIndexMap.emplace(nodeIndex, graphNodeCount++); - NodeInfo nodeInfo = {}; - nodeInfo.nodeDef = std::move(graphNodeCreateInfo.nodesAsIDMLOperator[nodeIndex]); - graphNodes.push_back(std::move(nodeInfo)); + if (constantInput) + { + // The tensor description's size should be no larger than the constant input unless it was rounded to + // the required alignment. + assert(((constantInput->GetTensorByteSize() + 3) & ~3) >= tensorDesc->totalTensorSizeInBytes); + size_t minimumConstantSize = std::min(constantInput->GetTensorByteSize(), gsl::narrow_cast(tensorDesc->totalTensorSizeInBytes)); + auto data = static_cast(constantInput->GetData()); + std::vector tensorData(data, data + minimumConstantSize); + + smallConstantData.push_back(std::make_unique(tensorData.size())); + std::transform(tensorData.begin(), tensorData.end(), smallConstantData.back().get(), [](uint8_t b) {return static_cast(b);}); + + ConstantData constantData = {smallConstantData.back().get(), tensorData.size()}; + constantNode.Desc = constantData; + } + else + { + ConstantName constantFileName = {GetSanitizedFileName(arg->Name())}; + constantNode.Desc = constantFileName; + } + dmlGraphNodeOutputNameToNodeAndIndexMap[arg->Name()] = {static_cast(dmlGraphNodes.size()), 0}; + dmlGraphNodes.push_back(constantNode); + } } } - // map operatorGraphInputEdge as either mainGraphInputEdge or mainGraphIntermediateEdge - for (auto& operatorGraphInputEdge : graphNodeCreateInfo.inputEdges) - { - // operatorGraphInputEdge.GraphInputIndex will be the ONNX input index. - const onnxruntime::NodeArg* arg = node.InputDefs()[operatorGraphInputEdge.GraphInputIndex]; + // Create a map between operatorGraphNodeIndex to dmlGraphNodeIndex. + std::unordered_map operatorDmlGraphToDmlGraphNodeIndexMap; + // map operatorDmlGraphInputEdge as either mainDmlGraphInputEdge or mainDmlGraphIntermediateEdge + for (auto& operatorDmlGraphInputEdge : operatorDmlGraphCreateInfo.inputEdges) + { + // operatorDmlGraphInputEdge.GraphInputIndex will be the ONNX input index. + const onnxruntime::NodeArg* arg = node.InputDefs()[operatorDmlGraphInputEdge.GraphInputIndex]; if (arg->Exists()) { - auto iter = nameToDmlFusedNodeInputIndex.find(arg->Name()); - uint32_t mainGraphNodeIndex = operatorGraphNodeIndexToMainGraphNodeIndexMap[operatorGraphInputEdge.ToNodeIndex]; - - if (iter != nameToDmlFusedNodeInputIndex.end()) + uint32_t dmlGraphNodeIndex = SetAndGetDmlGraphNodeIndex( + operatorDmlGraphInputEdge.ToNodeIndex, + node.Name(), + *operatorDmlGraphCreateInfo.nodes[operatorDmlGraphInputEdge.ToNodeIndex], + operatorDmlGraphToDmlGraphNodeIndexMap, + dmlGraphNodes); + + auto iter = subgraphInputNameToIndexMap.find(arg->Name()); + if (iter != subgraphInputNameToIndexMap.end()) { - // This is a graph input - - const uint32_t dmlFusedNodeInputIndex = iter->second; - - // If this is a constant input, set the appropriate flags on the desc - if (isNodeAsOpDesc && - dmlFusedNodeInputIndex < isConstGpuGraphInputCount && - isConstGpuGraphInput[dmlFusedNodeInputIndex]) + const uint32_t subgraphInputIndex = iter->second; + + // Either this edge will be + // a constant input, then it will be an intermediate edge and + // set the OWNED_BY_DML flag if it is large constant + // or, + // a non-constant input, then it will be a mainDmlGraphInputEdge. + if (subgraphInputIndex < isConstGpuGraphInputCount && + isConstGpuGraphInput[subgraphInputIndex]) { - // This is a highly inefficient approach to generating constant nodes. It duplicates constant data - // across the graph input as well as every consumer's unique constant node. However it is currently - // only used for small inputs. - uint32_t c_maxConstNodeDataSize = 8; - - - auto& operatorGraphInputNode = graphNodeCreateInfo.nodesAsOperatorDesc[operatorGraphInputEdge.ToNodeIndex]; - std::vector toNodeInputTensorDescs = operatorGraphInputNode->GetInputTensors(); - DmlBufferTensorDesc* tensorDesc = toNodeInputTensorDescs[operatorGraphInputEdge.ToNodeInputIndex]; - ComPtr constantInput; - - if (tensorDesc->totalTensorSizeInBytes < c_maxConstNodeDataSize) + const auto& constantNodeAndIndex = dmlGraphNodeOutputNameToNodeAndIndexMap.at(arg->Name()); + auto& constantNodeVariant = std::get(dmlGraphNodes[constantNodeAndIndex.nodeIndex].Desc); + if (std::holds_alternative(constantNodeVariant)) { - constantInput = constantCpuGraphInputGetter(arg->Name()); - } - - if (constantInput) - { - // The tensor description's size should be no larger than the constant input unless it was rounded to - // the required alignment. - assert(((constantInput->GetTensorByteSize() + 3) & ~3) >= tensorDesc->totalTensorSizeInBytes); - size_t minimumConstantSize = std::min(constantInput->GetTensorByteSize(), gsl::narrow_cast(tensorDesc->totalTensorSizeInBytes)); - auto data = static_cast(constantInput->GetData()); - std::vector tensorData(data, data + minimumConstantSize); - - NodeInfo nodeInfo = {}; - nodeInfo.nodeDef = std::move(tensorData); - graphNodes.push_back(std::move(nodeInfo)); - - DML_INTERMEDIATE_GRAPH_EDGE_DESC edge = {}; - edge.FromNodeIndex = static_cast(graphNodes.size() - 1); - edge.FromNodeOutputIndex = 0; - edge.ToNodeIndex = mainGraphNodeIndex; - edge.ToNodeInputIndex = operatorGraphInputEdge.ToNodeInputIndex; - graphIntermediateEdges.push_back(edge); - } - else - { - DML_INPUT_GRAPH_EDGE_DESC edge = {}; - edge.GraphInputIndex = dmlFusedNodeInputIndex; - edge.ToNodeIndex = mainGraphNodeIndex; - edge.ToNodeInputIndex = operatorGraphInputEdge.ToNodeInputIndex; - graphInputEdges.push_back(edge); - + auto& mainDmlGraphNode = dmlGraphNodes[dmlGraphNodeIndex]; + AbstractOperatorDesc& abstractOperatorDesc = std::get(mainDmlGraphNode.Desc); + std::vector toNodeInputTensorDescs = abstractOperatorDesc.GetInputTensors(); + DmlBufferTensorDesc* tensorDesc = toNodeInputTensorDescs[operatorDmlGraphInputEdge.ToNodeInputIndex]; tensorDesc->flags |= DML_TENSOR_FLAG_OWNED_BY_DML; + serializedGraphLargeConstantNameToSubgraphInputIndex[arg->Name()] = subgraphInputIndex; } + + DmlIntermediateSerializedGraphEdge edge = {}; + edge.FromNodeIndex = constantNodeAndIndex.nodeIndex; + edge.FromNodeOutputIndex = constantNodeAndIndex.targetIndex; + edge.ToNodeIndex = dmlGraphNodeIndex; + edge.ToNodeInputIndex = operatorDmlGraphInputEdge.ToNodeInputIndex; + edge.Name = arg->Name() + "-nodeIdx:" + std::to_string(edge.FromNodeIndex) + "-outputIdx:" + std::to_string(edge.FromNodeOutputIndex); + dmlGraphIntermediateEdges.push_back(edge); } else { - DML_INPUT_GRAPH_EDGE_DESC edge = {}; - edge.GraphInputIndex = dmlFusedNodeInputIndex; - edge.ToNodeIndex = mainGraphNodeIndex; - edge.ToNodeInputIndex = operatorGraphInputEdge.ToNodeInputIndex; - graphInputEdges.push_back(edge); + DmlInputSerializedGraphEdge edge = {}; + if (subGraphInputIndexToDmlGraphInputIndex.find(subgraphInputIndex) == subGraphInputIndexToDmlGraphInputIndex.end()) + { + subGraphInputIndexToDmlGraphInputIndex[subgraphInputIndex] = static_cast(subGraphInputIndexToDmlGraphInputIndex.size()); + } + + edge.GraphInputIndex = subGraphInputIndexToDmlGraphInputIndex[subgraphInputIndex]; + edge.ToNodeIndex = dmlGraphNodeIndex; + edge.ToNodeInputIndex = operatorDmlGraphInputEdge.ToNodeInputIndex; // ?? might need to point inputIndex + edge.Name = arg->Name(); + + serializedGraphInputIndexToSubgraphInputIndex[edge.GraphInputIndex] = subgraphInputIndex; + dmlGraphInputEdges.push_back(edge); } } else { - const auto& inputNodeAndIndex = nameToNodeAndIndexMap.at(arg->Name()); + const auto& inputNodeAndIndex = dmlGraphNodeOutputNameToNodeAndIndexMap.at(arg->Name()); - DML_INTERMEDIATE_GRAPH_EDGE_DESC edge = {}; + DmlIntermediateSerializedGraphEdge edge = {}; edge.FromNodeIndex = inputNodeAndIndex.nodeIndex; edge.FromNodeOutputIndex = inputNodeAndIndex.targetIndex; - edge.ToNodeIndex = mainGraphNodeIndex; - edge.ToNodeInputIndex = operatorGraphInputEdge.ToNodeInputIndex; - graphIntermediateEdges.push_back(edge); + edge.ToNodeIndex = dmlGraphNodeIndex; + edge.ToNodeInputIndex = operatorDmlGraphInputEdge.ToNodeInputIndex; + edge.Name = arg->Name(); + dmlGraphIntermediateEdges.push_back(edge); } } } // map operatorGraphIntermediateEdges as mainGraphIntermediateEdge - for (auto& operatorGraphIntermediateEdge : graphNodeCreateInfo.intermediateEdges) + for (auto& operatorGraphIntermediateEdge : operatorDmlGraphCreateInfo.intermediateEdges) { - DML_INTERMEDIATE_GRAPH_EDGE_DESC edge = {}; - edge.FromNodeIndex = operatorGraphNodeIndexToMainGraphNodeIndexMap[operatorGraphIntermediateEdge.FromNodeIndex]; + DmlIntermediateSerializedGraphEdge edge = {}; + uint32_t shiftedFromNodeIndex = SetAndGetDmlGraphNodeIndex( + operatorGraphIntermediateEdge.FromNodeIndex, + node.Name(), + *operatorDmlGraphCreateInfo.nodes[operatorGraphIntermediateEdge.FromNodeIndex], + operatorDmlGraphToDmlGraphNodeIndexMap, + dmlGraphNodes); + uint32_t shiftedToNodeIndex = SetAndGetDmlGraphNodeIndex( + operatorGraphIntermediateEdge.ToNodeIndex, + node.Name(), + *operatorDmlGraphCreateInfo.nodes[operatorGraphIntermediateEdge.ToNodeIndex], + operatorDmlGraphToDmlGraphNodeIndexMap, + dmlGraphNodes); + + edge.FromNodeIndex = shiftedFromNodeIndex; edge.FromNodeOutputIndex = operatorGraphIntermediateEdge.FromNodeOutputIndex; - edge.ToNodeIndex = operatorGraphNodeIndexToMainGraphNodeIndexMap[operatorGraphIntermediateEdge.ToNodeIndex]; + edge.ToNodeIndex = shiftedToNodeIndex; edge.ToNodeInputIndex = operatorGraphIntermediateEdge.ToNodeInputIndex; - graphIntermediateEdges.push_back(edge); + edge.Name = "nodeIdx:" + std::to_string(shiftedFromNodeIndex) + "-outputIdx:" + std::to_string(operatorGraphIntermediateEdge.FromNodeOutputIndex); + dmlGraphIntermediateEdges.push_back(edge); } - + // populate nameToNodeAndIndexMap (which will be used by above loop) for operatorGraphOutputEdges - for (auto& operatorGraphOutputEdge : graphNodeCreateInfo.outputEdges) + for (auto& operatorGraphOutputEdge : operatorDmlGraphCreateInfo.outputEdges) { const onnxruntime::NodeArg* arg = node.OutputDefs()[operatorGraphOutputEdge.GraphOutputIndex]; if (arg->Exists()) { - nameToNodeAndIndexMap[arg->Name()] = NodeAndIndex { - operatorGraphNodeIndexToMainGraphNodeIndexMap[operatorGraphOutputEdge.FromNodeIndex], - operatorGraphOutputEdge.FromNodeOutputIndex - }; - + uint32_t shiftedNodeIndex = SetAndGetDmlGraphNodeIndex( + operatorGraphOutputEdge.FromNodeIndex, + node.Name(), + *operatorDmlGraphCreateInfo.nodes[operatorGraphOutputEdge.FromNodeIndex], + operatorDmlGraphToDmlGraphNodeIndexMap, + dmlGraphNodes); + dmlGraphNodeOutputNameToNodeAndIndexMap[arg->Name()] = {shiftedNodeIndex, operatorGraphOutputEdge.FromNodeOutputIndex}; nodeOutputShapes[arg->Name()] = outputShapes; } } - - if (isNodeAsOpDesc) - { - for (size_t i = 0; i < graphNodeCreateInfo.nodesAsOperatorDesc.size(); ++i) - { - auto& opDesc = graphNodeCreateInfo.nodesAsOperatorDesc[i]; - - DML_OPERATOR_DESC dmlDesc = SchemaHelpers::ConvertOperatorDesc(*opDesc, &allocator); - - // TODO: Change as new header is ingested - if (dmlDesc.Type == (DML_OPERATOR_TYPE) DML_OPERATOR_QUANTIZED_LINEAR_AVERAGE_POOLING) - dmlDesc.Type = (DML_OPERATOR_TYPE) 169; - - // TODO: Change as new header is ingested - if (dmlDesc.Type == (DML_OPERATOR_TYPE) DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT) - dmlDesc.Type = (DML_OPERATOR_TYPE) 170; - - ComPtr op; - ORT_THROW_IF_FAILED(device->CreateOperator(&dmlDesc, IID_PPV_ARGS(&op))); - allocator.Reset(); - - NodeInfo nodeInfo = {}; - nodeInfo.nodeDef = std::move(op); - nodeInfo.name = node.Name(); - graphNodes[firstOpDescGraphNodeIndex + i] = std::move(nodeInfo); - } - } } EdgeShapes graphOutputShapes(subgraphOutputs.size()); @@ -486,24 +563,32 @@ namespace Dml::GraphDescBuilder const onnxruntime::NodeArg* graphOutput = subgraphOutputs[outputIndex]; ORT_THROW_HR_IF_NULL_MSG(E_POINTER, graphOutput, "FusedNode's nodeArgList does not contain one of the nodeArg"); - const auto& outputNodeAndIndex = nameToNodeAndIndexMap.at(graphOutput->Name()); + const auto& outputNodeAndIndex = dmlGraphNodeOutputNameToNodeAndIndexMap.at(graphOutput->Name()); - DML_OUTPUT_GRAPH_EDGE_DESC edge = {}; + DmlOutputSerializedGraphEdge edge = {}; edge.FromNodeIndex = outputNodeAndIndex.nodeIndex; edge.FromNodeOutputIndex = outputNodeAndIndex.targetIndex; edge.GraphOutputIndex = gsl::narrow_cast(outputIndex); - graphOutputEdges.push_back(edge); + edge.Name = graphOutput->Name(); + dmlGraphOutputEdges.push_back(edge); graphOutputShapes.GetMutableShape(outputIndex) = nodeOutputShapes[graphOutput->Name()].GetShape(outputNodeAndIndex.targetIndex); } - RemoveUnconnectedNodes(graphNodes, graphInputEdges, graphIntermediateEdges, graphOutputEdges); + RemoveUnconnectedNodes(dmlGraphNodes, + dmlGraphInputEdges, + dmlGraphIntermediateEdges, + dmlGraphOutputEdges, + serializedGraphInputIndexToSubgraphInputIndex, + serializedGraphLargeConstantNameToSubgraphInputIndex); GraphDesc graphDesc{}; - graphDesc.nodes = std::move(graphNodes); - graphDesc.inputEdges = std::move(graphInputEdges); - graphDesc.outputEdges = std::move(graphOutputEdges); - graphDesc.intermediateEdges = std::move(graphIntermediateEdges); - graphDesc.reuseCommandList = reuseCommandList; + graphDesc.InputCount = static_cast(dmlGraphInputEdges.size()); + graphDesc.OutputCount = static_cast(subgraphOutputs.size()); + graphDesc.Nodes = std::move(dmlGraphNodes); + graphDesc.InputEdges = std::move(dmlGraphInputEdges); + graphDesc.OutputEdges = std::move(dmlGraphOutputEdges); + graphDesc.IntermediateEdges = std::move(dmlGraphIntermediateEdges); + graphDesc.reuseCommandList = (subgraphNodes.size() >= minNodeCountToReuseCommandList || executionHandle->IsMcdmDevice()); graphDesc.outputShapes = std::move(graphOutputShapes); return graphDesc; } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/GraphDescBuilder.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/GraphDescBuilder.h index c95e89b45541b..4055984b40405 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/GraphDescBuilder.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/GraphDescBuilder.h @@ -22,22 +22,15 @@ namespace Dml namespace GraphDescBuilder { + constexpr uint32_t minNodeCountToReuseCommandList = 5; + constexpr uint32_t c_maxConstNodeDataSize = 8; + // Gets a unique name for the node which survives recreation and graph manipulations between the point // that graph partitioning occurs and kernel creation happens const std::string& GetUniqueNodeName(const onnxruntime::Node& node); - struct NodeInfo - { - std::variant, std::vector> nodeDef; - std::string name; - }; - - struct GraphDesc + struct GraphDesc : DmlSerializedGraphDesc { - std::vector nodes; - std::vector inputEdges; - std::vector outputEdges; - std::vector intermediateEdges; bool reuseCommandList; Windows::AI::MachineLearning::Adapter::EdgeShapes outputShapes; }; @@ -47,11 +40,13 @@ namespace Dml const size_t isConstGpuGraphInputCount, const std::unordered_map>& isInitializerTransferable, const std::unordered_map& graphNodePropertyMap, - IDMLDevice* device, const ExecutionProviderImpl* executionHandle, const onnxruntime::Path& modelPath, gsl::span subgraphNodes, gsl::span subgraphInputs, - gsl::span subgraphOutputs); + gsl::span subgraphOutputs, + /*out*/ std::unordered_map& serializedGraphInputIndexToSubgraphInputIndex, + /*out*/ std::unordered_map& serializedGraphLargeConstantNameToSubgraphInputIndex, + /*out*/ std::vector>& smallConstantData); } } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/IExecutionProvider.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/IExecutionProvider.h index 17fd7c18ba4a1..f4c3f326274ad 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/IExecutionProvider.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/IExecutionProvider.h @@ -3,7 +3,7 @@ #pragma once -#include +#include "directx/d3d12.h" #include "core/providers/dml/DmlExecutionProvider/inc/DmlExecutionProvider.h" diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/MLOperatorAuthorImpl.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/MLOperatorAuthorImpl.cpp index d524780de71b8..f29fbc7a1a65b 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/MLOperatorAuthorImpl.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/MLOperatorAuthorImpl.cpp @@ -1508,31 +1508,17 @@ namespace Windows::AI::MachineLearning::Adapter ORT_TRY { assert(operatorGraphDesc != nullptr); - // Either nodesAsOpDesc or nodesIDMLOperator can be present. - assert(operatorGraphDesc->nodeCount == 0 || (!operatorGraphDesc->nodesAsOpDesc ^ !operatorGraphDesc->nodesAsIDMLOperator)); + assert(operatorGraphDesc->nodeCount == 0 || operatorGraphDesc->nodes); - if (operatorGraphDesc->nodesAsOpDesc) + m_graphNodeCreateInfo->nodes = std::vector>(); + for (uint32_t nodeIndex = 0; nodeIndex < operatorGraphDesc->nodeCount; nodeIndex++) { - m_graphNodeCreateInfo->nodesAsOperatorDesc = std::vector>(); - for (uint32_t nodeIndex = 0; nodeIndex < operatorGraphDesc->nodeCount; nodeIndex++) - { - auto* node = operatorGraphDesc->nodesAsOpDesc[nodeIndex]; - assert(node != nullptr); - AbstractOperatorDesc abstractDesc = SchemaHelpers::ConvertOperatorDesc(*node); - m_graphNodeCreateInfo->nodesAsOperatorDesc.push_back(std::make_unique(std::move(abstractDesc))); - } - } - else - { - m_graphNodeCreateInfo->nodesAsIDMLOperator = std::vector>(); - for (uint32_t nodeIndex = 0; nodeIndex < operatorGraphDesc->nodeCount; nodeIndex++) - { - auto* node = operatorGraphDesc->nodesAsIDMLOperator[nodeIndex]; - assert(node != nullptr); - m_graphNodeCreateInfo->nodesAsIDMLOperator.push_back(node); - } + auto* node = operatorGraphDesc->nodes[nodeIndex]; + assert(node != nullptr); + AbstractOperatorDesc abstractDesc = SchemaHelpers::ConvertOperatorDesc(*node); + m_graphNodeCreateInfo->nodes.push_back(std::make_unique(std::move(abstractDesc))); } - + // There can be operators (or kernels) which don't require any input. assert(operatorGraphDesc->inputEdgeCount == 0 || operatorGraphDesc->inputEdges != nullptr); m_graphNodeCreateInfo->inputEdges.insert( diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlDFT.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlDFT.h index b2976d7e100e5..a99d8bf655fec 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlDFT.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlDFT.h @@ -4,7 +4,7 @@ #include "../../../OperatorAuthorHelper/OperatorHelper.h" #include "../External/D3DX12/d3dx12.h" -#include +#include "directx/d3d12.h" // NOTE: When this operator's implementation is moved into DML, the associated FP16 fallback // should be removed from IsCustomOpShader(...) in diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlGridSample.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlGridSample.h index f5cb0580f0aaa..5ba936ddf3976 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlGridSample.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlGridSample.h @@ -4,7 +4,7 @@ #include "../MLOperatorAuthorImpl.h" #include "../External/D3DX12/d3dx12.h" -#include +#include "directx/d3d12.h" // NOTE: When this operator's implementation is moved into DML, the associated FP16 fallback // should be removed from IsCustomOpShader(...) in diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperator.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperator.cpp index c3bb1a52210f5..287f1e5b6dfe7 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperator.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperator.cpp @@ -53,7 +53,7 @@ namespace Dml MLOperatorGraphDesc operatorGraphDesc = {}; operatorGraphDesc.nodeCount = 1; const DML_OPERATOR_DESC* opDescs{&operatorDesc}; - operatorGraphDesc.nodesAsOpDesc = &opDescs; + operatorGraphDesc.nodes = &opDescs; std::vector inputEdges; for (uint32_t inputIndex = 0; inputIndex < m_kernelInputIndices.size(); inputIndex++) @@ -796,7 +796,7 @@ namespace Dml for (size_t i = 0; i < graphDesc.NodeCount; ++i) { // Create the operator. - ORT_THROW_IF_FAILED(m_dmlDevice->CreateOperator(operatorGraphDesc.nodesAsOpDesc[i], IID_PPV_ARGS(&dmlOperators[i]))); + ORT_THROW_IF_FAILED(m_dmlDevice->CreateOperator(operatorGraphDesc.nodes[i], IID_PPV_ARGS(&dmlOperators[i]))); dmlOperatorGraphNodes[i] = DML_OPERATOR_GRAPH_NODE_DESC{dmlOperators[i].Get()}; dmlGraphNodes[i] = DML_GRAPH_NODE_DESC{DML_GRAPH_NODE_TYPE_OPERATOR, &dmlOperatorGraphNodes[i]}; } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorAttention.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorAttention.cpp index c8ca6806e75f7..73c2d57e984af 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorAttention.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorAttention.cpp @@ -531,7 +531,7 @@ class DmlOperatorAttention : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorBiasAdd.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorBiasAdd.cpp index 1c851c94c4ddc..5aceebbdabfe3 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorBiasAdd.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorBiasAdd.cpp @@ -103,7 +103,7 @@ class DmlOperatorBiasAdd : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } }; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorBiasSplitGelu.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorBiasSplitGelu.cpp index 501ce14f1fc08..1e10214ffd463 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorBiasSplitGelu.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorBiasSplitGelu.cpp @@ -137,7 +137,7 @@ class DmlOperatorBiasSplitGelu : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } }; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorDynamicQuantizeMatMul.