forked from lrjconan/deep_parsimonious
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_train_model.py
303 lines (235 loc) · 11 KB
/
run_train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""run_train_model.py
Usage:
run_train_model.py <exp_id> [<distillation_source>]
"""
import os
import time
import math
import numpy as np
import tensorflow as tf
import exp_config as cg
import nn_cell_lib as nn
import cPickle as pickle
from docopt import docopt
from mini_batch_iter import MiniBatchIterator
from kmeans_plus_plus import get_update_cluster_idx
from CIFAR_input import read_CIFAR10, read_CIFAR100
from CIFAR_models import baseline_model, clustering_model, distilled_model
def update_cluster_centers(sess, input_data, model_ops, hist_label, train_iterator, param, hist_thresh=10):
""" Update Cluster Centers """
num_cluster = param['num_cluster']
is_update = [False if xx is not None else True for xx in num_cluster]
mask_update = [np.zeros(xx, dtype=np.bool)
if xx is not None else None for xx in num_cluster]
for ll, hh in enumerate(hist_label):
if hh is not None:
for kk in xrange(hh.shape[0]):
if hh[kk] >= hist_thresh:
mask_update[ll][kk] = True
else:
is_update[ll] = True
if all(is_update):
num_pass = 0
for ii, xx in enumerate(mask_update):
if xx is not None:
num_empty = num_cluster[ii] - len(np.nonzero(xx))
if num_empty > num_pass:
num_pass = num_empty
idx_start = train_iterator.idx_start
num_pass = int(math.ceil(num_pass / float(param['bat_size'])))
c_center = sess.run(model_ops['cluster_center'])
for ii in xrange(num_pass):
# generate a mini-batch
idx_train_bat = train_iterator.get_batch()
bat_imgs = (input_data['train_img'][idx_train_bat, :, :, :].astype(
np.float32) - input_data['mean_img']) / param['denom_const']
feed_data = {model_ops['input_images']: bat_imgs,
model_ops['input_eta']: param['eta']}
embeddings = sess.run(model_ops['embeddings'], feed_dict=feed_data)
# generate new cluster center
idx_center, idx_sample = get_update_cluster_idx(
c_center, embeddings, mask_update)
var_keys = [model_ops['input_images']]
var_names = [feed_data[model_ops['input_images']]]
num_layer_cnn = len(param['num_cluster_cnn'])
num_layer_mlp = len(param['num_cluster_mlp'])
var_keys += [model_ops['c_reset_idx_cnn'][ii]
for ii in xrange(num_layer_cnn)]
var_keys += [model_ops['s_reset_idx_cnn'][ii]
for ii in xrange(num_layer_cnn)]
var_keys += [model_ops['c_reset_idx_mlp'][ii]
for ii in xrange(num_layer_mlp)]
var_keys += [model_ops['s_reset_idx_mlp'][ii]
for ii in xrange(num_layer_mlp)]
var_names += idx_center[:num_layer_cnn]
var_names += idx_sample[:num_layer_cnn]
var_names += idx_center[num_layer_cnn:]
var_names += idx_sample[num_layer_cnn:]
feed_data_reset = dict(zip(var_keys, var_names))
sess.run(model_ops['reset_ops'], feed_dict=feed_data_reset)
# reset iterator
train_iterator.reset_iterator(idx_start)
def main():
# get exp parameters
args = docopt(__doc__)
param = getattr(cg, args['<exp_id>'])()
if param['resume_training'] == True:
param['exp_id'] = param['resume_exp_id']
else:
param['exp_id'] = args['<exp_id>'] + '_' + \
time.strftime("%Y-%b-%d-%H-%M-%S")
param['save_folder'] = os.path.join(param['save_path'], param['exp_id'])
# save parameters
if not os.path.isdir(param['save_folder']):
os.mkdir(param['save_folder'])
with open(os.path.join(param['save_folder'], 'hyper_param.txt'), 'w') as f:
for key, value in param.iteritems():
f.write('{}: {}\n'.format(key, value))
if param['model_name'] == 'parsimonious':
param['num_layer_cnn'] = len(
[xx for xx in param['num_cluster_cnn'] if xx])
param['num_layer_mlp'] = len(
[xx for xx in param['num_cluster_mlp'] if xx])
param['num_cluster'] = param[
'num_cluster_cnn'] + param['num_cluster_mlp']
num_layer_reg = param['num_layer_cnn'] + param['num_layer_mlp']
param['num_layer_reg'] = num_layer_reg
hist_label = [np.zeros(xx) if xx is not None else None for xx in param[
'num_cluster']]
reg_val = np.zeros(num_layer_reg)
# read data from file
if param['dataset_name'] not in ['CIFAR10', 'CIFAR100']:
raise ValueError('Unsupported dataset name!')
param['denom_const'] = 255.0
if param['dataset_name'] == 'CIFAR10':
input_data = read_CIFAR10(param['data_folder'])
else:
input_data = read_CIFAR100(param['data_folder'])
print 'Reading data done!'
# build model
if param['model_name'] == 'baseline':
model_ops = baseline_model(param)
elif param['model_name'] == 'parsimonious':
model_ops = clustering_model(param)
else:
raise ValueError('Unsupported model name!')
train_op_names = ['train_step', 'CE_loss']
val_op_names = ['scaled_logits']
train_ops = [model_ops[i] for i in train_op_names]
val_ops = [model_ops[i] for i in val_op_names]
print 'Building model done!'
