Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to use multithreading to speed up KL calculations? #28

Open
Horse4Truin opened this issue Sep 24, 2024 · 1 comment
Open

How to use multithreading to speed up KL calculations? #28

Horse4Truin opened this issue Sep 24, 2024 · 1 comment

Comments

@Horse4Truin
Copy link

I found that when I was doing KL calculation, only one thread was calculating, which is currently taking up a lot of my time. How can I solve this problem?

@Horse4Truin
Copy link
Author

By the way,I don't know why the GPU setting is -1:ngpu=-1,here is my parameters
INFO:root:Writing training args to /home/guanaohan/foldingdiff/foldingdiff/results/training_args.json INFO:root:Training argument: results_dir=/home/guanaohan/foldingdiff/foldingdiff/results INFO:root:Training argument: dataset_key=cath INFO:root:Training argument: angles_definitions=canonical-full-angles INFO:root:Training argument: max_seq_len=128 INFO:root:Training argument: min_seq_len=40 INFO:root:Training argument: trim_strategy=randomcrop INFO:root:Training argument: timesteps=1000 INFO:root:Training argument: variance_schedule=cosine INFO:root:Training argument: variance_scale=1.0 INFO:root:Training argument: time_encoding=gaussian_fourier INFO:root:Training argument: num_hidden_layers=12 INFO:root:Training argument: hidden_size=384 INFO:root:Training argument: intermediate_size=768 INFO:root:Training argument: num_heads=12 INFO:root:Training argument: position_embedding_type=relative_key INFO:root:Training argument: dropout_p=0.1 INFO:root:Training argument: decoder=mlp INFO:root:Training argument: gradient_clip=1.0 INFO:root:Training argument: batch_size=64 INFO:root:Training argument: lr=5e-05 INFO:root:Training argument: loss=smooth_l1 INFO:root:Training argument: use_pdist_loss=0.0 INFO:root:Training argument: l2_norm=0.0 INFO:root:Training argument: l1_norm=0.0 INFO:root:Training argument: circle_reg=0.0 INFO:root:Training argument: min_epochs=10000 INFO:root:Training argument: max_epochs=10000 INFO:root:Training argument: early_stop_patience=0 INFO:root:Training argument: lr_scheduler=LinearWarmup INFO:root:Training argument: use_swa=False INFO:root:Training argument: subset=None INFO:root:Training argument: exhaustive_validation_t=False INFO:root:Training argument: syn_noiser= INFO:root:Training argument: single_angle_debug=-1 INFO:root:Training argument: single_timestep_debug=False INFO:root:Training argument: cpu_only=False INFO:root:Training argument: ngpu=-1 INFO:root:Training argument: write_valid_preds=False INFO:root:Training argument: dryrun=False INFO:root:Training argument: multithread=True
and my gpu setting is ok:
`>>> import torch

torch.cuda.is_available()
True
print(torch.cuda.device_count())
1
print(torch.cuda.get_device_name(0))
NVIDIA GeForce RTX 3080 Ti
print(torch.cuda.current_device())
0`

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant