-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathparameter_offload.py
513 lines (402 loc) · 21.4 KB
/
parameter_offload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import sys
import torch
from collections import OrderedDict
from deepspeed.runtime.utils import see_memory_usage
from deepspeed.runtime.zero.offload_config import OffloadDeviceEnum
from deepspeed.runtime.zero.partition_parameters import _init_external_params
from deepspeed.runtime.zero.partition_parameters import *
from deepspeed.runtime.zero.partitioned_param_coordinator import PartitionedParameterCoordinator, iter_params
from deepspeed import comm as dist
from deepspeed.accelerator import get_accelerator
FWD_MODULE_STACK = list()
def is_builtin_type(obj):
# https://stackoverflow.com/a/17795199
return obj.__class__.__module__ == '__builtin__' or obj.__class__.__module__ == "builtins"
def isinstance_namedtuple(obj: object) -> bool:
"""
Is this an instance of namedtuple/NamedTuple?
From: https://stackoverflow.com/a/62692640
Args:
obj (object): An object.
Returns:
bool: True if namedtuple/NamedTuple else False.
"""
return isinstance(obj, tuple) and hasattr(obj, '_asdict') and hasattr(obj, '_fields')
# ensure we only warn once, otherwise every iteration will trigger a warning
warned = False
def _apply_to_tensors_only(module, functional, backward_function, outputs):
"""
Apply a torch.autograd.Function that calls a `backward_function` to every Tensor in `outputs`.
Args:
module (torch.nn.Module): A torch module
functional (Type[torch.autograd.Function]): The function class to apply.
backward_function (Callable[[torch.nn.Module], None]): A backward_function to pass to
`functional.apply`.
outputs (Any): The output of `module`.
Returns:
Any: The output of `module`.
"""
if isinstance(outputs, (tuple, list)):
touched_outputs = []
for output in outputs:
touched_output = _apply_to_tensors_only(module, functional, backward_function, output)
touched_outputs.append(touched_output)
if isinstance_namedtuple(outputs):
# namedtuples require a slightly different syntax.
return outputs.__class__(*touched_outputs)
return outputs.__class__(touched_outputs)
elif isinstance(outputs, dict):
# apply inplace to avoid recreating dict inherited objects
for key in outputs.keys():
outputs[key] = _apply_to_tensors_only(module, functional, backward_function, outputs[key])
return outputs
elif isinstance(outputs, torch.Tensor):
# this also applies to torch.Tensor's subclasses like torch.nn.parameter.Parameter
touched_outputs = functional.apply(module, backward_function, outputs)
# restore zero param attributes if those get stripped by `backward_function`
if not is_zero_param(touched_outputs) and is_zero_param(outputs):
touched_outputs.ds_param_alias = outputs
return touched_outputs
else:
if not is_builtin_type(outputs):
global warned
if not warned and dist.get_rank() == 0:
logger.warning(
f"A module has unknown inputs or outputs type ({type(outputs)}) and the tensors embedded in it cannot be detected. "
"The ZeRO-3 hooks designed to trigger before or after backward pass of the module relies on knowing the input and "
"output tensors and therefore may not get triggered properly.")
warned = True
return outputs
#for each tensor in outputs run the forward_function and register backward_function as hook
def _apply_forward_and_backward_to_tensors_only(module, forward_function, backward_function, outputs):
if type(outputs) is tuple:
touched_outputs = []
for output in outputs:
touched_output = _apply_forward_and_backward_to_tensors_only(module, forward_function, backward_function,
output)
touched_outputs.append(touched_output)
return tuple(touched_outputs)
elif type(outputs) is torch.Tensor:
forward_function(outputs)
if outputs.requires_grad:
outputs.register_hook(backward_function)
return outputs
else:
return outputs
class ZeROOrderedDict(OrderedDict):
def __init__(self, parent_module, *args, **kwargs):
"""A replacement for ``collections.OrderedDict`` to detect external ZeRO params.
