Releases: microsoft/onnxconverter-common
Releases · microsoft/onnxconverter-common
v1.5.4
v1.5.3
v1.5.0
onnxconverter-common version 1.5.0 is now available! This package was created alongside the onnxmltools package to enable common code to be shared among various ONNX converter offerings.
onnxmltools, sklearn-onnx, and keras-onnx depend on the onnxconverter-common package for shared code and utilities, including:
- Converting common ONNX operations (onnx_ops.py)
- ONNX graph topology and data types (topology.py, container.py, data_types.py)
- Other shared tools, including the float32->float16 converter (float16.py), ONNX graph optimizer (optimizer.py) and common shape calculators (shape_calculator.py)
How do I use the latest onnxconverter-common package?
pip install onnxconverter-common
python -c "import onnxconverter_common"
This package is automatically installed as part of the dependencies for onnxmltools, keras2onnx, and skl2onnx.
Highlights since the last release
- v1.5.0 for the onnxconverter-common package (onnx/onnxmltools#314)
- [Opset 10] Updates for thresholded relu (onnx/onnxmltools#308)
- [Opset 10] Deprecate Upsample, create Resize op (onnx/onnxmltools#303)
- [Opset 10] Pooling operator updates: AveragePool, MaxPool (onnx/onnxmltools#296)
- Add support for Py3.7, onnx 1.5, onnxruntime 0.4 (onnx/onnxmltools#293)
- Added apply_slice function to enable multiple versions of Slice (onnx/onnxmltools#291)