-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathtest_dask.py
1849 lines (1576 loc) · 69.6 KB
/
test_dask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding: utf-8
"""Tests for lightgbm.dask module"""
import inspect
import random
import socket
from itertools import groupby
from os import getenv
from platform import machine
from sys import platform
from urllib.parse import urlparse
import pytest
import lightgbm as lgb
from .utils import sklearn_multiclass_custom_objective
if not platform.startswith('linux'):
pytest.skip('lightgbm.dask is currently supported in Linux environments', allow_module_level=True)
if machine() != 'x86_64':
pytest.skip('lightgbm.dask tests are currently skipped on some architectures like arm64', allow_module_level=True)
if not lgb.compat.DASK_INSTALLED:
pytest.skip('Dask is not installed', allow_module_level=True)
import dask.array as da
import dask.dataframe as dd
import numpy as np
import pandas as pd
import sklearn.utils.estimator_checks as sklearn_checks
from dask.array.utils import assert_eq
from dask.distributed import Client, LocalCluster, default_client, wait
from scipy.sparse import csc_matrix, csr_matrix
from scipy.stats import spearmanr
from sklearn.datasets import make_blobs, make_regression
from .utils import make_ranking, pickle_obj, unpickle_obj
tasks = ['binary-classification', 'multiclass-classification', 'regression', 'ranking']
distributed_training_algorithms = ['data', 'voting']
data_output = ['array', 'scipy_csr_matrix', 'dataframe', 'dataframe-with-categorical']
boosting_types = ['gbdt', 'dart', 'goss', 'rf']
group_sizes = [5, 5, 5, 10, 10, 10, 20, 20, 20, 50, 50]
task_to_dask_factory = {
'regression': lgb.DaskLGBMRegressor,
'binary-classification': lgb.DaskLGBMClassifier,
'multiclass-classification': lgb.DaskLGBMClassifier,
'ranking': lgb.DaskLGBMRanker
}
task_to_local_factory = {
'regression': lgb.LGBMRegressor,
'binary-classification': lgb.LGBMClassifier,
'multiclass-classification': lgb.LGBMClassifier,
'ranking': lgb.LGBMRanker
}
pytestmark = [
pytest.mark.skipif(getenv('TASK', '') == 'mpi', reason='Fails to run with MPI interface'),
pytest.mark.skipif(getenv('TASK', '') == 'gpu', reason='Fails to run with GPU interface'),
pytest.mark.skipif(getenv('TASK', '') == 'cuda_exp', reason='Fails to run with CUDA Experimental interface')
]
@pytest.fixture(scope='module')
def cluster():
dask_cluster = LocalCluster(n_workers=2, threads_per_worker=2, dashboard_address=None)
yield dask_cluster
dask_cluster.close()
@pytest.fixture(scope='module')
def cluster2():
dask_cluster = LocalCluster(n_workers=2, threads_per_worker=2, dashboard_address=None)
yield dask_cluster
dask_cluster.close()
@pytest.fixture()
def listen_port():
listen_port.port += 10
return listen_port.port
listen_port.port = 13000
def _get_workers_hostname(cluster: LocalCluster) -> str:
one_worker_address = next(iter(cluster.scheduler_info['workers']))
return urlparse(one_worker_address).hostname
def _create_ranking_data(n_samples=100, output='array', chunk_size=50, **kwargs):
X, y, g = make_ranking(n_samples=n_samples, random_state=42, **kwargs)
rnd = np.random.RandomState(42)
w = rnd.rand(X.shape[0]) * 0.01
g_rle = np.array([len(list(grp)) for _, grp in groupby(g)])
if output.startswith('dataframe'):
# add target, weight, and group to DataFrame so that partitions abide by group boundaries.
X_df = pd.DataFrame(X, columns=[f'feature_{i}' for i in range(X.shape[1])])
if output == 'dataframe-with-categorical':
for i in range(5):
col_name = f"cat_col{i}"
cat_values = rnd.choice(['a', 'b'], X.shape[0])
cat_series = pd.Series(
cat_values,
dtype='category'
)
X_df[col_name] = cat_series
X = X_df.copy()
X_df = X_df.assign(y=y, g=g, w=w)
