-
Notifications
You must be signed in to change notification settings - Fork 3k
/
quant_utils.py
775 lines (624 loc) · 27.3 KB
/
quant_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
import logging
import os
import tempfile
from enum import Enum
from pathlib import Path
import numpy
import onnx
from onnx import ModelProto, TensorProto, external_data_helper
from onnx import onnx_pb as onnx_proto
from onnx.helper import make_graph, make_model, make_node, make_tensor_value_info
from onnx.reference import ReferenceEvaluator
from onnxruntime import GraphOptimizationLevel, InferenceSession, SessionOptions
try:
from onnx.reference.custom_element_types import float8e4m3fn
except ImportError:
float8e4m3fn = None
__producer__ = "onnx.quantize"
__version__ = "0.1.0"
onnx_domain = "ai.onnx"
ms_domain = "com.microsoft"
QUANT_OP_NAME = "QuantizeLinear"
QUANT_INPUT_SUFFIX = "_QuantizeLinear_Input"
DEQUANT_OP_NAME = "DequantizeLinear"
DEQUANT_OUTPUT_SUFFIX = "_DequantizeLinear_Output"
TENSOR_NAME_QUANT_SUFFIX = "_quantized"
FLOAT8_DISTRIBUTIONS = {}
type_to_name = {getattr(TensorProto, k): k for k in dir(TensorProto) if isinstance(getattr(TensorProto, k), int)}
# Quantization mode
# IntegerOps: Use IntegerOps in quantized model. Only ConvInteger and MatMulInteger ops are supported now.
# QLinearOps: Use QLinearOps in quantized model. Only QLinearConv and QLinearMatMul ops are supported now.
class QuantizationMode(Enum):
IntegerOps = 0
QLinearOps = 1
def __str__(self):
return self.name
@staticmethod
def from_string(mode):
try:
return QuantizationMode[mode]
except KeyError:
raise ValueError() # noqa: B904
class QuantizedValueType(Enum):
Input = 0
Initializer = 1
def __str__(self):
return self.name
@staticmethod
def from_string(v):
try:
return QuantizedValueType[v]
except KeyError:
raise ValueError() # noqa: B904
class QuantType(Enum):
QInt8 = 0
QUInt8 = 1
QFLOAT8E4M3FN = 2
QInt16 = 3
QUInt16 = 4
def __str__(self):
return self.name
@staticmethod
def from_string(t):
try:
return QuantType[t]
except KeyError:
raise ValueError() # noqa: B904
@property
def tensor_type(self):
if self == QuantType.QInt8:
return TensorProto.INT8
if self == QuantType.QUInt8:
return TensorProto.UINT8
if self == QuantType.QUInt16:
return TensorProto.UINT16
if self == QuantType.QInt16:
return TensorProto.INT16
if self == QuantType.QFLOAT8E4M3FN:
return TensorProto.FLOAT8E4M3FN
raise ValueError(f"Unexpected value qtype={self!r}.")