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorDynamicQuantizeMatMul.cpp new file mode 100644 index 0000000000000..c6a87da705a99 --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorDynamicQuantizeMatMul.cpp @@ -0,0 +1,173 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "precomp.h" + +namespace Dml +{ +// DynamicQuantizeMatMul = MatrixMultiplyIntegerToFloat(DynamicQuantizeLinear(A), B) +class DmlOperatorDynamicQuantizeMatMul : public DmlOperator +{ + // This order matches the ONNX schema. + enum OnnxInputIndex + { + A, // Input + B, + B_scale, + B_zero_point, + Bias, + Count, + }; + +public: + DmlOperatorDynamicQuantizeMatMul(const MLOperatorKernelCreationContext& kernelCreationContext) + : DmlOperator(kernelCreationContext) + { + DmlOperator::Initialize(kernelCreationContext); + + const bool hasBias = kernelCreationContext.IsInputValid(OnnxInputIndex::Bias); + const bool hasBZP = kernelCreationContext.IsInputValid(OnnxInputIndex::B_zero_point); + + // Broadcast Bias tensor to the shape of the output tensor. + if (hasBias) + { + m_inputTensorDescs[OnnxInputIndex::Bias] = CreateTensorDescFromInput( + kernelCreationContext, + OnnxInputIndex::Bias, + TensorAxis::DoNotCoerce, + TensorAxis::W, + TensorAxis::RightAligned, + kernelCreationContext.GetTensorShapeDescription().GetOutputTensorShape(0) + ); + } + MLOperatorTensorDataType BDatatype = kernelCreationContext.GetInputEdgeDescription(OnnxInputIndex::B).tensorDataType; + + std::vector ATensorShape = kernelCreationContext.GetTensorShapeDescription().GetInputTensorShape(OnnxInputIndex::A); + std::vector ExpectedAScaleTensorShape = {1, 1, 1, 1}; + std::vector ExpectedAZeroPointTensorShape = {1, 1, 1, 1}; + + // output edges between DynQL and MMItoFloat node + TensorDesc intermediateQuantizedATensorDesc = TensorDesc( + BDatatype, + gsl::make_span(ATensorShape), + gsl::make_span(ATensorShape), + TensorAxis::DoNotCoerce, + TensorAxis::W, + TensorAxis::RightAligned, + NchwDimensionCount, // minDimensionCount + 0 // guaranteedBaseOffsetAlignment + ); + + TensorDesc intermediateQuantizedAScaleTensorDesc = TensorDesc( + MLOperatorTensorDataType::Float, + gsl::make_span(ExpectedAScaleTensorShape), + gsl::make_span(ExpectedAScaleTensorShape), + TensorAxis::DoNotCoerce, + TensorAxis::W, + TensorAxis::RightAligned, + NchwDimensionCount, // minDimensionCount + 0 // guaranteedBaseOffsetAlignment + ); + + TensorDesc intermediateQuantizedAZeroPointTensorDesc = TensorDesc( + BDatatype, + gsl::make_span(ExpectedAZeroPointTensorShape), + gsl::make_span(ExpectedAZeroPointTensorShape), + TensorAxis::DoNotCoerce, + TensorAxis::W, + TensorAxis::RightAligned, + NchwDimensionCount, // minDimensionCount + 0 // guaranteedBaseOffsetAlignment + ); + + DML_TENSOR_DESC namedIntermediateQuantizedATensorDesc = intermediateQuantizedATensorDesc.GetDmlDesc(); + DML_TENSOR_DESC namedIntermediateQuantizedAScaleTensorDesc = intermediateQuantizedAScaleTensorDesc.GetDmlDesc(); + DML_TENSOR_DESC namedIntermediateQuantizedAZeroPointTensorDesc = intermediateQuantizedAZeroPointTensorDesc.GetDmlDesc(); + + std::vector inputDescs = GetDmlInputDescs(); + std::vector outputDescs = GetDmlOutputDescs(); + + DML_DYNAMIC_QUANTIZE_LINEAR_OPERATOR_DESC dynamicQuantizeLinearOperatorDesc = {}; + dynamicQuantizeLinearOperatorDesc.InputTensor = &inputDescs[OnnxInputIndex::A]; + dynamicQuantizeLinearOperatorDesc.OutputTensor = &namedIntermediateQuantizedATensorDesc; + dynamicQuantizeLinearOperatorDesc.OutputScaleTensor = &namedIntermediateQuantizedAScaleTensorDesc; + dynamicQuantizeLinearOperatorDesc.OutputZeroPointTensor = &namedIntermediateQuantizedAZeroPointTensorDesc; + + const DML_OPERATOR_DESC opDesc1{DML_OPERATOR_DYNAMIC_QUANTIZE_LINEAR, &dynamicQuantizeLinearOperatorDesc}; + + DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_DESC matrixMultiplyIntergerToFloatOperatorDesc = {}; + matrixMultiplyIntergerToFloatOperatorDesc.ATensor = dynamicQuantizeLinearOperatorDesc.OutputTensor; + matrixMultiplyIntergerToFloatOperatorDesc.AScaleTensor = dynamicQuantizeLinearOperatorDesc.OutputScaleTensor; + matrixMultiplyIntergerToFloatOperatorDesc.AZeroPointTensor = dynamicQuantizeLinearOperatorDesc.OutputZeroPointTensor; + matrixMultiplyIntergerToFloatOperatorDesc.BTensor = &inputDescs[OnnxInputIndex::B]; + matrixMultiplyIntergerToFloatOperatorDesc.BScaleTensor = &inputDescs[OnnxInputIndex::B_scale]; + matrixMultiplyIntergerToFloatOperatorDesc.BZeroPointTensor = hasBZP? &inputDescs[OnnxInputIndex::B_zero_point] : nullptr; + matrixMultiplyIntergerToFloatOperatorDesc.BiasTensor = hasBias? &inputDescs[OnnxInputIndex::Bias] : nullptr; + matrixMultiplyIntergerToFloatOperatorDesc.OutputTensor = &outputDescs[0]; + + const DML_OPERATOR_DESC opDesc2{ DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT, &matrixMultiplyIntergerToFloatOperatorDesc}; + + MLOperatorGraphDesc operatorGraphDesc = {}; + std::vector opDescs{&opDesc1, &opDesc2}; + operatorGraphDesc.nodeCount = static_cast(opDescs.size()); + operatorGraphDesc.nodes = opDescs.data(); + + // set input edges + std::pair nodeToNodeInputIndex[OnnxInputIndex::Count] {{0, 0}, {1, 3}, {1, 4}, {1, 5}, {1, 6}}; + std::vector inputEdges; + for (uint32_t inputIndex = 0; inputIndex < OnnxInputIndex::Count; inputIndex++) + { + if (inputIndex == OnnxInputIndex::B_zero_point && !hasBZP) continue; + if (inputIndex == OnnxInputIndex::Bias && !hasBias) continue; + DML_INPUT_GRAPH_EDGE_DESC inputEdge = {}; + inputEdge.GraphInputIndex = inputIndex; // OnnxInputIndex and DmlInputIndex are identity for QLinearSigmoid + inputEdge.ToNodeIndex = nodeToNodeInputIndex[inputIndex].first; + inputEdge.ToNodeInputIndex = nodeToNodeInputIndex[inputIndex].second; + inputEdges.push_back(inputEdge); + } + operatorGraphDesc.inputEdgeCount = gsl::narrow_cast(inputEdges.size()); + operatorGraphDesc.inputEdges = inputEdges.data(); + + // set intermediate edges + std::vector intermediateEdges; + + DML_INTERMEDIATE_GRAPH_EDGE_DESC dynQLToMMItofloatEdge1 = {}; + dynQLToMMItofloatEdge1.FromNodeIndex = 0; + dynQLToMMItofloatEdge1.FromNodeOutputIndex = 0; + dynQLToMMItofloatEdge1.ToNodeIndex = 1; + dynQLToMMItofloatEdge1.ToNodeInputIndex = 0; + intermediateEdges.push_back(dynQLToMMItofloatEdge1); + + DML_INTERMEDIATE_GRAPH_EDGE_DESC dynQLToMMItofloatEdge2 = {}; + dynQLToMMItofloatEdge2.FromNodeIndex = 0; + dynQLToMMItofloatEdge2.FromNodeOutputIndex = 1; + dynQLToMMItofloatEdge2.ToNodeIndex = 1; + dynQLToMMItofloatEdge2.ToNodeInputIndex = 1; + intermediateEdges.push_back(dynQLToMMItofloatEdge2); + + DML_INTERMEDIATE_GRAPH_EDGE_DESC dynQLToMMItofloatEdge3 = {}; + dynQLToMMItofloatEdge3.FromNodeIndex = 0; + dynQLToMMItofloatEdge3.FromNodeOutputIndex = 2; + dynQLToMMItofloatEdge3.ToNodeIndex = 1; + dynQLToMMItofloatEdge3.ToNodeInputIndex = 2; + intermediateEdges.push_back(dynQLToMMItofloatEdge3); + + operatorGraphDesc.intermediateEdgeCount = gsl::narrow_cast(intermediateEdges.size()); + operatorGraphDesc.intermediateEdges = intermediateEdges.data(); + + // set the output edges + std::vector outputEdges; + DML_OUTPUT_GRAPH_EDGE_DESC outputEdge = {}; + outputEdge.FromNodeIndex = 1; + outputEdge.FromNodeOutputIndex = 0; + outputEdge.GraphOutputIndex = 0; + outputEdges.push_back(outputEdge); + operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); + operatorGraphDesc.outputEdges = outputEdges.data(); + + SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); + } +}; + +DML_OP_DEFINE_CREATION_FUNCTION(DynamicQuantizeMatMul, DmlOperatorDynamicQuantizeMatMul); +} // namespace Dml diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorEmbedLayerNormalization.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorEmbedLayerNormalization.cpp index 6a8333cd72561..3c9458658c4d0 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorEmbedLayerNormalization.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorEmbedLayerNormalization.cpp @@ -484,7 +484,7 @@ class DmlOperatorEmbedLayerNormalization : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorGroupNorm.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorGroupNorm.cpp index fed0e4645ffd8..8b275fc550f3e 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorGroupNorm.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorGroupNorm.cpp @@ -287,7 +287,7 @@ class DmlOperatorGroupNorm : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } }; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorGroupQueryAttention.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorGroupQueryAttention.cpp index 62289fee1f712..5e422ef909214 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorGroupQueryAttention.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorGroupQueryAttention.cpp @@ -207,7 +207,7 @@ class DmlOperatorGroupQueryAttention : public DmlOperator, public GroupQueryAtte operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorLayerNormalization.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorLayerNormalization.cpp index 2e27a7d0d8fa4..eaae93504d162 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorLayerNormalization.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorLayerNormalization.cpp @@ -249,7 +249,7 @@ class DmlOperatorLayerNormalization : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorMatMulIntegerToFloat.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorMatMulIntegerToFloat.cpp new file mode 100644 index 0000000000000..b5a3dd0960b86 --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorMatMulIntegerToFloat.cpp @@ -0,0 +1,111 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "precomp.h" + +namespace Dml +{ + +class DmlOperatorMatMulIntegerToFloat : public DmlOperator +{ + enum OrtInputTensors : uint32_t + { + ortA, + ortB, + ortAScale, + ortBScale, + ortAZeroPoint, + ortBZeroPoint, + ortBias, + ortInputCount + }; + + enum DmlInputIndex : uint32_t + { + dmlA, + dmlAScale, + dmlAZeroPoint, + dmlB, + dmlBScale, + dmlBZeroPoint, + dmlBias, + dmlInputCount, + }; + +public: + DmlOperatorMatMulIntegerToFloat(const MLOperatorKernelCreationContext& kernelInfo) + : DmlOperator(kernelInfo) + { + std::vector> inputIndices = { OrtInputTensors::ortA, OrtInputTensors::ortAScale, OrtInputTensors::ortAZeroPoint, OrtInputTensors::ortB, OrtInputTensors::ortBScale, OrtInputTensors::ortBZeroPoint, OrtInputTensors::ortBias }; + DmlOperator::Initialize(kernelInfo, inputIndices); + + std::vector inputShape0 = kernelInfo.GetTensorShapeDescription().GetInputTensorShape(OrtInputTensors::ortA); + std::vector inputShape1 = kernelInfo.GetTensorShapeDescription().GetInputTensorShape(OrtInputTensors::ortB); + std::vector outputShape = kernelInfo.GetTensorShapeDescription().GetOutputTensorShape(0); + + OperatorHelper::MatMulShapeMapping(inputShape0, inputShape1, outputShape); + + // Initialize the input descriptions with broadcasting + m_inputTensorDescs[DmlInputIndex::dmlA] = CreateTensorDescFromInput(kernelInfo, OrtInputTensors::ortA, TensorAxis::DoNotCoerce, TensorAxis::W, TensorAxis::RightAligned, inputShape0); + m_inputTensorDescs[DmlInputIndex::dmlB] = CreateTensorDescFromInput(kernelInfo, OrtInputTensors::ortB, TensorAxis::DoNotCoerce, TensorAxis::W, TensorAxis::RightAligned, inputShape1); + + // Broadcast Bias tensor to the shape of the output tensor. + if(kernelInfo.IsInputValid(OrtInputTensors::ortBias)) { + m_inputTensorDescs[DmlInputIndex::dmlBias] = CreateTensorDescFromInput(kernelInfo, OrtInputTensors::ortBias, TensorAxis::DoNotCoerce, + TensorAxis::W, TensorAxis::RightAligned, outputShape); + } + + uint32_t dmlDimSize = m_inputTensorDescs[DmlInputIndex::dmlA].GetDimensionCount(); + // Resize the A Scale to be the same dimension as the input tensor. + // The 1D tensor needs to be moved