2023-03-06 08:10:35,909:INFO: Effective parameters: 2023-03-06 08:10:35,909:INFO: <<< batch_size: 24 2023-03-06 08:10:35,909:INFO: <<< batch_size_val: 64 2023-03-06 08:10:35,909:INFO: <<< bert_model: bert-base-uncased 2023-03-06 08:10:35,909:INFO: <<< cache_dir: 2023-03-06 08:10:35,909:INFO: <<< coef_lr: 0.1 2023-03-06 08:10:35,909:INFO: <<< cross_model: cross-base 2023-03-06 08:10:35,913:INFO: <<< cross_num_hidden_layers: 2 2023-03-06 08:10:35,913:INFO: <<< data_path: data/youcookii/youcookii_data.no_transcript.pickle 2023-03-06 08:10:35,913:INFO: <<< datatype: youcook 2023-03-06 08:10:35,913:INFO: <<< decoder_model: decoder-base 2023-03-06 08:10:35,913:INFO: <<< decoder_num_hidden_layers: 3 2023-03-06 08:10:35,913:INFO: <<< do_eval: True 2023-03-06 08:10:35,913:INFO: <<< do_lower_case: True 2023-03-06 08:10:35,917:INFO: <<< do_pretrain: False 2023-03-06 08:10:35,917:INFO: <<< do_train: False 2023-03-06 08:10:35,917:INFO: <<< epochs: 5 2023-03-06 08:10:35,917:INFO: <<< feature_framerate: 1 2023-03-06 08:10:35,917:INFO: <<< features_path: data/youcookii/youcookii_videos_features.pickle 2023-03-06 08:10:35,917:INFO: <<< fp16: False 2023-03-06 08:10:35,917:INFO: <<< fp16_opt_level: O1 2023-03-06 08:10:35,917:INFO: <<< gradient_accumulation_steps: 1 2023-03-06 08:10:35,917:INFO: <<< hard_negative_rate: 0.5 2023-03-06 08:10:35,917:INFO: <<< init_model: weight/univl.pretrained.bin 2023-03-06 08:10:35,917:INFO: <<< local_rank: 0 2023-03-06 08:10:35,921:INFO: <<< lr: 3e-05 2023-03-06 08:10:35,921:INFO: <<< lr_decay: 0.9 2023-03-06 08:10:35,921:INFO: <<< margin: 0.1 2023-03-06 08:10:35,921:INFO: <<< max_frames: 48 2023-03-06 08:10:35,921:INFO: <<< max_words: 48 2023-03-06 08:10:35,921:INFO: <<< min_time: 5.0 2023-03-06 08:10:35,921:INFO: <<< n_display: 100 2023-03-06 08:10:35,921:INFO: <<< n_gpu: 1 2023-03-06 08:10:35,921:INFO: <<< n_pair: 1 2023-03-06 08:10:35,921:INFO: <<< negative_weighting: 1 2023-03-06 08:10:35,921:INFO: <<< num_thread_reader: 0 2023-03-06 08:10:35,921:INFO: <<< output_dir: ckpts/ckpt_youcook_caption 2023-03-06 08:10:35,925:INFO: <<< sampled_use_mil: False 2023-03-06 08:10:35,925:INFO: <<< seed: 42 2023-03-06 08:10:35,925:INFO: <<< stage_two: True 2023-03-06 08:10:35,925:INFO: <<< task_type: caption 2023-03-06 08:10:35,925:INFO: <<< text_num_hidden_layers: 12 2023-03-06 08:10:35,925:INFO: <<< train_csv: data/youcookii/youcookii_train.csv 2023-03-06 08:10:35,925:INFO: <<< use_mil: False 2023-03-06 08:10:35,925:INFO: <<< val_csv: data/youcookii/youcookii_val.csv 2023-03-06 08:10:35,925:INFO: <<< video_dim: 1024 2023-03-06 08:10:35,925:INFO: <<< visual_model: visual-base 2023-03-06 08:10:35,929:INFO: <<< visual_num_hidden_layers: 6 2023-03-06 08:10:35,929:INFO: <<< warmup_proportion: 0.1 2023-03-06 08:10:35,929:INFO: <<< world_size: 0 2023-03-06 08:10:35,929:INFO: device: cuda:0 n_gpu: 1 2023-03-06 08:10:35,929:INFO: loading vocabulary