class QuantFormat(Enum):
QOperator = 0
QDQ = 1
def __str__(self):
return self.name
@staticmethod
def from_string(format):
try:
return QuantFormat[format]
except KeyError:
raise ValueError() # noqa: B904
ONNX_TYPE_TO_NP_TYPE = {
onnx_proto.TensorProto.INT8: numpy.dtype("int8"),
onnx_proto.TensorProto.UINT8: numpy.dtype("uint8"),
onnx_proto.TensorProto.INT16: numpy.dtype("int16"),
onnx_proto.TensorProto.UINT16: numpy.dtype("uint16"),
onnx_proto.TensorProto.FLOAT8E4M3FN: float8e4m3fn,
}
ONNX_INT_TYPE_RANGE = {
onnx_proto.TensorProto.UINT8: (numpy.array(0, dtype=numpy.uint8), numpy.array(255, dtype=numpy.uint8)),
onnx_proto.TensorProto.INT8: (numpy.array(-128, dtype=numpy.int8), numpy.array(127, dtype=numpy.int8)),
onnx_proto.TensorProto.UINT16: (numpy.array(0, dtype=numpy.uint16), numpy.array(65535, dtype=numpy.uint16)),
onnx_proto.TensorProto.INT16: (numpy.array(-32768, dtype=numpy.int16), numpy.array(32767, dtype=numpy.int16)),
}
ONNX_INT_TYPE_SYMMETRIC_RANGE = {
onnx_proto.TensorProto.INT8: (numpy.array(-127, dtype=numpy.int8), numpy.array(127, dtype=numpy.int8)),
onnx_proto.TensorProto.INT16: (numpy.array(-32767, dtype=numpy.int16), numpy.array(32767, dtype=numpy.int16)),
}
ONNX_INT_TYPE_REDUCED_RANGE = {
onnx_proto.TensorProto.UINT8: (numpy.array(0, dtype=numpy.uint8), numpy.array(127, dtype=numpy.uint8)),
onnx_proto.TensorProto.INT8: (numpy.array(-64, dtype=numpy.int8), numpy.array(64, dtype=numpy.int8)),
onnx_proto.TensorProto.UINT16: (numpy.array(0, dtype=numpy.uint16), numpy.array(32767, dtype=numpy.uint16)),
onnx_proto.TensorProto.INT16: (numpy.array(-16384, dtype=numpy.int16), numpy.array(16384, dtype=numpy.int16)),
}
def _check_type(*args, zero_point_index=-1):
new_args = []
for i, a in enumerate(args):
if numpy.issubdtype(type(a), numpy.number):
new_args.append(numpy.array(a))
elif isinstance(a, numpy.ndarray):
new_args.append(a)
else:
raise TypeError(f"arg {i} is not an array: {a}")
if i == zero_point_index:
v = new_args[-1]
if v.dtype == numpy.float32 or v.dtype == numpy.float16:
raise TypeError(f"zero_point cannot be {v.dtype}")
return tuple(new_args) if len(new_args) > 1 else new_args[0]
def quantize_nparray(qType, arr, scale, zero_point, low=None, high=None):
assert (
qType in ONNX_TYPE_TO_NP_TYPE
), f"Unexpected data type {qType} requested. Only INT8, UINT8, INT16, and UINT16 are supported."
if qType in (
onnx_proto.TensorProto.FLOAT8E4M3FN,
onnx_proto.TensorProto.FLOAT8E4M3FNUZ,
onnx_proto.TensorProto.FLOAT8E5M2,
onnx_proto.TensorProto.FLOAT8E5M2FNUZ,
):
if zero_point != 0:
raise NotImplementedError(f"zero_point is expected to be null for float 8 not {zero_point!r}.")
if arr.dtype == numpy.float32:
onnx_type = TensorProto.FLOAT
elif arr.dtype == numpy.float16:
onnx_type = TensorProto.FLOAT16
else:
raise ValueError(f"Unexpected dtype {arr.dtype}.")
onnx_model = make_model(
make_graph(
[
make_node(
"Constant", [], ["zero_point"], value=onnx.helper.make_tensor("zero_point", qType, [], [0])
),
make_node("QuantizeLinear", ["X", "scale", "zero_point"], ["Y"]),
],
"qu",
[
make_tensor_value_info("X", onnx_type, None),
make_tensor_value_info("scale", onnx_type, None),
],
[make_tensor_value_info("Y", qType, None)],
)
)
ref = ReferenceEvaluator(onnx_model)
return _check_type(ref.run(None, {"X": arr, "scale": scale})[0])
else:
dtype = ONNX_TYPE_TO_NP_TYPE[qType]
(qmin, qmax) = get_qmin_qmax_for_qType(qType, reduce_range=False, symmetric=True)
cliplow = max(qmin, low) if low is not None else qmin
cliphigh = min(qmax, high) if high is not None else qmax
arr_fp32 = numpy.asarray((arr.astype(numpy.float32) / scale).round() + zero_point)
numpy.clip(arr_fp32, cliplow, cliphigh, out=arr_fp32)
return _check_type(arr_fp32.astype(dtype))
def compute_scale_zp(rmin, rmax, qmin, qmax, symmetric=False, min_real_range=None):
"""Calculate the scale s and zero point z for the quantization relation
r = s(q-z), where r are the original values and q are the corresponding
quantized values.
r and z are calculated such that every value within [rmin,rmax] has an
approximate representation within [qmin,qmax]. In addition, qmin <= z <=
qmax is enforced. If the symmetric flag is set to True, the interval
[rmin,rmax] is symmetrized to [-absmax, +absmax], where
absmax = max(abs(rmin), abs(rmax)).