to the H channel. + m_inputTensorDescs[DmlInputIndex::dmlAScale] = CreateTensorDescFromInput( + kernelInfo, + OrtInputTensors::ortAScale, + TensorAxis::DoNotCoerce, + TensorAxis::H, + TensorAxis::LeftAligned, + std::nullopt, + dmlDimSize + ); + + // Resize the A ZeroPoint to be the same dimension as the input tensor. + // The 1D tensor needs to be moved to the H channel. + if (kernelInfo.IsInputValid(OrtInputTensors::ortAZeroPoint)) + { + m_inputTensorDescs[DmlInputIndex::dmlAZeroPoint] = CreateTensorDescFromInput( + kernelInfo, + OrtInputTensors::ortAZeroPoint, + TensorAxis::DoNotCoerce, + TensorAxis::H, + TensorAxis::LeftAligned, + std::nullopt, + dmlDimSize + ); + } + + // B Zeropoint and BScale are already aligned in the W dimension so no need to align them + + // Initialize the output description while overriding the shape + m_outputTensorDescs[0] = CreateTensorDescFromOutput(kernelInfo, 0, TensorAxis::DoNotCoerce, TensorAxis::W, TensorAxis::RightAligned, outputShape); + + std::vector inputDescs = GetDmlInputDescs(); + std::vector outputDescs = GetDmlOutputDescs(); + + DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_DESC matMulDesc = {}; + matMulDesc.ATensor = &inputDescs[DmlInputIndex::dmlA]; + matMulDesc.AScaleTensor = &inputDescs[DmlInputIndex::dmlAScale]; + matMulDesc.AZeroPointTensor = inputDescs[DmlInputIndex::dmlAZeroPoint].Desc != nullptr ? &inputDescs[DmlInputIndex::dmlAZeroPoint] : nullptr; + matMulDesc.BTensor = &inputDescs[DmlInputIndex::dmlB]; + matMulDesc.BScaleTensor = &inputDescs[DmlInputIndex::dmlBScale]; + matMulDesc.BZeroPointTensor = inputDescs[DmlInputIndex::dmlBZeroPoint].Desc != nullptr ? &inputDescs[DmlInputIndex::dmlBZeroPoint] : nullptr; + matMulDesc.BiasTensor = inputDescs[DmlInputIndex::dmlBias].Desc != nullptr ? &inputDescs[DmlInputIndex::dmlBias] : nullptr; + matMulDesc.OutputTensor = &outputDescs[0]; + + DML_OPERATOR_DESC opDesc = { (DML_OPERATOR_TYPE) DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT, &matMulDesc }; + SetDmlOperatorDesc(opDesc, kernelInfo); + } +}; + +DML_OP_DEFINE_CREATION_FUNCTION(MatMulIntegerToFloat, DmlOperatorMatMulIntegerToFloat); + +} // namespace Dml diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorMatMulNBits.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorMatMulNBits.cpp index b63338a487d16..a68f00453dbd3 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorMatMulNBits.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorMatMulNBits.cpp @@ -148,7 +148,7 @@ class DmlOperatorMatMulNBits : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelInfo); } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQAttention.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQAttention.cpp new file mode 100644 index 0000000000000..f9519b26bb4e3 --- /dev/null +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQAttention.cpp @@ -0,0 +1,704 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +#include "precomp.h" + +/* +Abbreviations: B is batch_size, S is sequence_length, W is hidden_size + N is number of attention heads, H is head size, and W=N*H + +Input, Weight, Bias, Mask Index and Past are Inputs + +Mask Index/Causal Input Weight Bias + | \ | / + | \ | / + | \ | / + | MatMulIntToFloat + | / | \ + | / | \ + | / | \ + | Slice Slice Slice + | | | | + | | | | + | Identity Identity Identity // The identities are used to transpose NCHW -> NHCW while + | | | | // keeping the GEMM strides as NCHW to better target metacommands + | | | | + | | | | Past + | | | | / \ + | | | | / \ + | | | | Slice Slice + | | | | | | + | | | | | | + | | | | | | + --------------------------MHA ----------- + / | \ + / | \ + / | \ + / | \ + / | \ + / | \ + / presentKey presentValue + / \ / + / \ / + / \ / + / Concat + / | + Output1 Output2 (present) + + This kernel creates a DML_GRAPH, as mentioned above. + For reference, refer to this Doc: + https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#commicrosoftqattention + */ + +namespace Dml +{ +class DmlOperatorQAttention : public DmlOperator +{ +public: + DmlOperatorQAttention(const MLOperatorKernelCreationContext& kernelCreationContext) + : DmlOperator(kernelCreationContext) + { + enum InputIndex : uint32_t + { + inputIndex, + weightsIndex, + biasIndex, + inputScaleIndex, + weightScaleIndex, + maskIndex, + inputZeroPointIndex, + weightZeroPointIndex, + pastIndex, + inputCount, + }; + + enum OutputIndex : uint32_t + { + outputIndex, + presentIndex, + outputCount, + }; + + enum MhaInputIndex : uint32_t + { + mhaQueryIndex, + mhaKeyIndex, + mhaValueIndex, + mhaStackedQueryKeyIndex, + mhaStackedKeyValueIndex, + mhaStackedQueryKeyValueIndex, + mhaBiasIndex, + mhaMaskIndex, + mhaRelativePositionBiasIndex, + mhaPastKeyIndex, + mhaPastValueIndex, + mhaInputCount, + }; + + enum MhaOutputIndex : uint32_t + { + mhaOutputIndex, + mhaPresentKeyIndex, + mhaPresentValueIndex, + mhaOutputCount, + }; + + ML_CHECK_VALID_ARGUMENT(kernelCreationContext.GetInputCount() >= 5); + ML_CHECK_VALID_ARGUMENT(kernelCreationContext.GetOutputCount() >= 1); + + const bool hasBias = kernelCreationContext.IsInputValid(biasIndex); + const bool hasMask = kernelCreationContext.IsInputValid(maskIndex); + const bool hasUnpaddedBounds = hasMask && kernelCreationContext.GetInputTensorDimensionCount(maskIndex) == 1; + const bool hasPast = kernelCreationContext.IsInputValid(pastIndex); + + DmlOperator::Initialize(kernelCreationContext, std::nullopt, std::nullopt, std::nullopt, std::nullopt, 1); + + const bool unidirectional = gsl::narrow_cast(kernelCreationContext.GetAttribute(AttrName::Unidirectional)); + const uint32_t numHeads = gsl::narrow_cast(kernelCreationContext.GetAttribute(AttrName::NumHeads)); + ML_CHECK_VALID_ARGUMENT(numHeads > 0); // to avoid process crash because of division by zero. + + auto inputTensorShape = m_inputTensorDescs[inputIndex].GetSizes(); + ML_CHECK_VALID_ARGUMENT(inputTensorShape.size() == 3); + + auto weightTensorShape = m_inputTensorDescs[weightsIndex].GetSizes(); + ML_CHECK_VALID_ARGUMENT(weightTensorShape.size() == 2); + ML_CHECK_VALID_ARGUMENT(weightTensorShape[0] == inputTensorShape[2]); + ML_CHECK_VALID_ARGUMENT(weightTensorShape[1] % 3 == 0); + + if (hasBias) + { + auto biasTensorShape = m_inputTensorDescs[biasIndex].GetSizes(); + ML_CHECK_VALID_ARGUMENT(biasTensorShape.size() == 1); + ML_CHECK_VALID_ARGUMENT(biasTensorShape[0] % 3 == 0); + ML_CHECK_VALID_ARGUMENT(weightTensorShape[1] == biasTensorShape[0]); + } + + if (hasPast) + { + ML_CHECK_VALID_ARGUMENT(kernelCreationContext.IsOutputValid(presentIndex)); + } + + const uint32_t hiddenSize = weightTensorShape[1] / 3; + const uint32_t headSize = hiddenSize / numHeads; + const uint32_t batchSize = inputTensorShape[0]; + const uint32_t sequenceLength = inputTensorShape[1]; + const uint32_t pastSequenceLength = hasPast ? m_inputTensorDescs[pastIndex].GetSizes()[3] : 0; + + uint32_t desiredWeightTensorShape[3] = {batchSize, weightTensorShape[0], 3 * hiddenSize}; + MLOperatorTensorDataType dataType = kernelCreationContext.GetOutputEdgeDescription(outputIndex).tensorDataType; + + m_inputTensorDescs[weightsIndex] = TensorDesc::ConstructBroadcastedTensorDesc( + kernelCreationContext.GetInputEdgeDescription(weightsIndex).tensorDataType, + desiredWeightTensorShape, + weightTensorShape); + + uint32_t desiredBiasTensorShape[3] = {batchSize, sequenceLength, 3 * hiddenSize}; + + if (hasBias) + { + auto biasTensorShape = m_inputTensorDescs[biasIndex].GetSizes(); + m_inputTensorDescs[biasIndex] = TensorDesc::ConstructBroadcastedTensorDesc(kernelCreationContext.GetInputEdgeDescription(biasIndex).tensorDataType, desiredBiasTensorShape, biasTensorShape); + } + + MLOperatorTensorDataType maskTensorDataType = MLOperatorTensorDataType::Undefined; + bool hasMaxSequenceMask = false; + DML_MULTIHEAD_ATTENTION_MASK_TYPE maskType = DML_MULTIHEAD_ATTENTION_MASK_TYPE_NONE; + if (hasMask) + { + if (hasUnpaddedBounds) + { + auto unpaddedKeyBoundsShape = m_inputTensorDescs[maskIndex].GetSizes(); + ML_CHECK_VALID_ARGUMENT(unpaddedKeyBoundsShape.size() == 1); + + const uint32_t batchGroupCount = unpaddedKeyBoundsShape[0] / batchSize; + ML_CHECK_VALID_ARGUMENT(batchGroupCount == 1 || batchGroupCount == 2); + + uint32_t desiredShape[2] = {batchGroupCount, batchSize}; + m_inputTensorDescs[maskIndex] = TensorDesc( + m_inputTensorDescs[maskIndex].GetDmlDataType(), + desiredShape); + + maskType = batchGroupCount == 1 + ? DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_LENGTH + : DML_MULTIHEAD_ATTENTION_MASK_TYPE_KEY_SEQUENCE_END_START; + } + else + { + auto maskIndexTensorShape = m_inputTensorDescs[maskIndex].GetSizes(); + ML_CHECK_VALID_ARGUMENT(maskIndexTensorShape.size() > 1 && maskIndexTensorShape.size() <= 4); + + maskType = DML_MULTIHEAD_ATTENTION_MASK_TYPE_BOOLEAN; + std::vector reshapedMaskIndexTensorShape(maskIndexTensorShape.begin(), maskIndexTensorShape.end()); + if (maskIndexTensorShape.size() == 4 && maskIndexTensorShape[2] != sequenceLength) + { + hasMaxSequenceMask = true; + ML_CHECK_VALID_ARGUMENT(maskIndexTensorShape[2] == maskIndexTensorShape[3]); + const uint32_t maxSequenceLength = maskIndexTensorShape[2]; + uint32_t desiredMaskIndexShape[4] = {batchSize, numHeads, maxSequenceLength, maxSequenceLength}; + maskTensorDataType = kernelCreationContext.GetInputEdgeDescription(maskIndex).tensorDataType; + m_inputTensorDescs[maskIndex] = TensorDesc::ConstructBroadcastedTensorDesc(maskTensorDataType, desiredMaskIndexShape, reshapedMaskIndexTensorShape); + } + else + { + uint32_t maskIndexDimensionCount = gsl::narrow_cast(maskIndexTensorShape.size()); + reshapedMaskIndexTensorShape.insert(reshapedMaskIndexTensorShape.begin() + 1, 4 - maskIndexDimensionCount, 1); + uint32_t desiredMaskIndexShape[4] = {batchSize, numHeads, sequenceLength, sequenceLength}; + maskTensorDataType = kernelCreationContext.GetInputEdgeDescription(maskIndex).tensorDataType; + m_inputTensorDescs[maskIndex] = TensorDesc::ConstructBroadcastedTensorDesc(maskTensorDataType, desiredMaskIndexShape, reshapedMaskIndexTensorShape); + } + } + } + + MLOperatorTensorDataType pastTensorDataType = MLOperatorTensorDataType::Undefined; + MLOperatorTensorDataType presentTensorDataType = MLOperatorTensorDataType::Undefined; + if (hasPast) + { + pastTensorDataType = kernelCreationContext.GetInputEdgeDescription(pastIndex).tensorDataType; + presentTensorDataType = kernelCreationContext.GetOutputEdgeDescription(presentIndex).tensorDataType; + } + + TensorDesc matMulIntToFloatOutputTensorDesc = TensorDesc::ConstructDefaultTensorDesc(dataType, desiredBiasTensorShape); + DML_TENSOR_DESC namedMatMulIntToFloatOutputTensorDesc = matMulIntToFloatOutputTensorDesc.GetDmlDesc(); + + std::vector inputDescs = GetDmlInputDescs(); + std::vector outputDescs = GetDmlOutputDescs(); + + DML_MATRIX_MULTIPLY_INTEGER_TO_FLOAT_OPERATOR_DESC matMulIntToFloatOperatorDesc = {}; + matMulIntToFloatOperatorDesc.ATensor = &inputDescs[InputIndex::inputIndex]; + matMulIntToFloatOperatorDesc.AScaleTensor = &inputDescs[InputIndex::inputScaleIndex]; + matMulIntToFloatOperatorDesc.AZeroPointTensor = &inputDescs[InputIndex::inputZeroPointIndex]; + matMulIntToFloatOperatorDesc.BTensor = &inputDescs[InputIndex::weightsIndex]; + matMulIntToFloatOperatorDesc.BScaleTensor = &inputDescs[InputIndex::weightScaleIndex]; + matMulIntToFloatOperatorDesc.BZeroPointTensor = &inputDescs[InputIndex::weightZeroPointIndex]; + matMulIntToFloatOperatorDesc.BiasTensor = hasBias ? &inputDescs[InputIndex::biasIndex] : nullptr; + matMulIntToFloatOperatorDesc.OutputTensor = &namedMatMulIntToFloatOutputTensorDesc; + + const DML_OPERATOR_DESC matMulIntToFloatDesc = { DML_OPERATOR_MATRIX_MULTIPLY_INTEGER_TO_FLOAT, &matMulIntToFloatOperatorDesc}; + + std::array queryKeySlicedTensorShape = {batchSize, sequenceLength, hiddenSize + hiddenSize}; + TensorDesc queryKeySlicedInputTensorDesc = TensorDesc::ConstructDefaultTensorDesc(dataType, queryKeySlicedTensorShape); + DML_TENSOR_DESC namedQueryKeySlicedInputTensorDesc = queryKeySlicedInputTensorDesc.GetDmlDesc(); + + std::array valueSlicedTensorShape = {batchSize, sequenceLength, hiddenSize}; + TensorDesc valueSlicedInputTensorDesc = TensorDesc::ConstructDefaultTensorDesc(dataType, valueSlicedTensorShape); + DML_TENSOR_DESC namedValueSlicedInputTensorDesc = valueSlicedInputTensorDesc.GetDmlDesc(); + + // Transpose slice QK from [batchSize, sequenceLength, 2, numHeads, headSize] to [batchSize, sequenceLength, numHeads, 2, headSize] + std::array queryKeyTransposedTensorShape = {batchSize, sequenceLength, numHeads, 2, headSize}; + std::array queryKeyTransposedStrides = { + sequenceLength * numHeads * 2 * headSize, + numHeads * 2 * headSize, + headSize, + numHeads * headSize, + 1, + }; + + TensorDesc queryKeyTransposedInputTensorDesc = TensorDesc( + GetDmlDataTypeFromMlDataType(dataType), + queryKeyTransposedTensorShape, + queryKeyTransposedStrides); + DML_TENSOR_DESC namedQueryKeyTransposedInputTensorDesc = queryKeyTransposedInputTensorDesc.GetDmlDesc(); + + TensorDesc queryKeyTransposedOutputTensorDesc = TensorDesc( + GetDmlDataTypeFromMlDataType(dataType), + queryKeyTransposedTensorShape); + DML_TENSOR_DESC namedQueryKeyTransposedOutputTensorDesc = queryKeyTransposedOutputTensorDesc.GetDmlDesc(); + + // Transpose QKV from [batchSize, sequenceLength, 3, numHeads, headSize] to [batchSize, sequenceLength, numHeads, 3, headSize] + std::array queryKeyValueTransposedTensorShape = {batchSize, sequenceLength, numHeads, 3, headSize}; + std::array queryKeyValueTransposedStrides = { + sequenceLength * numHeads * 3 * headSize, + numHeads * 3 * headSize, + headSize, + numHeads * headSize, + 1, + }; + + TensorDesc queryKeyValueTransposedInputTensorDesc = TensorDesc( + GetDmlDataTypeFromMlDataType(dataType), + queryKeyValueTransposedTensorShape, + queryKeyValueTransposedStrides); + DML_TENSOR_DESC namedQueryKeyValueTransposedInputTensorDesc = queryKeyValueTransposedInputTensorDesc.GetDmlDesc(); + + TensorDesc queryKeyValueTransposedOutputTensorDesc = TensorDesc( + GetDmlDataTypeFromMlDataType(dataType), + queryKeyValueTransposedTensorShape); + DML_TENSOR_DESC namedQueryKeyValueTransposedOutputTensorDesc = queryKeyValueTransposedOutputTensorDesc.GetDmlDesc(); + + std::array queryKeySliceOffset = {0, 0, 0}; + std::array queryKeySliceSize = {batchSize, sequenceLength, hiddenSize + hiddenSize}; + std::array queryKeySliceStrides = {1, 1, 1}; + + std::array valueSliceOffset = {0, 0, 2 * hiddenSize}; + std::array valueSliceSize = {batchSize, sequenceLength, hiddenSize}; + std::array valueSliceStrides = {1, 1, 1}; + + // When Q/K/V all have the same hidden size, we just have to transpose it before sending it to MHA + DML_ELEMENT_WISE_IDENTITY_OPERATOR_DESC transposeOperatorDesc = {}; + + transposeOperatorDesc.InputTensor = &namedQueryKeyValueTransposedInputTensorDesc; + transposeOperatorDesc.OutputTensor = &namedQueryKeyValueTransposedOutputTensorDesc; + + const DML_OPERATOR_DESC transposedDesc = { DML_OPERATOR_ELEMENT_WISE_IDENTITY, &transposeOperatorDesc}; + + std::array maskSliceOutputShape = {batchSize, numHeads, sequenceLength, sequenceLength}; + std::array maskSliceStrides = {1, 1, 1, 1}; + std::array maskSliceOffsets = {0, 0, 0, 0}; + TensorDesc maskSliceOutputTensorDesc; + DML_TENSOR_DESC namedMaskSliceOutputTensorDesc; + + DML_SLICE1_OPERATOR_DESC maskSlicedOperatorDesc = {}; + if (hasMaxSequenceMask) + { + maskSliceOutputTensorDesc = TensorDesc::ConstructDefaultTensorDesc(maskTensorDataType, maskSliceOutputShape); + namedMaskSliceOutputTensorDesc = maskSliceOutputTensorDesc.GetDmlDesc(); + maskSlicedOperatorDesc.InputTensor = &inputDescs[maskIndex]; + maskSlicedOperatorDesc.OutputTensor = &namedMaskSliceOutputTensorDesc; + maskSlicedOperatorDesc.DimensionCount = gsl::narrow_cast(maskSliceOutputShape.size()); + maskSlicedOperatorDesc.InputWindowOffsets = maskSliceOffsets.data(); + maskSlicedOperatorDesc.InputWindowSizes = maskSliceOutputShape.data(); + maskSlicedOperatorDesc.InputWindowStrides = maskSliceStrides.data(); + } + const DML_OPERATOR_DESC maskSlicedDesc = { DML_OPERATOR_SLICE1, &maskSlicedOperatorDesc}; + + // We need to slice Past to get PastValue and PastKey tensors for MHA + std::array pastKeyOutputShape = {1, batchSize, numHeads, pastSequenceLength, headSize}; + std::array pastKeyStrides = {1, 1, 1, 1, 1}; + std::array pastKeyOffsets = {0, 0, 0, 0, 0}; + TensorDesc pastKeyOutputTensorDesc; + DML_TENSOR_DESC namedPastKeyOutputTensorDesc; + + std::array pastValueOutputShape = {1, batchSize, numHeads, pastSequenceLength, headSize}; + std::array pastValueStrides = {1, 1, 1, 1, 1}; + std::array pastValueOffsets = {1, 0, 0, 0, 0}; + TensorDesc pastValueOutputTensorDesc; + DML_TENSOR_DESC namedPastValueOutputTensorDesc; + + DML_SLICE1_OPERATOR_DESC pastKeySlicedOperatorDesc = {}; + DML_SLICE1_OPERATOR_DESC pastValueSlicedOperatorDesc = {}; + + if (hasPast) + { + pastKeyOutputTensorDesc = TensorDesc::ConstructDefaultTensorDesc(pastTensorDataType, pastKeyOutputShape); + namedPastKeyOutputTensorDesc = pastKeyOutputTensorDesc.GetDmlDesc(); + pastKeySlicedOperatorDesc.InputTensor = &inputDescs[pastIndex]; + pastKeySlicedOperatorDesc.OutputTensor = &namedPastKeyOutputTensorDesc; + pastKeySlicedOperatorDesc.DimensionCount = gsl::narrow_cast(pastKeyOutputShape.size()); + pastKeySlicedOperatorDesc.InputWindowOffsets = pastKeyOffsets.data(); + pastKeySlicedOperatorDesc.InputWindowSizes = pastKeyOutputShape.data(); + pastKeySlicedOperatorDesc.InputWindowStrides = pastKeyStrides.data(); + + pastValueOutputTensorDesc = TensorDesc::ConstructDefaultTensorDesc(pastTensorDataType, pastValueOutputShape); + namedPastValueOutputTensorDesc = pastValueOutputTensorDesc.GetDmlDesc(); + pastValueSlicedOperatorDesc.InputTensor = &inputDescs[pastIndex]; + pastValueSlicedOperatorDesc.OutputTensor = &namedPastValueOutputTensorDesc; + pastValueSlicedOperatorDesc.DimensionCount = gsl::narrow_cast(pastValueOutputShape.size()); + pastValueSlicedOperatorDesc.InputWindowOffsets = pastValueOffsets.data(); + pastValueSlicedOperatorDesc.InputWindowSizes = pastValueOutputShape.data(); + pastValueSlicedOperatorDesc.InputWindowStrides = pastValueStrides.data(); + } + + const DML_OPERATOR_DESC pastKeySlicedDesc = { DML_OPERATOR_SLICE1, &pastKeySlicedOperatorDesc}; + const DML_OPERATOR_DESC pastValueSlicedDesc = { DML_OPERATOR_SLICE1, &pastValueSlicedOperatorDesc}; + + // Causal Mask: Upper Triangular Boolean Matrix + // Example: [[1, 0, 0, 0, 0], + // [1, 1, 0, 0, 0], + // [1, 1, 1, 0, 0], + // [1, 1, 1, 1, 0]] + // DML adds maskFilterValue to the "off" bits in the mask and sets the "on" bits to 0 + // passed to MHA as maskIndex Tensor when unidirectional == 1 + std::array causalMaskOutputShape = {1, 1, sequenceLength, pastSequenceLength + sequenceLength}; + TensorDesc causalMaskTensorDesc; + DML_DIAGONAL_MATRIX1_OPERATOR_DESC causalMaskOperatorDesc = {}; + DML_TENSOR_DESC namedcausalMaskTensorDesc; + + if (unidirectional && !hasMask) + { + causalMaskTensorDesc = TensorDesc::ConstructDefaultTensorDesc(MLOperatorTensorDataType::Int32, causalMaskOutputShape); + namedcausalMaskTensorDesc = causalMaskTensorDesc.GetDmlDesc(); + causalMaskOperatorDesc.ValueDataType = DML_TENSOR_DATA_TYPE_INT32; + causalMaskOperatorDesc.DiagonalFillBegin = INT32_MIN; + causalMaskOperatorDesc.DiagonalFillEnd = pastSequenceLength + 1; + causalMaskOperatorDesc.Value.Int32 = 1; + causalMaskOperatorDesc.OutputTensor = &namedcausalMaskTensorDesc; + maskType = DML_MULTIHEAD_ATTENTION_MASK_TYPE_BOOLEAN; + } + DML_OPERATOR_DESC causalMaskDesc = { DML_OPERATOR_DIAGONAL_MATRIX1, &causalMaskOperatorDesc }; + + DML_MULTIHEAD_ATTENTION_OPERATOR_DESC mhaOperatorDesc = {}; + std::array presentKeyOutputShape = {1, batchSize, numHeads, pastSequenceLength + sequenceLength, headSize}; + std::array presentValueOutputShape = {1, batchSize, numHeads, pastSequenceLength + sequenceLength, headSize}; + TensorDesc presentKeyTensorDesc; + TensorDesc presentValueTensorDesc; + DML_TENSOR_DESC namedPresentKeyOutputTensorDesc; + DML_TENSOR_DESC namedPresentValueOutputTensorDesc; + + mhaOperatorDesc.StackedQueryKeyValueTensor = &namedQueryKeyValueTransposedOutputTensorDesc; + + // Broadcast to MHA MaskTensor Shape + std::array mhaMaskTensorShape = {batchSize, numHeads, sequenceLength, pastSequenceLength + sequenceLength}; + TensorDesc broadcastedcausalMaskTensorDesc; + DML_TENSOR_DESC namedbroadcastedcausalMaskTensorDesc; + if (unidirectional && !hasMask) + { + broadcastedcausalMaskTensorDesc = TensorDesc::ConstructBroadcastedTensorDesc(MLOperatorTensorDataType::Int32, mhaMaskTensorShape, causalMaskOutputShape); + namedbroadcastedcausalMaskTensorDesc = broadcastedcausalMaskTensorDesc.GetDmlDesc(); + mhaOperatorDesc.MaskTensor = &namedbroadcastedcausalMaskTensorDesc; + } + else if (hasMaxSequenceMask) + { + mhaOperatorDesc.MaskTensor = &namedMaskSliceOutputTensorDesc; + } + else + { + mhaOperatorDesc.MaskTensor = hasMask ? &inputDescs[maskIndex] : nullptr; + } + + mhaOperatorDesc.RelativePositionBiasTensor = nullptr; + mhaOperatorDesc.OutputTensor = &outputDescs[outputIndex]; + mhaOperatorDesc.Scale = kernelCreationContext.GetOptionalAttribute(AttrName::Scale, gsl::narrow_cast(1.0f / std::sqrt(headSize))); + // Set MaskFilterValue to lowest float for Causal Mask + mhaOperatorDesc.MaskFilterValue = unidirectional ? std::numeric_limits::lowest() : + kernelCreationContext.GetOptionalAttribute(AttrName::MaskFilterValue, -10'000.0f); + mhaOperatorDesc.HeadCount = numHeads; + mhaOperatorDesc.MaskType = maskType; + if (hasPast) + { + presentKeyTensorDesc = TensorDesc::ConstructDefaultTensorDesc(presentTensorDataType, presentKeyOutputShape); + namedPresentKeyOutputTensorDesc = presentKeyTensorDesc.GetDmlDesc(); + presentValueTensorDesc = TensorDesc::ConstructDefaultTensorDesc(presentTensorDataType, presentValueOutputShape); + namedPresentValueOutputTensorDesc = presentValueTensorDesc.GetDmlDesc(); + mhaOperatorDesc.PastKeyTensor = &namedPastKeyOutputTensorDesc; + mhaOperatorDesc.PastValueTensor = &namedPastValueOutputTensorDesc; + mhaOperatorDesc.OutputPresentKeyTensor = &namedPresentKeyOutputTensorDesc; + mhaOperatorDesc.OutputPresentValueTensor = &namedPresentValueOutputTensorDesc; + } + + const DML_OPERATOR_DESC mhaDesc = { DML_OPERATOR_MULTIHEAD_ATTENTION, &mhaOperatorDesc }; + + DML_JOIN_OPERATOR_DESC presentKeyValueJoinOperatorDesc = {}; + std::vector joinInputDesc; + + if (hasPast) + { + joinInputDesc.push_back(namedPresentKeyOutputTensorDesc); + joinInputDesc.push_back(namedPresentValueOutputTensorDesc); + presentKeyValueJoinOperatorDesc.InputCount = gsl::narrow_cast(joinInputDesc.size()); + presentKeyValueJoinOperatorDesc.InputTensors = joinInputDesc.data(); + presentKeyValueJoinOperatorDesc.OutputTensor = &outputDescs[presentIndex]; + presentKeyValueJoinOperatorDesc.Axis = gsl::narrow_cast(0); + } + + DML_OPERATOR_DESC presentKeyValueJoinDesc = { DML_OPERATOR_JOIN, &presentKeyValueJoinOperatorDesc }; + + // Construct the graph + std::vector inputEdges; + std::vector intermediateEdges; + std::vector outputEdges; + + std::vector opDescs = { + &matMulIntToFloatDesc, + &mhaDesc, + }; + + uint32_t currentNodeIndex = 0; + const uint32_t matMulIntToFloatNodeIndex = currentNodeIndex++; + const uint32_t mhaNodeIndex = currentNodeIndex++; + + uint32_t queryKeyValueTransposedNodeIndex = 0; + + opDescs.push_back(&transposedDesc); + queryKeyValueTransposedNodeIndex = currentNodeIndex++; + + uint32_t maskSliceNodeIndex = 0; + if (hasMaxSequenceMask) + { + opDescs.push_back(&maskSlicedDesc); + maskSliceNodeIndex = currentNodeIndex++; + } + + uint32_t pastKeySliceNodeIndex = 0; + uint32_t pastValueSliceNodeIndex = 0; + uint32_t concatNodeIndex = 0; + if (hasPast) + { + opDescs.push_back(&pastKeySlicedDesc); + pastKeySliceNodeIndex = currentNodeIndex++; + opDescs.push_back(&pastValueSlicedDesc); + pastValueSliceNodeIndex = currentNodeIndex++; + opDescs.push_back(&presentKeyValueJoinDesc); + concatNodeIndex = currentNodeIndex++; + } + + uint32_t causalMaskNodeIndex = 0; + if (unidirectional && !hasMask) + { + opDescs.push_back(&causalMaskDesc); + causalMaskNodeIndex = currentNodeIndex++; + } + + DML_INPUT_GRAPH_EDGE_DESC inputToMatMulIntToFloatEdge = {}; + inputToMatMulIntToFloatEdge.GraphInputIndex = InputIndex::inputIndex; + inputToMatMulIntToFloatEdge.ToNodeIndex = matMulIntToFloatNodeIndex; + inputToMatMulIntToFloatEdge.ToNodeInputIndex = 0; + inputEdges.push_back(inputToMatMulIntToFloatEdge); + + DML_INPUT_GRAPH_EDGE_DESC inputScaleToMatMulIntToFloatEdge = {}; + inputScaleToMatMulIntToFloatEdge.GraphInputIndex = InputIndex::inputScaleIndex; + inputScaleToMatMulIntToFloatEdge.ToNodeIndex = matMulIntToFloatNodeIndex; + inputScaleToMatMulIntToFloatEdge.ToNodeInputIndex = 1; + inputEdges.push_back(inputScaleToMatMulIntToFloatEdge); + + DML_INPUT_GRAPH_EDGE_DESC inputZeroPointToMatMulIntToFloatEdge = {}; + inputZeroPointToMatMulIntToFloatEdge.GraphInputIndex = InputIndex::inputZeroPointIndex; + inputZeroPointToMatMulIntToFloatEdge.ToNodeIndex = matMulIntToFloatNodeIndex; + inputZeroPointToMatMulIntToFloatEdge.ToNodeInputIndex = 2; + inputEdges.push_back(inputZeroPointToMatMulIntToFloatEdge); + + DML_INPUT_GRAPH_EDGE_DESC weightToMatMulIntToFloatEdge = {}; + weightToMatMulIntToFloatEdge.GraphInputIndex = InputIndex::weightsIndex; + weightToMatMulIntToFloatEdge.ToNodeIndex = matMulIntToFloatNodeIndex; + weightToMatMulIntToFloatEdge.ToNodeInputIndex = 3; + inputEdges.push_back(weightToMatMulIntToFloatEdge); + + DML_INPUT_GRAPH_EDGE_DESC weightScaleToMatMulIntToFloatEdge = {}; + weightScaleToMatMulIntToFloatEdge.GraphInputIndex = InputIndex::weightScaleIndex; + weightScaleToMatMulIntToFloatEdge.ToNodeIndex = matMulIntToFloatNodeIndex; + weightScaleToMatMulIntToFloatEdge.ToNodeInputIndex = 4; + inputEdges.push_back(weightScaleToMatMulIntToFloatEdge); + + DML_INPUT_GRAPH_EDGE_DESC weightZeroPointToMatMulIntToFloatEdge = {}; + weightZeroPointToMatMulIntToFloatEdge.GraphInputIndex = InputIndex::weightZeroPointIndex; + weightZeroPointToMatMulIntToFloatEdge.ToNodeIndex = matMulIntToFloatNodeIndex; + weightZeroPointToMatMulIntToFloatEdge.ToNodeInputIndex = 5; + inputEdges.push_back(weightZeroPointToMatMulIntToFloatEdge); + + if (hasBias) + { + DML_INPUT_GRAPH_EDGE_DESC biasToMatMulIntToFloatEdge = {}; + biasToMatMulIntToFloatEdge.GraphInputIndex = InputIndex::biasIndex; + biasToMatMulIntToFloatEdge.ToNodeIndex = matMulIntToFloatNodeIndex; + biasToMatMulIntToFloatEdge.ToNodeInputIndex = 6; + inputEdges.push_back(biasToMatMulIntToFloatEdge); + } + + if (hasMask) + { + if (hasUnpaddedBounds) + { + DML_INPUT_GRAPH_EDGE_DESC maskToMhaEdge = {}; + maskToMhaEdge.GraphInputIndex = InputIndex::maskIndex; + maskToMhaEdge.ToNodeIndex = mhaNodeIndex; + maskToMhaEdge.ToNodeInputIndex = mhaMaskIndex; + inputEdges.push_back(maskToMhaEdge); + } + else if (hasMaxSequenceMask) + { + DML_INPUT_GRAPH_EDGE_DESC maskToMaskSliceEdge = {}; + maskToMaskSliceEdge.GraphInputIndex = InputIndex::maskIndex; + maskToMaskSliceEdge.ToNodeIndex = maskSliceNodeIndex; + maskToMaskSliceEdge.ToNodeInputIndex = 0; + inputEdges.push_back(maskToMaskSliceEdge); + + DML_INTERMEDIATE_GRAPH_EDGE_DESC maskSliceToMhaEdge = {}; + maskSliceToMhaEdge.FromNodeIndex = maskSliceNodeIndex; + maskSliceToMhaEdge.FromNodeOutputIndex = 0; + maskSliceToMhaEdge.ToNodeIndex = mhaNodeIndex; + maskSliceToMhaEdge.ToNodeInputIndex = mhaMaskIndex; + intermediateEdges.push_back(maskSliceToMhaEdge); + } + else + { + DML_INPUT_GRAPH_EDGE_DESC maskToMhaEdge = {}; + maskToMhaEdge.GraphInputIndex = InputIndex::maskIndex; + maskToMhaEdge.ToNodeIndex = mhaNodeIndex; + maskToMhaEdge.ToNodeInputIndex = mhaMaskIndex; + inputEdges.push_back(maskToMhaEdge); + } + } + else if (unidirectional) + { + DML_INTERMEDIATE_GRAPH_EDGE_DESC causalMaskToMhaEdge = {}; + causalMaskToMhaEdge.FromNodeIndex = causalMaskNodeIndex; + causalMaskToMhaEdge.FromNodeOutputIndex = 0; + causalMaskToMhaEdge.ToNodeIndex = mhaNodeIndex; + causalMaskToMhaEdge.ToNodeInputIndex = mhaMaskIndex; + intermediateEdges.push_back(causalMaskToMhaEdge); + } + + if (hasPast) + { + DML_INPUT_GRAPH_EDGE_DESC pastToPastKeySliceEdge = {}; + pastToPastKeySliceEdge.GraphInputIndex = InputIndex::pastIndex; + pastToPastKeySliceEdge.ToNodeIndex = pastKeySliceNodeIndex; + pastToPastKeySliceEdge.ToNodeInputIndex = 0; + inputEdges.push_back(pastToPastKeySliceEdge); + + DML_INPUT_GRAPH_EDGE_DESC pastToPastValueSliceEdge = {}; + pastToPastValueSliceEdge.GraphInputIndex = InputIndex::pastIndex; + pastToPastValueSliceEdge.ToNodeIndex = pastValueSliceNodeIndex; + pastToPastValueSliceEdge.ToNodeInputIndex = 0; + inputEdges.push_back(pastToPastValueSliceEdge); + + DML_INTERMEDIATE_GRAPH_EDGE_DESC pastKeyToMhaEdge = {}; + pastKeyToMhaEdge.FromNodeIndex = pastKeySliceNodeIndex; + pastKeyToMhaEdge.FromNodeOutputIndex = 0; + pastKeyToMhaEdge.ToNodeIndex = mhaNodeIndex; + pastKeyToMhaEdge.ToNodeInputIndex = mhaPastKeyIndex; + intermediateEdges.push_back(pastKeyToMhaEdge); + + DML_INTERMEDIATE_GRAPH_EDGE_DESC pastValueToMhaEdge = {}; + pastValueToMhaEdge.FromNodeIndex = pastValueSliceNodeIndex; + pastValueToMhaEdge.FromNodeOutputIndex = 0; + pastValueToMhaEdge.ToNodeIndex = mhaNodeIndex; + pastValueToMhaEdge.ToNodeInputIndex = mhaPastValueIndex; + intermediateEdges.push_back(pastValueToMhaEdge); + + DML_INTERMEDIATE_GRAPH_EDGE_DESC presentKeyToConcatEdge = {}; + presentKeyToConcatEdge.FromNodeIndex = mhaNodeIndex; + presentKeyToConcatEdge.FromNodeOutputIndex = mhaPresentKeyIndex; + presentKeyToConcatEdge.ToNodeIndex = concatNodeIndex; + presentKeyToConcatEdge.ToNodeInputIndex = 0; + intermediateEdges.push_back(presentKeyToConcatEdge); + + DML_INTERMEDIATE_GRAPH_EDGE_DESC presentValueToConcatEdge = {}; + presentValueToConcatEdge.FromNodeIndex = mhaNodeIndex; + presentValueToConcatEdge.FromNodeOutputIndex = mhaPresentValueIndex; + presentValueToConcatEdge.ToNodeIndex = concatNodeIndex; + presentValueToConcatEdge.ToNodeInputIndex = 1; + intermediateEdges.push_back(presentValueToConcatEdge); + } + + DML_INTERMEDIATE_GRAPH_EDGE_DESC matMulIntToFloatToQueryKeyValueTransposeEdge = {}; + matMulIntToFloatToQueryKeyValueTransposeEdge.FromNodeIndex = matMulIntToFloatNodeIndex; + matMulIntToFloatToQueryKeyValueTransposeEdge.FromNodeOutputIndex = 0; + matMulIntToFloatToQueryKeyValueTransposeEdge.ToNodeIndex = queryKeyValueTransposedNodeIndex; + matMulIntToFloatToQueryKeyValueTransposeEdge.ToNodeInputIndex = 0; + intermediateEdges.push_back(matMulIntToFloatToQueryKeyValueTransposeEdge); + + // All we need to do here is transpose the stacked QKV tensor into something DML supports + DML_INTERMEDIATE_GRAPH_EDGE_DESC queryKeyValueTransposedToMhaEdge = {}; + queryKeyValueTransposedToMhaEdge.FromNodeIndex = queryKeyValueTransposedNodeIndex; + queryKeyValueTransposedToMhaEdge.FromNodeOutputIndex = 0; + queryKeyValueTransposedToMhaEdge.ToNodeIndex = mhaNodeIndex; + queryKeyValueTransposedToMhaEdge.ToNodeInputIndex = mhaStackedQueryKeyValueIndex; + intermediateEdges.push_back(queryKeyValueTransposedToMhaEdge); + + DML_OUTPUT_GRAPH_EDGE_DESC mhaToOutputEdge = {}; + mhaToOutputEdge.FromNodeIndex = mhaNodeIndex; + mhaToOutputEdge.FromNodeOutputIndex = mhaOutputIndex; + mhaToOutputEdge.GraphOutputIndex = OutputIndex::outputIndex; + outputEdges.push_back(mhaToOutputEdge); + + if (hasPast) + { + DML_OUTPUT_GRAPH_EDGE_DESC concatToOutputEdge = {}; + concatToOutputEdge.FromNodeIndex = concatNodeIndex; + concatToOutputEdge.FromNodeOutputIndex = 0; + concatToOutputEdge.GraphOutputIndex = OutputIndex::presentIndex; + outputEdges.push_back(concatToOutputEdge); + } + + MLOperatorGraphDesc operatorGraphDesc = {}; + operatorGraphDesc.inputEdgeCount = gsl::narrow_cast(inputEdges.size()); + operatorGraphDesc.inputEdges = inputEdges.data(); + operatorGraphDesc.intermediateEdgeCount = gsl::narrow_cast(intermediateEdges.size()); + operatorGraphDesc.intermediateEdges = intermediateEdges.data(); + operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); + operatorGraphDesc.outputEdges = outputEdges.data(); + operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); + operatorGraphDesc.nodes = opDescs.data(); + + SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); + } +}; + +void CALLBACK QueryQAttention(IMLOperatorSupportQueryContextPrivate* context, /*out*/ bool* isSupported) +{ + *isSupported = false; + + // `unidirectional == 1` with Mask Tensor is not supported yet + MLOperatorAttributes attributes(context); + if (attributes.GetOptionalAttribute(AttrName::Unidirectional, 0) != 0 && context->IsInputValid(5)) + { + return; + } + + // `do_rotary == 1` is not supported yet + if (attributes.GetOptionalAttribute(AttrName::DoRotary, 0) != 0) + { + return; + } + + // `past_present_share_buffer == 1` is not supported yet + if (attributes.GetOptionalAttribute(AttrName::PastPresentShareBuffer, 0) != 0) + { + return; + } + + *isSupported = true; +} + +DML_OP_DEFINE_CREATION_FUNCTION(QAttention, DmlOperatorQAttention); +} // namespace Dml diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQLinearConcat.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQLinearConcat.cpp index c97b03dc36b62..8727610ff3112 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQLinearConcat.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQLinearConcat.cpp @@ -166,7 +166,7 @@ class DmlOperatorQLinearConcat : public DmlOperator, public QLinearConcatHelper MLOperatorGraphDesc operatorGraphDesc = {}; operatorGraphDesc.nodeCount = static_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); uint32_t joinNodeIndex = operatorGraphDesc.nodeCount - 2; uint32_t quantizeNodeIndex = operatorGraphDesc.nodeCount - 1; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQLinearSigmoid.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQLinearSigmoid.cpp index 35f926d62c92a..bc0082fef3496 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQLinearSigmoid.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQLinearSigmoid.cpp @@ -113,7 +113,7 @@ class DmlOperatorQLinearSigmoid : public DmlOperator MLOperatorGraphDesc operatorGraphDesc = {}; operatorGraphDesc.nodeCount = 3; std::vector opDescs{&opDesc1, &opDesc2, &opDesc3}; - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); // set input edges std::pair nodeToNodeInputIndex[5] {{0, 0}, {0, 1}, {0, 2}, {2, 1}, {2, 2}}; @@ -178,4 +178,4 @@ void CALLBACK QueryQLinearSigmoid(IMLOperatorSupportQueryContextPrivate* context } DML_OP_DEFINE_CREATION_FUNCTION(QLinearSigmoid, DmlOperatorQLinearSigmoid); -} // namespace Dml +} // namespace Dml \ No newline at end of file diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQuickGelu.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQuickGelu.cpp index 3683ab7b0b0b3..e62b7d707ba78 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQuickGelu.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorQuickGelu.cpp @@ -123,7 +123,7 @@ class DmlOperatorQuickGelu : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } }; diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorRotaryEmbedding.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorRotaryEmbedding.cpp index 44004b5d77f70..0f15ebf342b3a 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorRotaryEmbedding.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorRotaryEmbedding.cpp @@ -441,7 +441,7 @@ class DmlOperatorRotaryEmbedding : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelInfo); } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorSkipLayerNormalization.cpp b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorSkipLayerNormalization.cpp index 17f9ff6e3b850..11954977228d4 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorSkipLayerNormalization.cpp +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/DmlOperatorSkipLayerNormalization.cpp @@ -200,7 +200,7 @@ class DmlOperatorSkipLayerNormalization : public DmlOperator operatorGraphDesc.outputEdgeCount = gsl::narrow_cast(outputEdges.size()); operatorGraphDesc.outputEdges = outputEdges.data(); operatorGraphDesc.nodeCount = gsl::narrow_cast(opDescs.size()); - operatorGraphDesc.nodesAsOpDesc = opDescs.data(); + operatorGraphDesc.nodes = opDescs.data(); SetDmlOperatorGraphDesc(std::move(operatorGraphDesc), kernelCreationContext); } diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/GeneratedShaders/stockham.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/GeneratedShaders/stockham.h index 9c03b7f6de639..1bfd6e6c6068d 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/GeneratedShaders/stockham.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/GeneratedShaders/stockham.h @@ -21,7 +21,7 @@ dcl_uav_structured u0, 4 dcl_uav_structured u1, 4 dcl_uav_structured u2, 4 dcl_input vThreadID.x -dcl_temps 6 +dcl_temps 5 dcl_thread_group 64, 1, 1 iadd r0.x, vThreadID.x, cb0[0].x ult r0.y, r0.x, cb0[0].y @@ -40,66 +40,57 @@ if_nz r0.y ieq r1.y, cb0[7].x, l(1) ult r1.z, r0.w, cb0[5].z and r1.z, r1.z, r1.y - if_nz r1.z - imul null, r1.z, r0.w, cb0[6].z - ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r4.x, r1.z, l(0), u2.xxxx - imad r1.z, r0.w, cb0[6].z, cb0[6].w - ieq r1.w, cb0[5].w, l(2) - ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r1.z, r1.z, l(0), u2.xxxx - and r4.y, r1.z, r1.w + imul null, r1.w, r0.w, cb0[6].z + ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r4.x, r1.w, l(0), u2.xxxx + ieq r1.w, cb0[5].w, l(2) + if_nz r1.w + imad r2.y, r0.w, cb0[6].z, cb0[6].w + ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r4.y, r2.y, l(0), u2.xxxx else - mov r4.xy, l(1.000000,0,0,0) + mov r4.y, l(0) endif + movc r2.yz, r1.zzzz, r4.yyxy, l(0,0,1.000000,0) ult r1.z, r0.w, cb0[1].y - if_nz r1.z - imul null, r0.w, r0.w, cb0[2].y - imad r0.w, r1.x, cb0[2].x, r0.w - imad r0.w, r3.x, cb0[2].z, r0.w - ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r5.x, r0.w, l(0), u0.xxxx - ieq r1.z, cb0[1].w, l(2) - if_nz r1.z - iadd r0.w, r0.w, cb0[2].w - ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r5.y, r0.w, l(0), u0.xxxx - else - mov r5.y, l(0) - endif + imul null, r1.x, r1.x, cb0[2].x + imad r0.w, r0.w, cb0[2].y, r1.x + imad r0.w, r3.x, cb0[2].z, r0.w + ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r4.x, r0.w, l(0), u0.xxxx + ieq r2.w, cb0[1].w, l(2) + if_nz r2.w + iadd r0.w, r0.w, cb0[2].w + ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r4.y, r0.w, l(0), u0.xxxx else - mov r5.xy, l(0,0,0,0) + mov r4.y, l(0) endif - mul r0.w, r4.y, r5.y - mad r0.w, r5.x, r4.x, -r0.w - dp2 r1.z, r5.yxyy, r4.xyxx - ult r1.w, r0.y, cb0[5].z - and r1.y, r1.w, r1.y - if_nz r1.y - imul null, r1.y, r0.y, cb0[6].z - ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r4.x, r1.y, l(0), u2.xxxx - imad r1.y, r0.y, cb0[6].z, cb0[6].w - ieq r1.w, cb0[5].w, l(2) - ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r1.y, r1.y, l(0), u2.xxxx - and r4.y, r1.y, r1.w + and r3.yz, r1.zzzz, r4.xxyx + mul r0.w, r2.y, r3.z + mad r0.w, r3.y, r2.z, -r0.w + dp2 r1.z, r3.yzyy, r2.yzyy + ult r2.y, r0.y, cb0[5].z + and r1.y, r1.y, r2.y + imul null, r2.y, r0.y, cb0[6].z + ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r4.x, r2.y, l(0), u2.xxxx + if_nz r1.w + imad r1.w, r0.y, cb0[6].z, cb0[6].w + ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r4.y, r1.w, l(0), u2.xxxx else - mov r4.xy, l(1.000000,0,0,0) + mov r4.y, l(0) endif - ult r1.y, r0.y, cb0[1].y - if_nz r1.y - imul null, r0.y, r0.y, cb0[2].y - imad r0.y, r1.x, cb0[2].x, r0.y - imad r0.y, r3.x, cb0[2].z, r0.y - ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r1.x, r0.y, l(0), u0.xxxx - ieq r1.w, cb0[1].w, l(2) - if_nz r1.w - iadd r0.y, r0.y, cb0[2].w - ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r1.y, r0.y, l(0), u0.xxxx - else - mov r1.y, l(0) - endif + movc r1.yw, r1.yyyy, r4.yyyx, l(0,0,0,1.000000) + ult r2.y, r0.y, cb0[1].y + imad r0.y, r0.y, cb0[2].y, r1.x + imad r0.y, r3.x, cb0[2].z, r0.y + ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r3.x, r0.y, l(0), u0.xxxx + if_nz r2.w + iadd r0.y, r0.y, cb0[2].w + ld_structured_indexable(structured_buffer, stride=4)(mixed,mixed,mixed,mixed) r3.y, r0.y, l(0), u0.xxxx else - mov r1.xy, l(0,0,0,0) + mov r3.y, l(0) endif - mul r0.y, r4.y, r1.y - mad r0.y, r1.x, r4.x, -r0.y - dp2 r1.x, r1.yxyy, r4.xyxx + and r2.yz, r2.yyyy, r3.xxyx + mul r0.y, r1.y, r2.z + mad r0.y, r2.y, r1.w, -r0.y + dp2 r1.x, r2.yzyy, r1.ywyy udiv null, r1.y, r2.x, r0.z ieq r1.w, cb0[0].w, l(1) movc r1.w, r1.w, l(6.283185), l(-6.283185) @@ -117,17 +108,22 @@ if_nz r0.y mad r0.y, r3.x, r1.x, r0.y add r0.y, r0.y, r1.z mul r0.yw, r0.yyyw, cb0[7].zzzz - ne r1.x, cb0[7].y, l(0.000000) - mul r1.y, r1.y, r1.y - mul r1.y, r1.y, l(3.141593) - div r1.y, r1.y, cb0[7].y - sincos r2.x, r3.x, r1.y - mov r2.y, r3.x - movc r1.xy, r1.xxxx, r2.xyxx, l(0,1.000000,0,0) - mul r1.zw, r0.yyyy, r1.xxxy - mad r0.y, r0.w, r1.y, -r1.z - store_structured u1.x, r0.z, l(0), r0.y - mad r0.y, r0.w, r1.x, r1.w + eq r1.x, cb0[7].y, l(0.000000) + if_nz r1.x + mov r1.x, r0.w + else + ne r1.z, cb0[7].y, l(0.000000) + mul r1.y, r1.y, r1.y + mul r1.y, r1.y, l(3.141593) + div r1.y, r1.y, cb0[7].y + sincos r2.x, r3.x, r1.y + mov r2.y, r3.x + movc r1.yz, r1.zzzz, r2.xxyx, l(0,0,1.000000,0) + mul r2.xy, r0.yyyy, r1.yzyy + mad r1.x, r0.w, r1.z, -r2.x + mad r0.y, r0.w, r1.y, r2.y + endif + store_structured u1.x, r0.z, l(0), r1.x store_structured u1.x, r0.x, l(0), r0.y endif ret @@ -136,11 +132,11 @@ ret const BYTE g_DFT[] = { - 68, 88, 66, 67, 222, 156, - 188, 133, 179, 57, 118, 25, - 122, 216, 102, 13, 91, 242, - 99, 27, 1, 0, 0, 0, - 172, 12, 0, 0, 3, 0, + 68, 88, 66, 67, 63, 188, + 200, 227, 206, 73, 64, 21, + 140, 126, 47, 226, 169, 81, + 175, 134, 1, 0, 0, 0, + 112, 12, 0, 0, 3, 0, 0, 0, 44, 0, 0, 0, 60, 0, 0, 0, 76, 0, 0, 0, 73, 83, 71, 78, @@ -149,8 +145,8 @@ const BYTE g_DFT[] = 79, 83, 71, 78, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 83, 72, - 69, 88, 88, 12, 0, 0, - 80, 0, 5, 0, 22, 3, + 69, 88, 28, 12, 0, 0, + 80, 0, 5, 0, 7, 3, 0, 0, 106, 8, 0, 1, 89, 0, 0, 4, 70, 142, 32, 0, 0, 0, 0, 0, @@ -164,7 +160,7 @@ const BYTE g_DFT[] = 17, 0, 2, 0, 0, 0, 4, 0, 0, 0, 95, 0, 0, 2, 18, 0, 2, 0, - 104, 0, 0, 2, 6, 0, + 104, 0, 0, 2, 5, 0, 0, 0, 155, 0, 0, 4, 64, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, @@ -256,11 +252,9 @@ const BYTE g_DFT[] = 16, 0, 1, 0, 0, 0, 42, 0, 16, 0, 1, 0, 0, 0, 26, 0, 16, 0, - 1, 0, 0, 0, 31, 0, - 4, 3, 42, 0, 16, 0, 1, 0, 0, 0, 38, 0, 0, 9, 0, 208, 0, 0, - 66, 0, 16, 0, 1, 0, + 130, 0, 16, 0, 1, 0, 0, 0, 58, 0, 16, 0, 0, 0, 0, 0, 42, 128, 32, 0, 0, 0, 0, 0, @@ -268,221 +262,203 @@ const BYTE g_DFT[] = 0, 139, 2, 35, 0, 128, 131, 153, 25, 0, 18, 0, 16, 0, 4, 0, 0, 0, - 42, 0, 16, 0, 1, 0, + 58, 0, 16, 0, 1, 0, 0, 0, 1, 64, 0, 0, 0, 0, 0, 0, 6, 224, 17, 0, 2, 0, 0, 0, - 35, 0, 0, 11, 66, 0, + 32, 0, 0, 8, 130, 0, 16, 0, 1, 0, 0, 0, - 58, 0, 16, 0, 0, 0, - 0, 0, 42, 128, 32, 0, - 0, 0, 0, 0, 6, 0, - 0, 0, 58, 128, 32, 0, - 0, 0, 0, 0, 6, 0, - 0, 0, 32, 0, 0, 8, - 130, 0, 16, 0, 1, 0, - 0, 0, 58, 128, 32, 0, - 0, 0, 0, 0, 5, 0, - 0, 0, 1, 64, 0, 0, - 2, 0, 0, 0, 167, 0, + 58, 128, 32, 0, 0, 0, + 0, 0, 5, 0, 0, 0, + 1, 64, 0, 0, 2, 0, + 0, 0, 31, 0, 4, 3, + 58, 0, 16, 0, 1, 0, + 0, 0, 35, 0, 0, 11, + 34, 0, 16, 0, 2, 0, + 0, 0, 58, 0, 16, 0, + 0, 0, 0, 0, 42, 128, + 32, 0, 0, 0, 0, 0, + 6, 0, 0, 0, 58, 128, + 32, 0, 0, 0, 0, 0, + 6, 0, 0, 0, 167, 0, 0, 139, 2, 35, 0, 128, - 131, 153, 25, 0, 66, 0, - 16, 0, 1, 0, 0, 0, - 42, 0, 16, 0, 1, 0, + 131, 153, 25, 0, 34, 0, + 16, 0, 4, 0, 0, 0, + 26, 0, 16, 0, 2, 0, 0, 0, 1, 64, 0, 0, 0, 0, 0, 0, 6, 224, 17, 0, 2, 0, 0, 0, - 1, 0, 0, 7, 34, 0, - 16, 0, 4, 0, 0, 0, - 42, 0, 16, 0, 1, 0, - 0, 0, 58, 0, 16, 0, - 1, 0, 0, 0, 18, 0, - 0, 1, 54, 0, 0, 8, - 50, 0, 16, 0, 4, 0, + 18, 0, 0, 1, 54, 0, + 0, 5, 34, 0, 16, 0, + 4, 0, 0, 0, 1, 64, + 0, 0, 0, 0, 0, 0, + 21, 0, 0, 1, 55, 0, + 0, 12, 98, 0, 16, 0, + 2, 0, 0, 0, 166, 10, + 16, 0, 1, 0, 0, 0, + 86, 4, 16, 0, 4, 0, 0, 0, 2, 64, 0, 0, - 0, 0, 128, 63, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 21, 0, - 0, 1, 79, 0, 0, 8, - 66, 0, 16, 0, 1, 0, - 0, 0, 58, 0, 16, 0, - 0, 0, 0, 0, 26, 128, - 32, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 31, 0, - 4, 3, 42, 0, 16, 0, - 1, 0, 0, 0, 38, 0, - 0, 9, 0, 208, 0, 0, - 130, 0, 16, 0, 0, 0, - 0, 0, 58, 0, 16, 0, - 0, 0, 0, 0, 26, 128, - 32, 0, 0, 0, 0, 0, - 2, 0, 0, 0, 35, 0, - 0, 10, 130, 0, 16, 0, - 0, 0, 0, 