diff --git a/R-package/demo/boost_from_prediction.R b/R-package/demo/boost_from_prediction.R index bd2b30e892c4..4b5433e4459e 100644 --- a/R-package/demo/boost_from_prediction.R +++ b/R-package/demo/boost_from_prediction.R @@ -5,7 +5,7 @@ require(methods) data(agaricus.train, package = "lightgbm") data(agaricus.test, package = "lightgbm") dtrain <- lgb.Dataset(agaricus.train$data, label = agaricus.train$label) -dtest <- lgb.Dataset(agaricus.test$data, label = agaricus.test$label) +dtest <- lgb.Dataset.create.valid(dtrain, data = agaricus.test$data, label = agaricus.test$label) valids <- list(eval = dtest, train = dtrain) #--------------------Advanced features --------------------------- diff --git a/R-package/demo/categorical_features_rules.R b/R-package/demo/categorical_features_rules.R index 1ad2ed0255b2..6ac2eb1ce589 100644 --- a/R-package/demo/categorical_features_rules.R +++ b/R-package/demo/categorical_features_rules.R @@ -70,8 +70,9 @@ my_data_test <- as.matrix(bank_test[, 1:16, with = FALSE]) # The categorical features can be passed to lgb.train to not copy and paste a lot dtrain <- lgb.Dataset(data = my_data_train, label = bank_train$y) -dtest <- lgb.Dataset(data = my_data_test, - label = bank_test$y) +dtest <- lgb.Dataset.create.valid(dtrain, + data = my_data_test, + label = bank_test$y) # We can now train a model model <- lgb.train(list(objective = "binary", diff --git a/R-package/demo/cross_validation.R b/R-package/demo/cross_validation.R index 90a965004068..008acf4ca1bf 100644 --- a/R-package/demo/cross_validation.R +++ b/R-package/demo/cross_validation.R @@ -3,7 +3,7 @@ require(lightgbm) data(agaricus.train, package = "lightgbm") data(agaricus.test, package = "lightgbm") dtrain <- lgb.Dataset(agaricus.train$data, label = agaricus.train$label) -dtest <- lgb.Dataset(agaricus.test$data, label = agaricus.test$label) +dtest <- lgb.Dataset.create.valid(dtrain, data = agaricus.test$data, label = agaricus.test$label) nrounds <- 2 param <- list(num_leaves = 4, diff --git a/R-package/demo/early_stopping.R b/R-package/demo/early_stopping.R index 7e213cf478eb..e37fc0e1a174 100644 --- a/R-package/demo/early_stopping.R +++ b/R-package/demo/early_stopping.R @@ -6,7 +6,7 @@ data(agaricus.train, package = "lightgbm") data(agaricus.test, package = "lightgbm") dtrain <- lgb.Dataset(agaricus.train$data, label = agaricus.train$label) -dtest <- lgb.Dataset(agaricus.test$data, label = agaricus.test$label) +dtest <- lgb.Dataset.create.valid(dtrain, data = agaricus.test$data, label = agaricus.test$label) # Note: for customized objective function, we leave objective as default # Note: what we are getting is margin value in prediction