-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_features.py
230 lines (193 loc) · 7.99 KB
/
train_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
from random import randrange
from glob import glob
import argparse as ap
import torch
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from datasets import CheXpertDataset, CheXpertImageDataset
from model import MultiLabelClassification
from torch.utils.data import DataLoader
from sklearn.metrics import roc_auc_score
from libauc.losses import AUCMLoss, CrossEntropyLoss, AUCM_MultiLabel
from libauc.optimizers import PESG, Adam
from libauc.models import DenseNet121
import matplotlib.pyplot as plt
from torchvision import transforms
from pathlib import Path
import random
from torch.utils.tensorboard import SummaryWriter
parser = ap.ArgumentParser()
parser.add_argument('-tf', '--train_features', type=Path, required=True)
parser.add_argument('-tl', '--train_labels', type=Path, required=True)
parser.add_argument('-vf', '--val_features', type=Path, required=True)
parser.add_argument('-vl', '--val_labels', type=Path, required=True)
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--learning_rate', type=float, default=0.05)
parser.add_argument('--gamma', type=int, default=500)
parser.add_argument('--weight_decay', type=float, default=1e-5)
parser.add_argument('--margin', type=float, default=1.0)
parser.add_argument('--decay_factor', type=int, default=10)
parser.add_argument('--class_id', type=int, default=-1)
parser.add_argument('--model_name', required=True)
parser.add_argument('--label_smoothing',
default='ones',
const='ones',
nargs='?',
choices=('ones', 'zeros', 'ones-lsr', 'zeros-lsr', 'smart'),
help='Provide a label smoothing technique to use')
p = parser.parse_args()
seed = p.seed
epochs = p.num_epochs
smoothing = p.label_smoothing
lr = p.learning_rate
gamma = p.gamma
weight_decay = p.weight_decay
margin = p.margin
decay_factor = p.decay_factor
class_id = p.class_id
model_name = p.model_name
def set_all_seeds(SEED):
# REPRODUCIBILITY
torch.manual_seed(SEED)
np.random.seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
set_all_seeds(seed)
train_labels = np.load(p.train_labels)
train_features = np.load(p.train_features)
val_labels = np.load(p.val_labels)
val_features = np.load(p.val_features)
train_set = CheXpertDataset(train_features, y=train_labels, scale_X=None, smooth=smoothing, class_index=class_id)
val_set = CheXpertDataset(val_features, y=val_labels, scale_X=None, smooth=smoothing, class_index=class_id)
train_loader = DataLoader(train_set,
batch_size=32,
shuffle=True,
num_workers=2)
val_loader = DataLoader(val_set,
batch_size=32,
shuffle=False,
num_workers=2)
num_features = train_features.shape[1]
num_classes = train_labels.shape[1]
if class_id != -1:
num_classes = 1
writer = SummaryWriter('./runs/class_1')
# Single class model
if num_classes == 1:
# model
model = MultiLabelClassification(num_feature=num_features, num_class=num_classes)
model = model.cuda()
imratio = train_set.imratio
# define loss & optimizer
Loss = AUCMLoss(imratio=imratio)
optimizer = PESG(model,
a=Loss.a,
b=Loss.b,
alpha=Loss.alpha,
lr=lr,
gamma=gamma,
margin=margin,
weight_decay=weight_decay)
best_val_auc = 0
step = 0
for epoch in range(epochs):
if epoch > 0:
optimizer.update_regularizer(decay_factor=decay_factor)
for idx, data in enumerate(train_loader):
train_data, train_labels = data
train_data, train_labels = train_data.cuda(), train_labels.cuda()
y_pred = model(train_data)
loss = Loss(y_pred, train_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 200 == 0:
writer.add_scalar("Loss/train", loss, step + 1)
# validation
if idx % 400 == 0:
model.eval()
with torch.no_grad():
test_pred = []
test_true = []
for jdx, data in enumerate(val_loader):
test_data, test_label = data
test_data = test_data.cuda()
y_pred = model(test_data)
test_pred.append(y_pred.cpu().detach().numpy())
test_true.append(test_label.numpy())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
val_auc = roc_auc_score(test_true, test_pred)
writer.add_scalar("Validation AUC", val_auc, step + 1)
model.train()
if best_val_auc < val_auc:
print(f'Saved model to {model_name}')
torch.save(model.state_dict(), f'./models/{model_name}.pth')
best_val_auc = val_auc
print('Epoch=%s, BatchID=%s, Val_AUC=%.4f, lr=%.4f'%(epoch, idx, val_auc, optimizer.lr))
writer.flush()
step = step + 1
writer.flush()
print ('Best Val_AUC is %.4f'%best_val_auc)
else:
# Multi-Class
# model
imratio = train_set.imratio_list
model = MultiLabelClassification(num_feature=num_features, num_class=num_classes)
model = model.cuda()
# define loss & optimizer
Loss = AUCM_MultiLabel(imratio=imratio, num_classes=5)
optimizer = PESG(model,
a=Loss.a,
b=Loss.b,
alpha=Loss.alpha,
lr=lr,
gamma=gamma,
margin=margin,
weight_decay=weight_decay, device='cuda')
# training
best_val_auc = 0
step = 0
for epoch in range(5):
if epoch > 0:
optimizer.update_regularizer(decay_factor=10)
for idx, data in enumerate(train_loader):
train_data, train_labels = data
train_data, train_labels = train_data.cuda(), train_labels.cuda()
y_pred = model(train_data)
y_pred = torch.sigmoid(y_pred)
loss = Loss(y_pred, train_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 200 == 0:
writer.add_scalar("Loss/train", loss, step + 1)
# validation
if idx % 400 == 0:
model.eval()
with torch.no_grad():
test_pred = []
test_true = []
for jdx, data in enumerate(val_loader):
test_data, test_labels = data
test_data = test_data.cuda()
y_pred = model(test_data)
test_pred.append(y_pred.cpu().detach().numpy())
test_true.append(test_labels.numpy())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
val_auc_mean = roc_auc_score(test_true, test_pred)
writer.add_scalar("Validation AUC", val_auc_mean, step + 1)
model.train()
if best_val_auc < val_auc_mean:
best_val_auc = val_auc_mean
print(f'Saved model to {model_name}')
torch.save(model.state_dict(), f'./models/{model_name}.pth')
print ('Epoch=%s, BatchID=%s, Val_AUC=%.4f, Best_Val_AUC=%.4f'%(epoch, idx, val_auc_mean, best_val_auc))
writer.flush()
step = step + 1
writer.flush()
print('Best Val_AUC is %.4f'%best_val_auc)