Args:
parent_module (``collections.OrderedDict``): the collection to replace
"""
super().__init__(*args, **kwargs)
self._parent_module = parent_module
self._in_forward = False
def __getitem__(self, key):
param = super().__getitem__(key)
# Params can be registered as None (e.g., bias)
if param is None:
return param
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if self._parent_module._parameters._in_forward:
register_external_parameter(FWD_MODULE_STACK[-1], param)
param.all_gather()
print_rank_0(f'Registering external parameter from getter {key} ds_id = {param.ds_id}', force=False)
return param
def _inject_parameters(module, cls):
for module in module.modules():
if cls == ZeROOrderedDict:
new_param = cls(parent_module=module)
else:
new_param = cls()
for key, param in module._parameters.items():
new_param[key] = param
module._parameters = new_param
class PreBackwardFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, module, pre_backward_function, outputs):
ctx.module = module
ctx.pre_backward_function = pre_backward_function
if not hasattr(module, "applied_pre_backward_ref_cnt"):
module.applied_pre_backward_ref_cnt = 0
module.applied_pre_backward_ref_cnt += 1
#print(f"After Forward: {ctx.module.__class__.__name__}")
outputs = outputs.detach()
return outputs
@staticmethod
def backward(ctx, *args):
#print(f"Before Backward: {ctx.module.__class__.__name__}")
ctx.pre_backward_function(ctx.module)
return (None, None) + args
class PostBackwardFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, module, pre_backward_function, output):
ctx.module = module
if output.requires_grad:
#TODO SOME TIMES post backward does not seem to be triggered debug in detail
#Should only cause increase in memory not correctness issue
#if output.grad_fn.__class__.__name__ == 'ViewBackward':
# ctx.view=True
# print(f"Warning view tensor for input to module : {module.__class__.__name__}. Backward hooks may not trigger properly")
#assert len(module.parameters(recurse=False)), "The input tensor to the module is a view, and autograd Function or register_hook is not triggered with view tensors."
#if module.ds_grads_remaining == 0:
# print(f"Before Forward: {ctx.module.__class__.__name__}")
module.ds_grads_remaining += 1
ctx.pre_backward_function = pre_backward_function
output = output.detach()
return output
@staticmethod
def backward(ctx, *args):
ctx.module.ds_grads_remaining = ctx.module.ds_grads_remaining - 1
if ctx.module.ds_grads_remaining == 0:
ctx.pre_backward_function(ctx.module)
#print(f"After Backward: {ctx.module.__class__.__name__}")
return (None, None) + args
class DeepSpeedZeRoOffload(object):
def __init__(self,
module,
timers,
ds_config,
overlap_comm=True,
prefetch_bucket_size=50000000,
max_reuse_distance=1000000000,
max_live_parameters=1000000000,
param_persistence_threshold=100000,
model_persistence_threshold=sys.maxsize,
offload_param_config=None,
mpu=None):
see_memory_usage("DeepSpeedZeRoOffload initialize [begin]", force=True)
print_rank_0(f"initialized {__class__.__name__} with args: {locals()}", force=False)
self.module = module
self.dtype = list(module.parameters())[0].dtype
self.offload_device = None
self.offload_param_pin_memory = False
if offload_param_config is not None and offload_param_config.device != OffloadDeviceEnum.none:
self.offload_device = offload_param_config.device
self.offload_param_pin_memory = offload_param_config.pin_memory
self._convert_to_zero_parameters(ds_config, module, mpu)
for m in module.modules():
_init_external_params(m)
_inject_parameters(module, ZeROOrderedDict)
self.param_numel_persistence_threshold = int(param_persistence_threshold)
self.model_persistence_threshold = int(model_persistence_threshold)
self.persistent_parameters = self.mark_persistent_parameters(self.param_numel_persistence_threshold,
self.model_persistence_threshold)
self.param_coordinators = {}
self._prefetch_bucket_sz = int(prefetch_bucket_size)
self._max_reuse_distance_in_numel = int(max_reuse_distance)
self._max_available_parameters_in_numel = int(max_live_parameters)
self.__allgather_stream = get_accelerator().Stream() if overlap_comm else get_accelerator().default_stream()
self.forward_hooks = []
self.backward_hooks = []
self.setup_zero_stage3_hooks()
print_rank_0(
f'Created module hooks: forward = {len(self.forward_hooks)}, backward = {len(self.backward_hooks)}',
force=False)
see_memory_usage("DeepSpeedZeRoOffload initialize [end]", force=True)
@instrument_w_nvtx
def partition_all_parameters(self):
