-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathfusion_embedlayer.py
810 lines (690 loc) · 35.1 KB
/
fusion_embedlayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from typing import Dict, List, Optional, Tuple, Union
from fusion_base import Fusion
from fusion_utils import FusionUtils
from onnx import NodeProto, TensorProto, helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionEmbedLayerNoMask(Fusion):
"""
Fuse embedding layer into one node (EmbedLayerNormalization).
It supports the following model types: BERT, DistilBert, ALBert.
"""
def __init__(self, model: OnnxModel, description: str = "no mask"):
super().__init__(
model,
"EmbedLayerNormalization",
["LayerNormalization", "SkipLayerNormalization"],
description,
)
self.utils = FusionUtils(model)
self.shape_infer_helper = self.model.infer_runtime_shape({}, update=True)
# The following will be reset in each fuse call of FusionEmbedLayerNormalization
self.attention = None
self.embed_node = None
def match_two_gather(self, add: NodeProto) -> Union[None, Tuple[NodeProto, NodeProto]]:
gather_0_path = self.model.match_parent_path(add, ["Gather"], [0])
if gather_0_path is None:
return None
gather_1_path = self.model.match_parent_path(add, ["Gather"], [1])
if gather_1_path is None:
return None
return gather_0_path[0], gather_1_path[0]
def check_attention_subgraph(
self,
layernorm: NodeProto,
input_name_to_nodes: Dict[str, List[NodeProto]],
is_distil_bert: bool,
) -> bool:
"""Check that LayerNormalization has a child of Attention node or subgraph like Attention.
Args:
layernorm (NodeProto): LayerNormalization node
input_name_to_nodes (Dict[str, List[NodeProto]]): map from input name to nodes
is_distil_bert (bool): whether it is DistilBert or not
Returns:
bool: whether there is Attention node or subgraph like Attention
"""
self.attention = self.model.find_first_child_by_type(
layernorm, "Attention", input_name_to_nodes, recursive=False
)
if self.attention is not None:
return True
if layernorm.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[layernorm.output[0]]
children_types = sorted([child.op_type for child in children])
# Try find MultiHeadAttention
if children_types == ["MatMul", "MatMul", "MatMul", "SkipLayerNormalization"]:
for node in children:
if node.op_type == "SkipLayerNormalization":
path1 = self.model.match_parent_path(
node,
["Add", "MatMul", "MultiHeadAttention", "MatMul"],
[None, None, 0, 0],
)
if path1 is not None and path1[-1].input[0] == layernorm.output[0]:
self.cross_attention = path1[2]
return True
# In case user disables attention fusion, check whether subgraph looks like Attention.
# For Albert, there is MatMul+Add after embedding layer before attention.
if len(children) == 1 and children[0].op_type == "MatMul" and children[0].output[0] in input_name_to_nodes:
grandchildren = input_name_to_nodes[children[0].output[0]]
if (
len(grandchildren) == 1
and grandchildren[0].op_type == "Add"
and grandchildren[0].output[0] in input_name_to_nodes
):
nodes = input_name_to_nodes[grandchildren[0].output[0]]
for node in nodes:
if node.op_type == "Attention":
self.attention = node
return True
children_types = sorted([child.op_type for child in nodes])
# Two Shape nodes might be merged by ORT
if is_distil_bert:
# SkipLayerNormailization might exist when model has been optimized by ORT first.
if (
children_types != ["MatMul", "MatMul", "MatMul", "Shape", "SkipLayerNormalization"]
and children_types != ["Add", "MatMul", "MatMul", "MatMul", "Shape", "Shape"]
and children_types != ["Add", "MatMul", "MatMul", "MatMul", "Shape"]
):
logger.debug("No Attention like subgraph in children of LayerNormalization")
return False
else:
if children_types != [
"Add",
"MatMul",
"MatMul",
"MatMul",
] and children_types != [
"MatMul",
"MatMul",
"MatMul",
"SkipLayerNormalization",
]:
logger.debug("No Attention like subgraph in children of LayerNormalization")
return False
return True
def match_position_embedding_distilbert(self, position_embedding_gather, input_ids, output_name_to_node):
""" Match position embedding path from input_ids to Gather for DistilBert.
