-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathLearningModelSessionAPITest.cpp
1057 lines (903 loc) · 43.6 KB
/
LearningModelSessionAPITest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "testPch.h"
#include "APITest.h"
#include "CommonDeviceHelpers.h"
#include "LearningModelSessionAPITest.h"
#include "protobufHelpers.h"
#include "winrt/Windows.Storage.h"
#include <D3d11_4.h>
#include <dxgi1_6.h>
#include "Psapi.h"
using namespace winrt;
using namespace winml;
using namespace wfc;
#ifndef BUILD_INBOX
// experimental
using namespace winml_experimental;
using Operator = winml_experimental::LearningModelOperator;
static const wchar_t MS_EXPERIMENTAL_DOMAIN[] = L"com.microsoft.experimental";
#endif
using wf::IPropertyValue;
#define INT64(x) static_cast<int64_t>(x)
#define SIZET(x) static_cast<size_t>(x)
#define INT32(x) static_cast<int32_t>(x)
static void LearningModelSessionAPITestsClassSetup() {
init_apartment();
#ifdef BUILD_INBOX
winrt_activation_handler = WINRT_RoGetActivationFactory;
#endif
}
static void CreateSessionDeviceDefault()
{
LearningModel learningModel = nullptr;
LearningModelDevice learningModelDevice = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"model.onnx", learningModel));
WINML_EXPECT_NO_THROW(learningModelDevice = LearningModelDevice(LearningModelDeviceKind::Default));
WINML_EXPECT_NO_THROW(LearningModelSession(learningModel, learningModelDevice));
}
static void CreateSessionDeviceCpu() {
LearningModel learningModel = nullptr;
LearningModelDevice learningModelDevice = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"model.onnx", learningModel));
WINML_EXPECT_NO_THROW(learningModelDevice = LearningModelDevice(LearningModelDeviceKind::Cpu));
WINML_EXPECT_NO_THROW(LearningModelSession(learningModel, learningModelDevice));
// for the CPU device, make sure that we get back NULL and 0 for any device properties
WINML_EXPECT_EQUAL(learningModelDevice.Direct3D11Device(), nullptr);
LARGE_INTEGER id;
id.QuadPart = APITest::GetAdapterIdQuadPart(learningModelDevice);
WINML_EXPECT_EQUAL(id.LowPart, static_cast<DWORD>(0));
WINML_EXPECT_EQUAL(id.HighPart, 0);
}
static void CreateSessionWithModelLoadedFromStream()
{
LearningModel learningModel = nullptr;
LearningModelDevice learningModelDevice = nullptr;
std::wstring path = FileHelpers::GetModulePath() + L"model.onnx";
auto storageFile = ws::StorageFile::GetFileFromPathAsync(path).get();
WINML_EXPECT_NO_THROW(learningModel = LearningModel::LoadFromStream(storageFile));
WINML_EXPECT_NO_THROW(learningModelDevice = LearningModelDevice(LearningModelDeviceKind::Default));
WINML_EXPECT_NO_THROW(LearningModelSession(learningModel, learningModelDevice));
}
static void CreateSessionDeviceDirectX() {
LearningModel learningModel = nullptr;
LearningModelDevice learningModelDevice = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"model.onnx", learningModel));
WINML_EXPECT_NO_THROW(learningModelDevice = LearningModelDevice(LearningModelDeviceKind::DirectX));
WINML_EXPECT_NO_THROW(LearningModelSession(learningModel, learningModelDevice));
}
static void CreateSessionDeviceDirectXHighPerformance() {
LearningModel learningModel = nullptr;
LearningModelDevice learningModelDevice = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"model.onnx", learningModel));
WINML_EXPECT_NO_THROW(learningModelDevice = LearningModelDevice(LearningModelDeviceKind::DirectXHighPerformance));
WINML_EXPECT_NO_THROW(LearningModelSession(learningModel, learningModelDevice));
}
static void CreateSessionDeviceDirectXMinimumPower() {
LearningModel learningModel = nullptr;
LearningModelDevice learningModelDevice = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"model.onnx", learningModel));
WINML_EXPECT_NO_THROW(learningModelDevice = LearningModelDevice(LearningModelDeviceKind::DirectXMinPower));
WINML_EXPECT_NO_THROW(LearningModelSession(learningModel, learningModelDevice));
}
static void AdapterIdAndDevice() {
LearningModel learningModel = nullptr;
LearningModelDevice learningModelDevice = nullptr;
LearningModelSession learningModelSession = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"model.onnx", learningModel));
com_ptr<IDXGIFactory6> factory;
WINML_EXPECT_HRESULT_SUCCEEDED(CreateDXGIFactory1(__uuidof(IDXGIFactory6), factory.put_void()));
com_ptr<IDXGIAdapter> adapter;
learningModelDevice = LearningModelDevice(LearningModelDeviceKind::DirectX);
WINML_EXPECT_HRESULT_SUCCEEDED(factory->EnumAdapters(0, adapter.put()));
DXGI_ADAPTER_DESC desc;
WINML_EXPECT_HRESULT_SUCCEEDED(adapter->GetDesc(&desc));
LARGE_INTEGER id;
id.QuadPart = APITest::GetAdapterIdQuadPart(learningModelDevice);
WINML_EXPECT_EQUAL(desc.AdapterLuid.LowPart, id.LowPart);
WINML_EXPECT_EQUAL(desc.AdapterLuid.HighPart, id.HighPart);
WINML_EXPECT_TRUE(learningModelDevice.Direct3D11Device() != nullptr);