"""Partitioning Parameters that were not partitioned usually if parameters
of modules whose input parameters do not require grad computation do not
trigger post call and will therefore will remain unpartitioned"""
self.get_param_coordinator(training=self.module.training).release_and_reset_all(self.module)
for param in iter_params(self.module, recurse=True):
if param.ds_status != ZeroParamStatus.NOT_AVAILABLE:
raise RuntimeError(f"{param.ds_summary()} expected to be released")
def get_param_coordinator(self, training):
if not training in self.param_coordinators:
self.param_coordinators[training] = PartitionedParameterCoordinator(
prefetch_bucket_sz=self._prefetch_bucket_sz,
max_reuse_distance_in_numel=self._max_reuse_distance_in_numel,
max_available_parameters_in_numel=self._max_available_parameters_in_numel,
allgather_stream=self.__allgather_stream,
prefetch_nvme=self.offload_device == OffloadDeviceEnum.nvme,
)
return self.param_coordinators[training]
def empty_partition_cache(self):
self.partition_all_parameters()
def _convert_to_zero_parameters(self, ds_config, module, mpu):
non_zero_params = [p for p in module.parameters() if not is_zero_param(p)]
if non_zero_params:
zero_params = [p for p in module.parameters() if is_zero_param(p)]
if zero_params:
zero_params[0].convert_to_zero_parameters(param_list=non_zero_params)
else:
group = None
if mpu:
group = mpu.get_data_parallel_group()
Init(module=module,
data_parallel_group=group,
dtype=self.dtype,
config_dict_or_path=ds_config,
remote_device=self.offload_device,
pin_memory=self.offload_param_pin_memory,
mpu=mpu)
def destroy(self):
self._remove_module_hooks()
def _remove_module_hooks(self):
num_forward_hooks = len(self.forward_hooks)
num_backward_hooks = len(self.backward_hooks)
for hook in self.forward_hooks:
hook.remove()
for hook in self.backward_hooks:
hook.remove()
print_rank_0(f'Deleted module hooks: forward = {num_forward_hooks}, backward = {num_backward_hooks}',
force=False)
def setup_zero_stage3_hooks(self):
self.hierarchy = 0
#reset step if in inference mode
@instrument_w_nvtx
def _end_of_forward_hook(module, *args):
if not torch._C.is_grad_enabled():
self.get_param_coordinator(training=False).reset_step()
#likely one of them should be enough but just to be safe
self._register_hooks_recursively(self.module)
self.module.register_forward_hook(_end_of_forward_hook)
# Add top module to stack trace
global FWD_MODULE_STACK
FWD_MODULE_STACK.append(self.module)
def mark_persistent_parameters(self, param_threshold, model_threshold):
persistent_params = []
total_persistent_parameters = 0
params_count = 0
for _, param in self.module.named_parameters(recurse=True):
if param.ds_numel + total_persistent_parameters > model_threshold:
continue
if param.ds_numel <= param_threshold:
params_count += 1
param.ds_persist = True
persistent_params.append(param)
total_persistent_parameters += param.ds_numel
print_rank_0(
f"Parameter Offload: Total persistent parameters: {total_persistent_parameters} in {params_count} params",
force=True)
return persistent_params
def _register_hooks_recursively(self, module, count=[0]):
my_count = count[0]
module.id = my_count
#print(f"{module.__class__} : {module.id}")
for child in module.children():
count[0] = count[0] + 1
self._register_hooks_recursively(child, count=count)
@instrument_w_nvtx
def _pre_forward_module_hook(module, *args):
self.pre_sub_module_forward_function(module)
@instrument_w_nvtx
def _post_forward_module_hook(module, input, output):
global FWD_MODULE_STACK
FWD_MODULE_STACK.pop()
if output is None:
output = []
elif not isinstance(output, (list, tuple)):
if torch.is_tensor(output):
output = [output]
else:
#print(f'got UNKNOWN type {type(output)}')
outputs = []
output = output if isinstance(output, dict) else vars(output)
for name, val in output.items():
if not name.startswith('__') and torch.is_tensor(val):
outputs.append(val)
output = outputs
for item in filter(lambda item: is_zero_param(item) or hasattr(item, 'ds_param_alias'), output):
key = id(item) if hasattr(item, 'ds_id') else id(item.ds_param_alias)
actual_external_param = item if hasattr(item, 'ds_id') else item.ds_param_alias
if not any(key in m._external_params for m in FWD_MODULE_STACK):
actual_external_param.is_external_param = True
module_to_register = FWD_MODULE_STACK[-1]
register_external_parameter(module_to_register, actual_external_param)
print_rank_0(
f'Registering dangling parameter for module {module_to_register.__class__.__name__}, ds_id = {actual_external_param.ds_id}.',
force=False)