Pattern is like the following:
(input_ids)
|
Shape
| \
| Gather (indices=1)
| |
| Cast (optional)
| |
| Range (start=0, end=*, delta=1)
| |
| Unsqueeze
| /
Expand
|
Gather
"""
# remove after tests pass
path1 = self.model.match_parent_path(position_embedding_gather, ["Expand", "Shape"], [1, 1])
if path1 is None:
path1 = self.model.match_parent_path(
position_embedding_gather,
["Expand", "Where", "Reshape", "Shape"],
[1, 1, 2, 0],
)
if path1 is None:
return False
expand, shape = path1[0], path1[-1]
if shape.input[0] != input_ids:
return False
_, path2, _ = self.model.match_parent_paths(
expand,
[
(["Unsqueeze", "Range", "Cast", "Gather", "Shape"], [0, 0, 1, 0, 0]),
(["Unsqueeze", "Range", "Gather", "Shape"], [0, 0, 1, 0]),
],
output_name_to_node,
)
if path2 is None:
return False
range_node = path2[1]
if not (
self.utils.check_node_input_value(range_node, 0, 0) and self.utils.check_node_input_value(range_node, 2, 1)
):
return False
gather_node = path2[-2]
if not (self.utils.check_node_input_value(gather_node, 1, 1)):
return False
shape_node = path2[-1]
if shape_node.input[0] != input_ids:
return False
return True
def match_position_embedding_roberta(self, position_embedding_gather, input_ids, output_name_to_node):
"""Match position embedding path from input_ids to Gather for Roberta.
Roberta Embedding Layer Pattern (* is optional since it might be removed by ORT, ? is the padding word id):
(input_ids) --> Equal(B=?) -- Not -- Cast(to=6) -- CumSum(axis=1) -- Mul -- Cast(to=7) -- Add(B=1) -- Cast(to=7)* --> Gather
| ^
V |
+------------------------------+
Roberta new pattern from transformers v4.9:
(input_ids) --> Equal(B=?) -- Not -- Cast(to=6) -- CumSum(axis=1) -- Add(B=0) -- Mul -- Cast(to=7) -- Add(B=1) --> Gather
| ^
V |
+-------------------------------------------+
start_node = position_embedding_gather
start_index = 1
# match optional Cast node.
parent = self.model.get_parent(start_node, start_index, output_name_to_node)
if parent is None:
return
if parent.op_type == "Cast":
if OnnxModel.get_node_attribute(parent, "to") != 7:
return
start_node = parent
start_index = 0
i, path, return_indices = self.model.match_parent_paths(
start_node,
[ (['Add', 'Cast', 'Mul', 'CumSum', 'Cast', 'Not', 'Equal'], [start_index, 0, 0, 0, 0, 0, 0]),
(['Add', 'Cast', 'Mul', 'Add', 'CumSum', 'Cast', 'Not', 'Equal'], [start_index, 0, 0, 0, 0, 0, 0, 0])],
output_name_to_node)
if path is not None:
# constant input of Add shall be 1.
i, value = self.model.get_constant_input(path[0])
if value != 1:
return False
_, self.padding_word_id = self.model.get_constant_input(path[-1])
return input_ids == path[-1].input[0]
"""
return False
def match_position_embedding_bert(self, position_embedding_gather, input_ids, output_name_to_node):
""" Match position embedding path from input_ids to Gather for BERT.
