-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathlieGroups.py
600 lines (538 loc) · 23.4 KB
/
lieGroups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import torch
import numpy as np
from lie_conv.utils import export, Named
@export
def norm(x,dim):
return (x**2).sum(dim=dim).sqrt()
class LieGroup(object):
""" The abstract Lie Group requiring additional implementation of exp,log, and lifted_elems
to use as a new group for LieConv. rep_dim,lie_dim,q_dim should additionally be specified."""
rep_dim = NotImplemented # dimension on which G acts. (e.g. 2 for SO(2))
lie_dim = NotImplemented # dimension of the lie algebra of G. (e.g. 1 for SO(2))
q_dim = NotImplemented # dimension which the quotient space X/G is embedded. (e.g. 1 for SO(2) acting on R2)
def __init__(self,alpha=.2):
super().__init__()
self.alpha=alpha
def exp(self,a):
""" Computes (matrix) exponential Lie algebra elements (in a given basis).
ie out = exp(\sum_i a_i A_i) where A_i are the exponential generators of G.
Input: [a (*,lie_dim)] where * is arbitrarily shaped
Output: [exp(a) (*,rep_dim,rep_dim)] returns the matrix for each."""
raise NotImplementedError
def log(self,u):
""" Computes (matrix) logarithm for collection of matrices and converts to Lie algebra basis.
Input [u (*,rep_dim,rep_dim)]
Output [coeffs of log(u) in basis (*,d)] """
raise NotImplementedError
def lifted_elems(self,xyz,nsamples):
""" Takes in coordinates xyz and lifts them to Lie algebra elements a (in basis)
and embedded orbit identifiers q. For groups where lifting is multivalued
specify nsamples>1 as number of lifts to do for each point.
Inputs: [xyz (*,n,rep_dim)],[mask (*,n)], [mask (int)]
Outputs: [a (*,n*nsamples,lie_dim)],[q (*,n*nsamples,q_dim)]"""
raise NotImplementedError
def inv(self,g):
""" We can compute the inverse of elements g (*,rep_dim,rep_dim) as exp(-log(g))"""
return self.exp(-self.log(g))
def distance(self,abq_pairs):
""" Compute distance of size (*) from [abq_pairs (*,lie_dim+2*q_dim)].
Simply computes alpha*norm(log(v^{-1}u)) +(1-alpha)*norm(q_a-q_b),
combined distance from group element distance and orbit distance."""
ab_dist = norm(abq_pairs[...,:self.lie_dim],dim=-1)
qa = abq_pairs[...,self.lie_dim:self.lie_dim+self.q_dim]
qb = abq_pairs[...,self.lie_dim+self.q_dim:self.lie_dim+2*self.q_dim]
qa_qb_dist = norm(qa-qb,dim=-1)
return ab_dist*self.alpha + (1-self.alpha)*qa_qb_dist
def lift(self,x,nsamples,**kwargs):
"""assumes p has shape (*,n,2), vals has shape (*,n,c), mask has shape (*,n)
returns (a,v) with shapes [(*,n*nsamples,lie_dim),(*,n*nsamples,c)"""
p,v,m = x
expanded_a,expanded_q = self.lifted_elems(p,nsamples,**kwargs) # (bs,n*ns,d), (bs,n*ns,qd)
nsamples = expanded_a.shape[-2]//m.shape[-1]
# expand v and mask like q
expanded_v = v[...,None,:].repeat((1,)*len(v.shape[:-1])+(nsamples,1)) # (bs,n,c) -> (bs,n,1,c) -> (bs,n,ns,c)
expanded_v = expanded_v.reshape(*expanded_a.shape[:-1],v.shape[-1]) # (bs,n,ns,c) -> (bs,n*ns,c)
expanded_mask = m[...,None].repeat((1,)*len(v.shape[:-1])+(nsamples,)) # (bs,n) -> (bs,n,ns)
expanded_mask = expanded_mask.reshape(*expanded_a.shape[:-1]) # (bs,n,ns) -> (bs,n*ns)
# convert from elems to pairs
paired_a = self.elems2pairs(expanded_a) #(bs,n*ns,d) -> (bs,n*ns,n*ns,d)
if expanded_q is not None:
q_in = expanded_q.unsqueeze(-2).expand(*paired_a.shape[:-1],1)
q_out = expanded_q.unsqueeze(-3).expand(*paired_a.shape[:-1],1)