# It's possible that the parameter was already external to the completed module. If so, remove it the
# registration as it will be covered by the outer module instead.
if key in module._external_params:
print_rank_0(
f' Unregistering nested dangling parameter from module {module.__class__.__name__}, ds_id = {actual_external_param.ds_id}',
force=False)
unregister_external_parameter(module, actual_external_param)
actual_external_param.all_gather()
self.post_sub_module_forward_function(module)
def _pre_backward_module_hook(module, inputs, output):
@instrument_w_nvtx
def _run_before_backward_function(sub_module):
# some models (e.g. Albert) may run multiple forwards on the same layer in a loop
# before doing backwards, so each backward will need a pre-fetch - using reference
# counting to support this scenario
#print(f"COUNTER before: {sub_module.applied_pre_backward_ref_cnt}")
if sub_module.applied_pre_backward_ref_cnt > 0:
self.pre_sub_module_backward_function(sub_module)
sub_module.applied_pre_backward_ref_cnt -= 1
#print(f"COUNTER after: {sub_module.applied_pre_backward_ref_cnt}")
return _apply_to_tensors_only(module, PreBackwardFunction, _run_before_backward_function, output)
#This is an alternate to doing _post_backward_module_hook
#it uses tensor.register_hook instead of using torch.autograd.Function
def _alternate_post_backward_module_hook(module, inputs):
module.ds_grads_remaining = 0
#print(f"Before Forward {module.__class__.__name__}")
def _run_after_backward_hook(*unused):
module.ds_grads_remaining = module.ds_grads_remaining - 1
if module.ds_grads_remaining == 0:
#print(f"After backward {module.__class__.__name__}")
self.post_sub_module_backward_function(module)
def _run_before_forward_function(input):
if input.requires_grad:
module.ds_grads_remaining += 1
return _apply_forward_and_backward_to_tensors_only(module, _run_before_forward_function,
_run_after_backward_hook, inputs)
def _post_backward_module_hook(module, inputs):
module.ds_grads_remaining = 0
@instrument_w_nvtx
def _run_after_backward_function(sub_module):
if sub_module.ds_grads_remaining == 0:
self.post_sub_module_backward_function(sub_module)
return _apply_to_tensors_only(module, PostBackwardFunction, _run_after_backward_function, inputs)
# Pre forward hook
self.forward_hooks.append(module.register_forward_pre_hook(_pre_forward_module_hook))
# Post forward hook
self.forward_hooks.append(module.register_forward_hook(_post_forward_module_hook))
# Pre backward hook
self.backward_hooks.append(module.register_forward_hook(_pre_backward_module_hook))
# post backward hook
self.backward_hooks.append(module.register_forward_pre_hook(_post_backward_module_hook))
@torch.no_grad()
def pre_sub_module_forward_function(self, sub_module):
see_memory_usage(f"Before sub module function {sub_module.__class__.__name__}", force=False)
global FWD_MODULE_STACK
FWD_MODULE_STACK.append(sub_module)
param_coordinator = self.get_param_coordinator(training=sub_module.training)
param_coordinator.trace_prologue(sub_module)
if param_coordinator.is_record_trace():
param_coordinator.record_module(sub_module)
param_coordinator.fetch_sub_module(sub_module)
see_memory_usage(f"Before sub module function {sub_module.__class__.__name__} after fetch", force=False)
@torch.no_grad()
def post_sub_module_forward_function(self, sub_module):
see_memory_usage(f"After sub module function {sub_module.__class__.__name__} {sub_module.id} before release",
force=False)
param_coordinator = self.get_param_coordinator(training=sub_module.training)
param_coordinator.release_sub_module(sub_module)
see_memory_usage(f"After sub module function {sub_module.__class__.__name__} {sub_module.id} after release",
force=False)
@torch.no_grad()
def pre_sub_module_backward_function(self, sub_module):
assert sub_module.training, "backward pass is invalid for module in evaluation mode"
param_coordinator = self.get_param_coordinator(training=True)
param_coordinator.trace_prologue(sub_module)
if param_coordinator.is_record_trace():
param_coordinator.record_module(sub_module)
param_coordinator.fetch_sub_module(sub_module)
@torch.no_grad()
def post_sub_module_backward_function(self, sub_module):
assert sub_module.training, "backward pass is invalid for module in evaluation mode"
see_memory_usage(
f"After sub module backward function {sub_module.__class__.__name__} {sub_module.id} before release",
force=False)
self.get_param_coordinator(training=True).release_sub_module(sub_module)
see_memory_usage(
f"After sub module backward function {sub_module.__class__.__name__} {sub_module.id} after release",
force=False)