:parameter rmin: minimum value of r
:parameter rmax: maximum value of r
:parameter qmin: minimum value representable by the target quantization data type
:parameter qmax: maximum value representable by the target quantization data type
:parameter symmetric: True if the floating-point range should be made symmetric. Defaults to False.
:parameter min_real_range: Minimum floating-point range (i.e., rmax - rmin) to enforce. Defaults to None.
:return: zero and scale [z, s]
"""
if qmin > 0 or qmax < 0:
raise ValueError(f"qmin and qmax must meet requirement: qmin <= 0 <= qmax while qmin:{qmin}, qmmax:{qmax}")
# Adjust rmin and rmax such that 0 is included in the range. This is
# required to make sure zero can be represented by the quantization data
# type (i.e. to make sure qmin <= zero_point <= qmax)
rmin = numpy.minimum(rmin, numpy.array(0, dtype=rmin.dtype))
rmax = numpy.maximum(rmax, numpy.array(0, dtype=rmax.dtype))
# Ensure a minimum float-point range if specified.
if min_real_range is not None:
rmax = max(rmax, rmin + min_real_range)
if symmetric:
absmax = numpy.maximum(numpy.abs(rmin), numpy.abs(rmax))
rmin = -absmax
rmax = +absmax
assert qmin <= qmax, f"qmin={rmin} > qmax={rmax}"
dr = numpy.array(rmax - rmin, dtype=numpy.float64)
dq = numpy.array(qmax, dtype=numpy.float64) - numpy.array(qmin, dtype=numpy.float64)
scale = numpy.array(dr / dq)
assert scale >= 0, "scale isse"
if scale < numpy.finfo(rmax.dtype).tiny:
scale = numpy.array(1.0, dtype=rmax.dtype)
zero_point = numpy.array(0, dtype=qmin.dtype)
else:
zero_point = numpy.array(numpy.round(qmin - rmin / scale), dtype=qmin.dtype)
scale = scale.astype(rmax.dtype)
return [zero_point, scale]
def compute_scale_zp_float8(element_type, std):
"""Calculate the scale s for a float8 type (E4M3FN).
The function assumes the coefficient distribution and the float 8
distribution are similar to two gaussian laws.
:return: zero and scale [z, s]
More details in notebook `quantization_fp8.ipynb
<https://github.com/microsoft/onnxruntime/blob/main/docs/python/notebooks/quantization_fp8.ipynb>`_.
"""
zp_dtype = None
if element_type not in FLOAT8_DISTRIBUTIONS:
if element_type == TensorProto.FLOAT8E4M3FN:
from onnx.numpy_helper import float8e4m3_to_float32
from onnx.reference.custom_element_types import float8e4m3fn
zp_dtype = float8e4m3fn
all_values = [float8e4m3_to_float32(i) for i in range(0, 256)]
values = numpy.array(
[f for f in all_values if not numpy.isnan(f) and not numpy.isinf(f)], dtype=numpy.float32
)
else:
raise ValueError(f"Quantization to element_type={element_type} not implemented.")
FLOAT8_DISTRIBUTIONS[element_type] = values
elif element_type == TensorProto.FLOAT8E4M3FN:
from onnx.reference.custom_element_types import float8e4m3fn
zp_dtype = float8e4m3fn
if zp_dtype is None:
raise TypeError(f"Unexpected element_type {element_type}.")
std_f8 = numpy.std(FLOAT8_DISTRIBUTIONS[element_type])
zero = numpy.array(0, dtype=zp_dtype)
scale = numpy.array(std / std_f8, dtype=std.dtype)
return [zero, scale]
def quantize_data(
data, qType, symmetric, reduce_range=False, min_real_range=None, rmin_override=None, rmax_override=None
):
"""
:param data: data to quantize
:param qType: data type to quantize to. Supported types UINT8 and INT8
:param symmetric: whether symmetric quantization is used or not. This is applied to INT8.