embedded_locations = torch.cat([paired_a,q_in,q_out],dim=-1)
else:
embedded_locations = paired_a
return (embedded_locations,expanded_v,expanded_mask)
def expand_like(self,v,m,a):
nsamples = a.shape[-2]//m.shape[-1]
expanded_v = v[...,None,:].repeat((1,)*len(v.shape[:-1])+(nsamples,1)) # (bs,n,c) -> (bs,n,1,c) -> (bs,n,ns,c)
expanded_v = expanded_v.reshape(*a.shape[:2],v.shape[-1]) # (bs,n,ns,c) -> (bs,n*ns,c)
expanded_mask = m[...,None].repeat((1,)*len(v.shape[:-1])+(nsamples,)) # (bs,n) -> (bs,n,ns)
expanded_mask = expanded_mask.reshape(*a.shape[:2]) # (bs,n,ns) -> (bs,n*ns)
return expanded_v, expanded_mask
def elems2pairs(self,a):
""" computes log(e^-b e^a) for all a b pairs along n dimension of input.
inputs: [a (bs,n,d)] outputs: [pairs_ab (bs,n,n,d)] """
vinv = self.exp(-a.unsqueeze(-3))
u = self.exp(a.unsqueeze(-2))
return self.log(vinv@u) # ((bs,1,n,d) -> (bs,1,n,r,r))@((bs,n,1,d) -> (bs,n,1,r,r))
def BCH(self,a,b,order=2):
""" Baker Campbell Hausdorff formula"""
assert order <= 4, "BCH only supported up to order 4"
B = self.bracket
z = a+b
if order==1: return z
ab = B(a,b)
z += (1/2)*ab
if order==2: return z
aab = B(a,ab)
bba = B(b,-ab)
z += (1/12)*(aab+bba)
if order==3: return z
baab = B(b,aab)
z += -(1/24)*baab
return z
def bracket(self,a,b):
"""Computes the lie bracket between a and b, assumes a,b expressed as vectors"""
A = self.components2matrix(a)
B = self.components2matrix(b)
return self.matrix2components(A@B-B@A)
def __str__(self):
return f"{self.__class__}({self.alpha})" if self.alpha!=.2 else f"{self.__class__}"
def __repr__(self):
return str(self)
@export
def LieSubGroup(liegroup,generators):
class subgroup(liegroup):
def __init__(self,*args,**kwargs):
super().__init__(*args,**kwargs)
self.orig_dim = self.lie_dim
self.lie_dim = len(generators)
self.q_dim = self.orig_dim-len(generators)
def exp(self,a_small):
a_full = torch.zeros(*a_small.shape[:-1],self.orig_dim,
device=a_small.device,dtype=a_small.dtype)
a_full[...,generators] = a_small
return super().exp(a_full)
def log(self,U):
return super().log(U)[...,generators]
def components2matrix(self,a_small):
a_full = torch.zeros(*a_small.shape[:-1],self.orig_dim,
device=a_small.device,dtype=a_small.dtype)
a_full[...,generators] = a_small
return super().components2matrix(a_full)
def matrix2components(self,A):
return super().matrix2components(A)[...,generators]
def lifted_elems(self,pt,nsamples=1):
""" pt (bs,n,D) mask (bs,n), per_point specifies whether to
use a different group element per atom in the molecule"""
a_full,q = super().lifted_elems(pt,nsamples)
a_sub = a_full[...,generators]
complement_generators = list(set(range(self.orig_dim))-set(generators))
new_qs = a_full[...,complement_generators]
q_sub = torch.cat([q,new_qs],dim=-1) if q is not None else new_qs
return a_sub,q_sub
# def __str__(self):
# return f"Subgroup({str(liegroup)},{generators})"
return subgroup
@export
class T(LieGroup):
def __init__(self,k):
""" Returns the k dimensional translation group. Assumes lifting from R^k"""
super().__init__()
self.q_dim = 0
self.rep_dim = k # dimension on which G acts
self.lie_dim = k # dimension that g is embedded into
def lifted_elems(self,xyz,nsamples,**kwargs):
assert nsamples==1, "Abelian group, no need for nsamples"
return xyz,None
def elems2pairs(self,a):
deltas = a.unsqueeze(-2)-a.unsqueeze(-3)