BERT Embedding Layer Pattern:
(input_ids)
/ \
/ Shape
/ |
/ Gather (indices=1)
/ |
/ Add (optional, B=0)
/ |
Gather (segment_ids) Unsqueeze (axes=0)
\\ | |
\\ Gather Slice (data[1,512], starts=0, ends=*, axes=1, steps=1)
\\ / |
Add Gather
\\ /
Add
|
LayerNormalization
"""
path = self.model.match_parent_path(
position_embedding_gather,
["Slice", "Unsqueeze"],
[1, 2],
output_name_to_node,
)
if path is None:
return False
slice, unsqueeze = path
slice_weight = self.model.get_constant_value(slice.input[0])
if not (
slice_weight is not None
and len(slice_weight.shape) == 2
and slice_weight.shape[0] == 1
and self.utils.check_node_input_value(slice, 1, [0])
and self.utils.check_node_input_value(slice, 3, [1])
and (len(slice.input) == 4 or self.utils.check_node_input_value(slice, 4, [1]))
):
return False
opset_version = self.model.get_opset_version()
if opset_version < 13:
if not FusionUtils.check_node_attribute(unsqueeze, "axes", [0]):
return False
else:
if not self.utils.check_node_input_value(unsqueeze, 1, [0]):
return False
node = self.model.get_parent(unsqueeze, 0, output_name_to_node)
if node is None:
return False
if node.op_type == "Add":
if not self.utils.check_node_input_value(node, 1, 0):
return False
gather = self.model.get_parent(node, 0, output_name_to_node)
else:
gather = node
if gather is None or gather.op_type != "Gather":
return False
if not (self.utils.check_node_input_value(gather, 1, 1)):
return False
shape = self.model.get_parent(gather, 0, output_name_to_node)
if shape is None or shape.op_type != "Shape":
return False
return input_ids == shape.input[0]
def match_position_embedding(self, position_embedding_gather, input_ids, output_name_to_node):
if self.match_position_embedding_bert(position_embedding_gather, input_ids, output_name_to_node):
return True
# TODO: Support roberta (position starts from 2 instead of 0) in EmbedLayerNormalization kernel
# related: https://github.com/huggingface/transformers/issues/10736
# if self.match_position_embedding_roberta(position_embedding_gather, input_ids, output_name_to_node):
# return True
if self.match_position_embedding_distilbert(position_embedding_gather, input_ids, output_name_to_node):
return True
return False
def check_embedding(self, word_embedding_gather, segment_embedding_gather, position_embedding_gather):
"""Sanity check of embedding weights, and match hidden_size of weights and shape of inputs."""
input_ids = word_embedding_gather.input[1]
segment_ids = segment_embedding_gather.input[1] if segment_embedding_gather else None
position_ids = position_embedding_gather.input[1]
if self.shape_infer_helper is not None:
input_ids_shape = self.shape_infer_helper.get_edge_shape(input_ids)
position_ids_shape = self.shape_infer_helper.get_edge_shape(position_ids)
assert input_ids_shape and position_ids_shape
if not (
len(input_ids_shape) == 2
and len(position_ids_shape) == 2
and input_ids_shape[1] == position_ids_shape[1]
):
logger.info(
"Cannot fuse EmbedLayerNormalization: input_ids and position_ids not matched in 2nd dimension: {} vs {}".format(
input_ids_shape, position_ids_shape
)
)
return False
if segment_ids and not self.shape_infer_helper.compare_shape(input_ids, segment_ids):
logger.info(
"Cannot fuse EmbedLayerNormalization: input_ids and segment_ids does not have same shape: {} != {}".format(
input_ids_shape,
self.shape_infer_helper.get_edge_shape(segment_ids),
)
)
return False
word_embedding_table = self.model.get_constant_value(word_embedding_gather.input[0])
if word_embedding_table is None or len(word_embedding_table.shape) != 2:
logger.info("Cannot fuse EmbedLayerNormalization: word embedding table is not expected")
return False
position_embedding_table = self.model.get_constant_value(position_embedding_gather.input[0])
if (
position_embedding_table is None
or len(position_embedding_table.shape) != 2
or (word_embedding_table.shape[1] != position_embedding_table.shape[1])
):
logger.info("Cannot fuse EmbedLayerNormalization: position embedding table is not expected")
return False
if segment_ids:
segment_embedding_table = self.model.get_constant_value(segment_embedding_gather.input[0])
if (
segment_embedding_table is None
or len(segment_embedding_table.shape) != 2
or (word_embedding_table.shape[1] != segment_embedding_table.shape[1])
):
logger.info("Cannot fuse EmbedLayerNormalization: segment embedding table is not expected")
return False
# In normal case, word embedding table is the largest, and segment embedding table is the smallest, while position embedding table is in between.