# set_index ensures partitions are based on group id.
# See https://stackoverflow.com/questions/49532824/dask-dataframe-split-partitions-based-on-a-column-or-function.
X_df.set_index('g', inplace=True)
dX = dd.from_pandas(X_df, chunksize=chunk_size)
# separate target, weight from features.
dy = dX['y']
dw = dX['w']
dX = dX.drop(columns=['y', 'w'])
dg = dX.index.to_series()
# encode group identifiers into run-length encoding, the format LightGBMRanker is expecting
# so that within each partition, sum(g) = n_samples.
dg = dg.map_partitions(lambda p: p.groupby('g', sort=False).apply(lambda z: z.shape[0]))
elif output == 'array':
# ranking arrays: one chunk per group. Each chunk must include all columns.
p = X.shape[1]
dX, dy, dw, dg = [], [], [], []
for g_idx, rhs in enumerate(np.cumsum(g_rle)):
lhs = rhs - g_rle[g_idx]
dX.append(da.from_array(X[lhs:rhs, :], chunks=(rhs - lhs, p)))
dy.append(da.from_array(y[lhs:rhs]))
dw.append(da.from_array(w[lhs:rhs]))
dg.append(da.from_array(np.array([g_rle[g_idx]])))
dX = da.concatenate(dX, axis=0)
dy = da.concatenate(dy, axis=0)
dw = da.concatenate(dw, axis=0)
dg = da.concatenate(dg, axis=0)
else:
raise ValueError('Ranking data creation only supported for Dask arrays and dataframes')
return X, y, w, g_rle, dX, dy, dw, dg
def _create_data(objective, n_samples=1_000, output='array', chunk_size=500, **kwargs):
if objective.endswith('classification'):
if objective == 'binary-classification':
centers = [[-4, -4], [4, 4]]
elif objective == 'multiclass-classification':
centers = [[-4, -4], [4, 4], [-4, 4]]
else:
raise ValueError(f"Unknown classification task '{objective}'")
X, y = make_blobs(n_samples=n_samples, centers=centers, random_state=42)
elif objective == 'regression':
X, y = make_regression(n_samples=n_samples, n_features=4, n_informative=2, random_state=42)
elif objective == 'ranking':
return _create_ranking_data(
n_samples=n_samples,
output=output,
chunk_size=chunk_size,
**kwargs
)
else:
raise ValueError(f"Unknown objective '{objective}'")
rnd = np.random.RandomState(42)
weights = rnd.random(X.shape[0]) * 0.01
if output == 'array':
dX = da.from_array(X, (chunk_size, X.shape[1]))
dy = da.from_array(y, chunk_size)
dw = da.from_array(weights, chunk_size)
elif output.startswith('dataframe'):
X_df = pd.DataFrame(X, columns=[f'feature_{i}' for i in range(X.shape[1])])
if output == 'dataframe-with-categorical':
num_cat_cols = 2
for i in range(num_cat_cols):
col_name = f"cat_col{i}"
cat_values = rnd.choice(['a', 'b'], X.shape[0])
cat_series = pd.Series(
cat_values,
dtype='category'
)
X_df[col_name] = cat_series
X = np.hstack((X, cat_series.cat.codes.values.reshape(-1, 1)))
# make one categorical feature relevant to the target
cat_col_is_a = X_df['cat_col0'] == 'a'
if objective == 'regression':
y = np.where(cat_col_is_a, y, 2 * y)
elif objective == 'binary-classification':
y = np.where(cat_col_is_a, y, 1 - y)
elif objective == 'multiclass-classification':
n_classes = 3
y = np.where(cat_col_is_a, y, (1 + y) % n_classes)
y_df = pd.Series(y, name='target')
dX = dd.from_pandas(X_df, chunksize=chunk_size)
dy = dd.from_pandas(y_df, chunksize=chunk_size)
dw = dd.from_array(weights, chunksize=chunk_size)
elif output == 'scipy_csr_matrix':
dX = da.from_array(X, chunks=(chunk_size, X.shape[1])).map_blocks(csr_matrix)
dy = da.from_array(y, chunks=chunk_size)
dw = da.from_array(weights, chunk_size)
X = csr_matrix(X)
elif output == 'scipy_csc_matrix':
dX = da.from_array(X, chunks=(chunk_size, X.shape[1])).map_blocks(csc_matrix)
dy = da.from_array(y, chunks=chunk_size)
dw = da.from_array(weights, chunk_size)
X = csc_matrix(X)
else:
raise ValueError(f"Unknown output type '{output}'")
return X, y, weights, None, dX, dy, dw, None
def _r2_score(dy_true, dy_pred):
numerator = ((dy_true - dy_pred) ** 2).sum(axis=0, dtype=np.float64)
denominator = ((dy_true - dy_true.mean(axis=0)) ** 2).sum(axis=0, dtype=np.float64)
return (1 - numerator / denominator).compute()
def _accuracy_score(dy_true, dy_pred):
return da.average(dy_true == dy_pred).compute()
def _constant_metric(y_true, y_pred):
metric_name = 'constant_metric'
value = 0.708
is_higher_better = False
return metric_name, value, is_higher_better
def _objective_least_squares(y_true, y_pred):
grad = y_pred - y_true
hess = np.ones(len(y_true))
return grad, hess