learningModelDevice = LearningModelDevice(LearningModelDeviceKind::DirectXHighPerformance);
adapter = nullptr;
WINML_EXPECT_HRESULT_SUCCEEDED(factory->EnumAdapterByGpuPreference(0, DXGI_GPU_PREFERENCE_HIGH_PERFORMANCE, __uuidof(IDXGIAdapter), adapter.put_void()));
WINML_EXPECT_HRESULT_SUCCEEDED(adapter->GetDesc(&desc));
id.QuadPart = APITest::GetAdapterIdQuadPart(learningModelDevice);
WINML_EXPECT_EQUAL(desc.AdapterLuid.LowPart, id.LowPart);
WINML_EXPECT_EQUAL(desc.AdapterLuid.HighPart, id.HighPart);
WINML_EXPECT_TRUE(learningModelDevice.Direct3D11Device() != nullptr);
adapter = nullptr;
learningModelDevice = LearningModelDevice(LearningModelDeviceKind::DirectXMinPower);
WINML_EXPECT_HRESULT_SUCCEEDED(factory->EnumAdapterByGpuPreference(0, DXGI_GPU_PREFERENCE_MINIMUM_POWER, __uuidof(IDXGIAdapter), adapter.put_void()));
WINML_EXPECT_HRESULT_SUCCEEDED(adapter->GetDesc(&desc));
id.QuadPart = APITest::GetAdapterIdQuadPart(learningModelDevice);
WINML_EXPECT_EQUAL(desc.AdapterLuid.LowPart, id.LowPart);
WINML_EXPECT_EQUAL(desc.AdapterLuid.HighPart, id.HighPart);
WINML_EXPECT_TRUE(learningModelDevice.Direct3D11Device() != nullptr);
WINML_EXPECT_NO_THROW(learningModelSession = LearningModelSession(learningModel, learningModelDevice));
WINML_EXPECT_EQUAL(learningModelSession.Device().AdapterId(), learningModelDevice.AdapterId());
}
static void EvaluateFeatures() {
std::vector<int64_t> shape = {4};
std::vector<winrt::hstring> data = {L"one", L"two", L"three", L"four"};
// create from buffer
auto tensor = TensorString::CreateFromArray(shape, data);
WINML_EXPECT_EQUAL(tensor.GetAsVectorView().Size(), data.size());
WINML_EXPECT_TRUE(std::equal(data.cbegin(), data.cend(), begin(tensor.GetAsVectorView())));
// create from vector view
auto dataCopy = data;
tensor = TensorString::CreateFromIterable(
shape, winrt::single_threaded_vector<winrt::hstring>(std::move(dataCopy)).GetView());
WINML_EXPECT_EQUAL(tensor.GetAsVectorView().Size(), data.size());
WINML_EXPECT_TRUE(std::equal(data.cbegin(), data.cend(), begin(tensor.GetAsVectorView())));
LearningModel learningModel = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"id-tensor-string.onnx", learningModel));
LearningModelSession session(learningModel);
auto outputTensor = TensorString::Create();
std::map<hstring, wf::IInspectable> featuresstandardmap;
featuresstandardmap[L"X"] = tensor;
featuresstandardmap[L"Y"] = outputTensor;
auto featureswinrtmap = winrt::single_threaded_map(std::move(featuresstandardmap));
session.EvaluateFeatures(featureswinrtmap, L"0");
// verify identity model round-trip works
WINML_EXPECT_EQUAL(outputTensor.GetAsVectorView().Size(), data.size());
WINML_EXPECT_TRUE(std::equal(data.cbegin(), data.cend(), begin(outputTensor.GetAsVectorView())));
}
static void EvaluateFeaturesAsync() {
std::vector<int64_t> shape = {4};
std::vector<winrt::hstring> data = {L"one", L"two", L"three", L"four"};
// create from buffer
auto tensor = TensorString::CreateFromArray(shape, data);
WINML_EXPECT_EQUAL(tensor.GetAsVectorView().Size(), data.size());
WINML_EXPECT_TRUE(std::equal(data.cbegin(), data.cend(), begin(tensor.GetAsVectorView())));
// create from vector view
auto dataCopy = data;
tensor = TensorString::CreateFromIterable(
shape, winrt::single_threaded_vector<winrt::hstring>(std::move(dataCopy)).GetView());
WINML_EXPECT_EQUAL(tensor.GetAsVectorView().Size(), data.size());
WINML_EXPECT_TRUE(std::equal(data.cbegin(), data.cend(), begin(tensor.GetAsVectorView())));
LearningModel learningModel = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"id-tensor-string.onnx", learningModel));
LearningModelSession session(learningModel);
auto outputTensor = TensorString::Create(shape);
std::map<hstring, wf::IInspectable> featuresstandardmap;
featuresstandardmap[L"X"] = tensor;
featuresstandardmap[L"Y"] = outputTensor;
auto featureswinrtmap = winrt::single_threaded_map(std::move(featuresstandardmap));
session.EvaluateFeaturesAsync(featureswinrtmap, L"0").get();
// verify identity model round-trip works
WINML_EXPECT_EQUAL(outputTensor.GetAsVectorView().Size(), data.size());
WINML_EXPECT_TRUE(std::equal(data.cbegin(), data.cend(), begin(outputTensor.GetAsVectorView())));
}
static void EvaluationProperties() {
// load a model
LearningModel learningModel = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"model.onnx", learningModel));
// create a session
LearningModelSession learningModelSession = nullptr;
learningModelSession = LearningModelSession(learningModel);
// set a property
auto value = winrt::Windows::Foundation::PropertyValue::CreateBoolean(true);
learningModelSession.EvaluationProperties().Insert(L"propName1", value);
// get the property and make sure it's there with the right value
auto value2 = learningModelSession.EvaluationProperties().Lookup(L"propName1");
WINML_EXPECT_EQUAL(value2.as<IPropertyValue>().GetBoolean(), true);
}
static LearningModelSession CreateSession(LearningModel model) {
LearningModelDevice device(nullptr);
WINML_EXPECT_NO_THROW(device = LearningModelDevice(LearningModelDeviceKind::DirectX));
LearningModelSession session(nullptr);
if (CommonDeviceHelpers::IsFloat16Supported(device)) {
WINML_EXPECT_NO_THROW(session = LearningModelSession(model, device));
} else {
WINML_EXPECT_THROW_SPECIFIC(
session = LearningModelSession(model, device),
winrt::hresult_error,
[](const winrt::hresult_error& e) -> bool {
return e.code() == DXGI_ERROR_UNSUPPORTED;
});
}
return session;
}
static void CreateSessionWithCastToFloat16InModel() {
// load a model
LearningModel learningModel = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"fp16-truncate-with-cast.onnx", learningModel));
CreateSession(learningModel);
}
static void CreateSessionWithFloat16InitializersInModel()
{
// load a model
LearningModel learningModel = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"fp16-initializer.onnx", learningModel));
CreateSession(learningModel);
}
static void EvaluateSessionAndCloseModelHelper(
LearningModelDeviceKind kind,
bool close_model_on_session_creation) {
auto shape = std::vector<int64_t>{1, 1000};
auto model = ProtobufHelpers::CreateModel(TensorKind::Float, shape, 1000);
auto device = LearningModelDevice(kind);
auto options = LearningModelSessionOptions();
// close the model on session creation
options.CloseModelOnSessionCreation(close_model_on_session_creation);
// ensure you can create a session from the model
LearningModelSession session(nullptr);
WINML_EXPECT_NO_THROW(session = LearningModelSession(model, device, options));
std::vector<float> input(1000);
std::iota(std::begin(input), std::end(input), 0.0f);
auto tensor_input = TensorFloat::CreateFromArray(shape, input);
auto binding = LearningModelBinding(session);
binding.Bind(L"input", tensor_input);
LearningModelEvaluationResult result(nullptr);
WINML_EXPECT_NO_THROW(result = session.Evaluate(binding, L""));
if (close_model_on_session_creation) {
// ensure that the model has been closed
WINML_EXPECT_THROW_SPECIFIC(
LearningModelSession(model, device, options),
winrt::hresult_error,
[](const winrt::hresult_error& e) -> bool {
return e.code() == E_INVALIDARG;
});
} else {
WINML_EXPECT_NO_THROW(LearningModelSession(model, device, options));
}
}
static void EvaluateSessionAndCloseModel() {
WINML_EXPECT_NO_THROW(::EvaluateSessionAndCloseModelHelper(LearningModelDeviceKind::Cpu, true));
WINML_EXPECT_NO_THROW(::EvaluateSessionAndCloseModelHelper(LearningModelDeviceKind::Cpu, false));
}
static void NamedDimensionOverride()
{
LearningModel model = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"fns-candy.onnx", model));
LearningModelDevice device(nullptr);
WINML_EXPECT_NO_THROW(device = LearningModelDevice(LearningModelDeviceKind::Cpu));
// the model input shape. the batch size, n, is overriden to 5
uint32_t n = 5;
int64_t c = 3, h = 720, w = 720;
LearningModelSessionOptions options;
options.OverrideNamedDimension(L"None", n);
// Verifies that if a Dim name doesn't exist the named dimension override does not interfere with successful evaluation
// The override is still expected to be present in the internal onnxruntime override data
options.OverrideNamedDimension(L"DimNameThatDoesntExist", n);
LearningModelSession session(nullptr);
WINML_EXPECT_NO_THROW(session = LearningModelSession(model, device, options));
#ifndef BUILD_INBOX
Experimental::LearningModelSessionExperimental experimental_session(session);
Experimental::LearningModelSessionOptionsExperimental experimental_options = experimental_session.Options();
wfc::IMapView<winrt::hstring, uint32_t> internal_overrides = experimental_options.GetNamedDimensionOverrides();
WINML_EXPECT_EQUAL(internal_overrides.Lookup(L"None"), n);
WINML_EXPECT_EQUAL(internal_overrides.Lookup(L"DimNameThatDoesntExist"), n);
#endif
ILearningModelFeatureDescriptor descriptor = model.InputFeatures().GetAt(0);
TensorFeatureDescriptor tensorDescriptor = nullptr;
descriptor.as(tensorDescriptor);
std::vector<int64_t> shape{n,c,h,w};
int64_t size = n*c*h*w;
std::vector<float> buffer;
buffer.resize(static_cast<size_t>(size));
auto featureValue = TensorFloat::CreateFromIterable(shape, winrt::single_threaded_vector<float>(std::move(buffer)));
LearningModelBinding binding(session);
binding.Bind(descriptor.Name(), featureValue);
WINML_EXPECT_NO_THROW(session.Evaluate(binding, L""));
}
static void CloseSession()
{
LearningModel learningModel = nullptr;
WINML_EXPECT_NO_THROW(APITest::LoadModel(L"model.onnx", learningModel));
LearningModelSession session = nullptr;
/*
HANDLE currentProcessHandle = NULL;
try
{
currentProcessHandle = GetCurrentProcess();
}
catch (...)
