-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathtest_quantize_static_resnet.py
138 lines (123 loc) · 6.08 KB
/
test_quantize_static_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
import os
import random
import tempfile
import unittest
import numpy as np
import onnx
from numpy.testing import assert_allclose
from onnx.numpy_helper import to_array
from resnet_code import create_model
from onnxruntime import InferenceSession
from onnxruntime import __version__ as ort_version
from onnxruntime.quantization import QuantFormat, QuantType, quantize_static
from onnxruntime.quantization.calibrate import CalibrationDataReader, CalibrationMethod
class FakeResnetCalibrationDataReader(CalibrationDataReader):
def __init__(self, batch_size: int = 16):
super().__init__()
self.dataset = [
(np.random.rand(1, 3, 32, 32).astype(np.float32), random.randint(0, 9)) for _ in range(batch_size)
]
self.iterator = iter(self.dataset)
def get_next(self) -> dict:
try:
return {"input": next(self.iterator)[0]}
except Exception:
return None
class TestStaticQuantizationResNet(unittest.TestCase):
def test_quantize_static_resnet(self):
kwargs = {
"activation_type": QuantType.QUInt8,
"weight_type": QuantType.QInt8,
"calibrate_method": CalibrationMethod.Percentile,
"extra_options": {
"ActivationSymmetric": False,
"EnableSubgraph": False,
"ForceQuantizeNoInputCheck": False,
"MatMulConstBOnly": False,
"WeightSymmetric": True,
"extra.Sigmoid.nnapi": False,
},
"nodes_to_exclude": None,
"nodes_to_quantize": None,
"op_types_to_quantize": None,
"per_channel": True,
"quant_format": QuantFormat.QDQ,
"reduce_range": False,
}
proto = create_model()
with tempfile.TemporaryDirectory() as temp:
model = os.path.join(temp, "resnet_first_nodes.onnx")
with open(model, "wb") as f:
f.write(proto.SerializeToString())
for per_channel in [True, False]:
kwargs["per_channel"] = per_channel
dataloader = FakeResnetCalibrationDataReader(16)
with self.subTest(per_channel=per_channel):
qdq_file = os.path.join(
temp, f"preprocessed-small-qdq-{1 if per_channel else 0}-ort-{ort_version}.onnx"
)
quantize_static(
model_input=model,
model_output=qdq_file,
calibration_data_reader=dataloader,
use_external_data_format=False,
**kwargs,
)
# With onnxruntime==1.15.1, the initializer 'onnx::Conv_504_zero_point' is:
# * uint8(128) if per_channel is False
# * int8([0, 0, ....]) if per_channel is True
# With onnxruntime>1.16.0
# * uint8(128) if per_channel is False
# * uint8([128, 128, ..., 127, ...]) if per_channel is True
# QLinearConv : zero point of per-channel filter must be same.
# That's why the quantization forces a symmetric quantization into INT8.
# zero_point is guaranted to be zero whatever the channel is.
with open(qdq_file, "rb") as f:
onx = onnx.load(f)
for init in onx.graph.initializer:
arr = to_array(init)
if (
arr.dtype == np.int8
and "zero_point" not in init.name
and not init.name.endswith("quantized")
):
raise AssertionError(
f"Initializer {init.name!r} has type {arr.dtype} and "
f"shape {arr.shape} but should be {np.uint8}."
)
sess = InferenceSession(qdq_file, providers=["CPUExecutionProvider"])
shape = (1, 3, 32, 32)
size = np.prod(shape)
dummy = (np.arange(size) / float(size)).astype(np.float32).reshape(shape)
got = sess.run(None, {"input": dummy})
self.assertEqual(got[0].shape, (1, 64, 8, 8))
self.assertEqual(got[0].dtype, np.float32)
if per_channel:
expected = np.array(
[
[[1.0862497091293335, 0.9609132409095764], [1.0862497091293335, 0.9191343784332275]],
[[0.7520190477371216, 1.0026921033859253], [1.0444709062576294, 1.0862497091293335]],
[[0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [0.9609132409095764, 0.7937979102134705]],
],
dtype=np.float32,
)
assert_allclose(expected, got[0][0, :4, :2, :2], atol=0.2)
else:
expected = np.array(
[
[[1.428238868713379, 1.2602107524871826], [1.3442248106002808, 1.2182037830352783]],
[[0.8821475505828857, 1.0921826362609863], [1.1341897249221802, 1.1761966943740845]],
[[0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [1.2182037830352783, 1.050175666809082]],
],
dtype=np.float32,
)
assert_allclose(expected, got[0][0, :4, :2, :2], atol=0.2)
if __name__ == "__main__":
unittest.main(verbosity=2)