# TODO: use other information (like initializer names) to identify different embedding weights automatically.
if word_embedding_table.shape[0] <= position_embedding_table.shape[0]:
logger.warning(
f"word_embedding_table ({word_embedding_gather.input[0]}) size {word_embedding_table.shape[0]} <= position_embedding_table ({position_embedding_gather.input[0]}) size {position_embedding_table.shape[0]}"
)
if segment_ids:
if word_embedding_table.shape[0] <= segment_embedding_table.shape[0]:
logger.warning(
f"word_embedding_table ({word_embedding_gather.input[0]}) size {word_embedding_table.shape[0]} <= segment_embedding_table ({segment_embedding_gather.input[0]}) size {segment_embedding_table.shape[0]}"
)
if position_embedding_table.shape[0] <= segment_embedding_table.shape[0]:
logger.warning(
f"position_embedding_table ({position_embedding_gather.input[0]}) size {position_embedding_table.shape[0]} <= segment_embedding_table ({segment_embedding_gather.input[0]}) size {segment_embedding_table.shape[0]}"
)
return True
def cast_to_int32(self, input_name: str) -> Tuple[str, Union[None, NodeProto]]:
"""Cast a graph input or node input to int32.
Args:
input_name (str): name of graph input or node input
Returns:
A tuple of casted input name and the cast node.
int32_output (str): If input is int32, it is the input name, Otherwise it is output name of Cast node.
input_cast_node (Union[None, NodeProto]): Cast node. It could be None if input is int32.
"""
input_cast_node = None
graph_input = self.model.find_graph_input(input_name)
if graph_input is not None:
if graph_input.type.tensor_type.elem_type != TensorProto.INT32:
int32_output, input_cast_node = self.utils.cast_input_to_int32(input_name)
else:
int32_output = input_name
else:
int32_output, input_cast_node = self.utils.cast_input_to_int32(input_name)
return int32_output, input_cast_node
def create_fused_node(
self,
input_ids: str,
layernorm: NodeProto,
word_embedding_gather: NodeProto,
position_embedding_gather: NodeProto,
segment_embedding_gather: Union[None, NodeProto],
position_ids: Optional[str] = None,
embedding_sum_output=False,
embedding_sum_name=None,
):
"""Create an EmbedLayerNormalization node. Note that segment embedding is optional.
Args:
input_ids (str): input_ids for word embeddings
layernorm (NodeProto): LayerNormalization or SkipLayerNormalization node.
word_embedding_gather (NodeProto): the Gather node for word embedding
position_embedding_gather (NodeProto): the Gather node for position embedding
segment_embedding_gather (Union[None, NodeProto]): the Gather node for segment embedding, or None.
Returns:
NodeProto: the EmbedLayerNormalization node created.
"""
nodes_to_add = []
input_ids, _ = self.cast_to_int32(input_ids)
node_name = self.model.create_node_name("EmbedLayerNormalization")
if layernorm.op_type == "LayerNormalization":
gamma = layernorm.input[1]
beta = layernorm.input[2]
else: # SkipLayerNormalization
gamma = layernorm.input[2]
beta = layernorm.input[3]
embed_node_inputs = None
if segment_embedding_gather is not None:
segment_ids, _ = self.cast_to_int32(segment_embedding_gather.input[1])
embed_node_inputs = [
input_ids,
segment_ids,
word_embedding_gather.input[0],
position_embedding_gather.input[0],
segment_embedding_gather.input[0],
gamma,
beta,
]
else: # no segment embedding
embed_node_inputs = [
input_ids,
"",
word_embedding_gather.input[0],
position_embedding_gather.input[0],
"",
gamma,
beta,
]
if position_ids is not None:
# Adding an empty input for mask before position_ids
embed_node_inputs.append("")
position_ids, _ = self.cast_to_int32(position_ids)
embed_node_inputs.append(position_ids)
embed_node_outputs = [node_name + "_output", node_name + "_dummy_mask_index"]
if embedding_sum_output:
name = embedding_sum_name if embedding_sum_name is not None else node_name + "_embedding_sum"
embed_node_outputs.append(name)
embed_node = helper.make_node(
"EmbedLayerNormalization",
embed_node_inputs,
outputs=embed_node_outputs,
name=node_name,
)
embed_node.domain = "com.microsoft"
# Pass attribute "epsilon" from normalize node to EmbedLayerNormalization.
for att in layernorm.attribute:
if att.name == "epsilon":
embed_node.attribute.extend([att])