{
VERIFY_FAIL(L"Failed to get current process handle.");
}
PROCESS_MEMORY_COUNTERS pmc = { 0 };
SIZE_T beforeSessionCloseWorkingSetSize = 0;
SIZE_T afterSessionCloseWorkingSetSize = 0;
bool getProcessMemoryInfoSuccess = false;
*/
WINML_EXPECT_NO_THROW(session = LearningModelSession(learningModel));
/*
// Get the current process memory info after session creation.
getProcessMemoryInfoSuccess = GetProcessMemoryInfo(currentProcessHandle, &pmc, sizeof(pmc));
if (!getProcessMemoryInfoSuccess)
{
VERIFY_FAIL(L"Failed to get current process memory info.");
}
beforeSessionCloseWorkingSetSize = pmc.WorkingSetSize;
pmc = { 0 };
*/
WINML_EXPECT_NO_THROW(session.Close());
/*
Bug 23659026: Working set difference tolerance is too tight for LearningModelSessionAPITests::CloseSession
https://microsoft.visualstudio.com/OS/_workitems/edit/23659026
// Check that working set size has dropped after session close
getProcessMemoryInfoSuccess = GetProcessMemoryInfo(currentProcessHandle, &pmc, sizeof(pmc));
if (!getProcessMemoryInfoSuccess)
{
VERIFY_FAIL(L"Failed to get current process memory info.");
}
afterSessionCloseWorkingSetSize = pmc.WorkingSetSize;
pmc = { 0 };
// expected working set difference of session close. It is approximately 2x the size of the weights of model.onnx
// there needs to be a tolerance because the working set difference varies from run to run.
// Bug 23739697: Closing Session API in LearningModelSessionAPITests::CloseSession doesn't always result in ~2x working set memory reduction.
// https://microsoft.visualstudio.com/OS/_workitems/edit/23739697
float tolerance = 0.4f;
int64_t expectedWorkingSetDifference = 9662464;
VERIFY_IS_LESS_THAN(expectedWorkingSetDifference - (beforeSessionCloseWorkingSetSize - afterSessionCloseWorkingSetSize), expectedWorkingSetDifference * tolerance);
*/
// verify that model still has metadata info after session close
std::wstring author(learningModel.Author());
WINML_EXPECT_EQUAL(author, L"onnx-caffe2");
// verify that session throws RO_E_CLOSED error
std::vector<float> input(1 * 3 * 224 * 224, 0);
std::vector<int64_t> shape = {1, 3, 224, 224};
auto tensor_input = TensorFloat::CreateFromArray(shape, input);
WINML_EXPECT_THROW_SPECIFIC(LearningModelBinding binding(session),
winrt::hresult_error,
[](const winrt::hresult_error& e) -> bool {
return e.code() == RO_E_CLOSED;
});
}
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
static void WindowFunction(const wchar_t* window_operator_name, TensorKind kind) {
std::vector<int64_t> scalar_shape = {};
std::vector<int64_t> output_shape = {32};
auto double_data_type = TensorInt64Bit::CreateFromArray({}, {11});
auto window_operator =
Operator(window_operator_name, MS_EXPERIMENTAL_DOMAIN)
.SetInput(L"size", L"Input")
.SetOutput(L"output", L"Output");
if (kind == TensorKind::Double) {
window_operator.SetAttribute(L"output_datatype", double_data_type);
}
auto model =
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input", TensorKind::Int64, scalar_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output", kind, output_shape))
.Operators().Add(window_operator)
.CreateModel();
LearningModelSession session(model);
LearningModelBinding binding(session);
binding.Bind(L"Input", TensorInt64Bit::CreateFromArray(scalar_shape, {32}));
// Evaluate
auto result = session.Evaluate(binding, L"");
// Check results
printf("Output\n");
if (kind == TensorKind::Float) {
auto y_tensor = result.Outputs().Lookup(L"Output").as<TensorFloat>();
auto y_ivv = y_tensor.GetAsVectorView();
for (int i = 0; i < output_shape[0]; i++) {
printf("%f, ", y_ivv.GetAt(i));
}
}
if (kind == TensorKind::Double) {
auto y_tensor = result.Outputs().Lookup(L"Output").as<TensorDouble>();
auto y_ivv = y_tensor.GetAsVectorView();
for (int i = 0; i < output_shape[0]; i++) {
printf("%f, ", y_ivv.GetAt(i));
}
}
printf("\n");
}
#endif
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
static void DiscreteFourierTransform(bool is_onesided = false) {
std::vector<int64_t> shape = {1, 5};
std::vector<int64_t> output_shape = {1, 5, 2};
output_shape[1] = is_onesided ? (1 + (shape[1] >> 1)) : shape[1];
auto model =
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.Signal", TensorKind::Float, shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.Spectra", TensorKind::Float, output_shape))
.Operators().Add(Operator(L"DFT", MS_EXPERIMENTAL_DOMAIN)
.SetInput(L"input", L"Input.Signal")
.SetAttribute(L"onesided", TensorInt64Bit::CreateFromArray({}, {is_onesided}))
.SetOutput(L"output", L"Output.Spectra"))
.CreateModel();
LearningModelSession session(model);
LearningModelBinding binding(session);
// Populate binding
binding.Bind(L"Input.Signal", TensorFloat::CreateFromArray(shape, {1, 2, 3, 4, 5}));
// Evaluate
auto result = session.Evaluate(binding, L"");
// Check results
printf("Output.Spectra\n");
auto y_tensor = result.Outputs().Lookup(L"Output.Spectra").as<TensorFloat>();
auto y_ivv = y_tensor.GetAsVectorView();
for (int i = 0; i < output_shape[0] * output_shape[1] * 2; i += 2) {
printf("(%f + %fi), ", y_ivv.GetAt(i), y_ivv.GetAt(i + 1));
}
printf("\n");
}
#endif
template <typename T>
static auto MakePureFrequency(float frequency_in_hertz, size_t signal_size, size_t sample_rate) {
float amplitude = 4;
float angular_velocity = frequency_in_hertz * 2 * 3.1415f;
std::vector<T> signal(signal_size);
for (size_t i = 0; i < signal_size; i++) {
T time = i / static_cast<T>(sample_rate);
signal[i] = amplitude * cos(angular_velocity * time);
}
return signal;
}
template <typename T>
static auto MakeMiddleC(size_t signal_size, size_t sample_rate) {
float middle_c_in_hertz = 261.626f;
return MakePureFrequency<T>(middle_c_in_hertz, signal_size, sample_rate);
}
template <typename T>
static auto MakeC2(size_t signal_size, size_t sample_rate) {
float middle_c_in_hertz = 261.626f * 2;
return MakePureFrequency<T>(middle_c_in_hertz, signal_size, sample_rate);
}
template <typename T>
static auto MakeC4(size_t signal_size, size_t sample_rate) {
float middle_c_in_hertz = 261.626f * 4;
return MakePureFrequency<T>(middle_c_in_hertz, signal_size, sample_rate);
}
template <typename T>
static auto MakeThreeTones(size_t signal_size, size_t sample_rate) {
auto middle_c = MakeMiddleC<T>(signal_size, sample_rate);
auto c2 = MakeC2<T>(signal_size, sample_rate);
auto c4 = MakeC4<T>(signal_size, sample_rate);
for (size_t i = 0; i < signal_size; i++) {
middle_c[i] = (i < signal_size / 3) ?
