-
Notifications
You must be signed in to change notification settings - Fork 331
/
Copy pathappsettings.json
523 lines (523 loc) · 25.8 KB
/
appsettings.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
{
"AllowedHosts": "*",
"Kestrel": {
"Endpoints": {
"Http": {
"Url": "http://*:9001"
}
// "Https": {
// "Url": "https://*:9002"
// }
}
},
"Logging": {
"LogLevel": {
"Default": "Information",
// Examples: how to handle logs differently by class
// "Microsoft.KernelMemory.Pipeline.Queue.DevTools.SimpleQueue": "Information",
// "Microsoft.KernelMemory.Handlers.TextExtractionHandler": "Information",
// "Microsoft.KernelMemory.Handlers.TextPartitioningHandler": "Information",
// "Microsoft.KernelMemory.Handlers.GenerateEmbeddingsHandler": "Information",
// "Microsoft.KernelMemory.Handlers.SaveEmbeddingsHandler": "Information",
// "Microsoft.KernelMemory.DocumentStorage.AzureBlobs": "Information",
// "Microsoft.KernelMemory.Pipeline.Queue.AzureQueues": "Information",
"Microsoft.AspNetCore": "Warning"
},
"Console": {
"LogToStandardErrorThreshold": "Critical",
"FormatterName": "simple",
"FormatterOptions": {
"TimestampFormat": "[HH:mm:ss.fff] ",
"SingleLine": true,
"UseUtcTimestamp": false,
"IncludeScopes": false,
"JsonWriterOptions": {
"Indented": true
}
}
}
},
"KernelMemory": {
"Service": {
// Whether to run the web service that allows to upload files and search memory
// Use these booleans to deploy the web service and the handlers on same/different VMs
"RunWebService": true,
// Whether to expose OpenAPI swagger UI at http://127.0.0.1:9001/swagger/index.html
"OpenApiEnabled": false,
// Whether to run the asynchronous pipeline handlers
// Use these booleans to deploy the web service and the handlers on same/different VMs
"RunHandlers": true,
// Handlers to load for callers (use "steps" to choose which handlers
// to use to process a document during the ingestion)
"Handlers": {
// The key, e.g. "extract", is the name used when starting a pipeline with specific steps
"extract": {
"Assembly": "Microsoft.KernelMemory.Core.dll",
"Class": "Microsoft.KernelMemory.Handlers.TextExtractionHandler"
},
"partition": {
"Assembly": "Microsoft.KernelMemory.Core.dll",
"Class": "Microsoft.KernelMemory.Handlers.TextPartitioningHandler"
},
"gen_embeddings": {
"Assembly": "Microsoft.KernelMemory.Core.dll",
"Class": "Microsoft.KernelMemory.Handlers.GenerateEmbeddingsHandler"
},
"save_records": {
"Assembly": "Microsoft.KernelMemory.Core.dll",
"Class": "Microsoft.KernelMemory.Handlers.SaveRecordsHandler"
},
"summarize": {
"Assembly": "Microsoft.KernelMemory.Core.dll",
"Class": "Microsoft.KernelMemory.Handlers.SummarizationHandler"
},
"delete_generated_files": {
"Assembly": "Microsoft.KernelMemory.Core.dll",
"Class": "Microsoft.KernelMemory.Handlers.DeleteGeneratedFilesHandler"
},
"private_delete_document": {
"Assembly": "Microsoft.KernelMemory.Core.dll",
"Class": "Microsoft.KernelMemory.Handlers.DeleteDocumentHandler"
},
"private_delete_index": {
"Assembly": "Microsoft.KernelMemory.Core.dll",
"Class": "Microsoft.KernelMemory.Handlers.DeleteIndexHandler"
},
"disabled_handler_example": {
// Setting Class or Assembly to "" in appsettings.Development.json or appsettings.Production.json
// allows to remove a handler defined in appsettings.json
"Class": "",
"Assembly": ""
}
}
},
"ServiceAuthorization": {
// Whether clients must provide some credentials to interact with the HTTP API
"Enabled": false,
// Currently "APIKey" is the only type supported
"AuthenticationType": "APIKey",
// HTTP header name to check
"HttpHeaderName": "Authorization",
// Define two separate API Keys, to allow key rotation. Both are active.
