-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
241 lines (197 loc) · 9.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python3
import argparse
import gym
import time
import datetime
import torch
import torch_rl
import sys
import multiprocessing
try:
import gym_minigrid
except ImportError:
pass
import utils
from model import ACModel
# Parse arguments
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--algo", required=True,
help="algorithm to use: a2c | ppo (REQUIRED)")
parser.add_argument("--env", required=True,
help="name of the environment to train on (REQUIRED)")
parser.add_argument("--model", default=None,
help="name of the model (default: {ENV}_{ALGO}_{TIME})")
parser.add_argument("--seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--procs", type=int, default=16,
help="number of processes (default: 16)")
parser.add_argument("--frames", type=int, default=10**7,
help="number of frames of training (default: 10e7)")
parser.add_argument("--log-interval", type=int, default=1,
help="number of updates between two logs (default: 1)")
parser.add_argument("--save-interval", type=int, default=0,
help="number of updates between two saves (default: 0, 0 means no saving)")
parser.add_argument("--tb", action="store_true", default=False,
help="log into Tensorboard")
parser.add_argument("--frames-per-proc", type=int, default=None,
help="number of frames per process before update (default: 5 for A2C and 128 for PPO)")
parser.add_argument("--discount", type=float, default=0.99,
help="discount factor (default: 0.99)")
parser.add_argument("--lr", type=float, default=7e-4,
help="learning rate for optimizers (default: 7e-4)")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="lambda coefficient in GAE formula (default: 0.95, 1 means no gae)")
parser.add_argument("--entropy-coef", type=float, default=0.01,
help="entropy term coefficient (default: 0.01)")
parser.add_argument("--value-loss-coef", type=float, default=0.5,
help="value loss term coefficient (default: 0.5)")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="maximum norm of gradient (default: 0.5)")
parser.add_argument("--optim-eps", type=float, default=1e-5,
help="Adam and RMSprop optimizer epsilon (default: 1e-5)")
parser.add_argument("--optim-alpha", type=float, default=0.99,
help="RMSprop optimizer apha (default: 0.99)")
parser.add_argument("--clip-eps", type=float, default=0.2,
help="clipping epsilon for PPO (default: 0.2)")
parser.add_argument("--epochs", type=int, default=4,
help="number of epochs for PPO (default: 4)")
parser.add_argument("--batch-size", type=int, default=256,
help="batch size for PPO (default: 256)")
parser.add_argument("--recurrence", type=int, default=1,
help="number of timesteps gradient is backpropagated (default: 1)\nIf > 1, a LSTM is added to the model to have memory")
parser.add_argument("--text", action="store_true", default=False,
help="add a GRU to the model to handle text input")
parser.add_argument("--fullObs", action="store_true", default=False,
help="Pass in the fully observable grid ")
parser.add_argument("--POfullObs", action="store_true", default=False,
help="Pass in the full grid but with partial observable view")
parser.add_argument("--model_type", type=str, default="default",
help="Model type in ['default', 'double_pooling'")
parser.add_argument("--use_bottleneck", action="store_true", default=False,
help="Whether to use a variational information bottleneck in the architecture")
parser.add_argument("--use_l2a", action="store_true", default=False,
help="Whether to use a L2 norm on the activations")
parser.add_argument("--use_l2w", action="store_true", default=False,
help="Whether to use a L2 norm on the weights")
parser.add_argument("--use_bn", action="store_true", default=False,
help="Whether to use BatchNorm in CNN")
parser.add_argument("--use_dropout", type=float, default=0,
help="Dropout probability. Must be 0 when use_bottleneck==True")
parser.add_argument("--beta", type=float, default=1.,
help="Weight of the Kl divergence (bottleneck) or L2A")
parser.add_argument("--sni_type", type=str, default=None,
help="Either None, 'vib', or 'dropout'")
args = parser.parse_args()
assert args.sni_type is None or args.sni_type in ['vib', 'dropout']
# Define run dir
if __name__ == '__main__':
multiprocessing.set_start_method("fork")
suffix = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