middle_c[i] :
(i < 2*signal_size/3) ?
(middle_c[i] + c2[i]) :
(middle_c[i] + c2[i] + c4[i]);
}
return middle_c;
}
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
static void STFT(size_t batch_size, size_t signal_size, size_t dft_size,
size_t hop_size, size_t sample_rate, bool is_onesided = false) {
auto n_dfts = static_cast<size_t>(1 + floor((signal_size - dft_size) / hop_size));
auto input_shape = std::vector<int64_t>{1, INT64(signal_size)};
auto output_shape =
std::vector<int64_t>{
INT64(batch_size),
INT64(n_dfts),
is_onesided ? ((INT64(dft_size) >> 1) + 1) : INT64(dft_size),
2
};
auto dft_length = TensorInt64Bit::CreateFromArray({}, {INT64(dft_size)});
auto model =
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.TimeSignal", TensorKind::Float, input_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.STFT", TensorKind::Float, output_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.HannWindow", TensorKind::Float, {INT64(dft_size)}))
.Operators().Add(Operator(L"HannWindow", MS_EXPERIMENTAL_DOMAIN)
.SetConstant(L"size", dft_length)
.SetOutput(L"output", L"Output.HannWindow"))
.Operators().Add(Operator(L"STFT", MS_EXPERIMENTAL_DOMAIN)
.SetAttribute(L"onesided", TensorInt64Bit::CreateFromArray({}, {INT64(is_onesided)}))
.SetInput(L"signal", L"Input.TimeSignal")
.SetInput(L"window", L"Output.HannWindow")
.SetConstant(L"frame_length", dft_length)
.SetConstant(L"frame_step", TensorInt64Bit::CreateFromArray({}, {INT64(hop_size)}))
.SetOutput(L"output", L"Output.STFT"))
.CreateModel();
LearningModelSession session(model);
LearningModelBinding binding(session);
// Create signal binding
auto signal = MakeMiddleC<float>(signal_size, sample_rate);
printf("\n");
printf("Input.TimeSignal:\n");
for (size_t i = 0; i < dft_size; i++) {
printf("%f, ", signal[i]);
}
// Bind
binding.Bind(L"Input.TimeSignal", TensorFloat::CreateFromArray(input_shape, signal));
// Evaluate
auto result = session.Evaluate(binding, L"");
printf("\n");
printf("Output.HannWindow\n");
auto window_tensor = result.Outputs().Lookup(L"Output.HannWindow").as<TensorFloat>();
auto window_ivv = window_tensor.GetAsVectorView();
for (uint32_t i = 0; i < window_ivv.Size(); i++) {
printf("%f, ", window_ivv.GetAt(i));
}
printf("\n");
printf("Output.STFT\n");
// Check results
auto y_tensor = result.Outputs().Lookup(L"Output.STFT").as<TensorFloat>();
auto y_ivv = y_tensor.GetAsVectorView();
auto size = y_ivv.Size();
WINML_EXPECT_EQUAL(size, n_dfts * output_shape[2] * 2);
for (size_t dft_idx = 0; dft_idx < n_dfts; dft_idx++) {
for (size_t i = 0; INT64(i) < output_shape[2]; i++) {
auto real_idx = static_cast<uint32_t>((i * 2) + (2 * dft_idx * output_shape[2]));
printf("(%d, %f , %fi), ", static_cast<uint32_t>(i), y_ivv.GetAt(real_idx), y_ivv.GetAt(real_idx + 1));
}
}
printf("\n");
}
#endif
static void ModelBuilding_MelWeightMatrix() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
std::vector<int64_t> output_shape = {INT64(9), INT64(8)};
auto builder =
LearningModelBuilder::Create(13)
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.MelWeightMatrix", TensorKind::Float, output_shape))
.Operators().Add(Operator(L"MelWeightMatrix", MS_EXPERIMENTAL_DOMAIN)
.SetConstant(L"num_mel_bins", TensorInt64Bit::CreateFromArray({}, {INT64(8)}))
.SetConstant(L"dft_length", TensorInt64Bit::CreateFromArray({}, {INT64(16)}))
.SetConstant(L"sample_rate", TensorInt64Bit::CreateFromArray({}, {INT64(8192)}))
.SetConstant(L"lower_edge_hertz", TensorFloat::CreateFromArray({}, {0}))
.SetConstant(L"upper_edge_hertz", TensorFloat::CreateFromArray({}, {8192 / 2.f}))
.SetOutput(L"output", L"Output.MelWeightMatrix"));
auto model = builder.CreateModel();
LearningModelSession session(model);
LearningModelBinding binding(session);
auto result = session.Evaluate(binding, L"");
printf("\n");
printf("Output.MelWeightMatrix\n");
{
auto y_tensor = result.Outputs().Lookup(L"Output.MelWeightMatrix").as<TensorFloat>();
auto y_ivv = y_tensor.GetAsVectorView();
for (unsigned i = 0; i < y_ivv.Size(); i++) {
printf("%f, ", y_ivv.GetAt(i));
}
}
printf("\n");
#endif
}
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
static void MelSpectrogramOnThreeToneSignal(
size_t batch_size, size_t signal_size, size_t window_size, size_t dft_size,
size_t hop_size, size_t n_mel_bins, size_t sampling_rate) {
auto n_dfts = static_cast<size_t>(1 + floor((signal_size - dft_size) / hop_size));
auto onesided_dft_size = (dft_size >> 1) + 1;
std::vector<int64_t> signal_shape = {INT64(batch_size), INT64(signal_size)};
