
MMV2-Satellite

LaSTIG, Univ. Gustave Eiffel, IGN-ENSG

March 12-14, 2023



Pushbroom camera

Dataset

Joint aerial and satellite bundle adjustment - user’s perspective

Pushbroom sensor - programmer’s perspective

2 / 17 MMV2-Satellite



Physical model (rigorous)

I Image lines captured sequentially
(along i coordinate)

I Each image line has its own
orientation parameters

I No homogeneous parametrization
across satellite

Figure: Pushbroom camera

pk = It (πt (Rt
k
(
P − Ct

k
)))

3 / 17 MMV2-Satellite



Replacement models (empirical)

I Time-dependent collinearity replaced with a
generic sensor-independent formulation,

I The physical meaning is lost

I A few models exist:

I grid interpolation
I RPC
I ...

I Calculated from the physical sensor
(and/or dense GCPs)

pk = It (πt (Rt
k
(
P − Ct

k
)))

4 / 17 MMV2-Satellite



Replacement models (empirical)

I Time-dependent collinearity replaced with a
generic sensor-independent formulation,

I The physical meaning is lost

I A few models exist:
I grid interpolation
I RPC
I ...

I Calculated from the physical sensor
(and/or dense GCPs)

pk = It (πt (Rt
k
(
P − Ct

k
)))

4 / 17 MMV2-Satellite



Replacement models (empirical)

I Time-dependent collinearity replaced with a
generic sensor-independent formulation,

I The physical meaning is lost

I A few models exist:
I grid interpolation
I RPC
I ...

I Calculated from the physical sensor
(and/or dense GCPs)

Figure: Replacement model learning data
[TH01]

4 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Ground to image projection (inverse model)

I g , h rational polynomials
IN: ϕ, λ, h in geodetic coordinates

OUT: Y ,X line and sample image coordinates (row,col)

line: Y =
NumL(P, L,H)

DenL(P, L,H)
∼ g(ϕ, λ, h)

sample: X =
NumS(P, L,H)

DenS(P, L,H)
∼ h(ϕ, λ, h)

5 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Ground to image projection (inverse model)

I g , h rational polynomials
IN: ϕ, λ, h in geodetic coordinates

OUT: Y ,X line and sample image coordinates (row,col)

line: Y =
NumL(P, L,H)

DenL(P, L,H)
∼ g(ϕ, λ, h)

sample: X =
NumS(P, L,H)

DenS(P, L,H)
∼ h(ϕ, λ, h)

I RPC are applied on normalized coordinates:

ground: P =
ϕ− LATOFF
LATSCALE

, L =
λ− LONGOFF
LONGSCALE

, H =
h − HEIGHTOFF
HEIGHTSCALE

image: y = Y · LINEscale + LINEOFF , x = X · SAMPLEscale + SAMPLEOFF .

5 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Ground to image projection (inverse model)

I g , h rational polynomials
IN: ϕ, λ, h in geodetic coordinates

OUT: Y ,X line and sample image coordinates (row,col)

line: Y =
NumL(P, L,H)

DenL(P, L,H)
∼ g(ϕ, λ, h)

sample: X =
NumS(P, L,H)

DenS(P, L,H)
∼ h(ϕ, λ, h)

5 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Ground to image projection (inverse model)

I g , h rational polynomials
IN: ϕ, λ, h in geodetic coordinates

OUT: Y ,X line and sample image coordinates (row,col)

line: Y =
NumL(P, L,H)

DenL(P, L,H)
∼ g(ϕ, λ, h)

sample: X =
NumS(P, L,H)

DenS(P, L,H)
∼ h(ϕ, λ, h)

I Num,Den are 3rd degree polynomials:

NumL(P, L, H) = c1 + c2L + c3P + c4H + c5LP + c6LH + c7PH + c8L2 + c9P2
+ c10H2

+

c11PLH + c12L3 + c13LP2
+ c14LH2

+ c15L2P + c16P3
+ c17PH2

+ c18L2H + c19P2H + c20H3
= cTu

DenL(P, L, H) = d1 + d2L + d3P + d4H + d5LP + d6LH + d7PH + d8L2 + d9P2
+ d10H2

+d11PLH + d12L3 + d13LP2
+ d14LH2

+ d15L2P + d16P3
+ d17PH2

+ d18L2H + d19P2H + d20H3
= dTu

5 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Image to ground projection (direct model)

I k, l : rational polynomials of the inverse projection
IN: {y , x , h} image coordinates, ellipsoidal height

OUT: {ϕ, λ} geodetic coordinates

ϕ = k(y , x , h) =
NumP (Y ,X ,H)

DenP (Y ,X ,H)

λ = l(y , x , h) =
NumLA(Y ,X ,H)

DenLA(Y ,X ,H)

6 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Errors

I Inaccuracies of on-board georeferencing
devices (GPS, star trackers, ...)