:parameter reduce_range: True if the quantization range should be reduced. Defaults to False.
:parameter min_real_range: Minimum floating-point range (i.e., rmax - rmin) to enforce. Defaults to None.
:parameter rmin_override: The value of rmin to use if not None. Otherwise, uses min(data).
:parameter rmax_override: The value of rmax to use if not None. Otherwise, uses max(data).
:return: minimum, maximum, zero point, scale, and quantized weights
To pack weights, we compute a linear transformation
- when data `type == uint8` mode, from `[rmin, rmax]` -> :math:`[0, 2^{b-1}]` and
- when data `type == int8`, from `[-m , m]` -> :math:`[-(2^{b-1}-1), 2^{b-1}-1]` where
`m = max(abs(rmin), abs(rmax))`
and add necessary intermediate nodes to trasnform quantized weight to full weight using the equation
:math:`r = S(q-z)`, where
- *r*: real original value
- *q*: quantized value
- *S*: scale
- *z*: zero point
"""
if not isinstance(data, numpy.ndarray):
raise TypeError(f"Weight must be given as an array not {type(data)}.")
if rmin_override is not None:
rmin = rmin_override
else:
rmin = data.min() if len(data) else 0.0
if rmax_override is not None:
rmax = rmax_override
else:
rmax = data.max() if len(data) else 0.0
rmin = numpy.array(rmin, dtype=data.dtype)
rmax = numpy.array(rmax, dtype=data.dtype)
zero_point = 0
scale = numpy.array(1.0, dtype=data.dtype)
if qType == TensorProto.FLOAT8E4M3FN:
if reduce_range:
raise RuntimeError("Unsupported option reduce_range=True for float 8.")
std = numpy.std(data)
zero_point, scale = compute_scale_zp_float8(qType, std)
quantized_data = quantize_nparray(qType, data, scale, zero_point)
if any((quantized_data.astype(numpy.uint8).ravel() & 127) == 127):
np_data = numpy.asarray(data)
raise RuntimeError(
f"One of the quantized value is NaN data in [{np_data.min()}, {np_data.max()}], "
f"quantized_data in [{quantized_data.min()}, {quantized_data.max()}]."
)
return _check_type(rmin, rmax, zero_point, scale, quantized_data, zero_point_index=2)
if qType in (TensorProto.INT8, TensorProto.UINT8, TensorProto.INT16, TensorProto.UINT16):
if len(data):
qmin, qmax = get_qmin_qmax_for_qType(qType, reduce_range, symmetric=symmetric)
zero_point, scale = compute_scale_zp(rmin, rmax, qmin, qmax, symmetric, min_real_range)
quantized_data = quantize_nparray(qType, data, scale, zero_point)
return _check_type(rmin, rmax, zero_point, scale, quantized_data, zero_point_index=2)
raise ValueError(f"Unexpected value for qType={qType}.")
def get_qmin_qmax_for_qType(qType, reduce_range=False, symmetric=False): # noqa: N802
"""
Return qmin and qmax, the minimum and maximum value representable by the given qType
:parameter qType: onnx.onnx_pb.TensorProto.UINT8 or onnx.onnx_pb.TensorProto.UINT8
:return: qmin, qmax
"""
if qType == onnx_proto.TensorProto.FLOAT8E4M3FN:
raise NotImplementedError("This function is not implemented for float 8 as not needed.")
qrange = None
if reduce_range:
qrange = ONNX_INT_TYPE_REDUCED_RANGE.get(qType)
elif symmetric and qType in ONNX_INT_TYPE_SYMMETRIC_RANGE:
qrange = ONNX_INT_TYPE_SYMMETRIC_RANGE[qType]
else:
qrange = ONNX_INT_TYPE_RANGE.get(qType)
if not qrange:
raise ValueError(f"Unexpected data type {qType} requested. Only INT8, UINT8, INT16, and UINT16 are supported.")
qmin, qmax = qrange
if qmin > 0 or qmax < 0:
raise ValueError(
f"qmin and qmax must meet requirement: qmin <= 0 <= qmax while "
f"qmin:{qmin}, qmmax:{qmax}, dtype={qmin.dtype}, reduce_range={reduce_range}, "
f"symmetric={symmetric}, qType={qType}"
)
return qrange
def get_qrange_for_qType(qType, reduce_range=False, symmetric=False): # noqa: N802
"""
Helper function to get the quantization range for a type.
parameter qType: quantization type.
return: quantization range.