default_model_name = "{}_{}_seed{}_{}".format(args.env, args.algo, args.seed, suffix)
model_name = args.model or default_model_name
model_dir = utils.get_model_dir(model_name)
# Define logger, CSV writer and Tensorboard writer
logger = utils.get_logger(model_dir)
csv_file, csv_writer = utils.get_csv_writer(model_dir)
if args.tb:
from tensorboardX import SummaryWriter
tb_writer = SummaryWriter(model_dir)
# Log command and all script arguments
logger.info("{}\n".format(" ".join(sys.argv)))
logger.info("{}\n".format(args))
# Set seed for all randomness sources
utils.seed(args.seed)
# Generate environments
envs = []
for i in range(args.procs):
env = gym.make(args.env)
env.seed(args.seed + 10000*i)
if args.fullObs:
env = gym_minigrid.wrappers.FullyObsWrapper(env)
elif args.POfullObs:
env = gym_minigrid.wrappers.PartialObsFullGridWrapper(env)
envs.append(env)
# Define obss preprocessor
obs_space, preprocess_obss = utils.get_obss_preprocessor(args.env, envs[0].observation_space, model_dir)
# Load training status
try:
status = utils.load_status(model_dir)
except OSError:
status = {"num_frames": 0, "update": 0}
# Define actor-critic model
try:
acmodel = utils.load_model(model_dir)
logger.info("Model successfully loaded\n")
except OSError:
acmodel = ACModel(obs_space, envs[0].action_space, args.model_type,
use_bottleneck=args.use_bottleneck, dropout=args.use_dropout, use_l2a=args.use_l2a,
use_bn=args.use_bn, sni_type=args.sni_type)
logger.info("Model successfully created\n")
logger.info("{}\n".format(acmodel))
if torch.cuda.is_available():
acmodel.cuda()
logger.info("CUDA available: {}\n".format(torch.cuda.is_available()))
# Define actor-critic algo
# a2c does not yet support the bottleneck
assert args.algo == "ppo"
if args.algo == "a2c":
algo = torch_rl.A2CAlgo(envs, acmodel, args.frames_per_proc, args.discount, args.lr, args.gae_lambda,
args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
args.optim_alpha, args.optim_eps, preprocess_obss)
raise NotImplementedError()
elif args.algo == "ppo":
algo = torch_rl.PPOAlgo(envs, acmodel, args.frames_per_proc, args.discount, args.lr, args.gae_lambda,
args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
args.optim_eps, args.clip_eps, args.epochs, args.batch_size, preprocess_obss,
beta=args.beta, use_l2w=args.use_l2w, sni_type=args.sni_type)
else:
raise ValueError("Incorrect algorithm name: {}".format(args.algo))
# Train model
num_frames = status["num_frames"]
total_start_time = time.time()
update = status["update"]
while num_frames < args.frames:
# Update model parameters
update_start_time = time.time()
logs = algo.update_parameters()
update_end_time = time.time()
num_frames += logs["num_frames"]
update += 1
# Print logs
if update % args.log_interval == 0:
fps = logs["num_frames"]/(update_end_time - update_start_time)
duration = int(time.time() - total_start_time)
return_per_episode = utils.synthesize(logs["return_per_episode"])
rreturn_per_episode = utils.synthesize(logs["reshaped_return_per_episode"])
num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"])
header = ["update", "frames", "FPS", "duration"]
data = [update, num_frames, fps, duration]
header += ["rreturn_" + key for key in rreturn_per_episode.keys()]
data += rreturn_per_episode.values()
header += ["num_frames_" + key for key in num_frames_per_episode.keys()]
data += num_frames_per_episode.values()
header += ["entropy", "value", "policy_loss", "value_loss", "grad_norm", "kl"]
data += [logs["entropy"], logs["value"], logs["policy_loss"], logs["value_loss"], logs["grad_norm"], logs["kl"]]
logger.info(
"U {} | F {:06} | FPS {:04.0f} | D {} | rR:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | pL {:.3f} | vL {:.3f} | ∇ {:.3f}"
.format(*data))
header += ["return_" + key for key in return_per_episode.keys()]
data += return_per_episode.values()
if status["num_frames"] == 0:
csv_writer.writerow(header)
csv_writer.writerow(data)
csv_file.flush()
if args.tb:
for field, value in zip(header, data):
tb_writer.add_scalar(field, value, num_frames)
status = {"num_frames": num_frames, "update": update}
# Save vocabulary and model
if args.save_interval > 0 and update % args.save_interval == 0:
preprocess_obss.vocab.save()
if torch.cuda.is_available():
acmodel.cpu()
utils.save_model(acmodel, model_dir)
logger.info("Model successfully saved")
if torch.cuda.is_available():
acmodel.cuda()
utils.save_status(status, model_dir)