def _objective_logistic_regression(y_true, y_pred):
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
grad = y_pred - y_true
hess = y_pred * (1.0 - y_pred)
return grad, hess
@pytest.mark.parametrize('output', data_output)
@pytest.mark.parametrize('task', ['binary-classification', 'multiclass-classification'])
@pytest.mark.parametrize('boosting_type', boosting_types)
@pytest.mark.parametrize('tree_learner', distributed_training_algorithms)
def test_classifier(output, task, boosting_type, tree_learner, cluster):
with Client(cluster) as client:
X, y, w, _, dX, dy, dw, _ = _create_data(
objective=task,
output=output
)
params = {
"boosting_type": boosting_type,
"tree_learner": tree_learner,
"n_estimators": 50,
"num_leaves": 31
}
if boosting_type == 'rf':
params.update({
'bagging_freq': 1,
'bagging_fraction': 0.9,
})
elif boosting_type == 'goss':
params['top_rate'] = 0.5
dask_classifier = lgb.DaskLGBMClassifier(
client=client,
time_out=5,
**params
)
dask_classifier = dask_classifier.fit(dX, dy, sample_weight=dw)
p1 = dask_classifier.predict(dX)
p1_raw = dask_classifier.predict(dX, raw_score=True).compute()
p1_first_iter_raw = dask_classifier.predict(dX, start_iteration=0, num_iteration=1, raw_score=True).compute()
p1_early_stop_raw = dask_classifier.predict(
dX,
pred_early_stop=True,
pred_early_stop_margin=1.0,
pred_early_stop_freq=2,
raw_score=True
).compute()
p1_proba = dask_classifier.predict_proba(dX).compute()
p1_pred_leaf = dask_classifier.predict(dX, pred_leaf=True)
p1_local = dask_classifier.to_local().predict(X)
s1 = _accuracy_score(dy, p1)
p1 = p1.compute()
local_classifier = lgb.LGBMClassifier(**params)
local_classifier.fit(X, y, sample_weight=w)
p2 = local_classifier.predict(X)
p2_proba = local_classifier.predict_proba(X)
s2 = local_classifier.score(X, y)
if boosting_type == 'rf':
# https://github.com/microsoft/LightGBM/issues/4118
assert_eq(s1, s2, atol=0.01)
assert_eq(p1_proba, p2_proba, atol=0.8)
else:
assert_eq(s1, s2)
assert_eq(p1, p2)
assert_eq(p1, y)
assert_eq(p2, y)
assert_eq(p1_proba, p2_proba, atol=0.03)
assert_eq(p1_local, p2)
assert_eq(p1_local, y)
# extra predict() parameters should be passed through correctly
with pytest.raises(AssertionError):
assert_eq(p1_raw, p1_first_iter_raw)
with pytest.raises(AssertionError):
assert_eq(p1_raw, p1_early_stop_raw)
# pref_leaf values should have the right shape
# and values that look like valid tree nodes
pred_leaf_vals = p1_pred_leaf.compute()
assert pred_leaf_vals.shape == (
X.shape[0],
dask_classifier.booster_.num_trees()
)
assert np.max(pred_leaf_vals) <= params['num_leaves']
assert np.min(pred_leaf_vals) >= 0
assert len(np.unique(pred_leaf_vals)) <= params['num_leaves']
# be sure LightGBM actually used at least one categorical column,
# and that it was correctly treated as a categorical feature
if output == 'dataframe-with-categorical':
cat_cols = [
col for col in dX.columns
if dX.dtypes[col].name == 'category'
]
tree_df = dask_classifier.booster_.trees_to_dataframe()
node_uses_cat_col = tree_df['split_feature'].isin(cat_cols)
assert node_uses_cat_col.sum() > 0
assert tree_df.loc[node_uses_cat_col, "decision_type"].unique()[0] == '=='
@pytest.mark.parametrize('output', data_output + ['scipy_csc_matrix'])
@pytest.mark.parametrize('task', ['binary-classification', 'multiclass-classification'])
def test_classifier_pred_contrib(output, task, cluster):
with Client(cluster) as client:
X, y, w, _, dX, dy, dw, _ = _create_data(
objective=task,
output=output
)
params = {
"n_estimators": 10,
"num_leaves": 10
}
dask_classifier = lgb.DaskLGBMClassifier(
client=client,
time_out=5,
tree_learner='data',
**params
)
dask_classifier = dask_classifier.fit(dX, dy, sample_weight=dw)
preds_with_contrib = dask_classifier.predict(dX, pred_contrib=True)
local_classifier = lgb.LGBMClassifier(**params)
local_classifier.fit(X, y, sample_weight=w)
local_preds_with_contrib = local_classifier.predict(X, pred_contrib=True)
# shape depends on whether it is binary or multiclass classification
num_features = dask_classifier.n_features_
num_classes = dask_classifier.n_classes_
if num_classes == 2:
expected_num_cols = num_features + 1
else:
expected_num_cols = (num_features + 1) * num_classes
