forked from ShawnHymel/ei-keyword-spotting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset-curation.py
493 lines (417 loc) · 17 KB
/
dataset-curation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#!/usr/bin/env python3
"""
Dataset Curation
Script to select which audio files should be included in the training/test
dataset. This allows you to limit the total number of files (faster training but
lower accuracy). It also mixes in random samples of background noise to allow
for a more robust model and separates out target keywords from other words.
You will need the following packages (install via pip):
* numpy
* librosa
* soundfile
* shutil
Example call:
python dataset-curation.py
-t "go, stop" -n 1500 -w 1.0 -g 0.1 -s 1.0 -r 16000 -e PCM_16
-b "../../Python/datasets/background_noise"
-o "../../Python/datasets/keywords_curated"
"../../../Python/datasets/speech_commands_dataset"
"../../Python/datasets/custom_keywords"
Note that each input directory must be divided into "word" subdirectories. For
example:
- speech_commands_dataset
|--- backward
|--- bed
|--- bird
|--- ...
Only WAV files are supported at this time.
Output directory (given by -o parameter) will be divided up into targets, noise,
and unknown. For example:
- keywords_curated
|--- _noise
|--- _unknown
|--- go
|--- stop
The MIT License (MIT)
Copyright (c) 2020 Shawn Hymel
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import time
import random
import argparse
from os import makedirs, listdir, rename
from os.path import isdir, join, exists, splitext
import shutil
import librosa
import soundfile as sf
import numpy as np
import utils
# Authorship
__author__ = "Shawn Hymel"
__copyright__ = "Copyright 2020, Shawn Hymel"
__license__ = "MIT"
__version__ = "0.1"
# Settings
unknown_dir_name = "_unknown"
bg_dir_name = "_noise"
################################################################################
# Functions
# Mix audio and random snippet of background noise
def mix_audio(word_path=None,
bg_path=None,
word_vol=1.0,
bg_vol=1.0,
sample_time=1.0,
sample_rate=16000):
"""
Read in a wav file and background noise file. Resample and adjust volume as
necessary.
"""
# If no word file is given, just return random background noise
if word_path == None:
waveform = [0] * int(sample_time * sample_rate)
fs = sample_rate
else:
# Open wav file, resample, mix to mono
waveform, fs = librosa.load(word_path, sr=sample_rate, mono=True)
# Pad 0s on the end if not long enough
if len(waveform) < sample_time * sample_rate:
waveform = np.append(waveform, np.zeros(int((sample_time *
sample_rate) - len(waveform))))
# Truncate if too long
waveform = waveform[:int(sample_time * sample_rate)]
# If no background noise is given, just return the waveform
if bg_path == None:
return waveform
# Open background noise file
bg_waveform, fs = librosa.load(bg_path, sr=fs)
# Pick a random starting point in background file
max_end = len(bg_waveform) - int(sample_time * sample_rate)
start_point = random.randint(0, max_end)
end_point = start_point + int(sample_time * sample_rate)
# Mix the two sound samples (and multiply by volume)
waveform = [0.5 * word_vol * i for i in waveform] + \
(0.5 * bg_vol * bg_waveform[start_point:end_point])
return waveform
################################################################################
# Main
###
# Parse command line arguments
# Script arguments
parser = argparse.ArgumentParser(description="Audio mixing tool that "
"combines spoken word examples with random "
"bits of background noise to create a dataset "
"for use with keyword spotting training.")
parser.add_argument('-t',
'--targets',
action='store',
dest='targets',
type=str,
required=True,
help="List of target words, separated by commas. Spaces not "
"allowed--they will be treated as commas.")