I Error modelling

I narrow field of view → errors
modelled as shifts in image space,
non-linearities negligible

I errors in translation and attitude are
correlated → no separation between
translation or attitude err.

y = g(ϕ, λ, h) + Dx (y , x)
x = h(ϕ, λ, h) + Dy (y , x)

where Dx (y , x) =
∑∑

aij · x i y j
Figure: Position and attitude
errors correlation. [GD03]

7 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Errors

I Inaccuracies of on-board georeferencing
devices (GPS, star trackers, ...)

I Error modelling
I narrow field of view → errors

modelled as shifts in image space,
non-linearities negligible

I errors in translation and attitude are
correlated → no separation between
translation or attitude err.

y = g(ϕ, λ, h) + Dx (y , x)
x = h(ϕ, λ, h) + Dy (y , x)

where Dx (y , x) =
∑∑

aij · x i y j
Figure: Position and attitude
errors correlation. [GD03]

7 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Errors

I Inaccuracies of on-board georeferencing
devices (GPS, star trackers, ...)

I Error modelling
I narrow field of view → errors

modelled as shifts in image space,
non-linearities negligible

I errors in translation and attitude are
correlated → no separation between
translation or attitude err.

y = g(ϕ, λ, h) + Dx (y , x)
x = h(ϕ, λ, h) + Dy (y , x)

where Dx (y , x) =
∑∑

aij · x i y j

Figure: Position and attitude
errors correlation. [GD03]

7 / 17 MMV2-Satellite



Rational Polynomial Coefficients RPC
Errors

I Inaccuracies of on-board georeferencing
devices (GPS, star trackers, ...)

I Error modelling
I narrow field of view → errors

modelled as shifts in image space,
non-linearities negligible

I errors in translation and attitude are
correlated → no separation between
translation or attitude err.

y = g(ϕ, λ, h) + Dx (y , x)
x = h(ϕ, λ, h) + Dy (y , x)

where Dx (y , x) =
∑∑

aij · x i y j
Figure: Position and attitude
errors correlation. [GD03]

7 / 17 MMV2-Satellite



Pushbroom camera

Dataset

Joint aerial and satellite bundle adjustment - user’s perspective

Pushbroom sensor - programmer’s perspective

8 / 17 MMV2-Satellite



Dataset

I MMVII/MMVII-UseCaseDataSet/Argentique-Sat

I satellite and aerial images
I initial orientations [ZRPD21]
I tie points (intra- and inter-sensor)

Figure: Pleiades stereo
Figure: Aerial analogue x6 images

9 / 17 MMV2-Satellite



Pushbroom camera

Dataset

Joint aerial and satellite bundle adjustment - user’s perspective

Pushbroom sensor - programmer’s perspective

10 / 17 MMV2-Satellite



Joint aerial and satellite bundle adjustment - user’s
perspective

1. In terminal: cd MMVII/MMVII-UseCaseDataSet/Argentique-Sat

2. Import to MMV2 Photogrammetric Project
I tie points (convert MMV1 to MMV2)
I initial orientation of perspective camera (MMV1 → MMV2)
I initial orientation of pushbroom camera

3. Define local coordinate frame
4. Associate your sensors’ initial orientations to local coordinate frame
5. Define the pushbroom sensor as ”adjustable”

(perspective camera by def is adjustable)
6. Generate ”virtual” ground control points
7. Bundle adjustment

11 / 17 MMV2-Satellite



Pushbroom camera

Dataset

Joint aerial and satellite bundle adjustment - user’s perspective

Pushbroom sensor - programmer’s perspective

12 / 17 MMV2-Satellite



Pushbroom sensor - programmer’s perspective
Change branches

In terminal:
cd micmac
git checkout MMV2-Satellite-er

13 / 17 MMV2-Satellite



Pushbroom sensor - programmer’s perspective
Sensor classes - current status, bound to evolve over time

Figure: All sensors derive from the mother cSensorImage. Real sensors
(cSensorCamPC,cRPCSens) directly implement the projection functions, while virtual
sensors (cExternalSensor,...) rely on initial sensors. Not all sensor classes are
adjustable.

14 / 17 MMV2-Satellite



Pushbroom sensor - programmer’s perspective
RPC classes

Y =
NumL(P , L,H)

DenL(P , L,H)

X =
NumS(P , L,H)

DenS(P , L,H)

I cRPC_Polyn : Num (also Den), 3rd deg polynomial
I cRPC_RatioPolyn Num

Den rational polynomial composed of two cRPC_Polyn

I cRatioPolynXY : Y and X of type cRPC_RatioPolyn

I cRPCSens : two cRatioPolynXY, one for direct and one for inverse model

15 / 17 MMV2-Satellite



Pushbroom sensor - programmer’s perspective
Three implementation tasks

1. Implement rational polynomials, Sensors/cRPC.cpp
I init in Dimap_ReadXMLModel
I fill in a polynomial, Val and FillCubicCoeff in cRPC_Polyn
I compute the rational in cRPC_RatioPolyn::Val
I apply the rational to a 3D point in cRatioPolynXY::Val
���� test with MMVII TestRPC

