-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_learning_rate.py
158 lines (123 loc) · 5 KB
/
main_learning_rate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# imports
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torch.utils.data.dataloader import DataLoader
from torch.utils.data import random_split
# datasets
from torchvision.datasets import CIFAR10
from torchvision.datasets import CIFAR100
from models.alex import *
import matplotlib.pyplot as plt
def train_lr(train_dl, val_dl, epochs, lr, model_save_path):
# check if cuda available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Device: {}'.format(device))
# init model
model = AlexNet()
model = model.to(device)
# For plots
train_plot = []
val_plot = []
loss_plot = []
# loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# training loop
for e in range(epochs):
total_loss = 0
# compute then backprop
for idx, (data, target) in enumerate(train_dl):
data = data.to(device)
target = target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
total_loss += loss.item()
# calculate accuracy
train_acc = eval(train_dl, device, model)
val_acc = eval(val_dl, device, model)
train_plot.append(train_acc.item())
val_plot.append(val_acc.item())
loss_plot.append(total_loss)
if e % 10 == 0:
print('Epoch: {} Loss: {} Training Accuracy: {} Validation Accuracy: {}'.format(
e, total_loss, train_acc, val_acc))
# save model
torch.save(model.state_dict(), model_save_path)
# plot and save
plot(loss_plot, train_plot, val_plot, lr)
def main_lr(model_save_path, lr):
# transforms
train_transform = torchvision.transforms.Compose([torchvision.transforms.Resize((227, 227)),
torchvision.transforms.RandomHorizontalFlip(
p=0.7),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
test_transform = torchvision.transforms.Compose([torchvision.transforms.Resize((227, 227)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
'''
# get datasets
train_ds = CIFAR10("data/", train=True, download=True, transform=train_transform)
val_size = 5000
train_size = len(train_ds) - val_size
train_ds, val_ds = random_split(train_ds, [train_size, val_size])
test_ds = CIFAR10("data/", train=False, download=True, transform=test_transform)
'''
# get subset of dataset for training
full_train_ds = CIFAR10("data/", train=True,
download=True, transform=train_transform)
subset_train_size = len(full_train_ds)//5
subset_train_ds, train_ds_pt2 = random_split(full_train_ds, [subset_train_size, len(
full_train_ds) - subset_train_size], generator=torch.Generator().manual_seed(42))
val_size = 1000
train_size = subset_train_size - val_size
train_ds, val_ds = random_split(subset_train_ds, [train_size, val_size])
test_ds = CIFAR10("data/", train=False, download=True,
transform=test_transform)
# passing the train, val and test datasets to the dataloader
train_dl = DataLoader(train_ds, batch_size=64, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=64, shuffle=False)
test_dl = DataLoader(test_ds, batch_size=64, shuffle=False)
# hyperparameters
epochs = 25 # NB: epochs reduced from 50 to 25
# train
train_lr(train_dl, val_dl, epochs, lr, model_save_path)
def plot(loss_plot, train_plot, val_plot, label):
plt.figure(1)
plt.plot(loss_plot, label="lr=" + str(label))
plt.legend()
plt.figure(2)
plt.plot(train_plot, label="lr=" + str(label))
plt.legend()
plt.figure(3)
plt.plot(val_plot, label="lr=" + str(label))
plt.legend()
def save_plot():
plt.figure(1)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Learning Rate Loss")
plt.savefig("./images/lr_loss.png")
plt.figure(2)
plt.xlabel("Epoch")
plt.ylabel("Train Accuracy")
plt.title("Learning Rate Train Accuracy")
plt.savefig("./images/lr_train.png")
plt.figure(3)
plt.xlabel("Epoch")
plt.ylabel("Validation Accuracy")
plt.title("Learning Rate Validation Accuracy")
plt.savefig("./images/lr_val.png")
def main(lr):
model_save_path = "./models/lr_+" + str(lr) + "_model.pt"
main_lr(model_save_path, lr)
if __name__ == "__main__":
for lr in [1e-6, 1e-5, 1e-4, 1e-3, 1e-2]:
main(lr)
save_plot()