# in the special case of multi-class classification using scipy sparse matrices,
# the output of `.predict(..., pred_contrib=True)` is a list of sparse matrices (one per class)
#
# since that case is so different than all other cases, check the relevant things here
# and then return early
if output.startswith('scipy') and task == 'multiclass-classification':
if output == 'scipy_csr_matrix':
expected_type = csr_matrix
elif output == 'scipy_csc_matrix':
expected_type = csc_matrix
else:
raise ValueError(f"Unrecognized output type: {output}")
assert isinstance(preds_with_contrib, list)
assert all(isinstance(arr, da.Array) for arr in preds_with_contrib)
assert all(isinstance(arr._meta, expected_type) for arr in preds_with_contrib)
assert len(preds_with_contrib) == num_classes
assert len(preds_with_contrib) == len(local_preds_with_contrib)
for i in range(num_classes):
computed_preds = preds_with_contrib[i].compute()
assert isinstance(computed_preds, expected_type)
assert computed_preds.shape[1] == num_classes
assert computed_preds.shape == local_preds_with_contrib[i].shape
assert len(np.unique(computed_preds[:, -1])) == 1
# raw scores will probably be different, but at least check that all predicted classes are the same
pred_classes = np.argmax(computed_preds.toarray(), axis=1)
local_pred_classes = np.argmax(local_preds_with_contrib[i].toarray(), axis=1)
np.testing.assert_array_equal(pred_classes, local_pred_classes)
return
preds_with_contrib = preds_with_contrib.compute()
if output.startswith('scipy'):
preds_with_contrib = preds_with_contrib.toarray()
# be sure LightGBM actually used at least one categorical column,
# and that it was correctly treated as a categorical feature
if output == 'dataframe-with-categorical':
cat_cols = [
col for col in dX.columns
if dX.dtypes[col].name == 'category'
]
tree_df = dask_classifier.booster_.trees_to_dataframe()
node_uses_cat_col = tree_df['split_feature'].isin(cat_cols)
assert node_uses_cat_col.sum() > 0
assert tree_df.loc[node_uses_cat_col, "decision_type"].unique()[0] == '=='
# * shape depends on whether it is binary or multiclass classification
# * matrix for binary classification is of the form [feature_contrib, base_value],
# for multi-class it's [feat_contrib_class1, base_value_class1, feat_contrib_class2, base_value_class2, etc.]
# * contrib outputs for distributed training are different than from local training, so we can just test
# that the output has the right shape and base values are in the right position
assert preds_with_contrib.shape[1] == expected_num_cols
assert preds_with_contrib.shape == local_preds_with_contrib.shape
if num_classes == 2:
assert len(np.unique(preds_with_contrib[:, num_features])) == 1
else:
for i in range(num_classes):
base_value_col = num_features * (i + 1) + i
assert len(np.unique(preds_with_contrib[:, base_value_col]) == 1)
@pytest.mark.parametrize('output', data_output)
@pytest.mark.parametrize('task', ['binary-classification', 'multiclass-classification'])
def test_classifier_custom_objective(output, task, cluster):
with Client(cluster) as client:
X, y, w, _, dX, dy, dw, _ = _create_data(
objective=task,
output=output,
)
params = {
"n_estimators": 50,
"num_leaves": 31,
"verbose": -1,
"seed": 708,
"deterministic": True,
"force_col_wise": True
}
if task == 'binary-classification':
params.update({
'objective': _objective_logistic_regression,
})
elif task == 'multiclass-classification':
params.update({
'objective': sklearn_multiclass_custom_objective,
'num_classes': 3
})
dask_classifier = lgb.DaskLGBMClassifier(
client=client,
time_out=5,
tree_learner='data',
**params
)
dask_classifier = dask_classifier.fit(dX, dy, sample_weight=dw)
dask_classifier_local = dask_classifier.to_local()
p1_raw = dask_classifier.predict(dX, raw_score=True).compute()
p1_raw_local = dask_classifier_local.predict(X, raw_score=True)
local_classifier = lgb.LGBMClassifier(**params)
local_classifier.fit(X, y, sample_weight=w)
p2_raw = local_classifier.predict(X, raw_score=True)
# with a custom objective, prediction result is a raw score instead of predicted class
if task == 'binary-classification':
p1_proba = 1.0 / (1.0 + np.exp(-p1_raw))
p1_class = (p1_proba > 0.5).astype(np.int64)
p1_proba_local = 1.0 / (1.0 + np.exp(-p1_raw_local))
p1_class_local = (p1_proba_local > 0.5).astype(np.int64)
p2_proba = 1.0 / (1.0 + np.exp(-p2_raw))
p2_class = (p2_proba > 0.5).astype(np.int64)