parser.add_argument('-n',
'--num_samples',
action='store',
dest='num_samples',
type=int,
default=1500,
help="Number of mixed samples to place in each output "
"category subdirectory (default: 1500)")
parser.add_argument('-w',
'--word_vol',
action='store',
dest='word_vol',
type=float,
default=1.0,
help="Relative volume to multiply each word by (default: "
"1.0)")
parser.add_argument('-g',
'--bg_vol',
action='store',
dest='bg_vol',
type=float,
default=0.1,
help="Relative volume to multiply each background noise by "
"(default: 0.1)")
parser.add_argument('-s',
'--sample_time',
action='store',
dest='sample_time',
type=float,
default=1.0,
help="Time (seconds) of each output clip (default: 1.0)")
parser.add_argument('-r',
'--sample_rate',
action='store',
dest='sample_rate',
type=int,
default=16000,
help="Sample rate (Hz) of each output clip (default: "
"16000)")
parser.add_argument('-e',
'--bit_depth',
action='store',
dest='bit_depth',
type=str,
choices=['PCM_16', 'PCM_24', 'PCM_32', 'PCM_U8', 'FLOAT',
'DOUBLE'],
default='PCM_16',
help="Bit depth of each sample (default: PCM_16)")
parser.add_argument('-b',
'--bg_dir',
action='store',
dest='bg_dir',
type=str,
required=True,
help="Directory where the background noise samples are "
"stored")
parser.add_argument('-o',
'--out_dir',
action='store',
dest='out_dir',
type=str,
required=True,
help="Directory where the mixed audio samples are to be "
"stored")
parser.add_argument('in_dirs',
metavar='d',
type=str,
nargs='+',
help="List of source directories to include")
# Parse arguments
args = parser.parse_args()
targets = args.targets
num_samples = args.num_samples
word_vol = args.word_vol
bg_vol = args.bg_vol
sample_time = args.sample_time
sample_rate = args.sample_rate
bit_depth = args.bit_depth
bg_dir = args.bg_dir
out_dir = args.out_dir
in_dirs = args.in_dirs
###
# Welcome screen
# Print tool welcome message
print("-----------------------------------------------------------------------")
print("Keyword Dataset Curation Tool")
print("v" + __version__)
print("-----------------------------------------------------------------------")
###
# Set up directories
# Delete output directory if it already exists
if isdir(out_dir):
print("WARNING: Output directory already exists:")
print(out_dir)
print("This tool will delete the output directory and everything in it.")
resp = utils.query_yes_no("Continue?")
if resp:
print("Deleting and recreating output directory.")
#rename(out_dir, out_dir + '_') # One way to deal with OS blocking rm
shutil.rmtree(out_dir)
time.sleep(2.0)
else:
print("Please delete directory to continue. Exiting.")
exit()
# Create output dir
if not exists(out_dir):
makedirs(out_dir)
else:
print("ERROR: Output directory could not be deleted. Exiting.")
exit()
# Create a list of possible words from the subdirectories
word_list = []
for directory in in_dirs:
try:
for name in listdir(directory):
if isdir(join(directory, name)):
word_list.append(name)
except OSError:
print("No directory named '" + str(directory) + "'. Ignoring.")
# Remove duplicates from list
word_list = list(dict.fromkeys(word_list))
# Make target list and make sure each target word appears in our list of words
target_list = [word.strip() for word in targets.split(',')]
for target in target_list:
if target not in word_list:
print("ERROR: Target word '" + target + "' not found as subdirectory "
"in input directories. Exiting.")
exit()
# Remove targets from word list to create "unknown" list
unknown_list = []
[unknown_list.append(name) for name in word_list if name not in target_list]
# Seed (use system time)
random.seed()
# Figure out the number of digits needed in for filename counter
num_digits = len(str(num_samples))
###
# Save clips of background noise
# Create _background subdirectory
out_subdir = join(out_dir, bg_dir_name)
makedirs(out_subdir)
# Create list of background noise files
bg_paths = []
for bg_file in listdir(bg_dir):
_, extension = splitext(bg_file)
if (extension == ".wav" or extension == ".WAV"):
bg_paths.append(join(bg_dir, bg_file))
# Randomize list of paths and take first n paths
random.shuffle(bg_paths)
bg_paths = bg_paths[:num_samples]
num_bg_files = len(bg_paths)
# Print what we're doing and show progress bar
print("Gathering random background noise snippets (" + str(num_samples) +
" files)")