// Keys must be different and case-sensitive, and at least 32 chars long.
// Contain only alphanumeric chars and allowed symbols.
// Symbols allowed: . _ - (dot, underscore, minus).
"AccessKey1": "",
"AccessKey2": ""
},
// "AzureBlobs" or "SimpleFileStorage"
"DocumentStorageType": "SimpleFileStorage",
// "AzureOpenAIText", "OpenAI" or "LlamaSharp"
"TextGeneratorType": "",
// Name of the index to use when none is specified
"DefaultIndexName": "default",
// Which service to use for content moderation. Optional.
// Currently supported: AzureAIContentSafety
"ContentModerationType": "AzureAIContentSafety",
// Data ingestion pipelines configuration.
"DataIngestion": {
// - InProcess: in process .NET orchestrator, synchronous/no queues
// - Distributed: asynchronous queue based orchestrator
"OrchestrationType": "Distributed",
"DistributedOrchestration": {
// "AzureQueues", "RabbitMQ", "SimpleQueues"
"QueueType": "SimpleQueues"
},
// Whether the pipeline generates and saves the vectors/embeddings in the memory DBs.
// When using a memory DB that automatically generates embeddings internally,
// or performs semantic search internally anyway, this should be False,
// and avoid generating embeddings that are not used.
// Examples:
// * you are using Azure AI Search "semantic search" without "vector search": in this
// case you don't need embeddings because Azure AI Search uses a more advanced approach
// internally.
// * you are using a custom Memory DB connector that generates embeddings on the fly
// when writing records and when searching: in this case you don't need the pipeline
// to calculate embeddings, because your connector does all the work.
// * you are using a basic "text search" and a DB without "vector search": in this case
// embeddings would be unused, so it's better to disable them to save cost and latency.
"EmbeddingGenerationEnabled": true,
// Multiple generators can be used, e.g. for data migration, A/B testing, etc.
// None of these are used for `ITextEmbeddingGeneration` dependency injection,
// see Retrieval settings.
"EmbeddingGeneratorTypes": [
],
// Vectors can be written to multiple storages, e.g. for data migration, A/B testing, etc.
// "AzureAISearch", "Qdrant", "Postgres", "Redis", "SimpleVectorDb", "SqlServer", etc.
"MemoryDbTypes": [
"SimpleVectorDb"
],
// How many memory DB records to insert at once when extracting memories from
// uploaded documents (used only if the Memory Db supports batching).
"MemoryDbUpsertBatchSize": 1,
// "None" or "AzureAIDocIntel"
"ImageOcrType": "None",
// Partitioning / Chunking settings
// How does the partitioning work?
// * Given a document, text is extracted, and text is split in tokens.
// * Tokens are merged into chunks, called "partitions", sometimes called "paragraphs"
// * For each chunk, one (potentially more) memory is generated.
"TextPartitioning": {
// Maximum length of chunks in tokens. Tokens depend on the LLM in use.
"MaxTokensPerParagraph": 1000,
// How many tokens from a paragraph to keep in the following paragraph.
"OverlappingTokens": 100
},
// Note: keep the list empty in this file, to avoid unexpected merges
// with the list defined in appsettings.*.json.
// If the list is empty, KernelMemoryConfig uses 'Constants.DefaultPipeline'.
"DefaultSteps": [
// Default steps defined in 'Constants.DefaultPipeline'
// "extract",
// "partition",
// "gen_embeddings",
// "save_records",
]
},
"Retrieval": {
// "AzureOpenAIEmbedding" or "OpenAI"
// This is the generator registered for `ITextEmbeddingGeneration` dependency injection.