"""
qmin, qmax = get_qmin_qmax_for_qType(qType, reduce_range, symmetric=symmetric)
return qmax - qmin
class QuantizedInitializer:
"""
Represents a linearly quantized weight input from ONNX operators
"""
def __init__(
self,
name,
initializer,
rmins,
rmaxs,
zero_points,
scales,
data=[], # noqa: B006
quantized_data=[], # noqa: B006
axis=None,
):
self.name = name
self.initializer = initializer # TensorProto initializer in ONNX graph
self.rmins = rmins # List of minimum range for each axis
self.rmaxs = rmaxs # List of maximum range for each axis
# 1D tensor of zero points computed for each axis. scalar if axis is empty
self.zero_points = zero_points
self.scales = scales # 1D tensor of scales computed for each axis. scalar if axis is empty
self.data = data # original data from initializer TensorProto
self.quantized_data = quantized_data # weight-packed data from data
# Scalar to specify which dimension in the initializer to weight pack.
self.axis = axis
# If empty, single zero point and scales computed from a single rmin and rmax
class QuantizedValue:
"""
Represents a linearly quantized value (input\\output\\intializer)
"""
def __init__(
self,
name,
new_quantized_name,
scale_name,
zero_point_name,
quantized_value_type,
axis=None,
node_type=None,
node_qtype=None,
scale_type=None,
):
self.original_name = name
self.q_name = new_quantized_name
self.scale_name = scale_name
self.zp_name = zero_point_name
self.value_type = quantized_value_type
self.axis = axis
self.node_type = node_type
self.node_qtype = node_qtype
self.scale_type = scale_type
class BiasToQuantize:
"""
Represents a bias to be quantized
"""
def __init__(self, bias_name, input_name, weight_name):
self.bias_name = bias_name
self.input_name = input_name
self.weight_name = weight_name
def attribute_to_kwarg(attribute):
"""
Convert attribute to kwarg format for use with onnx.helper.make_node.
:parameter attribute: attribute in AttributeProto format.
:return: attribute in {key: value} format.
"""
if attribute.type == 0:
raise ValueError(f"attribute {attribute.name} does not have type specified.")
# Based on attribute type definitions from AttributeProto
# definition in https://github.com/onnx/onnx/blob/main/onnx/onnx.proto
if attribute.type == 1:
value = attribute.f
elif attribute.type == 2:
value = attribute.i
elif attribute.type == 3:
value = attribute.s
elif attribute.type == 4:
value = attribute.t
elif attribute.type == 5:
value = attribute.g
elif attribute.type == 6:
value = attribute.floats
elif attribute.type == 7:
value = attribute.ints
elif attribute.type == 8:
value = attribute.strings
elif attribute.type == 9:
value = attribute.tensors
elif attribute.type == 10:
value = attribute.graphs
else:
raise ValueError(f"attribute {attribute.name} has unsupported type {attribute.type}.")
return {attribute.name: value}
def find_by_name(item_name, item_list):
"""
Helper function to find item by name in a list.
parameter item_name: name of the item.
parameter item_list: list of items.
return: item if found. None otherwise.
"""
items = [item for item in item_list if item.name == item_name]
return items[0] if len(items) > 0 else None
def get_elem_index(elem_name, elem_list):
"""
Helper function to return index of an item in a node list
"""
elem_idx = -1
for i in range(0, len(elem_list)):
if elem_list[i] == elem_name:
elem_idx = i
return elem_idx
def get_mul_node(inputs, output, name):
"""
Helper function to create a Mul node.
parameter inputs: list of input names.
parameter output: output name.
parameter name: name of the node.
return: Mul node in NodeProto format.