elif task == 'multiclass-classification':
p1_proba = np.exp(p1_raw) / np.sum(np.exp(p1_raw), axis=1).reshape(-1, 1)
p1_class = p1_proba.argmax(axis=1)
p1_proba_local = np.exp(p1_raw_local) / np.sum(np.exp(p1_raw_local), axis=1).reshape(-1, 1)
p1_class_local = p1_proba_local.argmax(axis=1)
p2_proba = np.exp(p2_raw) / np.sum(np.exp(p2_raw), axis=1).reshape(-1, 1)
p2_class = p2_proba.argmax(axis=1)
# function should have been preserved
assert callable(dask_classifier.objective_)
assert callable(dask_classifier_local.objective_)
# should correctly classify every sample
assert_eq(p1_class, y)
assert_eq(p1_class_local, y)
assert_eq(p2_class, y)
# probability estimates should be similar
assert_eq(p1_proba, p2_proba, atol=0.03)
assert_eq(p1_proba, p1_proba_local)
def test_group_workers_by_host():
hosts = [f'0.0.0.{i}' for i in range(2)]
workers = [f'tcp://{host}:{p}' for p in range(2) for host in hosts]
expected = {
host: lgb.dask._HostWorkers(
default=f'tcp://{host}:0',
all=[f'tcp://{host}:0', f'tcp://{host}:1']
)
for host in hosts
}
host_to_workers = lgb.dask._group_workers_by_host(workers)
assert host_to_workers == expected
def test_group_workers_by_host_unparseable_host_names():
workers_without_protocol = ['0.0.0.1:80', '0.0.0.2:80']
with pytest.raises(ValueError, match="Could not parse host name from worker address '0.0.0.1:80'"):
lgb.dask._group_workers_by_host(workers_without_protocol)
def test_machines_to_worker_map_unparseable_host_names():
workers = {'0.0.0.1:80': {}, '0.0.0.2:80': {}}
machines = "0.0.0.1:80,0.0.0.2:80"
with pytest.raises(ValueError, match="Could not parse host name from worker address '0.0.0.1:80'"):
lgb.dask._machines_to_worker_map(machines=machines, worker_addresses=workers.keys())
def test_assign_open_ports_to_workers(cluster):
with Client(cluster) as client:
workers = client.scheduler_info()['workers'].keys()
n_workers = len(workers)
host_to_workers = lgb.dask._group_workers_by_host(workers)
for _ in range(25):
worker_address_to_port = lgb.dask._assign_open_ports_to_workers(client, host_to_workers)
found_ports = worker_address_to_port.values()
assert len(found_ports) == n_workers
# check that found ports are different for same address (LocalCluster)
assert len(set(found_ports)) == len(found_ports)
# check that the ports are indeed open
for port in found_ports:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('', port))
def test_training_does_not_fail_on_port_conflicts(cluster):
with Client(cluster) as client:
_, _, _, _, dX, dy, dw, _ = _create_data('binary-classification', output='array')
lightgbm_default_port = 12400
workers_hostname = _get_workers_hostname(cluster)
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((workers_hostname, lightgbm_default_port))
dask_classifier = lgb.DaskLGBMClassifier(
client=client,
time_out=5,
n_estimators=5,
num_leaves=5
)
for _ in range(5):
dask_classifier.fit(
X=dX,
y=dy,
sample_weight=dw,
)
assert dask_classifier.booster_
@pytest.mark.parametrize('output', data_output)
@pytest.mark.parametrize('boosting_type', boosting_types)
@pytest.mark.parametrize('tree_learner', distributed_training_algorithms)
def test_regressor(output, boosting_type, tree_learner, cluster):
with Client(cluster) as client:
X, y, w, _, dX, dy, dw, _ = _create_data(
objective='regression',
output=output
)
params = {
"boosting_type": boosting_type,
"random_state": 42,
"num_leaves": 31,
"n_estimators": 20,
}
if boosting_type == 'rf':
params.update({
'bagging_freq': 1,
'bagging_fraction': 0.9,
})
dask_regressor = lgb.DaskLGBMRegressor(
client=client,
time_out=5,
tree=tree_learner,
**params
)
dask_regressor = dask_regressor.fit(dX, dy, sample_weight=dw)
p1 = dask_regressor.predict(dX)
p1_pred_leaf = dask_regressor.predict(dX, pred_leaf=True)
s1 = _r2_score(dy, p1)
p1 = p1.compute()
p1_raw = dask_regressor.predict(dX, raw_score=True).compute()
p1_first_iter_raw = dask_regressor.predict(dX, start_iteration=0, num_iteration=1, raw_score=True).compute()
p1_local = dask_regressor.to_local().predict(X)
s1_local = dask_regressor.to_local().score(X, y)
local_regressor = lgb.LGBMRegressor(**params)
local_regressor.fit(X, y, sample_weight=w)
s2 = local_regressor.score(X, y)
p2 = local_regressor.predict(X)
# Scores should be the same
assert_eq(s1, s2, atol=0.01)
assert_eq(s1, s1_local)