utils.print_progress_bar( 0,
num_samples,
prefix="Progress:",
suffix="Complete",
length=50)
# Go through each background file, taking a random sample from different points
for i in range(num_samples):
# Get random snippet from background noise (round robin bg files)
waveform = mix_audio( word_path=None,
bg_path=bg_paths[i % num_bg_files],
word_vol=word_vol,
bg_vol=bg_vol,
sample_time=sample_time,
sample_rate=sample_rate)
# Save to new file
filename = bg_dir_name + "." + str(i).zfill(num_digits) + ".wav"
sf.write( join(out_subdir, filename),
waveform,
sample_rate,
subtype=bit_depth)
# Update progress bar
utils.print_progress_bar( i + 1,
num_samples,
prefix="Progress:",
suffix="Complete",
length=50)
###
# Mix target words
# Create a list of target word locations
for target in target_list:
# Create target word subdirectory
out_subdir = join(out_dir, target)
makedirs(out_subdir)
# Create list of paths with target word audio files
file_paths = []
for directory in in_dirs:
in_subdir = join(directory, target)
if isdir(in_subdir):
for word_filename in listdir(in_subdir):
_, extension = splitext(word_filename)
if (extension == ".wav" or extension == ".WAV"):
file_paths.append(join(in_subdir, word_filename))
# Randomize list of paths and take first n paths
random.shuffle(file_paths)
file_paths = file_paths[:num_samples]
# Print what we're doing and show progress bar
print("Mixing: " + str(target) + " (" + str(num_samples) + " files)")
utils.print_progress_bar( 0,
num_samples,
prefix="Progress:",
suffix="Complete",
length=50)
# Go through each target word file and mix it with a random noise snippet
for i in range(num_samples):
# Randomly choose background noise from list
# %%%TODO: Better way to do this? Round robin from bg list?
bg_path = bg_paths[random.randrange(num_bg_files)]
# Mix target audio file and background noise file. Use round-robin to
# add duplicate target files (if less than number of desired samples)
waveform = mix_audio( word_path=file_paths[i % len(file_paths)],
bg_path=bg_path,
word_vol=word_vol,
bg_vol=bg_vol,
sample_time=sample_time,
sample_rate=sample_rate)
# Save to new file
filename = target + "." + str(i).zfill(num_digits) + ".wav"
sf.write( join(out_subdir, filename),
waveform,
sample_rate,
subtype=bit_depth)
# Update progress bar
utils.print_progress_bar( i + 1,
num_samples,
prefix="Progress:",
suffix="Complete",
length=50)
###
# Mix words in "unknown" category
# Create _background subdirectory
out_subdir = join(out_dir, unknown_dir_name)
makedirs(out_subdir)
# Create list of paths with target word audio files
file_paths = []
for directory in in_dirs:
try:
for in_subdir in listdir(directory):
if (isdir(join(directory, in_subdir))) and \
(in_subdir in unknown_list):
for word_filename in listdir(join(directory, in_subdir)):
_, extension = splitext(word_filename)
if (extension == ".wav" or extension == ".WAV"):
file_paths.append(join( directory,
in_subdir,
word_filename))
except OSError:
print("No directory named '" + str(directory) + "'. Ignoring.")
# Randomize list of paths and take first n paths
random.shuffle(file_paths)
file_paths = file_paths[:num_samples]
# Only proceed if we have one or more files to work with
if len(file_paths) > 0:
# Print what we're doing and show progress bar
print("Mixing: " + str(unknown_dir_name) + " (" + str(num_samples) +
" files)")
utils.print_progress_bar( 0,
num_samples,
prefix="Progress:",
suffix="Complete",
length=50)
# Go through each target word file and mix it with a random noise snippet
for i in range(num_samples):
# Randomly choose background noise from list
# %%%TODO: Better way to do this? Round robin from bg list?
bg_path = bg_paths[random.randrange(num_bg_files)]
# Mix target audio file and background noise file. Use round-robin to
# add duplicate target files (if less than number of desired samples)
waveform = mix_audio( word_path=file_paths[i % len(file_paths)],
bg_path=bg_path,
word_vol=word_vol,
bg_vol=bg_vol,
sample_time=sample_time,
sample_rate=sample_rate)
# Save to new file
filename = unknown_dir_name + "." + str(i).zfill(num_digits) + ".wav"
sf.write( join(out_subdir, filename),
waveform,
sample_rate,
subtype=bit_depth)
# Update progress bar
utils.print_progress_bar( i + 1,
num_samples,
prefix="Progress:",
suffix="Complete",
length=50)
# Say we're done
print("Done!")
exit()