"""
return onnx.helper.make_node("Mul", inputs, [output], name)
def generate_identified_filename(filename: Path, identifier: str) -> Path:
"""
Helper function to generate a identifiable filepath by concatenating the given identifier as a suffix.
"""
return filename.parent.joinpath(filename.stem + identifier + filename.suffix)
def apply_plot(hist, hist_edges):
import sys
import matplotlib.pyplot as plt
import numpy
numpy.set_printoptions(threshold=sys.maxsize)
print("Histogram:")
print(hist)
print("Histogram Edges:")
print(hist_edges)
plt.stairs(hist, hist_edges, fill=True)
plt.xlabel("Tensor value")
plt.ylabel("Counts")
plt.title("Tensor value V.S. Counts")
plt.show()
def write_calibration_table(calibration_cache, dir="."):
"""
Helper function to write calibration table to files.
"""
import json
import flatbuffers
import onnxruntime.quantization.CalTableFlatBuffers.KeyValue as KeyValue
import onnxruntime.quantization.CalTableFlatBuffers.TrtTable as TrtTable
logging.info(f"calibration cache: {calibration_cache}")
with open(os.path.join(dir, "calibration.json"), "w") as file:
file.write(json.dumps(calibration_cache)) # use `json.loads` to do the reverse
# Serialize data using FlatBuffers
builder = flatbuffers.Builder(1024)
key_value_list = []
for key in sorted(calibration_cache.keys()):
values = calibration_cache[key]
value = str(max(abs(values[0]), abs(values[1])))
flat_key = builder.CreateString(key)
flat_value = builder.CreateString(value)
KeyValue.KeyValueStart(builder)
KeyValue.KeyValueAddKey(builder, flat_key)
KeyValue.KeyValueAddValue(builder, flat_value)
key_value = KeyValue.KeyValueEnd(builder)
key_value_list.append(key_value)
TrtTable.TrtTableStartDictVector(builder, len(key_value_list))
for key_value in key_value_list:
builder.PrependUOffsetTRelative(key_value)
main_dict = builder.EndVector()
TrtTable.TrtTableStart(builder)
TrtTable.TrtTableAddDict(builder, main_dict)
cal_table = TrtTable.TrtTableEnd(builder)
builder.Finish(cal_table)
buf = builder.Output()
with open(os.path.join(dir, "calibration.flatbuffers"), "wb") as file:
file.write(buf)
# Deserialize data (for validation)
if os.environ.get("QUANTIZATION_DEBUG", 0) in (1, "1"):
cal_table = TrtTable.TrtTable.GetRootAsTrtTable(buf, 0)
dict_len = cal_table.DictLength()
for i in range(dict_len):
key_value = cal_table.Dict(i)
logging.info(key_value.Key())
logging.info(key_value.Value())
# write plain text
with open(os.path.join(dir, "calibration.cache"), "w") as file:
for key in sorted(calibration_cache.keys()):
value = calibration_cache[key]
s = key + " " + str(max(abs(value[0]), abs(value[1])))
file.write(s)
file.write("\n")
def smooth_distribution(p, eps=0.0001):
"""Given a discrete distribution (may have not been normalized to 1),
smooth it by replacing zeros with eps multiplied by a scaling factor
and taking the corresponding amount off the non-zero values.
Ref: http://web.engr.illinois.edu/~hanj/cs412/bk3/KL-divergence.pdf
https://github.com//apache/incubator-mxnet/blob/master/python/mxnet/contrib/quantization.py
"""
is_zeros = (p == 0).astype(numpy.float32)
is_nonzeros = (p != 0).astype(numpy.float32)
n_zeros = is_zeros.sum()
n_nonzeros = p.size - n_zeros
if not n_nonzeros:
# raise ValueError('The discrete probability distribution is malformed. All entries are 0.')
return None
eps1 = eps * float(n_zeros) / float(n_nonzeros)
assert eps1 < 1.0, "n_zeros=%d, n_nonzeros=%d, eps1=%f" % (
n_zeros,
n_nonzeros,
eps1,
)
hist = p.astype(numpy.float32)
hist += eps * is_zeros + (-eps1) * is_nonzeros
assert (hist <= 0).sum() == 0
return hist
def model_has_external_data(model_path: Path):
model = onnx.load(model_path.as_posix(), load_external_data=False)
for intializer in model.graph.initializer:
if external_data_helper.uses_external_data(intializer):
return True
return False
def optimize_model(model_path: Path, opt_model_path: Path):
"""
Generate model that applies graph optimization (constant folding, etc.)