# Predictions should be roughly the same.
assert_eq(p1, p1_local)
# pref_leaf values should have the right shape
# and values that look like valid tree nodes
pred_leaf_vals = p1_pred_leaf.compute()
assert pred_leaf_vals.shape == (
X.shape[0],
dask_regressor.booster_.num_trees()
)
assert np.max(pred_leaf_vals) <= params['num_leaves']
assert np.min(pred_leaf_vals) >= 0
assert len(np.unique(pred_leaf_vals)) <= params['num_leaves']
assert_eq(p1, y, rtol=0.5, atol=50.)
assert_eq(p2, y, rtol=0.5, atol=50.)
# extra predict() parameters should be passed through correctly
with pytest.raises(AssertionError):
assert_eq(p1_raw, p1_first_iter_raw)
# be sure LightGBM actually used at least one categorical column,
# and that it was correctly treated as a categorical feature
if output == 'dataframe-with-categorical':
cat_cols = [
col for col in dX.columns
if dX.dtypes[col].name == 'category'
]
tree_df = dask_regressor.booster_.trees_to_dataframe()
node_uses_cat_col = tree_df['split_feature'].isin(cat_cols)
assert node_uses_cat_col.sum() > 0
assert tree_df.loc[node_uses_cat_col, "decision_type"].unique()[0] == '=='
@pytest.mark.parametrize('output', data_output)
def test_regressor_pred_contrib(output, cluster):
with Client(cluster) as client:
X, y, w, _, dX, dy, dw, _ = _create_data(
objective='regression',
output=output
)
params = {
"n_estimators": 10,
"num_leaves": 10
}
dask_regressor = lgb.DaskLGBMRegressor(
client=client,
time_out=5,
tree_learner='data',
**params
)
dask_regressor = dask_regressor.fit(dX, dy, sample_weight=dw)
preds_with_contrib = dask_regressor.predict(dX, pred_contrib=True).compute()
local_regressor = lgb.LGBMRegressor(**params)
local_regressor.fit(X, y, sample_weight=w)
local_preds_with_contrib = local_regressor.predict(X, pred_contrib=True)
if output == "scipy_csr_matrix":
preds_with_contrib = preds_with_contrib.toarray()
# contrib outputs for distributed training are different than from local training, so we can just test
# that the output has the right shape and base values are in the right position
num_features = dX.shape[1]
assert preds_with_contrib.shape[1] == num_features + 1
assert preds_with_contrib.shape == local_preds_with_contrib.shape
# be sure LightGBM actually used at least one categorical column,
# and that it was correctly treated as a categorical feature
if output == 'dataframe-with-categorical':
cat_cols = [
col for col in dX.columns
if dX.dtypes[col].name == 'category'
]
tree_df = dask_regressor.booster_.trees_to_dataframe()
node_uses_cat_col = tree_df['split_feature'].isin(cat_cols)
assert node_uses_cat_col.sum() > 0
assert tree_df.loc[node_uses_cat_col, "decision_type"].unique()[0] == '=='
@pytest.mark.parametrize('output', data_output)
@pytest.mark.parametrize('alpha', [.1, .5, .9])
def test_regressor_quantile(output, alpha, cluster):
with Client(cluster) as client:
X, y, w, _, dX, dy, dw, _ = _create_data(
objective='regression',
output=output
)
params = {
"objective": "quantile",
"alpha": alpha,
"random_state": 42,
"n_estimators": 10,
"num_leaves": 10
}
dask_regressor = lgb.DaskLGBMRegressor(
client=client,
tree_learner_type='data_parallel',
**params
)
dask_regressor = dask_regressor.fit(dX, dy, sample_weight=dw)
p1 = dask_regressor.predict(dX).compute()
q1 = np.count_nonzero(y < p1) / y.shape[0]
local_regressor = lgb.LGBMRegressor(**params)
local_regressor.fit(X, y, sample_weight=w)
p2 = local_regressor.predict(X)
q2 = np.count_nonzero(y < p2) / y.shape[0]
# Quantiles should be right
np.testing.assert_allclose(q1, alpha, atol=0.2)
np.testing.assert_allclose(q2, alpha, atol=0.2)
# be sure LightGBM actually used at least one categorical column,
# and that it was correctly treated as a categorical feature
if output == 'dataframe-with-categorical':