return deltas
# def distance(self,embedded_pairs):
# return norm(embedded_pairs,dim=-1)
# Helper functions for analytic exponential maps. Uses taylor expansions near x=0
# See http://ethaneade.com/lie_groups.pdf for derivations.
thresh =7e-2
def sinc(x):
""" sin(x)/x """
x2=x*x
usetaylor = (x.abs()<thresh)
return torch.where(usetaylor,1-x2/6*(1-x2/20*(1-x2/42)),x.sin()/x)
def sincc(x):
""" (1-sinc(x))/x^2"""
x2=x*x
usetaylor = (x.abs()<thresh)
return torch.where(usetaylor,1/6*(1-x2/20*(1-x2/42*(1-x2/72))),(x-x.sin())/x**3)
def cosc(x):
""" (1-cos(x))/x^2"""
x2 = x*x
usetaylor = (x.abs()<thresh)
return torch.where(usetaylor,1/2*(1-x2/12*(1-x2/30*(1-x2/56))),(1-x.cos())/x**2)
def coscc(x):
""" """
x2 = x*x
#assert not torch.any(torch.isinf(x2)), f"infs in x2 log"
usetaylor = (x.abs()<thresh)
texpand = 1/12*(1+x2/60*(1+x2/42*(1+x2/40)))
costerm = (2*(1-x.cos())).clamp(min=1e-6)
full = (1-x*x.sin()/costerm)/x**2 #Nans can come up here when cos = 1
output = torch.where(usetaylor,texpand,full)
return output
def sinc_inv(x):
usetaylor = (x.abs()<thresh)
texpand = 1+(1/6)*x**2 +(7/360)*x**4
assert not torch.any(torch.isinf(texpand)|torch.isnan(texpand)),'sincinv texpand inf'+torch.any(torch.isinf(texpand))
return torch.where(usetaylor,texpand,x/x.sin())
## Lie Groups acting on R2
@export
class SO2(LieGroup):
lie_dim = 1
rep_dim = 2
q_dim = 1
def exp(self,a):
R = torch.zeros(*a.shape[:-1],2,2,device=a.device,dtype=a.dtype)
sin = a[...,0].sin()
cos = a[...,0].cos()
R[...,0,0] = cos
R[...,1,1] = cos
R[...,0,1] = -sin
R[...,1,0] = sin
return R
def log(self,R):
return torch.atan2(R[...,1,0]-R[...,0,1],R[...,0,0]+R[...,1,1])[...,None]
def components2matrix(self,a): # a: (*,lie_dim)
A = torch.zeros(*a.shape[:-1],2,2,device=a.device,dtype=a.dtype)
A[...,0,1] = -a[...,0]
A[...,1,0] = a[...,0]
return A
def matrix2components(self,A): # A: (*,rep_dim,rep_dim)
a = torch.zeros(*A.shape[:-1],1,device=A.device,dtype=A.dtype)
a[...,:1] = (A[...,1,:1]-A[...,:1,1])/2
return a
def lifted_elems(self,pt,nsamples=1):
""" pt (bs,n,D) mask (bs,n), per_point specifies whether to
use a different group element per atom in the molecule"""
assert nsamples==1, "Abelian group, no need for nsamples"
bs,n,D = pt.shape[:3] # origin = [1,0]
assert D==2, "Lifting from R^2 to SO(2) supported only"
r = norm(pt,dim=-1).unsqueeze(-1)
theta = torch.atan2(pt[...,1],pt[...,0]).unsqueeze(-1)
return theta,r # checked that lifted_elem(v)@[0,1] = v
def distance(self,abq_pairs):
angle_pairs = abq_pairs[...,0]
ra = abq_pairs[...,1]
rb = abq_pairs[...,2]
return angle_pairs.abs()*self.alpha + (1-self.alpha)*(ra-rb).abs()/(ra+rb+1e-3)
@export
class RxSO2(LieGroup):
""" Rotation scaling group. Equivalent to log polar convolution."""