"EmbeddingGeneratorType": "",
// "AzureAISearch", "Qdrant", "Postgres", "Redis", "SimpleVectorDb", "SqlServer", etc.
"MemoryDbType": "SimpleVectorDb",
// Search client settings
"SearchClient": {
// Maximum number of tokens accepted by the LLM used to generate answers.
// The number includes the tokens used for the answer, e.g. when using
// GPT4-32k, set this number to 32768.
// If the value is not set or less than one, SearchClient will use the
// max amount of tokens supported by the model in use.
"MaxAskPromptSize": -1,
// Maximum number of relevant sources to consider when generating an answer.
// The value is also used as the max number of results returned by SearchAsync
// when passing a limit less or equal to zero.
"MaxMatchesCount": 100,
// How many tokens to reserve for the answer generated by the LLM.
// E.g. if the LLM supports max 4000 tokens, and AnswerTokens is 300, then
// the prompt sent to LLM will contain max 3700 tokens, composed by
// prompt + question + grounding information retrieved from memory.
"AnswerTokens": 300,
// Text to return when the LLM cannot produce an answer.
"EmptyAnswer": "INFO NOT FOUND",
// Number between 0 and 2 that controls the randomness of the completion.
// The higher the temperature, the more random the completion.
"Temperature": 0,
// Number between 0 and 2 that controls the diversity of the completion.
// The higher the TopP, the more diverse the completion.
"TopP": 0,
// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether
// they appear in the text so far, increasing the model's likelihood to talk about
// new topics.
"PresencePenalty": 0,
// Number between -2.0 and 2.0. Positive values penalize new tokens based on their
// existing frequency in the text so far, decreasing the model's likelihood to repeat
// the same line verbatim.
"FrequencyPenalty": 0,
// Sequences where the completion will stop generating further tokens.
"StopSequences": [],
// Modify the likelihood of specified tokens appearing in the completion.
//"TokenSelectionBiases": { }
// Whether to check is the generated answers are safe.
// A content moderation service must be present in the system.
"UseModerationService": true
}
},
"Services": {
"Anthropic": {
"Endpoint": "https://api.anthropic.com",
"EndpointVersion": "2023-06-01",
"ApiKey": "",
// See https://docs.anthropic.com/claude/docs/models-overview for list of models and details
"TextModelName": "claude-3-haiku-20240307",
// Supported values: "p50k", "cl100k", "o200k". Leave it empty if unsure.
"Tokenizer": "cl100k",
// How many tokens the model can receive in input and generate in output
// See https://docs.anthropic.com/claude/docs/models-overview
"MaxTokenIn": 200000,
"MaxTokenOut": 4096,
"DefaultSystemPrompt": "You are an assistant that will answer user query based on a context",
"HttpClientName": ""
},
"AzureAIDocIntel": {
// "APIKey" or "AzureIdentity".
// AzureIdentity: use automatic Entra (AAD) authentication mechanism.
// When the service is on sovereign clouds you can use the AZURE_AUTHORITY_HOST env var to
// set the authority host. See https://learn.microsoft.com/dotnet/api/overview/azure/identity-readme
// You can test locally using the AZURE_TENANT_ID, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET env vars.
"Auth": "AzureIdentity",
// Optional when Auth == AzureIdentity. Leave it null to use the default.
// When the service is on sovereign clouds, this setting might be necessary to configure Entra auth tokens.
// See https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/formrecognizer/Azure.AI.FormRecognizer/src/DocumentAnalysisAudience.cs
"AzureIdentityAudience": null,
// Required when Auth == APIKey
"APIKey": "",
"Endpoint": ""
},
"AzureAISearch": {
// "ApiKey" or "AzureIdentity". For other options see <AzureAISearchConfig>.
// AzureIdentity: use automatic Entra (AAD) authentication mechanism.