2. Implement the projection functions, Sensors/cRPC.cpp
I write the normalisation code,

NormGround, NormIm in cRPCSens
I concatenate the normalisation and application of the rational

polynomial in cRPCSens::Ground2Image &
cRPCSens::Image2Bundle

���� test with MMVII TestRPC

3. Prepare observations, unknowns and ”context” for bundle
adjustment

16 / 17 MMV2-Satellite



Pushbroom sensor - programmer’s perspective
Three implementation tasks

1. Implement rational polynomials, Sensors/cRPC.cpp
I init in Dimap_ReadXMLModel
I fill in a polynomial, Val and FillCubicCoeff in cRPC_Polyn
I compute the rational in cRPC_RatioPolyn::Val
I apply the rational to a 3D point in cRatioPolynXY::Val
���� test with MMVII TestRPC

2. Implement the projection functions, Sensors/cRPC.cpp
I write the normalisation code,

NormGround, NormIm in cRPCSens
I concatenate the normalisation and application of the rational

polynomial in cRPCSens::Ground2Image &
cRPCSens::Image2Bundle

���� test with MMVII TestRPC

3. Prepare observations, unknowns and ”context” for bundle
adjustment

16 / 17 MMV2-Satellite



Pushbroom sensor - programmer’s perspective
Three implementation tasks

1. Implement rational polynomials, Sensors/cRPC.cpp
I init in Dimap_ReadXMLModel
I fill in a polynomial, Val and FillCubicCoeff in cRPC_Polyn
I compute the rational in cRPC_RatioPolyn::Val
I apply the rational to a 3D point in cRatioPolynXY::Val
���� test with MMVII TestRPC

2. Implement the projection functions, Sensors/cRPC.cpp
I write the normalisation code,

NormGround, NormIm in cRPCSens
I concatenate the normalisation and application of the rational

polynomial in cRPCSens::Ground2Image &
cRPCSens::Image2Bundle

���� test with MMVII TestRPC

3. Prepare observations, unknowns and ”context” for bundle
adjustment

16 / 17 MMV2-Satellite



Pushbroom sensor - programmer’s perspective
Third task – Preparing data for bundle adjustment

3a. Automated generation of the code to compute derivatives
(and values)
I Create a class with your symbolic equation formula and

VNamesUnknowns, VNamesObs, FormulaName, in
SymbDerGen/Formulas_RPC.h

I add the class to GenCodesFormula() in
SymbDerGen/GenerateCodes.cpp

I compile, then MMVII GenCodeSymDer then compile again
I play with SymbComment,SymbCommentDer,SymbPrint...

3b. Use the gen. code to compute derivatives of your function
(and values)
I Create the Calculator, an interface class in

SymbDerGen/GenerateCodes.cpp
I Declare the calc in include/MMVII_PhgrDist.h
I Implement cRPCSens::DiffGround2Im in

Sensors/cRPC.cpp
I will be called by the bundle adjustment
I returns the values and derivatives at current value of unknown

���� test with TestRPC and/or TestSensor

17 / 17 MMV2-Satellite



Pushbroom sensor - programmer’s perspective
Third task – Preparing data for bundle adjustment

3a. Automated generation of the code to compute derivatives
(and values)
I Create a class with your symbolic equation formula and

VNamesUnknowns, VNamesObs, FormulaName, in
SymbDerGen/Formulas_RPC.h

I add the class to GenCodesFormula() in
SymbDerGen/GenerateCodes.cpp

I compile, then MMVII GenCodeSymDer then compile again
I play with SymbComment,SymbCommentDer,SymbPrint...

3b. Use the gen. code to compute derivatives of your function
(and values)
I Create the Calculator, an interface class in

SymbDerGen/GenerateCodes.cpp
I Declare the calc in include/MMVII_PhgrDist.h
I Implement cRPCSens::DiffGround2Im in

Sensors/cRPC.cpp
I will be called by the bundle adjustment
I returns the values and derivatives at current value of unknown

���� test with TestRPC and/or TestSensor
17 / 17 MMV2-Satellite



Jacek Grodecki and Gene Dial.
Block adjustment of high-resolution satellite images described by rational polynomials.
Photogrammetric Engineering & Remote Sensing, 69(1):59–68, 2003.

C Vincent Tao and Yong Hu.
A comprehensive study of the rational function model for photogrammetric processing.
Photogrammetric engineering and remote sensing, 67(12):1347–1358, 2001.

Lulin Zhang, Ewelina Rupnik, and Marc Pierrot-Deseilligny.
Feature matching for multi-epoch historical aerial images.
ISPRS Journal of Photogrammetry and Remote Sensing, 182:176–189, 2021.

17 / 17 MMV2-Satellite


	Pushbroom camera
	Dataset
	Joint aerial and satellite bundle adjustment - user's perspective
	Pushbroom sensor - programmer's perspective