lie_dim=2
rep_dim=2
q_dim=0
def exp(self,a):
logr = a[...,0]
R = torch.zeros(*a.shape[:-1],2,2,device=a.device,dtype=a.dtype)
rsin = logr.exp()*a[...,1].sin()
rcos = logr.exp()*a[...,1].cos()
R[...,0,0] = rcos
R[...,1,1] = rcos
R[...,0,1] = -rsin
R[...,1,0] = rsin
return R
def log(self,R):
rsin = (R[...,1,0]-R[...,0,1])/2
rcos = (R[...,0,0]+R[...,1,1])/2
theta = torch.atan2(rsin,rcos)
r = (rsin**2+rcos**2).sqrt()
return torch.stack([r.log(),theta],dim=-1)
def lifted_elems(self,pt,nsamples=1):
bs,n,D = pt.shape[:3] # origin = [1,0]
assert D==2, "Lifting from R^2 to RxSO(2) supported only"
r = norm(pt,dim=-1).unsqueeze(-1)
theta = torch.atan2(pt[...,1],pt[...,0]).unsqueeze(-1)
return torch.cat([r.log(),theta],dim=-1),None
def distance(self,abq_pairs):
angle_dist = abq_pairs[...,1].abs()
r_dist = abq_pairs[...,0].abs()
return angle_dist*self.alpha + (1-self.alpha)*r_dist
@export
class RxSQ(LieGroup):
""" Rotation Squeeze group. Equivalent to log hyperbolic coordinate convolution.
Acts on the positive orthant R2+."""
lie_dim=2
rep_dim=2
q_dim=0
def exp(self,a):
raise NotImplementedError
def log(self,R):
raise NotImplementedError
def lifted_elems(self,pt,nsamples=1):
bs,n,D = pt.shape[:3] # origin = [1,0]
assert nsamples==1, "Abelian group, no need for nsamples"
assert D==2, "Lifting from R^2 to RxSQ supported only"
lxy = pt.log()
logs = (lxy[...,0]-lxy[...,1])/2
logr = (lxy[...,0]+lxy[...,1])/2
return torch.cat([logr,logs],dim=-1),None
def distance(self,abq_pairs):
s_dist = abq_pairs[...,1].abs()
r_dist = abq_pairs[...,0].abs()
return s_dist*self.alpha + (1-self.alpha)*r_dist
@export
class Rx(LieSubGroup(RxSO2,(0,))): pass
@export
class SQ(LieSubGroup(RxSQ,(1,))): pass
@export
class Tx(LieSubGroup(T,(0,))): pass
@export
class Ty(LieSubGroup(T,(1,))): pass
@export
class SE2(SO2):
lie_dim = 3
rep_dim = 3
q_dim = 0
def log(self,g):
theta = super().log(g[...,:2,:2])
I = torch.eye(2,device=g.device,dtype=g.dtype)
K = super().components2matrix(torch.ones_like(theta))
theta = theta.unsqueeze(-1)
Vinv = (sinc(theta)/(2*cosc(theta)))*I - theta*K/2
a = torch.zeros(g.shape[:-1],device=g.device,dtype=g.dtype)
a[...,0] = theta[...,0,0]
a[...,1:] = (Vinv@g[...,:2,2].unsqueeze(-1)).squeeze(-1)
return a
def exp(self,a):
""" assumes that a is expanded in the basis [tx,ty,theta] of the lie algebra
a should have shape (*,3)"""
theta = a[...,0].unsqueeze(-1)
I = torch.eye(2,device=a.device,dtype=a.dtype)
K = super().components2matrix(torch.ones_like(a))
theta = theta.unsqueeze(-1)
V = sinc(theta)*I + theta*cosc(theta)*K
g = torch.zeros(*a.shape[:-1],3,3,device=a.device,dtype=a.dtype)
g[...,:2,:2] = theta.cos()*I+theta.sin()*K
g[...,:2,2] = (V@a[...,1:].unsqueeze(-1)).squeeze(-1)