parameter model_path: path to the original onnx model
parameter opt_model_path: path to the optimized onnx model
:return: optimized onnx model
"""
sess_option = SessionOptions()
sess_option.optimized_model_filepath = opt_model_path.as_posix()
sess_option.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_BASIC
kwargs = {}
# This will rename constant initializer names, disable it to make test pass.
kwargs["disabled_optimizers"] = ["ConstantSharing"]
_ = InferenceSession(model_path.as_posix(), sess_option, providers=["CPUExecutionProvider"], **kwargs)
def add_pre_process_metadata(model: ModelProto):
"""Tag the model that it went through quantization pre-processing"""
metadata_props = {"onnx.quant.pre_process": "onnxruntime.quant"}
if model.metadata_props:
for prop in model.metadata_props:
metadata_props.update({prop.key: prop.value})
onnx.helper.set_model_props(model, metadata_props)
def model_has_pre_process_metadata(model: ModelProto) -> bool:
"""Check the model whether it went through quantization pre-processing"""
if model.metadata_props:
for prop in model.metadata_props:
if prop.key == "onnx.quant.pre_process" and prop.value == "onnxruntime.quant":
return True
return False
def add_infer_metadata(model: ModelProto):
metadata_props = {"onnx.infer": "onnxruntime.quant"}
if model.metadata_props:
for p in model.metadata_props:
metadata_props.update({p.key: p.value})
onnx.helper.set_model_props(model, metadata_props)
def model_has_infer_metadata(model: ModelProto) -> bool:
if model.metadata_props:
for p in model.metadata_props:
if p.key == "onnx.infer" and p.value == "onnxruntime.quant":
return True
return False
def load_model_with_shape_infer(model_path: Path) -> ModelProto:
inferred_model_path = generate_identified_filename(model_path, "-inferred")
onnx.shape_inference.infer_shapes_path(str(model_path), str(inferred_model_path))
model = onnx.load(inferred_model_path.as_posix())
add_infer_metadata(model)
inferred_model_path.unlink()
return model
def save_and_reload_model_with_shape_infer(model: ModelProto) -> ModelProto:
with tempfile.TemporaryDirectory(prefix="ort.quant.") as quant_tmp_dir:
model_path = Path(quant_tmp_dir).joinpath("model.onnx")
onnx.save_model(model, model_path.as_posix(), save_as_external_data=True)
return load_model_with_shape_infer(model_path)
def tensor_proto_to_array(initializer: TensorProto) -> numpy.ndarray:
if initializer.data_type in (onnx_proto.TensorProto.FLOAT, onnx_proto.TensorProto.FLOAT16):
return onnx.numpy_helper.to_array(initializer)
raise ValueError(
f"Only float type is supported. Weights {initializer.name} is {type_to_name[initializer.data_type]}"
)
def add_quant_suffix(tensor_name: str) -> str:
return tensor_name + "_QuantizeLinear"
def add_quant_input_suffix(tensor_name: str) -> str:
return tensor_name + QUANT_INPUT_SUFFIX
def add_quant_output_suffix(tensor_name) -> str:
return tensor_name + "_QuantizeLinear_Output"
def add_dequant_suffix(tensor_name) -> str:
return tensor_name + "_DequantizeLinear"
def add_dequant_input_suffix(tensor_name) -> str:
return tensor_name + "_DequantizeLinear_Input"
def add_dequant_output_suffix(tensor_name) -> str:
return tensor_name + DEQUANT_OUTPUT_SUFFIX