# Set default value to 1e-12 if no attribute is found.
# OnnxRuntime 1.2.0 or older has no epsilon attribute. The optimized model can only work for 1.3.0 or later.
if len(embed_node.attribute) == 0:
embed_node.attribute.extend([helper.make_attribute("epsilon", 1.0e-12)])
# Make sure new EmbedLayerNormalization node is the last one in self.nodes_to_add.
nodes_to_add.append(embed_node)
for node in nodes_to_add:
self.node_name_to_graph_name[node.name] = self.this_graph_name
self.nodes_to_add.extend(nodes_to_add)
self.embed_node = embed_node
return embed_node
def finish_fusion(self, layernorm, embed_node):
self.model.replace_input_of_all_nodes(layernorm.output[0], embed_node.output[0])
# use prune graph to remove nodes that is not needed
self.prune_graph = True
def is_skip_layer_norm_with_sum_output(self, node):
return (node.op_type == "SkipLayerNormalization") and len(node.output) > 3 and len(node.output[3]) > 0
def fuse_gpt2(
self, layernorm, add_before_layernorm, input_name_to_nodes, output_name_to_node, optional_segment_gather=None
):
# graph checks
# gpt2 has optional segment embedding, subgraph pattern is like
# input_ids position_ids
# | |
# token_ids Gather Gather
# | \ /
# Gather (optional) Add _ _ _ _ _
# \ | |
# LayerNormalization |
# | |
# Attention |
# | |
# Matmul |
# | /
# Add /
# \ /
# Add
two_gather = self.match_two_gather(add_before_layernorm)
if two_gather is None:
return False
word_embedding_gather, position_embedding_gather = two_gather
input_ids = word_embedding_gather.input[1]
position_ids = position_embedding_gather.input[1]
if not self.check_attention_subgraph(layernorm, input_name_to_nodes, is_distil_bert=False):
return False
if not self.check_embedding(word_embedding_gather, None, position_embedding_gather):