g[...,2,2] = 1
return g
def components2matrix(self,a):
"""takes an element in the lie algebra expressed in the standard basis and
expands to the corresponding matrix. a: (*,3)"""
A = torch.zeros(*a.shape,3,device=a.device,dtype=a.dtype)
A[...,2,:2] = a[...,1:]
A[...,0,1] = a[...,0]
A[...,1,0] = -a[...,0]
return A
def matrix2components(self,A):
"""takes an element in the lie algebra expressed as a matrix (*,3,3) and
expresses it in the standard basis"""
a = torch.zeros(*A.shape[:-1],device=A.device,dtype=A.dtype)
a[...,1:] = A[...,:2,2]
a[...,0] = (A[...,1,0]-A[...,0,1])/2
return a
def lifted_elems(self,pt,nsamples=1):
#TODO: correctly handle masking, unnecessary for image data
d=self.rep_dim
# Sample stabilizer of the origin
#thetas = (torch.rand(*p.shape[:-1],1).to(p.device)*2-1)*np.pi
#thetas = torch.randn(nsamples)*2*np.pi - np.pi
thetas = torch.linspace(-np.pi,np.pi,nsamples+1)[1:].to(pt.device)
for _ in pt.shape[:-1]: # uniform on circle, but -pi and pi ar the same
thetas=thetas.unsqueeze(0)
thetas = thetas + torch.rand(*pt.shape[:-1],1).to(pt.device)*2*np.pi
R = torch.zeros(*pt.shape[:-1],nsamples,d,d).to(pt.device)
sin,cos = thetas.sin(),thetas.cos()
R[...,0,0] = cos
R[...,1,1] = cos
R[...,0,1] = -sin
R[...,1,0] = sin
R[...,2,2] = 1
# Get T(p)
T = torch.zeros_like(R)
T[...,0,0]=1
T[...,1,1]=1
T[...,2,2]=1
T[...,:2,2] = pt.unsqueeze(-2)
flat_a = self.log(T@R).reshape(*pt.shape[:-2],pt.shape[-2]*nsamples,d)
return flat_a, None
def distance(self,abq_pairs):
d_theta = abq_pairs[...,0].abs()
d_r = norm(abq_pairs[...,1:],dim=-1)
return d_theta*self.alpha + (1-self.alpha)*d_r
## Lie Groups acting on R3
# Hodge star on R3
def cross_matrix(k):
"""Application of hodge star on R3, mapping Λ^1 R3 -> Λ^2 R3"""
K = torch.zeros(*k.shape[:-1],3,3,device=k.device,dtype=k.dtype)
K[...,0,1] = -k[...,2]
K[...,0,2] = k[...,1]
K[...,1,0] = k[...,2]
K[...,1,2] = -k[...,0]
K[...,2,0] = -k[...,1]
K[...,2,1] = k[...,0]
return K
def uncross_matrix(K):
"""Application of hodge star on R3, mapping Λ^2 R3 -> Λ^1 R3"""
k = torch.zeros(*K.shape[:-1],device=K.device,dtype=K.dtype)
k[...,0] = (K[...,2,1] - K[...,1,2])/2
k[...,1] = (K[...,0,2] - K[...,2,0])/2
k[...,2] = (K[...,1,0] - K[...,0,1])/2
return k
@export
class SO3(LieGroup):
lie_dim = 3
rep_dim = 3
q_dim = 1
def __init__(self,alpha=.2):
super().__init__()
self.alpha = alpha
def exp(self,w):
""" Rodriguez's formula, assuming shape (*,3)
where components 1,2,3 are the generators for xrot,yrot,zrot"""
theta = norm(w,dim=-1)[...,None,None]
K = cross_matrix(w)
I = torch.eye(3,device=K.device,dtype=K.dtype)
Rs = I + K*sinc(theta) + (K@K)*cosc(theta)
return Rs
def log(self,R):
""" Computes components in terms of generators rx,ry,rz. Shape (*,3,3)"""