cat_cols = [
col for col in dX.columns
if dX.dtypes[col].name == 'category'
]
tree_df = dask_regressor.booster_.trees_to_dataframe()
node_uses_cat_col = tree_df['split_feature'].isin(cat_cols)
assert node_uses_cat_col.sum() > 0
assert tree_df.loc[node_uses_cat_col, "decision_type"].unique()[0] == '=='
@pytest.mark.parametrize('output', data_output)
def test_regressor_custom_objective(output, cluster):
with Client(cluster) as client:
X, y, w, _, dX, dy, dw, _ = _create_data(
objective='regression',
output=output
)
params = {
"n_estimators": 10,
"num_leaves": 10,
"objective": _objective_least_squares
}
dask_regressor = lgb.DaskLGBMRegressor(
client=client,
time_out=5,
tree_learner='data',
**params
)
dask_regressor = dask_regressor.fit(dX, dy, sample_weight=dw)
dask_regressor_local = dask_regressor.to_local()
p1 = dask_regressor.predict(dX)
p1_local = dask_regressor_local.predict(X)
s1_local = dask_regressor_local.score(X, y)
s1 = _r2_score(dy, p1)
p1 = p1.compute()
local_regressor = lgb.LGBMRegressor(**params)
local_regressor.fit(X, y, sample_weight=w)
p2 = local_regressor.predict(X)
s2 = local_regressor.score(X, y)
# function should have been preserved
assert callable(dask_regressor.objective_)
assert callable(dask_regressor_local.objective_)
# Scores should be the same
assert_eq(s1, s2, atol=0.01)
assert_eq(s1, s1_local)
# local and Dask predictions should be the same
assert_eq(p1, p1_local)
# predictions should be better than random
assert_precision = {"rtol": 0.5, "atol": 50.}
assert_eq(p1, y, **assert_precision)
assert_eq(p2, y, **assert_precision)
@pytest.mark.parametrize('output', ['array', 'dataframe', 'dataframe-with-categorical'])
@pytest.mark.parametrize('group', [None, group_sizes])
@pytest.mark.parametrize('boosting_type', boosting_types)
@pytest.mark.parametrize('tree_learner', distributed_training_algorithms)
def test_ranker(output, group, boosting_type, tree_learner, cluster):
with Client(cluster) as client:
if output == 'dataframe-with-categorical':
X, y, w, g, dX, dy, dw, dg = _create_data(
objective='ranking',
output=output,
group=group,
n_features=1,
n_informative=1
)
else:
X, y, w, g, dX, dy, dw, dg = _create_data(
objective='ranking',
output=output,
group=group
)
# rebalance small dask.Array dataset for better performance.
if output == 'array':
dX = dX.persist()
dy = dy.persist()
dw = dw.persist()
dg = dg.persist()
_ = wait([dX, dy, dw, dg])
client.rebalance()
# use many trees + leaves to overfit, help ensure that Dask data-parallel strategy matches that of
# serial learner. See https://github.com/microsoft/LightGBM/issues/3292#issuecomment-671288210.
params = {
"boosting_type": boosting_type,
"random_state": 42,
"n_estimators": 50,
"num_leaves": 20,
"min_child_samples": 1
}
if boosting_type == 'rf':
params.update({
'bagging_freq': 1,
'bagging_fraction': 0.9,
})
dask_ranker = lgb.DaskLGBMRanker(
client=client,
time_out=5,
tree_learner_type=tree_learner,
**params
)
dask_ranker = dask_ranker.fit(dX, dy, sample_weight=dw, group=dg)
rnkvec_dask = dask_ranker.predict(dX)
rnkvec_dask = rnkvec_dask.compute()
p1_pred_leaf = dask_ranker.predict(dX, pred_leaf=True)
p1_raw = dask_ranker.predict(dX, raw_score=True).compute()
p1_first_iter_raw = dask_ranker.predict(dX, start_iteration=0, num_iteration=1, raw_score=True).compute()
p1_early_stop_raw = dask_ranker.predict(
dX,
pred_early_stop=True,
pred_early_stop_margin=1.0,
pred_early_stop_freq=2,
raw_score=True
).compute()
rnkvec_dask_local = dask_ranker.to_local().predict(X)
local_ranker = lgb.LGBMRanker(**params)
local_ranker.fit(X, y, sample_weight=w, group=g)
rnkvec_local = local_ranker.predict(X)
