forked from Priyamakeshwari/TeachGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
111 lines (101 loc) · 3.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import logging
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.llms import LlamaCpp
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.callbacks.manager import CallbackManager
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from huggingface_hub import hf_hub_download
from gpt4all import GPT4All
from config import (
PERSIST_DIRECTORY,
MODEL_DIRECTORY,
EMBEDDING_MODEL,
DEVICE_TYPE,
CHROMA_SETTINGS,
MODEL_NAME,
MODEL_FILE,
N_GPU_LAYERS,
MAX_TOKEN_LENGTH,
)
def load_model(model_choice, device_type=DEVICE_TYPE, model_id=MODEL_NAME, model_basename=MODEL_FILE, LOGGING=logging):
"""
Load a language model (either LlamaCpp or GPT4All).
Args:
model_choice (str): The choice of the model to load ('LlamaCpp' or 'GPT4All').
device_type (str): The type of device to use ('cuda', 'mps', or 'cpu').
model_id (str): The ID of the model to load.
model_basename (str): The name of the model file.
LOGGING (logging): The logging object.
Returns:
LlamaCpp or GPT4All: The loaded language model.
"""
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
try:
if model_choice == 'LlamaCpp':
model_path = hf_hub_download(
repo_id=model_id,
filename=model_basename,
resume_download=True,
cache_dir=MODEL_DIRECTORY,
)
kwargs = {
"model_path": model_path,
"max_tokens": MAX_TOKEN_LENGTH,
"n_ctx": MAX_TOKEN_LENGTH,
"n_batch": 512,
"callback_manager": callback_manager,
"verbose": False,
"f16_kv": True,
"streaming": True,
}
if device_type.lower() == "mps":
kwargs["n_gpu_layers"] = 1
if device_type.lower() == "cuda":
kwargs["n_gpu_layers"] = N_GPU_LAYERS # set this based on your GPU
llm = LlamaCpp(**kwargs)
LOGGING.info(f"Loaded {model_id} locally")
return llm # Returns a LlamaCpp object
elif model_choice == 'GPT4All':
gpt4all_model = GPT4All("orca-mini-3b.ggmlv3.q4_0.bin")
return gpt4all_model
else:
LOGGING.info("Invalid model choice. Choose 'LlamaCpp' or 'GPT4All'.")
except Exception as e:
LOGGING.info(f"Error {e}")
def retriver(device_type=DEVICE_TYPE, LOGGING=logging):
"""
Retrieve information using a language model and Chroma database.
Args:
device_type (str): The type of device to use ('cuda', 'mps', or 'cpu').
LOGGING (logging): The logging object.
"""
embeddings = HuggingFaceInstructEmbeddings(
model_name=EMBEDDING_MODEL,
model_kwargs={"device": DEVICE_TYPE},
cache_folder=MODEL_DIRECTORY,
)
db = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=embeddings,
)
retriever = db.as_retriever()
model_choice = input("Choose a model (LlamaCpp or GPT4All): ")
model = load_model(model_choice, device_type, model_id=MODEL_NAME, model_basename=MODEL_FILE, LOGGING=logging)
if model_choice == 'LlamaCpp':
while True:
question = input("Enter your question (type 'exit' to quit): ")
if question.lower() == 'exit':
break
response = model(question)
print(response)
elif model_choice == 'GPT4All':
while True:
question = input("Enter your question (type 'exit' to quit): ")
if question.lower() == 'exit':
break
response = model.generate(question, max_tokens=50)
print(response)
if __name__ == '__main__':
retriver()