std::vector<int64_t> mel_spectrogram_shape = {INT64(batch_size), 1, INT64(n_dfts), INT64(n_mel_bins)};
auto builder =
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.TimeSignal", TensorKind::Float, signal_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.MelSpectrogram", TensorKind::Float, mel_spectrogram_shape))
.Operators().Add(Operator(L"HannWindow", MS_EXPERIMENTAL_DOMAIN)
.SetConstant(L"size", TensorInt64Bit::CreateFromArray({}, {INT64(window_size)}))
.SetOutput(L"output", L"hann_window"))
.Operators().Add(Operator(L"STFT", MS_EXPERIMENTAL_DOMAIN)
.SetName(L"STFT_NAMED_NODE")
.SetInput(L"signal", L"Input.TimeSignal")
.SetInput(L"window", L"hann_window")
.SetConstant(L"frame_length", TensorInt64Bit::CreateFromArray({}, {INT64(dft_size)}))
.SetConstant(L"frame_step", TensorInt64Bit::CreateFromArray({}, {INT64(hop_size)}))
.SetOutput(L"output", L"stft_output"))
.Operators().Add(Operator(L"ReduceSumSquare")
.SetInput(L"data", L"stft_output")
.SetAttribute(L"axes", TensorInt64Bit::CreateFromArray({1}, {3}))
.SetAttribute(L"keepdims", TensorInt64Bit::CreateFromArray({}, {0}))
.SetOutput(L"reduced", L"magnitude_squared"))
.Operators().Add(Operator(L"Div")
.SetInput(L"A", L"magnitude_squared")
.SetConstant(L"B", TensorFloat::CreateFromArray({}, {static_cast<float>(dft_size)}))
.SetOutput(L"C", L"power_frames"))
.Operators().Add(Operator(L"MelWeightMatrix", MS_EXPERIMENTAL_DOMAIN)
.SetConstant(L"num_mel_bins", TensorInt64Bit::CreateFromArray({}, {INT64(n_mel_bins)}))
.SetConstant(L"dft_length", TensorInt64Bit::CreateFromArray({}, {INT64(dft_size)}))
.SetConstant(L"sample_rate", TensorInt64Bit::CreateFromArray({}, {INT64(sampling_rate)}))
.SetConstant(L"lower_edge_hertz", TensorFloat::CreateFromArray({}, {0}))
.SetConstant(L"upper_edge_hertz", TensorFloat::CreateFromArray({}, {sampling_rate / 2.f}))
.SetOutput(L"output", L"mel_weight_matrix"))
.Operators().Add(Operator(L"Reshape")
.SetInput(L"data", L"power_frames")
.SetConstant(L"shape", TensorInt64Bit::CreateFromArray({2}, {INT64(batch_size * n_dfts), INT64(onesided_dft_size)}))
.SetOutput(L"reshaped", L"reshaped_output"))
.Operators().Add(Operator(L"MatMul")
.SetInput(L"A", L"reshaped_output")
.SetInput(L"B", L"mel_weight_matrix")
.SetOutput(L"Y", L"mel_spectrogram"))
.Operators().Add(Operator(L"Reshape")
.SetInput(L"data", L"mel_spectrogram")
.SetConstant(L"shape", TensorInt64Bit::CreateFromArray({4}, mel_spectrogram_shape))
.SetOutput(L"reshaped", L"Output.MelSpectrogram"));
auto model = builder.CreateModel();
LearningModelSession session(model);
LearningModelBinding binding(session);
// Bind input
auto signal = MakeThreeTones<float>(signal_size, sampling_rate);
binding.Bind(L"Input.TimeSignal", TensorFloat::CreateFromArray(signal_shape, signal));
// Bind output
auto output_image =
winrt::Windows::Media::VideoFrame(
winrt::Windows::Graphics::Imaging::BitmapPixelFormat::Bgra8,
INT32(n_mel_bins),
INT32(n_dfts));
binding.Bind(L"Output.MelSpectrogram", output_image);
// Evaluate
auto start = std::chrono::high_resolution_clock::now();
auto result = session.Evaluate(binding, L"");
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::micro> evaluate_duration_in_microseconds = end - start;
printf("Evaluate Took: %f\n", evaluate_duration_in_microseconds.count());
// Check the output video frame object by saving output image to disk
std::wstring out_name = L"mel_spectrogram.jpg";
// Save the output
std::wstring modulePath = FileHelpers::GetModulePath();
winrt::Windows::Storage::StorageFolder folder = winrt::Windows::Storage::StorageFolder::GetFolderFromPathAsync(modulePath).get();
winrt::Windows::Storage::StorageFile file = folder.CreateFileAsync(out_name, winrt::Windows::Storage::CreationCollisionOption::ReplaceExisting).get();
winrt::Windows::Storage::Streams::IRandomAccessStream write_stream = file.OpenAsync(winrt::Windows::Storage::FileAccessMode::ReadWrite).get();
winrt::Windows::Graphics::Imaging::BitmapEncoder encoder = winrt::Windows::Graphics::Imaging::BitmapEncoder::CreateAsync(winrt::Windows::Graphics::Imaging::BitmapEncoder::JpegEncoderId(), write_stream).get();
encoder.SetSoftwareBitmap(output_image.SoftwareBitmap());
encoder.FlushAsync().get();
// Save the model
builder.Save(L"spectrogram.onnx");
printf("\n");
}
#endif
static void ModelBuilding_StandardDeviationNormalization() {
#ifndef BUILD_INBOX
int64_t height = 256;
int64_t width = 256;
int64_t channels = 3;
std::vector<int64_t> input_shape = {1, height, width, channels};