# distributed ranker should be able to rank decently well and should
# have high rank correlation with scores from serial ranker.
dcor = spearmanr(rnkvec_dask, y).correlation
assert dcor > 0.6
assert spearmanr(rnkvec_dask, rnkvec_local).correlation > 0.8
assert_eq(rnkvec_dask, rnkvec_dask_local)
# extra predict() parameters should be passed through correctly
with pytest.raises(AssertionError):
assert_eq(p1_raw, p1_first_iter_raw)
with pytest.raises(AssertionError):
assert_eq(p1_raw, p1_early_stop_raw)
# pref_leaf values should have the right shape
# and values that look like valid tree nodes
pred_leaf_vals = p1_pred_leaf.compute()
assert pred_leaf_vals.shape == (
X.shape[0],
dask_ranker.booster_.num_trees()
)
assert np.max(pred_leaf_vals) <= params['num_leaves']
assert np.min(pred_leaf_vals) >= 0
assert len(np.unique(pred_leaf_vals)) <= params['num_leaves']
# be sure LightGBM actually used at least one categorical column,
# and that it was correctly treated as a categorical feature
if output == 'dataframe-with-categorical':
cat_cols = [
col for col in dX.columns
if dX.dtypes[col].name == 'category'
]
tree_df = dask_ranker.booster_.trees_to_dataframe()
node_uses_cat_col = tree_df['split_feature'].isin(cat_cols)
assert node_uses_cat_col.sum() > 0
assert tree_df.loc[node_uses_cat_col, "decision_type"].unique()[0] == '=='
@pytest.mark.parametrize('output', ['array', 'dataframe', 'dataframe-with-categorical'])
def test_ranker_custom_objective(output, cluster):
with Client(cluster) as client:
if output == 'dataframe-with-categorical':
X, y, w, g, dX, dy, dw, dg = _create_data(
objective='ranking',
output=output,
group=group_sizes,
n_features=1,
n_informative=1
)
else:
X, y, w, g, dX, dy, dw, dg = _create_data(
objective='ranking',
output=output,
group=group_sizes
)
# rebalance small dask.Array dataset for better performance.
if output == 'array':
dX = dX.persist()
dy = dy.persist()
dw = dw.persist()
dg = dg.persist()
_ = wait([dX, dy, dw, dg])
client.rebalance()
params = {
"random_state": 42,
"n_estimators": 50,
"num_leaves": 20,
"min_child_samples": 1,
"objective": _objective_least_squares
}
dask_ranker = lgb.DaskLGBMRanker(
client=client,
time_out=5,
tree_learner_type="data",
**params
)
dask_ranker = dask_ranker.fit(dX, dy, sample_weight=dw, group=dg)
rnkvec_dask = dask_ranker.predict(dX).compute()
dask_ranker_local = dask_ranker.to_local()
rnkvec_dask_local = dask_ranker_local.predict(X)
local_ranker = lgb.LGBMRanker(**params)
local_ranker.fit(X, y, sample_weight=w, group=g)
rnkvec_local = local_ranker.predict(X)
# distributed ranker should be able to rank decently well with the least-squares objective
# and should have high rank correlation with scores from serial ranker.
assert spearmanr(rnkvec_dask, y).correlation > 0.6
assert spearmanr(rnkvec_dask, rnkvec_local).correlation > 0.8
assert_eq(rnkvec_dask, rnkvec_dask_local)
# function should have been preserved
assert callable(dask_ranker.objective_)
assert callable(dask_ranker_local.objective_)
@pytest.mark.parametrize('task', tasks)
@pytest.mark.parametrize('output', data_output)
@pytest.mark.parametrize('eval_sizes', [[0.5, 1, 1.5], [0]])
@pytest.mark.parametrize('eval_names_prefix', ['specified', None])
def test_eval_set_no_early_stopping(task, output, eval_sizes, eval_names_prefix, cluster):
if task == 'ranking' and output == 'scipy_csr_matrix':
pytest.skip('LGBMRanker is not currently tested on sparse matrices')
with Client(cluster) as client:
# Use larger trainset to prevent premature stopping due to zero loss, causing num_trees() < n_estimators.
# Use small chunk_size to avoid single-worker allocation of eval data partitions.
n_samples = 1000
chunk_size = 10
n_eval_sets = len(eval_sizes)
eval_set = []
eval_sample_weight = []
eval_class_weight = None
eval_init_score = None
if eval_names_prefix:
eval_names = [f'{eval_names_prefix}_{i}' for i in range(len(eval_sizes))]
else:
eval_names = None