// When the service is on sovereign clouds you can use the AZURE_AUTHORITY_HOST env var to
// set the authority host. See https://learn.microsoft.com/dotnet/api/overview/azure/identity-readme
// You can test locally using the AZURE_TENANT_ID, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET env vars.
"Auth": "AzureIdentity",
// Optional when Auth == AzureIdentity. Leave it null to use the default.
// When the service is on sovereign clouds, this setting might be necessary to configure Entra auth tokens.
// See https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/search/Azure.Search.Documents/src/SearchAudience.cs
"AzureIdentityAudience": null,
// Required when Auth == APIKey
"APIKey": "",
"Endpoint": "https://<...>",
// Hybrid search is not enabled by default. Note that when using hybrid search
// relevance scores are different, usually lower, than when using just vector search
"UseHybridSearch": false,
// Helps improve relevance score consistency for search services with multiple replicas by
// attempting to route a given request to the same replica for that session. Use this when
// favoring consistent scoring over lower latency. Can adversely affect performance.
//
// Whether to use sticky sessions, which can help getting more consistent results.
// When using sticky sessions, a best-effort attempt will be made to target the same replica set.
// Be wary that reusing the same replica repeatedly can interfere with the load balancing of
// the requests across replicas and adversely affect the performance of the search service.
//
// See https://learn.microsoft.com/rest/api/searchservice/documents/search-post?view=rest-searchservice-2024-07-01&tabs=HTTP#request-body
"UseStickySessions": false
},
"AzureBlobs": {
// "ConnectionString" or "AzureIdentity". For other options see <AzureBlobConfig>.
// AzureIdentity: use automatic Entra (AAD) authentication mechanism.
// When the service is on sovereign clouds you can use the AZURE_AUTHORITY_HOST env var to
// set the authority host. See https://learn.microsoft.com/dotnet/api/overview/azure/identity-readme
// You can test locally using the AZURE_TENANT_ID, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET env vars.
"Auth": "AzureIdentity",
// Optional when Auth == AzureIdentity. Leave it null to use the default.
// When the service is on sovereign clouds, this setting might be necessary to configure Entra auth tokens.
"AzureIdentityAudience": null,
// Azure Storage account name, required when using AzureIdentity auth
// Note: you can use an env var 'KernelMemory__Services__AzureBlobs__Account' to set this
"Account": "",
// Container where to create directories and upload files
"Container": "smemory",
// Required when Auth == ConnectionString
// Note: you can use an env var 'KernelMemory__Services__AzureBlobs__ConnectionString' to set this
"ConnectionString": "",
// Setting used only for country clouds
"EndpointSuffix": "core.windows.net"
},
"AzureOpenAIEmbedding": {
// "ApiKey" or "AzureIdentity"
// AzureIdentity: use automatic Entra (AAD) authentication mechanism.
// You can test locally using the AZURE_TENANT_ID, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET env vars.
"Auth": "AzureIdentity",
// Optional when Auth == AzureIdentity. Leave it null to use the default.
// in which case use this to change the client audience.
"AzureIdentityAudience": null,
"Endpoint": "https://<...>.openai.azure.com/",
"APIKey": "",
"Deployment": "",
// The max number of tokens supported by model deployed
// See https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
"MaxTokenTotal": 8191,
// Which tokenizer to use to correctly measure the size of chunks.
// Supported values: "p50k", "cl100k", "o200k". Leave it empty if unsure.
// - Use p50k for the old text-davinci-003 models
// - Use cl100k for the old gpt-3.4 and gpt-4 family, and for text embedding models
// - Use o200k for the most recent gpt-4o family
"Tokenizer": "cl100k",
// The number of dimensions output embeddings should have.
// Only supported in "text-embedding-3" and later models developed with
// MRL, see https://arxiv.org/abs/2205.13147
"EmbeddingDimensions": null,
// How many embeddings to calculate in parallel. The max value depends on
// the model and deployment in use.
// See also hhttps://learn.microsoft.com/azure/ai-services/openai/reference#embeddings
"MaxEmbeddingBatchSize": 1,
// How many times to retry in case of throttling.