std::vector<int64_t> output_shape = {1, channels, height, width};
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input", L"The NHWC image", TensorKind::Float, input_shape))
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Means", TensorKind::Float, {channels}))
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"StdDevs", TensorKind::Float, {channels}))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output", L"The NCHW image normalized with mean and stddev.", TensorKind::Float, output_shape))
.Operators().Add(Operator(L"Sub")
.SetInput(L"A", L"Input")
.SetInput(L"B", L"Means")
.SetOutput(L"C", L"SubOutput"))
.Operators().Add(Operator(L"Div")
.SetInput(L"A", L"SubOutput")
.SetInput(L"B", L"StdDevs")
.SetOutput(L"C", L"DivOutput"))
.Operators().Add(Operator(L"Transpose")
.SetInput(L"data", L"DivOutput")
.SetAttribute(L"perm", TensorInt64Bit::CreateFromArray({4}, {0,3,1,2}))
.SetOutput(L"transposed", L"Output"))
.Save(L"StandardDeviationNormalization.onnx");
//.CreateModel();
#endif
}
static void ModelBuilding_Gemm() {
#ifndef BUILD_INBOX
std::vector<int64_t> shape = {3, 3};
auto model =
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"InputA", TensorKind::Float, shape))
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"InputB", TensorKind::Float, shape))
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"InputC", TensorKind::Float, shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"OutputY", TensorKind::Float, shape))
.Operators().Add(Operator(L"Gemm")
.SetInput(L"A", L"InputA")
.SetInput(L"B", L"InputB")
.SetInput(L"C", L"InputC")
.SetOutput(L"Y", L"OutputY"))
.CreateModel();
#endif
}
static void ModelBuilding_DynamicMatmul() {
#ifndef BUILD_INBOX
std::vector<int64_t> a_shape = {318, 129};
std::vector<int64_t> b_shape = {129, 1024};
auto model =
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"InputA", TensorKind::Float, a_shape))
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"InputB", TensorKind::Float, b_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output", TensorKind::Float, {a_shape[0], b_shape[1]}))
.Operators().Add(Operator(L"MatMul")
.SetInput(L"A", L"InputA")
.SetInput(L"B", L"InputB")
.SetOutput(L"Y", L"Output"))
.CreateModel();
LearningModelSession session(model);
LearningModelBinding binding(session);
// Bind A
auto a_matrix = std::vector<float>(SIZET(a_shape[0] * a_shape[1]), 1);
binding.Bind(L"InputA", TensorFloat::CreateFromArray(a_shape, a_matrix));
// Bind B
auto b_matrix = std::vector<float>(SIZET(b_shape[0] * b_shape[1]), 1);
binding.Bind(L"InputB", TensorFloat::CreateFromArray(b_shape, b_matrix));
// Evaluate
auto start = std::chrono::high_resolution_clock::now();
auto result = session.Evaluate(binding, L"");
auto end = std::chrono::high_resolution_clock::now();
// Print duration
std::chrono::duration<double, std::micro> evaluate_duration_in_microseconds = end - start;
printf("Evaluate Took: %f\n", evaluate_duration_in_microseconds.count());
#endif
}
static void ModelBuilding_ConstantMatmul() {
#ifndef BUILD_INBOX
std::vector<int64_t> a_shape = {318, 129};
std::vector<int64_t> b_shape = {129, 1024};
auto model =
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"InputA", TensorKind::Float, a_shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output", TensorKind::Float, {a_shape[0], b_shape[1]}))
.Operators().Add(Operator(L"MatMul")
.SetInput(L"A", L"InputA")
.SetConstant(L"B", TensorFloat::CreateFromArray(b_shape, std::vector<float>(SIZET(b_shape[0] * b_shape[1]), 1)))
.SetOutput(L"Y", L"Output"))
.CreateModel();
LearningModelSession session(model);
LearningModelBinding binding(session);
// Bind input
auto a_matrix = std::vector<float>(SIZET(a_shape[0] * a_shape[1]), 1);
binding.Bind(L"InputA", TensorFloat::CreateFromArray(a_shape, a_matrix));
// Evaluate
auto start = std::chrono::high_resolution_clock::now();
auto result = session.Evaluate(binding, L"");
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::micro> evaluate_duration_in_microseconds = end - start;
printf("Evaluate Took: %f\n", evaluate_duration_in_microseconds.count());
#endif
}
static void ModelBuilding_DiscreteFourierTransform() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
DiscreteFourierTransform(false /*onesided*/);
DiscreteFourierTransform(true /*onesided*/);
#endif
}
static void ModelBuilding_DiscreteFourierTransformInverseIdentity() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
std::vector<int64_t> shape = {1, 5};
std::vector<int64_t> output_shape = {1, shape[1], 2};