trR = R[...,0,0]+R[...,1,1]+R[...,2,2]
costheta = ((trR-1)/2).clamp(max=1,min=-1).unsqueeze(-1)
theta = torch.acos(costheta)
logR = uncross_matrix(R)*sinc_inv(theta)
return logR
def components2matrix(self,a): # a: (*,3)
return cross_matrix(a)
def matrix2components(self,A): # A: (*,rep_dim,rep_dim)
return uncross_matrix(A)
def sample(self,*shape,device=torch.device('cuda'),dtype=torch.float32):
q = torch.randn(*shape,4,device=device,dtype=dtype)
q /= norm(q,dim=-1).unsqueeze(-1)
theta_2 = torch.atan2(norm(q[...,1:],dim=-1),q[...,0]).unsqueeze(-1)
so3_elem = 2*sinc_inv(theta_2)*q[...,1:] # # (sin(x/2)u -> xu) for x angle and u direction
R = self.exp(so3_elem)
return R
def lifted_elems(self,pt,nsamples,**kwargs):
""" Lifting from R^3 -> SO(3) , R^3/SO(3). pt shape (*,3)
First get a random rotation Rz about [1,0,0] by the appropriate angle
and then rotate from [1,0,0] to p/\|p\| with Rp to get RpRz and then
convert to logarithmic coordinates log(RpRz), \|p\|"""
d=self.rep_dim
device,dtype = pt.device,pt.dtype
# Sample stabilizer of the origin
q = torch.randn(*pt.shape[:-1],nsamples,4,device=device,dtype=dtype)
q /= norm(q,dim=-1).unsqueeze(-1)
theta = 2*torch.atan2(norm(q[...,1:],dim=-1),q[...,0]).unsqueeze(-1)
zhat = torch.zeros(*pt.shape[:-1],nsamples,3,device=device,dtype=dtype) # (*,3)
zhat[...,0] = 1#theta
Rz = self.exp(zhat*theta)
# Compute the rotation between zhat and p
r = norm(pt,dim=-1).unsqueeze(-1) # (*,1)
assert not torch.any(torch.isinf(pt)|torch.isnan(pt))
p_on_sphere = pt/r.clamp(min=1e-5)
w = torch.cross(zhat,p_on_sphere[...,None,:].expand(*zhat.shape))
sin = norm(w,dim=-1)
cos = p_on_sphere[...,None,0]
angle = torch.atan2(sin,cos).unsqueeze(-1) #cos angle
Rp = self.exp(w*sinc_inv(angle))
# Combine the rotations into one
A = self.log(Rp@Rz) # Convert to lie algebra element
assert not torch.any(torch.isnan(A)|torch.isinf(A))
q = r[...,None,:].expand(*r.shape[:-1],nsamples,1) # The orbit identifier is \|x\|
flat_q = q.reshape(*r.shape[:-2],r.shape[-2]*nsamples,1)
flat_a = A.reshape(*pt.shape[:-2],pt.shape[-2]*nsamples,d)
return flat_a, flat_q
@export
class SE3(SO3):
lie_dim = 6
rep_dim = 4
q_dim = 0
def __init__(self,alpha=.2,per_point=True):
super().__init__()
self.alpha = alpha
self.per_point = per_point
def exp(self,w):
theta = norm(w[...,:3],dim=-1)[...,None,None]
K = cross_matrix(w[...,:3])
R = super().exp(w[...,:3])
I = torch.eye(3,device=w.device,dtype=w.dtype)
V = I + cosc(theta)*K + sincc(theta)*(K@K)
U = torch.zeros(*w.shape[:-1],4,4,device=w.device,dtype=w.dtype)
U[...,:3,:3] = R
U[...,:3,3] = (V@w[...,3:].unsqueeze(-1)).squeeze(-1)
U[...,3,3] = 1
return U
def log(self,U):
w = super().log(U[...,:3,:3])