file C:\Hack\UniVL\modules\bert-base-uncased\vocab.txt 2023-03-06 08:10:37,371:INFO: loading archive file C:\Hack\UniVL\modules\bert-base-uncased 2023-03-06 08:10:37,371:INFO: Model config { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "type_vocab_size": 2, "vocab_size": 30522 } 2023-03-06 08:10:37,375:INFO: loading archive file C:\Hack\UniVL\modules\visual-base 2023-03-06 08:10:37,379:INFO: Model config { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 1, "type_vocab_size": 2, "vocab_size": 1024 } 2023-03-06 08:10:37,383:INFO: Weight doesn't exsits. C:\Hack\UniVL\modules\visual-base\visual_pytorch_model.bin 2023-03-06 08:10:37,383:INFO: loading archive file C:\Hack\UniVL\modules\cross-base 2023-03-06 08:10:37,383:INFO: Model config { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 1024, "num_attention_heads": 12, "num_hidden_layers": 2, "type_vocab_size": 2, "vocab_size": 768 } 2023-03-06 08:10:37,387:INFO: Weight doesn't exsits. C:\Hack\UniVL\modules\cross-base\cross_pytorch_model.bin 2023-03-06 08:10:37,391:INFO: loading archive file C:\Hack\UniVL\modules\decoder-base 2023-03-06 08:10:37,391:INFO: Model config { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_target_embeddings": 512, "num_attention_heads": 12, "num_decoder_layers": 1, "num_hidden_layers": 12, "type_vocab_size": 2, "vocab_size": 30522 } 2023-03-06 08:10:37,395:INFO: Weight doesn't exsits. C:\Hack\UniVL\modules\decoder-base\decoder_pytorch_model.bin 2023-03-06 08:10:37,395:WARNING: Stage-One:False, Stage-Two:True 2023-03-06 08:10:37,395:WARNING: Set bert_config.num_hidden_layers: 12. 2023-03-06 08:10:38,909:WARNING: Set visual_config.num_hidden_layers: 6. 2023-03-06 08:10:39,437:WARNING: Set cross_config.num_hidden_layers: 2. 2023-03-06 08:10:39,673:WARNING: Set decoder_config.num_decoder_layers: 3. 2023-03-06 08:10:42,830:INFO: -------------------- 2023-03-06 08:10:42,830:INFO: Weights from pretrained model not used in UniVL: cls.predictions.bias cls.predictions.transform.dense.weight cls.predictions.transform.dense.bias cls.predictions.transform.LayerNorm.weight cls.predictions.transform.LayerNorm.bias cls.predictions.decoder.weight cls_visual.predictions.weight cls_visual.predictions.bias cls_visual.predictions.transform.dense.weight cls_visual.predictions.transform.dense.bias cls_visual.predictions.transform.LayerNorm.weight cls_visual.predictions.transform.LayerNorm.bias similarity_pooler.dense.weight similarity_pooler.dense.bias 2023-03-06 08:10:47,190:INFO: YoucookII validation pairs: 3369 2023-03-06 08:10:47,190:INFO: ***** Running test ***** 2023-03-06 08:10:47,190:INFO: Num examples = 3369 2023-03-06 08:10:47,194:INFO: Batch size = 64 2023-03-06 08:10:47,194:INFO: Num steps = 53 2023-03-06 08:10:56,515:INFO: >>> BLEU_1: 0.0000, BLEU_2: 0.0000, BLEU_3: 0.0000, BLEU_4: 0.0000 2023-03-06 08:10:56,515:INFO: >>> METEOR: 1.0000, ROUGE_L: 0.0000, CIDEr: 0.0000