"MaxRetries": 10
},
"AzureOpenAIText": {
// "ApiKey" or "AzureIdentity"
// AzureIdentity: use automatic Entra (AAD) authentication mechanism.
// You can test locally using the AZURE_TENANT_ID, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET env vars.
"Auth": "AzureIdentity",
// Optional when Auth == AzureIdentity. Leave it null to use the default.
// in which case use this to change the client audience.
"AzureIdentityAudience": null,
"Endpoint": "https://<...>.openai.azure.com/",
"APIKey": "",
"Deployment": "",
// The max number of tokens supported by model deployed
// See https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
"MaxTokenTotal": 16384,
// Which tokenizer to use to correctly measure the size of chunks.
// Supported values: "p50k", "cl100k", "o200k". Leave it empty if unsure.
// - Use p50k for the old text-davinci-003 models
// - Use cl100k for the old gpt-3.4 and gpt-4 family, and for text embedding models
// - Use o200k for the most recent gpt-4o family
"Tokenizer": "o200k",
// "ChatCompletion" or "TextCompletion"
"APIType": "ChatCompletion",
// How many times to retry in case of throttling.
"MaxRetries": 10
},
"AzureQueues": {
// "ConnectionString" or "AzureIdentity". For other options see <AzureQueueConfig>.
// AzureIdentity: use automatic Entra (AAD) authentication mechanism.
// When the service is on sovereign clouds you can use the AZURE_AUTHORITY_HOST env var to
// set the authority host. See https://learn.microsoft.com/dotnet/api/overview/azure/identity-readme
// You can test locally using the AZURE_TENANT_ID, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET env vars.
"Auth": "AzureIdentity",
// Optional when Auth == AzureIdentity. Leave it null to use the default.
// When the service is on sovereign clouds, this setting might be necessary to configure Entra auth tokens.
"AzureIdentityAudience": null,
// Azure Storage account name, required when using AzureIdentity auth
// Note: you can use an env var 'KernelMemory__Services__AzureQueue__Account' to set this
"Account": "",
// Required when Auth == ConnectionString
// Note: you can use an env var 'KernelMemory__Services__AzureQueue__ConnectionString' to set this
"ConnectionString": "",
// Setting used only for country clouds
"EndpointSuffix": "core.windows.net",
// How often to check if there are new messages
"PollDelayMsecs": 100,
// How many messages to fetch at a time
"FetchBatchSize": 3,
// How long to lock messages once fetched. Azure Queue default is 30 secs
"FetchLockSeconds": 300,
// How many times to dequeue a messages and process before moving it to a poison queue
"MaxRetriesBeforePoisonQueue": 20,
// Suffix used for the poison queues.
"PoisonQueueSuffix": "-poison"
},
"Elasticsearch": {
// SHA-256 fingerprint. When running the docker image this is printed after starting the server
// See https://www.elastic.co/guide/en/elasticsearch/reference/current/configuring-stack-security.html#_use_the_ca_fingerprint_5
"CertificateFingerPrint": "",
// e.g. https://localhost:9200
"Endpoint": "",
// e.g. "elastic"
"UserName": "",
"Password": "",
"IndexPrefix": "",
"ShardCount": 1,
"Replicas": 0
},
"LlamaSharp": {
"TextModel": {
// path to file, e.g. "llama-2-7b-chat.Q6_K.gguf"
"ModelPath": "",
// Max number of tokens supported by the model
"MaxTokenTotal": 4096
// Optional parameters
// "GpuLayerCount": 32,
},
"EmbeddingModel": {
// path to file, e.g. "nomic-embed-text-v1.5.Q8_0.gguf"
"ModelPath": "",
// Max number of tokens supported by the model
"MaxTokenTotal": 4096
// Optional parameters
// "GpuLayerCount": 32,
}
},
"MongoDbAtlas": {
"ConnectionString": "mongodb://root:root@localhost:27777/?authSource=admin",
"DatabaseName": "KernelMemory",
"UseSingleCollectionForVectorSearch": false
},
"OpenAI": {
// Name of the model used to generate text (text completion or chat completion)
"TextModel": "gpt-4o-mini",
// The max number of tokens supported by the text model.