I = torch.eye(3,device=w.device,dtype=w.dtype)
K = cross_matrix(w[...,:3])
theta = norm(w,dim=-1)[...,None,None]#%(2*np.pi)
#theta[theta>np.pi] -= 2*np.pi
cosccc = coscc(theta)
Vinv = I - K/2 + cosccc*(K@K)
u = (Vinv@U[...,:3,3].unsqueeze(-1)).squeeze(-1)
#assert not torch.any(torch.isnan(u)), f"nans in u log {torch.isnan(u).sum()}, {torch.where(torch.isnan(u))}"
return torch.cat([w,u],dim=-1)
def components2matrix(self,a): # a: (*,3)
A = torch.zeros(*a.shape[:-1],4,4,device=a.device,dtype=a.dtype)
A[...,:3,:3] = cross_matrix(a[...,:3])
A[...,:3,3] = a[...,3:]
return A
def matrix2components(self,A): # A: (*,4,4)
return torch.cat([uncross_matrix(A[...,:3,:3]),A[...,:3,3]],dim=-1)
def lifted_elems(self,pt,nsamples):
""" pt (bs,n,D) mask (bs,n), per_point specifies whether to
use a different group element per atom in the molecule"""
#return farthest_lift(self,pt,mask,nsamples,alpha)
# same lifts for each point right now
bs,n = pt.shape[:2]
if self.per_point:
q = torch.randn(bs,n,nsamples,4,device=pt.device,dtype=pt.dtype)
else:
q = torch.randn(bs,1,nsamples,4,device=pt.device,dtype=pt.dtype)
q /= norm(q,dim=-1).unsqueeze(-1)
theta_2 = torch.atan2(norm(q[...,1:],dim=-1),q[...,0]).unsqueeze(-1)
so3_elem = 2*sinc_inv(theta_2)*q[...,1:] # (sin(x/2)u -> xu) for x angle and u direction
se3_elem = torch.cat([so3_elem,torch.zeros_like(so3_elem)],dim=-1)
R = self.exp(se3_elem)
T = torch.zeros(bs,n,nsamples,4,4,device=pt.device,dtype=pt.dtype) # (bs,n,nsamples,4,4)
T[...,:,:] = torch.eye(4,device=pt.device,dtype=pt.dtype)
T[...,:3,3] = pt[:,:,None,:] # (bs,n,1,3)
a = self.log(T@R)#@R) # bs, n, nsamples, 6
return a.reshape(bs,n*nsamples,6), None
def distance(self,abq_pairs):
dist_rot = norm(abq_pairs[...,:3],dim=-1)
dist_trans = norm(abq_pairs[...,3:],dim=-1)
return dist_rot*self.alpha + (1-self.alpha)*dist_trans
@export
class Trivial(LieGroup):
lie_dim=0
def __init__(self,dim=2):
super().__init__()
self.q_dim = dim
self.rep_dim = dim
def lift(self,x,nsamples,**kwargs):
assert nsamples==1, "Abelian group, no need for nsamples"
p,v,m = x
bs,n,d = p.shape
qa = p[...,:,None,:].expand(bs,n,n,d)
qb = p[...,None,:,:].expand(bs,n,n,d)
q = torch.cat([qa,qb],dim=-1)
return q,v,m
# def distance(self,abq_pairs):
# qa = abq_pairs[...,:self.q_dim]
# qb = abq_pairs[...,self.q_dim:]
# return norm(qa-qb,dim=-1)
@export
class FakeSchGroup(object):
lie_dim=0
rep_dim=3
q_dim=1
def lift(self,x,nsamples,**kwargs):
"""assumes p has shape (*,n,2), vals has shape (*,n,c), mask has shape (*,n)
returns (a,v) with shapes [(*,n*nsamples,lie_dim),(*,n*nsamples,c)"""
p,v,m = x
q = (p[...,:,None,:] - p[...,None,:,:]).norm(dim=-1).unsqueeze(-1)
return (q,v,m)
def distance(self,abq_pairs):
return abq_pairs