0, 10, 0, + 0, 0, 0, 0, 128, 63, + 0, 0, 0, 0, 79, 0, + 0, 8, 66, 0, 16, 0, + 1, 0, 0, 0, 58, 0, + 16, 0, 0, 0, 0, 0, + 26, 128, 32, 0, 0, 0, + 0, 0, 1, 0, 0, 0, + 38, 0, 0, 9, 0, 208, + 0, 0, 18, 0, 16, 0, + 1, 0, 0, 0, 10, 0, 16, 0, 1, 0, 0, 0, 10, 128, 32, 0, 0, 0, 0, 0, 2, 0, 0, 0, + 35, 0, 0, 10, 130, 0, + 16, 0, 0, 0, 0, 0, 58, 0, 16, 0, 0, 0, - 0, 0, 35, 0, 0, 10, - 130, 0, 16, 0, 0, 0, + 0, 0, 26, 128, 32, 0, + 0, 0, 0, 0, 2, 0, 0, 0, 10, 0, 16, 0, - 3, 0, 0, 0, 42, 128, + 1, 0, 0, 0, 35, 0, + 0, 10, 130, 0, 16, 0, + 0, 0, 0, 0, 10, 0, + 16, 0, 3, 0, 0, 0, + 42, 128, 32, 0, 0, 0, + 0, 0, 2, 0, 0, 0, + 58, 0, 16, 0, 0, 0, + 0, 0, 167, 0, 0, 139, + 2, 35, 0, 128, 131, 153, + 25, 0, 18, 0, 16, 0, + 4, 0, 0, 0, 58, 0, + 16, 0, 0, 0, 0, 0, + 1, 64, 0, 0, 0, 0, + 0, 0, 6, 224, 17, 0, + 0, 0, 0, 0, 32, 0, + 0, 8, 130, 0, 16, 0, + 2, 0, 0, 0, 58, 128, 32, 0, 0, 0, 0, 0, - 2, 0, 0, 0, 58, 0, + 1, 0, 0, 0, 1, 64, + 0, 0, 2, 0, 0, 0, + 31, 0, 4, 3, 58, 0, + 16, 0, 2, 0, 0, 0, + 30, 0, 0, 8, 130, 0, 16, 0, 0, 0, 0, 0, - 167, 0, 0, 139, 2, 35, - 0, 128, 131, 153, 25, 0, - 18, 0, 16, 0, 5, 0, - 0, 0, 58, 0, 16, 0, - 0, 0, 0, 0, 1, 64, - 0, 0, 0, 0, 0, 0, - 6, 224, 17, 0, 0, 0, - 0, 0, 32, 0, 0, 8, - 66, 0, 16, 0, 1, 0, + 58, 0, 16, 0, 0, 0, 0, 0, 58, 128, 32, 0, - 0, 0, 0, 0, 1, 0, - 0, 0, 1, 64, 0, 0, - 2, 0, 0, 0, 31, 0, - 4, 3, 42, 0, 16, 0, - 1, 0, 0, 0, 30, 0, - 0, 8, 130, 0, 16, 0, - 0, 0, 0, 0, 58, 0, + 0, 0, 0, 0, 2, 0, + 0, 0, 167, 0, 0, 139, + 2, 35, 0, 128, 131, 153, + 25, 0, 34, 0, 16, 0, + 4, 0, 0, 0, 58, 0, 16, 0, 0, 0, 0, 0, - 58, 128, 32, 0, 0, 0, - 0, 0, 2, 0, 0, 0, - 167, 0, 0, 139, 2, 35, - 0, 128, 131, 153, 25, 0, - 34, 0, 16, 0, 5, 0, - 0, 0, 58, 0, 16, 0, - 0, 0, 0, 0, 1, 64, - 0, 0, 0, 0, 0, 0, - 6, 224, 17, 0, 0, 0, - 0, 0, 18, 0, 0, 1, - 54, 0, 0, 5, 34, 0, - 16, 0, 5, 0, 0, 0, 1, 64, 0, 0, 0, 0, - 0, 0, 21, 0, 0, 1, - 18, 0, 0, 1, 54, 0, - 0, 8, 50, 0, 16, 0, - 5, 0, 0, 0, 2, 64, - 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, - 21, 0, 0, 1, 56, 0, - 0, 7, 130, 0, 16, 0, - 0, 0, 0, 0, 26, 0, - 16, 0, 4, 0, 0, 0, - 26, 0, 16, 0, 5, 0, - 0, 0, 50, 0, 0, 10, - 130, 0, 16, 0, 0, 0, - 0, 0, 10, 0, 16, 0, - 5, 0, 0, 0, 10, 0, + 0, 0, 6, 224, 17, 0, + 0, 0, 0, 0, 18, 0, + 0, 1, 54, 0, 0, 5, + 34, 0, 16, 0, 4, 0, + 0, 0, 1, 64, 0, 0, + 0, 0, 0, 0, 21, 0, + 0, 1, 1, 0, 0, 7, + 98, 0, 16, 0, 3, 0, + 0, 0, 166, 10, 16, 0, + 1, 0, 0, 0, 6, 1, 16, 0, 4, 0, 0, 0, - 58, 0, 16, 128, 65, 0, - 0, 0, 0, 0, 0, 0, - 15, 0, 0, 7, 66, 0, - 16, 0, 1, 0, 0, 0, - 22, 5, 16, 0, 5, 0, - 0, 0, 70, 0, 16, 0, - 4, 0, 0, 0, 79, 0, - 0, 8, 130, 0, 16, 0, + 56, 0, 0, 7, 130, 0, + 16, 0, 0, 0, 0, 0, + 26, 0, 16, 0, 2, 0, + 0, 0, 42, 0, 16, 0, + 3, 0, 0, 0, 50, 0, + 0, 10, 130, 0, 16, 0, + 0, 0, 0, 0, 26, 0, + 16, 0, 3, 0, 0, 0, + 42, 0, 16, 0, 2, 0, + 0, 0, 58, 0, 16, 128, + 65, 0, 0, 0, 0, 0, + 0, 0, 15, 0, 0, 7, + 66, 0, 16, 0, 1, 0, + 0, 0, 150, 5, 16, 0, + 3, 0, 0, 0, 150, 5, + 16, 0, 2, 0, 0, 0, + 79, 0, 0, 8, 34, 0, + 16, 0, 2, 0, 0, 0, + 26, 0, 16, 0, 0, 0, + 0, 0, 42, 128, 32, 0, + 0, 0, 0, 0, 5, 0, + 0, 0, 1, 0, 0, 7, + 34, 0, 16, 0, 1, 0, + 0, 0, 26, 0, 16, 0, 1, 0, 0, 0, 26, 0, + 16, 0, 2, 0, 0, 0, + 38, 0, 0, 9, 0, 208, + 0, 0, 34, 0, 16, 0, + 2, 0, 0, 0, 26, 0, 16, 0, 0, 0, 0, 0, 42, 128, 32, 0, 0, 0, - 0, 0, 5, 0, 0, 0, - 1, 0, 0, 7, 34, 0, - 16, 0, 1, 0, 0, 0, - 58, 0, 16, 0, 1, 0, + 0, 0, 6, 0, 0, 0, + 167, 0, 0, 139, 2, 35, + 0, 128, 131, 153, 25, 0, + 18, 0, 16, 0, 4, 0, 0, 0, 26, 0, 16, 0, - 1, 0, 0, 0, 31, 0, - 4, 3, 26, 0, 16, 0, - 1, 0, 0, 0, 38, 0, - 0, 9, 0, 208, 0, 0, - 34, 0, 16, 0, 1, 0, + 2, 0, 0, 0, 1, 64, + 0, 0, 0, 0, 0, 0, + 6, 224, 17, 0, 2, 0, + 0, 0, 31, 0, 4, 3, + 58, 0, 16, 0, 1, 0, + 0, 0, 35, 0, 0, 11, + 130, 0, 16, 0, 1, 0, 0, 0, 26, 0, 16, 0, 0, 0, 0, 0, 42, 128, + 32, 0, 0, 0, 0, 0, + 6, 0, 0, 0, 58, 128, 32, 0, 0, 0, 0, 0, 6, 0, 0, 0, 167, 0, 0, 139, 2, 35, 0, 128, - 131, 153, 25, 0, 18, 0, + 131, 153, 25, 0, 34, 0, 16, 0, 4, 0, 0, 0, - 26, 0, 16, 0, 1, 0, + 58, 0, 16, 0, 1, 0, 0, 0, 1, 64, 0, 0, 0, 0, 0, 0, 6, 224, 17, 0, 2, 0, 0, 0, - 35, 0, 0, 11, 34, 0, - 16, 0, 1, 0, 0, 0, - 26, 0, 16, 0, 0, 0, - 0, 0, 42, 128, 32, 0, - 0, 0, 0, 0, 6, 0, - 0, 0, 58, 128, 32, 0, - 0, 0, 0, 0, 6, 0, - 0, 0, 32, 0, 0, 8, - 130, 0, 16, 0, 1, 0, - 0, 0, 58, 128, 32, 0, - 0, 0, 0, 0, 5, 0, - 0, 0, 1, 64, 0, 0, - 2, 0, 0, 0, 167, 0, - 0, 139, 2, 35, 0, 128, - 131, 153, 25, 0, 34, 0, + 18, 0, 0, 1, 54, 0, + 0, 5, 34, 0, 16, 0, + 4, 0, 0, 0, 1, 64, + 0, 0, 0, 0, 0, 0, + 21, 0, 0, 1, 55, 0, + 0, 12, 162, 0, 16, 0, + 1, 0, 0, 0, 86, 5, 16, 0, 1, 0, 0, 0, - 26, 0, 16, 0, 1, 0, - 0, 0, 1, 64, 0, 0, - 0, 0, 0, 0, 6, 224, - 17, 0, 2, 0, 0, 0, - 1, 0, 0, 7, 34, 0, - 16, 0, 4, 0, 0, 0, - 26, 0, 16, 0, 1, 0, - 0, 0, 58, 0, 16, 0, - 1, 0, 0, 0, 18, 0, - 0, 1, 54, 0, 0, 8, - 50, 0, 16, 0, 4, 0, + 86, 1, 16, 0, 4, 0, 0, 0, 2, 64, 0, 0, - 0, 0, 128, 63, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 21, 0, - 0, 1, 79, 0, 0, 8, - 34, 0, 16, 0, 1, 0, - 0, 0, 26, 0, 16, 0, - 0, 0, 0, 0, 26, 128, - 32, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 31, 0, - 4, 3, 26, 0, 16, 0, - 1, 0, 0, 0, 38, 0, - 0, 9, 0, 208, 0, 0, - 34, 0, 16, 0, 0, 0, - 0, 0, 26, 0, 16, 0, - 0, 0, 0, 0, 26, 128, - 32, 0, 0, 0, 0, 0, - 2, 0, 0, 0, 35, 0, + 0, 0, 0, 0, 0, 0, + 0, 0, 128, 63, 79, 0, + 0, 8, 34, 0, 16, 0, + 2, 0, 0, 0, 26, 0, + 16, 0, 0, 0, 0, 0, + 26, 128, 32, 0, 0, 0, + 0, 0, 1, 0, 0, 0, + 35, 0, 0, 10, 34, 0, + 16, 0, 0, 0, 0, 0, + 26, 0, 16, 0, 0, 0, + 0, 0, 26, 128, 32, 0, + 0, 0, 0, 0, 2, 0, + 0, 0, 10, 0, 16, 0, + 1, 0, 0, 0, 35, 0, 0, 10, 34, 0, 16, 0, 0, 0, 0, 0, 10, 0, - 16, 0, 1, 0, 0, 0, - 10, 128, 32, 0, 0, 0, + 16, 0, 3, 0, 0, 0, + 42, 128, 32, 0, 0, 0, 0, 0, 2, 0, 0, 0, 26, 0, 16, 0, 0, 0, - 0, 0, 35, 0, 0, 10, - 34, 0, 16, 0, 0, 0, - 0, 0, 10, 0, 16, 0, - 3, 0, 0, 0, 42, 128, - 32, 0, 0, 0, 0, 0, - 2, 0, 0, 0, 26, 0, + 0, 0, 167, 0, 0, 139, + 2, 35, 0, 128, 131, 153, + 25, 0, 18, 0, 16, 0, + 3, 0, 0, 0, 26, 0, 16, 0, 0, 0, 0, 0, - 167, 0, 0, 139, 2, 35, - 0, 128, 131, 153, 25, 0, - 18, 0, 16, 0, 1, 0, - 0, 0, 26, 0, 16, 0, - 0, 0, 0, 0, 1, 64, - 0, 0, 0, 0, 0, 0, - 6, 224, 17, 0, 0, 0, - 0, 0, 32, 0, 0, 8, - 130, 0, 16, 0, 1, 0, - 0, 0, 58, 128, 32, 0, - 0, 0, 0, 0, 1, 0, - 0, 0, 1, 64, 0, 0, - 2, 0, 0, 0, 31, 0, + 1, 64, 0, 0, 0, 0, + 0, 0, 6, 224, 17, 0, + 0, 0, 0, 0, 31, 0, 4, 3, 58, 0, 16, 0, - 1, 0, 0, 0, 30, 0, + 2, 0, 0, 0, 30, 0, 0, 8, 34, 0, 16, 0, 0, 0, 0, 0, 26, 0, 16, 0, 0, 0, 0, 0, @@ -490,39 +466,37 @@ const BYTE g_DFT[] = 0, 0, 2, 0, 0, 0, 167, 0, 0, 139, 2, 35, 0, 128, 131, 153, 25, 0, - 34, 0, 16, 0, 1, 0, + 34, 0, 16, 0, 3, 0, 0, 0, 26, 0, 16, 0, 0, 0, 0, 0, 1, 64, 0, 0, 0, 0, 0, 0, 6, 224, 17, 0, 0, 0, 0, 0, 18, 0, 0, 1, 54, 0, 0, 5, 34, 0, - 16, 0, 1, 0, 0, 0, + 16, 0, 3, 0, 0, 0, 1, 64, 0, 0, 0, 0, 0, 0, 21, 0, 0, 1, - 18, 0, 0, 1, 54, 0, - 0, 8, 50, 0, 16, 0, - 1, 0, 0, 0, 2, 64, - 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, - 21, 0, 0, 1, 56, 0, + 1, 0, 0, 7, 98, 0, + 16, 0, 2, 0, 0, 0, + 86, 5, 16, 0, 2, 0, + 0, 0, 6, 1, 16, 0, + 3, 0, 0, 0, 56, 0, 0, 7, 34, 0, 16, 0, 0, 0, 0, 0, 26, 0, - 16, 0, 4, 0, 0, 0, - 26, 0, 16, 0, 1, 0, + 16, 0, 1, 0, 0, 0, + 42, 0, 16, 0, 2, 0, 0, 0, 50, 0, 0, 10, 34, 0, 16, 0, 0, 0, - 0, 0, 10, 0, 16, 0, - 1, 0, 0, 0, 10, 0, - 16, 0, 4, 0, 0, 0, + 0, 0, 26, 0, 16, 0, + 2, 0, 0, 0, 58, 0, + 16, 0, 1, 0, 0, 0, 26, 0, 16, 128, 65, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 7, 18, 0, 16, 0, 1, 0, 0, 0, - 22, 5, 16, 0, 1, 0, - 0, 0, 70, 0, 16, 0, - 4, 0, 0, 0, 78, 0, + 150, 5, 16, 0, 2, 0, + 0, 0, 214, 5, 16, 0, + 1, 0, 0, 0, 78, 0, 0, 8, 0, 208, 0, 0, 34, 0, 16, 0, 1, 0, 0, 0, 10, 0, 16, 0, @@ -610,65 +584,77 @@ const BYTE g_DFT[] = 16, 0, 0, 0, 0, 0, 166, 138, 32, 0, 0, 0, 0, 0, 7, 0, 0, 0, - 57, 0, 0, 8, 18, 0, + 24, 0, 0, 8, 18, 0, 16, 0, 1, 0, 0, 0, 26, 128, 32, 0, 0, 0, 0, 0, 7, 0, 0, 0, 1, 64, 0, 0, 0, 0, + 0, 0, 31, 0, 4, 3, + 10, 0, 16, 0, 1, 0, + 0, 0, 54, 0, 0, 5, + 18, 0, 16, 0, 1, 0, + 0, 0, 58, 0, 16, 0, + 0, 0, 0, 0, 18, 0, + 0, 1, 57, 0, 0, 8, + 66, 0, 16, 0, 1, 0, + 0, 0, 26, 128, 32, 0, + 0, 0, 0, 0, 7, 0, + 0, 0, 1, 64, 0, 0, + 0, 0, 0, 0, 56, 0, + 0, 7, 34, 0, 16, 0, + 1, 0, 0, 0, 26, 0, + 16, 0, 1, 0, 0, 0, + 26, 0, 16, 0, 1, 0, 0, 0, 56, 0, 0, 7, 34, 0, 16, 0, 1, 0, 0, 0, 26, 0, 16, 0, - 1, 0, 0, 0, 26, 0, - 16, 0, 1, 0, 0, 0, - 56, 0, 0, 7, 34, 0, + 1, 0, 0, 0, 1, 64, + 0, 0, 219, 15, 73, 64, + 14, 0, 0, 8, 34, 0, 16, 0, 1, 0, 0, 0, 26, 0, 16, 0, 1, 0, - 0, 0, 1, 64, 0, 0, - 219, 15, 73, 64, 14, 0, - 0, 8, 34, 0, 16, 0, - 1, 0, 0, 0, 26, 0, + 0, 0, 26, 128, 32, 0, + 0, 0, 0, 0, 7, 0, + 0, 0, 77, 0, 0, 7, + 18, 0, 16, 0, 2, 0, + 0, 0, 18, 0, 16, 0, + 3, 0, 0, 0, 26, 0, 16, 0, 1, 0, 0, 0, - 26, 128, 32, 0, 0, 0, - 0, 0, 7, 0, 0, 0, - 77, 0, 0, 7, 18, 0, + 54, 0, 0, 5, 34, 0, 16, 0, 2, 0, 0, 0, - 18, 0, 16, 0, 3, 0, - 0, 0, 26, 0, 16, 0, - 1, 0, 0, 0, 54, 0, - 0, 5, 34, 0, 16, 0, - 2, 0, 0, 0, 10, 0, - 16, 0, 3, 0, 0, 0, - 55, 0, 0, 12, 50, 0, - 16, 0, 1, 0, 0, 0, - 6, 0, 16, 0, 1, 0, - 0, 0, 70, 0, 16, 0, - 2, 0, 0, 0, 2, 64, + 10, 0, 16, 0, 3, 0, + 0, 0, 55, 0, 0, 12, + 98, 0, 16, 0, 1, 0, + 0, 0, 166, 10, 16, 0, + 1, 0, 0, 0, 6, 1, + 16, 0, 2, 0, 0, 0, + 2, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 63, 0, 0, - 0, 0, 0, 0, 0, 0, - 56, 0, 0, 7, 194, 0, + 0, 0, 56, 0, 0, 7, + 50, 0, 16, 0, 2, 0, + 0, 0, 86, 5, 16, 0, + 0, 0, 0, 0, 150, 5, 16, 0, 1, 0, 0, 0, - 86, 5, 16, 0, 0, 0, - 0, 0, 6, 4, 16, 0, - 1, 0, 0, 0, 50, 0, - 0, 10, 34, 0, 16, 0, + 50, 0, 0, 10, 18, 0, + 16, 0, 1, 0, 0, 0, + 58, 0, 16, 0, 0, 0, + 0, 0, 42, 0, 16, 0, + 1, 0, 0, 0, 10, 0, + 16, 128, 65, 0, 0, 0, + 2, 0, 0, 0, 50, 0, + 0, 9, 34, 0, 16, 0, 0, 0, 0, 0, 58, 0, 16, 0, 0, 0, 0, 0, 26, 0, 16, 0, 1, 0, - 0, 0, 42, 0, 16, 128, - 65, 0, 0, 0, 1, 0, - 0, 0, 168, 0, 0, 9, + 0, 0, 26, 0, 16, 0, + 2, 0, 0, 0, 21, 0, + 0, 1, 168, 0, 0, 9, 18, 224, 17, 0, 1, 0, 0, 0, 42, 0, 16, 0, 0, 0, 0, 0, 1, 64, 0, 0, 0, 0, 0, 0, - 26, 0, 16, 0, 0, 0, - 0, 0, 50, 0, 0, 9, - 34, 0, 16, 0, 0, 0, - 0, 0, 58, 0, 16, 0, - 0, 0, 0, 0, 10, 0, - 16, 0, 1, 0, 0, 0, - 58, 0, 16, 0, 1, 0, + 10, 0, 16, 0, 1, 0, 0, 0, 168, 0, 0, 9, 18, 224, 17, 0, 1, 0, 0, 0, 10, 0, 16, 0, diff --git a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/GeneratedShaders/stockham_fp16.h b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/GeneratedShaders/stockham_fp16.h index 988c0aa66ade2..56ce759875687 100644 --- a/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/GeneratedShaders/stockham_fp16.h +++ b/onnxruntime/core/providers/dml/DmlExecutionProvider/src/Operators/GeneratedShaders/stockham_fp16.h @@ -15,7 +15,7 @@ ; Name Index Mask Register SysValue Format Used ; -------------------- ----- ------ -------- -------- ------- ------ ; no parameters -; shader hash: e08f21199c48b0db30bf21bd8c5b80dc +; shader hash: 6a1d88feb14177832f5ee49ca330c549 ; ; Pipeline Runtime Information: ; @@ -125,7 +125,7 @@ define void @DFT() { %47 = fpext half %46 to float %48 = extractvalue %dx.types.CBufRet.i32 %37, 3 %49 = icmp eq i32 %48, 2 - br i1 %49, label %50, label %56 + br i1 %49, label %50, label %56, !dx.controlflow.hints !15 ;