# run model
if param['merge_valid']:
input_data['train_img'] = np.concatenate(
[input_data['train_img'], input_data['val_img']], axis=0)
input_data['train_label'] = np.concatenate(
[input_data['train_label'], input_data['val_label']])
num_train_img = input_data['train_img'].shape[0]
num_val_img = input_data['test_img'].shape[0]
epoch_iter = int(math.ceil(num_train_img / param['bat_size']))
max_val_iter = int(math.ceil(num_val_img / param['bat_size']))
train_iterator = MiniBatchIterator(
idx_start=0, bat_size=param['bat_size'], num_sample=num_train_img,
train_phase=True, is_permute=True)
val_iterator = MiniBatchIterator(
idx_start=0, bat_size=param['bat_size'], num_sample=num_val_img,
train_phase=False, is_permute=False)
saver = tf.train.Saver()
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
train_iter_start = 0
if param['resume_training']:
saver.restore(sess, os.path.join(
param['save_folder'], param['resume_model_name']))
train_iter_start = param['resume_step']
else:
sess.run(tf.initialize_all_variables())
print 'Graph initialization done!'
for train_iter in xrange(train_iter_start, param['max_train_iter']):
# generate a batch
idx_train_bat = train_iterator.get_batch()
bat_imgs = (input_data['train_img'][idx_train_bat, :, :, :].astype(
np.float32) - input_data['mean_img']) / param['denom_const']
bat_labels = input_data['train_label'][idx_train_bat].astype(np.int32)
feed_data = {
model_ops['input_images']: bat_imgs,
model_ops['input_labels']: bat_labels
}
# run a batch
if param['model_name'] == 'baseline':
results = sess.run(train_ops, feed_dict=feed_data)
train_results = {}
for res, name in zip(results, train_op_names):
train_results[name] = res
CE_loss = train_results['CE_loss']
elif param['model_name'] == 'parsimonious':
feed_data[model_ops['input_eta']] = param['eta']
# deal with drifted clusters
if (train_iter + 1) % epoch_iter == 0:
update_cluster_centers(
sess, input_data, model_ops, hist_label, train_iterator,
param)
# get CE/Reg values
results = sess.run([model_ops['CE_loss']] + model_ops['reg_ops'] +
model_ops['cluster_label'], feed_dict=feed_data)
CE_loss = results[0]
for ii in xrange(num_layer_reg):
reg_val[ii] = results[1 + ii]
cluster_label = results[1 + num_layer_reg:]
cluster_idx = 0
for ii, xx in enumerate(param['num_cluster']):
if xx:
tmp_label = cluster_label[cluster_idx]
for jj in xrange(tmp_label.shape[0]):
hist_label[ii][tmp_label[jj]] += 1
cluster_idx += 1
# run clustering
if (train_iter + 1) % 1 == 0:
for iter_clustering in xrange(param['clustering_iter']):
sess.run(model_ops['clustering_ops'], feed_dict=feed_data)
if (train_iter + 1) % epoch_iter == 0:
for ii in xrange(len(hist_label)):
if hist_label[ii] is not None:
hist_label[ii].fill(0)
# run optimization
sess.run(model_ops['train_step'], feed_dict=feed_data)
# display statistic
if (train_iter + 1) % param['disp_iter'] == 0 or train_iter == 0:
disp_str = 'Train Step = {:06d} || CE loss = {:e}'.format(
train_iter + 1, CE_loss)
if param['model_name'] == 'parsimonious':
disp_str += ' || Clustering '
for ii in xrange(num_layer_reg):
disp_str += 'Reg_{:d} = {:e} '.format(ii + 1, reg_val[ii])
print disp_str
# valid model
if (train_iter + 1) % param['valid_iter'] == 0 or train_iter == 0:
num_correct = 0.0
if param['resume_training'] == True:
print 'Resume Exp ID = {}'.format(param['exp_id'])
else:
print 'Exp ID = {}'.format(param['exp_id'])
for val_iter in xrange(max_val_iter):
idx_val_bat = val_iterator.get_batch()
bat_imgs = (input_data['test_img'][idx_val_bat, :, :, :].astype(
np.float32) - input_data['mean_img']) / param['denom_const']
bat_labels = input_data['test_label'][
idx_val_bat].astype(np.int32)
feed_data[model_ops['input_images']] = bat_imgs
feed_data[model_ops['input_labels']] = bat_labels
results = sess.run(val_ops, feed_dict=feed_data)
val_results = {}
for res, name in zip(results, val_op_names):
val_results[name] = res
pred_label = np.argmax(val_results['scaled_logits'], axis=1)
num_correct += np.sum(np.equal(pred_label,
bat_labels).astype(np.float32))
val_acc = (num_correct / num_val_img)
print "Val accuracy = {:3f}".format(val_acc * 100)
# snapshot a model
if (train_iter + 1) % param['save_iter'] == 0:
saver.save(sess, os.path.join(param['save_folder'], '{}_snapshot_{:07d}.ckpt'.format(
param['model_name'], train_iter + 1)))
sess.close()
if __name__ == '__main__':
main()