auto model =
LearningModelBuilder::Create(13)
.Inputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Input.TimeSignal", TensorKind::Float, shape))
.Outputs().Add(LearningModelBuilder::CreateTensorFeatureDescriptor(L"Output.Spectra", TensorKind::Float, output_shape))
.Operators().Add(Operator(L"DFT", MS_EXPERIMENTAL_DOMAIN)
.SetInput(L"input", L"Input.TimeSignal")
.SetOutput(L"output", L"DFTOutput"))
.Operators().Add(Operator(L"IDFT", MS_EXPERIMENTAL_DOMAIN)
.SetInput(L"input", L"DFTOutput")
.SetOutput(L"output", L"Output.Spectra"))
.CreateModel();
LearningModelSession session(model);
LearningModelBinding binding(session);
// Populate binding
binding.Bind(L"Input.TimeSignal", TensorFloat::CreateFromArray(shape, {1, 2, 3, 4, 5}));
// Evaluate
auto result = session.Evaluate(binding, L"");
// Check results
printf("Output.Spectra\n");
auto y_tensor = result.Outputs().Lookup(L"Output.Spectra").as<TensorFloat>();
auto y_ivv = y_tensor.GetAsVectorView();
for (int i = 0; i < output_shape[0] * output_shape[1] * 2; i += 2) {
printf("(%f + %fi), ", y_ivv.GetAt(i), y_ivv.GetAt(i + 1));
}
printf("\n");
#endif
}
static void ModelBuilding_HannWindow() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
WindowFunction(L"HannWindow", TensorKind::Float);
WindowFunction(L"HannWindow", TensorKind::Double);
#endif
}
static void ModelBuilding_HammingWindow() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
WindowFunction(L"HammingWindow", TensorKind::Float);
WindowFunction(L"HammingWindow", TensorKind::Double);
#endif
}
static void ModelBuilding_BlackmanWindow() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
WindowFunction(L"BlackmanWindow", TensorKind::Float);
WindowFunction(L"BlackmanWindow", TensorKind::Double);
#endif
}
static void ModelBuilding_STFT() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
size_t batch_size = 1;
size_t sample_rate = 8192;
float signal_duration_in_seconds = 5.f;
size_t signal_size = static_cast<size_t>(sample_rate * signal_duration_in_seconds);
size_t dft_size = 256;
size_t hop_size = 128;
// stft
STFT(batch_size, signal_size, dft_size, hop_size, sample_rate, true);
STFT(batch_size, signal_size, dft_size, hop_size, sample_rate, false);
#endif
}
static void ModelBuilding_MelSpectrogramOnThreeToneSignal() {
#if !defined(BUILD_INBOX) && defined(BUILD_MS_EXPERIMENTAL_OPS)
size_t batch_size = 1;
size_t sample_rate = 8192;
float signal_duration_in_seconds = 5.f;
size_t signal_size = static_cast<size_t>(sample_rate * signal_duration_in_seconds);
size_t dft_size = 256;
size_t hop_size = 128;
size_t window_size = 256;
size_t n_mel_bins = 1024;
MelSpectrogramOnThreeToneSignal(batch_size, signal_size, dft_size, window_size, hop_size, n_mel_bins, sample_rate);
#endif
}
static void SetIntraOpNumThreads() {
auto shape = std::vector<int64_t>{1, 1000};
auto model = ProtobufHelpers::CreateModel(TensorKind::Float, shape, 1000);
auto device = LearningModelDevice(LearningModelDeviceKind::Cpu);
auto options = LearningModelSessionOptions();
auto nativeOptions = options.as<ILearningModelSessionOptionsNative>();
// Set the number of intra op threads to half of logical cores.
uint32_t desiredThreads = std::thread::hardware_concurrency() / 2;
WINML_EXPECT_NO_THROW(nativeOptions->SetIntraOpNumThreadsOverride(desiredThreads));
// Create session and grab the number of intra op threads to see if is set properly
LearningModelSession session = nullptr;
WINML_EXPECT_NO_THROW(session = LearningModelSession(model, device, options));
auto nativeSession = session.as<ILearningModelSessionNative>();
uint32_t numIntraOpThreads;
WINML_EXPECT_NO_THROW(nativeSession->GetIntraOpNumThreads(&numIntraOpThreads));
WINML_EXPECT_EQUAL(desiredThreads, numIntraOpThreads);
// Check to see that bind and evaluate continue to work when setting the intra op thread count
std::vector<float> input(1000);
std::iota(std::begin(input), std::end(input), 0.0f);
auto tensor_input = TensorFloat::CreateFromArray(shape, input);
auto binding = LearningModelBinding(session);
binding.Bind(L"input", tensor_input);
WINML_EXPECT_NO_THROW(session.Evaluate(binding, L""));
// Check to verify that the default number of threads in LearningModelSession is equal to the number of logical cores.
session = LearningModelSession(model, device);
nativeSession = session.as<ILearningModelSessionNative>();
WINML_EXPECT_NO_THROW(nativeSession->GetIntraOpNumThreads(&numIntraOpThreads));
WINML_EXPECT_EQUAL(std::thread::hardware_concurrency(), numIntraOpThreads);