"TextModelMaxTokenTotal": 16384,
// Supported values: "p50k", "cl100k", "o200k". Leave it empty for autodetect.
"TextModelTokenizer": "",
// What type of text generation, by default autodetect using the model name.
// Possible values: "Auto", "TextCompletion", "Chat"
"TextGenerationType": "Auto",
// Name of the model used to generate text embeddings
"EmbeddingModel": "text-embedding-ada-002",
// The max number of tokens supported by the embedding model
// See https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
"EmbeddingModelMaxTokenTotal": 8191,
// Supported values: "p50k", "cl100k", "o200k". Leave it empty for autodetect.
"EmbeddingModelTokenizer": "",
// OpenAI API Key
"APIKey": "",
// OpenAI Organization ID (usually empty, unless you have multiple accounts on different orgs)
"OrgId": "",
// Endpoint to use. By default the system uses 'https://api.openai.com/v1'.
// Change this to use proxies or services compatible with OpenAI HTTP protocol like LM Studio.
"Endpoint": "",
// How many times to retry in case of throttling
"MaxRetries": 10,
// The number of dimensions output embeddings should have.
// Only supported in "text-embedding-3" and later models developed with
// MRL, see https://arxiv.org/abs/2205.13147
"EmbeddingDimensions": null,
// How many embeddings to calculate in parallel.
// See https://platform.openai.com/docs/api-reference/embeddings/create
"MaxEmbeddingBatchSize": 100
},
"Postgres": {
// Postgres instance connection string
"ConnectionString": "Host=localhost;Port=5432;Username=public;Password=;Database=public",
// Mandatory prefix to add to the name of table managed by KM,
// e.g. to exclude other tables in the same schema.
"TableNamePrefix": "km-"
},
"Qdrant": {
// Qdrant endpoint
"Endpoint": "http://127.0.0.1:6333",
// Qdrant API key, e.g. when using Qdrant cloud
"APIKey": ""
},
"RabbitMQ": {
"Host": "127.0.0.1",
"Port": "5672",
"Username": "user",
"Password": "",
"VirtualHost": "/",
"MessageTTLSecs": 3600
},
"Redis": {
// Redis connection string, e.g. "localhost:6379,password=..."
"ConnectionString": "",
// List of tags that clients will use to filter memories. When using Redis,
// the list of tags must be configured, for data to be saved correctly.
"Tags": {
"type": ",",
"user": ",",
"ext": ","
}
},
"SimpleFileStorage": {
// Options: "Disk" or "Volatile". Volatile data is lost after each execution.
"StorageType": "Volatile",
// Directory where files are stored.
"Directory": "_files"
},
"SimpleQueues": {
// Options: "Disk" or "Volatile". Volatile data is lost after each execution.
"StorageType": "Volatile",
// Directory where files are stored.
"Directory": "_queues"
},
"SimpleVectorDb": {
// Options: "Disk" or "Volatile". Volatile data is lost after each execution.
"StorageType": "Volatile",
// Directory where files are stored.
"Directory": "_vectors"
},
"SqlServer": {
// MS SQL Server Connection string, e.g.
// "Server=tcp:127.0.0.1,1433;Initial Catalog=master;Persist Security Info=False;User ID=sa;Password=00_CHANGE_ME_00;MultipleActiveResultSets=False;TrustServerCertificate=True;Connection Timeout=30;"
"ConnectionString": "",
"Schema": "dbo",
"MemoryCollectionTableName": "KMCollections",
"MemoryTableName": "KMMemories",
"EmbeddingsTableName": "KMEmbeddings",
"TagsTableName": "KMMemoriesTags"
}
}
}
}