return False
# If layernorm node is SkipLayerNormalization, we need look at its optional fourth output.
# If the add_before_layernorm node is an Add node, then the add_output output is the first output of this node.
# If the add_before_layernorm node is a SkipLayerNormalization node, then the add_output output
# is the (optional) fourth index output of this node.
# When add_before_layernorm is SkipLayerNormalization, add_before_layernorm and layernorm are same node.
if layernorm.op_type == "SkipLayerNormalization":
need_embedding_sum_output = self.is_skip_layer_norm_with_sum_output(layernorm)
sum_output_index = 3
node_with_sum_output = layernorm
sum_output = layernorm.output[3] if need_embedding_sum_output else None
is_sum_graph_output = (sum_output is not None) and (self.model.find_graph_output(sum_output) is not None)
else: # layernorm.op_type == "LayerNormalization"
node_with_sum_output = add_before_layernorm
sum_output_index = 0 if add_before_layernorm.op_type == "Add" else 3
sum_output = (
add_before_layernorm.output[sum_output_index]
if len(add_before_layernorm.output) > sum_output_index
else None
)
is_sum_graph_output = (sum_output is not None) and (self.model.find_graph_output(sum_output) is not None)
is_sum_used_by_multiple_nodes = (
sum_output and (sum_output in input_name_to_nodes) and len(input_name_to_nodes[sum_output]) > 1
)
need_embedding_sum_output = (sum_output is not None) and (
add_before_layernorm.op_type != "Add" or is_sum_graph_output or is_sum_used_by_multiple_nodes
)
# make the fused node
embed_node = self.create_fused_node(
input_ids,
layernorm,
word_embedding_gather,
position_embedding_gather,
optional_segment_gather,
position_ids,
embedding_sum_output=need_embedding_sum_output,
embedding_sum_name=sum_output if is_sum_graph_output else None,
)
if need_embedding_sum_output:
node_with_sum_output.output[sum_output_index] = "_no_use__to_be_removed_"
if not is_sum_graph_output:
self.model.replace_input_of_all_nodes(sum_output, embed_node.output[2])
self.finish_fusion(layernorm, embed_node)
return True
def fuse_distilbert(self, layernorm, add_before_layernorm, input_name_to_nodes, output_name_to_node):
"""Fuse embedding layer for DistilBert
Args:
layernorm (NodeProto): node of LayerNormalization or SkipLayerNormalization
add_before_layernorm (NodeProto): the Add node before LayerNormalization, or the SkipLayerNormalization itself
input_name_to_nodes (Dict[str, List[NodeProto]]): map from input name to nodes
output_name_to_node (Dict[str, List[NodeProto]]): map from output name to nodes
"""
# DistilBert has no segment embedding, subgraph pattern is like
# input_ids
# | \
# | (position_embedding_subgraph)
# | |
# Gather Gather
# \ /
# Add
# |
# LayerNormalization
two_gather = self.match_two_gather(add_before_layernorm)
if two_gather is None:
return False
word_embedding_gather, position_embedding_gather = two_gather
input_ids = word_embedding_gather.input[1]
if not self.check_attention_subgraph(layernorm, input_name_to_nodes, is_distil_bert=True):
return False
if not self.match_position_embedding(position_embedding_gather, input_ids, output_name_to_node):
return False
if not self.check_embedding(word_embedding_gather, None, position_embedding_gather):
return False
embed_node = self.create_fused_node(
input_ids, layernorm, word_embedding_gather, position_embedding_gather, None
)
self.finish_fusion(layernorm, embed_node)
return True
def fuse_bert(self, layernorm, add_before_layernorm, input_name_to_nodes, output_name_to_node):
"""Fuse embedding layer for Bert
Args:
layernorm (NodeProto): node of LayerNormalization or SkipLayerNormalization
add_before_layernorm (NodeProto): the Add node before LayerNormalization, or the SkipLayerNormalization itself
input_name_to_nodes (Dict[str, List[NodeProto]]): map from input name to nodes
output_name_to_node (Dict[str, List[NodeProto]]): map from output name to nodes
"""
add_2_gather = self.model.match_parent_path(add_before_layernorm, ["Add"], [0])
if add_2_gather is None:
return False
two_gather = self.match_two_gather(add_2_gather[0])
if two_gather is None:
return False
word_embedding_gather, segment_embedding_gather = two_gather
input_ids = word_embedding_gather.input[1]
if not self.check_attention_subgraph(layernorm, input_name_to_nodes, is_distil_bert=False):
return False
position_embedding_path = self.model.match_parent_path(add_before_layernorm, ["Gather"], [1])
if position_embedding_path is None:
return False
position_embedding_gather = position_embedding_path[0]
if not self.match_position_embedding(position_embedding_gather, input_ids, output_name_to_node):
if not self.match_position_embedding(segment_embedding_gather, input_ids, output_name_to_node):
return False
# position and segment are switched
temp = segment_embedding_gather
segment_embedding_gather = position_embedding_gather
position_embedding_gather = temp
if not self.check_embedding(word_embedding_gather, segment_embedding_gather, position_embedding_gather):
return False
embed_node = self.create_fused_node(
input_ids,
layernorm,
word_embedding_gather,
position_embedding_gather,
segment_embedding_gather,
)
self.finish_fusion(layernorm, embed_node)
return True
def fuse(self, node, input_name_to_nodes, output_name_to_node):
first_add_path = self.model.match_parent_path(node, ["Add"], [0])
if node.op_type == "LayerNormalization":
if first_add_path is None:
return
add_before_layernorm = first_add_path[0]
optional_segment_gather = None
else: # SkipLayerNormalization
gather_0_path = self.model.match_parent_path(node, ["Gather"], [0])
gather_1_path = self.model.match_parent_path(node, ["Gather"], [1])
if gather_0_path is None and gather_1_path is not None:
if first_add_path is None:
return
add_before_layernorm = first_add_path[0]
optional_segment_gather = gather_1_path[0]
elif gather_0_path is not None and gather_1_path is None:
first_add_path = self.model.match_parent_path(node, ["Add"], [1])
if first_add_path is None:
return
add_before_layernorm = first_add_path[0]
optional_segment_gather = gather_0_path[0]
else:
add_before_layernorm = node # Add is fused into SkipLayerNormalization
optional_segment_gather = None
if self.fuse_gpt2(
node, add_before_layernorm, input_name_to_nodes, output_name_to_node, optional_segment_gather
):
return
if self.fuse_distilbert(node, add_before_layernorm, input_name_to_nodes, output_name_to_node):
return
if self.fuse_bert(node, add_before_layernorm, input_name_to_nodes, output_name_to_node):
return
class FusionEmbedLayerNormalization(FusionEmbedLayerNoMask):
def __init__(self, model: OnnxModel, use_mask_index=False):
super().__init__(model, "with mask")
self.use_mask_index = use_mask_index
def replace_mask(self, mask_int32, attention_nodes):
# Inputs of EmbedLayerNorm: input_ids, segment_ids (optional), word_embedding, position_embedding,
# segment_embedding (optional), gamma, beta, mask (optional), position_ids (optional)
embed_node = self.embed_node
if len(embed_node.input) == 7:
embed_node.input.append(mask_int32)
logger.debug("append mask to %s", embed_node.name)
elif len(embed_node.input) > 7 and not embed_node.input[7]:
embed_node.input[7] = mask_int32
logger.debug("replace mask in %s", embed_node.name)
else:
logger.debug("skip mask in %s", embed_node.name)
return
for attention_node in attention_nodes:
logger.debug("update mask_index in %s", attention_node.name)
if attention_node.op_type == "Attention":
attention_node.input[3] = embed_node.output[1]
elif attention_node.op_type == "MultiHeadAttention":
attention_node.input[4] = embed_node.output[1]
def fuse(self, node, input_name_to_nodes, output_name_to_node):
# Reset attention and embed_node so that we know fusion is successful when they are not None.
self.attention = None
self.cross_attention = None
self.embed_node = None
super().fuse(node, input_name_to_nodes, output_name_to_node)
if self.embed_node is None:
return
if not self.use_mask_index:
logger.debug("--use_mask_index is not set: EmbedLayerNormalization will not have mask")
self.increase_counter("EmbedLayerNormalization(no mask)")
return
if self.attention is None and self.cross_attention is None:
logger.debug("EmbedLayerNormalization will not have mask since attention node is not found")
self.increase_counter("EmbedLayerNormalization(no mask)")
return
if self.attention:
mask_int32 = self.attention.input[3]
else:
mask_int32 = self.cross_attention.input[4]
children_nodes = input_name_to_nodes[mask_int32]
if self.model.find_graph_input(mask_int32):
attention_nodes = [node for node in children_nodes if node.op_type in ["Attention", "MultiHeadAttention"]]
self.replace_mask(mask_int32, attention_nodes)
self.increase_counter("EmbedLayerNormalization(with mask)")
return
if mask_int32 not in output_name_to_node:
logger.debug("EmbedLayerNormalization will not have mask since %s is not a node output", mask_int32)
self.increase_counter("EmbedLayerNormalization(no mask)")
return
node = output_name_to_node[mask_int32]
if node.op_type in ["ReduceSum", "Cast"]:
attention_nodes = [node for node in children_nodes if node.op_type in ["Attention", "MultiHeadAttention"]]
if node.op_type == "ReduceSum":
mask_int32 = node.input[0]
if len(children_nodes) == len(attention_nodes):
self.nodes_to_remove.append(node)
self.replace_mask(mask_int32, attention_nodes)
self.increase_counter("EmbedLayerNormalization(with mask)")