-
Notifications
You must be signed in to change notification settings - Fork 14
/
evaluation_mist.py
executable file
·271 lines (217 loc) · 9.55 KB
/
evaluation_mist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 25 15:36:30 2020
@author: stravsm
"""
import importlib
from importlib import reload
from tqdm import tqdm
import os
import tensorflow as tf
import numpy as np
import pandas as pd
from fp_management import database as db
from fp_management import mist_fingerprinting
import smiles_config as sc
sc.config_file.append("config.EULER-eval.yaml")
sc.config_reload()
import infrastructure.generator as gen
import infrastructure.decoder as dec
import time
from datetime import datetime
import pickle
import pathlib
from rdkit import RDLogger
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
import infrastructure.score as msc
import gc
import random
# Disable dropout. Is there a more elegant way to adapt config at runtime?
sc.config["model_config"]["training"] = False
# Randomness is relevant for stochastic sampling
random_seed = sc.config['random_seed_global']
if random_seed != '':
random.seed(random_seed)
np.random.seed(random_seed)
tf.random.experimental.set_seed(random_seed)
# Setup logger
import logging
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%d-%b-%y %H:%M:%S')
logger = logging.getLogger("MSNovelist")
logger.setLevel(logging.INFO)
logger.info("evaluation startup")
eval_folder = pathlib.Path(sc.config["eval_folder"])
eval_folder.mkdir(parents=True, exist_ok=True)
eval_id = str(int(time.time()))
pickle_id = eval_id
if sc.config['eval_id'] != '':
eval_id = sc.config['eval_id']
if sc.config['eval_counter'] != '':
pickle_id = sc.config['eval_id'] + "-" + sc.config['eval_counter']
if isinstance(sc.config['weights'], list):
weights_list = sc.config['weights']
else:
weights_list = [sc.config['weights']]
# First, do everything independent of weights
fpr.MistFingerprinter.init_instance()
fingerprinter = fpr.Fingerprinter.get_instance()
n = sc.config["eval_n"]
n_total = sc.config["eval_n_total"]
#n_total_ = n_total // n * n
k = sc.config["eval_k"]
kk = sc.config["eval_kk"]
steps = sc.config["eval_steps"]
decoder_name = sc.config["decoder_name"]
sc.config.setdefault('cv_fold', 0)
cv_fold = sc.config["cv_fold"]
#evaluation_set_ = sc.config['evaluation_set']
evaluation_set = f"fold{cv_fold}"
# File for CSI:FingerID validation data
data_eval_ = sc.config["db_path_eval"]
# Load mapping table for the CSI:FingerID predictors
# Load dataset and process appropriately
db_eval = db.FpDatabase.load_from_config(data_eval_)
pipeline_options = db_eval.get_pipeline_options()
pipeline_encoder = sc.config['pipeline_encoder']
pipeline_reference = sc.config['pipeline_reference']
dataset_val = db_eval.get_grp(evaluation_set)
if n_total != -1:
dataset_val = dataset_val[:n_total]
else:
n_total = len(dataset_val)
# Load dataset and sampler, apply sampler to dataset
# (so we can also evaluate from fingerprint_sampled)
fp_dataset_val_ = gen.smiles_pipeline(dataset_val,
batch_size = n,
**pipeline_options,
map_fingerprints=False)
fp_dataset_val = gen.dataset_zip(fp_dataset_val_,
pipeline_encoder, pipeline_reference,
**pipeline_options)
sampler_name = sc.config['sampler_name']
round_fingerprints = True
if sampler_name != '':
logger.info(f"Sampler {sampler_name} loading")
sampler_module = importlib.import_module('fp_sampling.' + sampler_name, 'fp_sampling')
sampler_factory = sampler_module.SamplerFactory(sc.config)
round_fingerprints = sampler_factory.round_fingerprint_inference()
sampler = sampler_factory.get_sampler()
logger.info(f"Sampler {sampler_name} loaded")
fp_dataset_val_ = sampler.map_dataset(fp_dataset_val_)
for weights_i, weights_ in enumerate(weights_list):
eval_id = str(int(time.time()))
pickle_id = eval_id
if sc.config['eval_id'] != '':
eval_id = sc.config['eval_id']
if sc.config['eval_counter'] != '':
pickle_id = sc.config['eval_id'] + "-" + sc.config['eval_counter']
if len(weights_list) > 1:
pickle_id = sc.config['eval_id'] + "-" + sc.config['eval_counter'] + "-" + weights_i
# logpath_topn = eval_folder / ("eval_" + eval_id + "_topn.txt")
# logpath_top1 = eval_folder / ("eval_" + eval_id + "_top1.txt")
picklepath = eval_folder / ("eval_" + pickle_id + ".pkl")
logger.info(picklepath)
logger.info(weights_)
weights = os.path.join(sc.config["weights_folder"], weights_)
retain_single_duplicate = True
fp_dataset_iter = iter(fp_dataset_val)
blueprints = gen.dataset_blueprint(fp_dataset_val_)
# Load models
import model
model_encode = model.EncoderModel(
blueprints = blueprints,
config = sc.config,
round_fingerprints = round_fingerprints)
model_decode = model.DecoderModel(
blueprints = blueprints,
config = sc.config,)
model_transcode = model.TranscoderModel(
blueprints = blueprints,
config = sc.config,
round_fingerprints = round_fingerprints)
# Build models by calling them
y_ = model_transcode(blueprints)
enc = model_encode(next(fp_dataset_iter)[0])
_ = model_decode(enc)
model_transcode.load_weights(weights, by_name=True)
model_encode.copy_weights(model_transcode)
model_decode.copy_weights(model_transcode)
# Initialize decoder
decoder = dec.get_decoder(decoder_name)(
model_encode, model_decode, steps, n, k, kk, config = sc.config)
logger.info("Decoder initialized")
logger.info(f"Processing and scoring predictions")
logger.info(f"Predicting {n_total} samples - start")
logger.info(f"Beam block size {n}*{k}*{steps}, sequences retrieved per sample: {kk}")
result_blocks = []
reference_blocks = []
for data in tqdm(fp_dataset_val, total = (n_total -1) // n + 1):
# repeat the input data k times for each of n queries
# (now we encode each of k samples individually because the encoding
# may be probabilistic)
# make a custom decoder if we don't have all n samples
n_real = len(data[0]['n_hydrogen'])
if n_real != n:
decoder = dec.get_decoder(decoder_name)(
model_encode, model_decode, steps, n_real, k, kk, config = sc.config)
data_k = {key: tf.repeat(x, k, axis=0) for key, x in data[0].items()}
states_init = model_encode.predict(data_k)
# predict k sequences for each query.
sequences, y, scores = decoder.decode_beam(states_init)
seq, score, length = decoder.beam_traceback(sequences, y, scores)
smiles = decoder.sequence_ytoc(seq)
results_df = decoder.format_results(smiles, score)
result_blocks.append(results_df)
reference_df = decoder.format_reference(
[bytes.decode(x, 'UTF-8') for x in data[1][0].numpy()],
[d for d in data[1][1].numpy()])
reference_blocks.append(reference_df)
results = pd.concat(result_blocks)
logger.info(f"Predicting {n_total} samples - done")
pickle.dump(results, open(
picklepath.with_suffix("").with_name(picklepath.name + "_all"), "wb")
)
logger.info(f"Evaluating {n_total} blocks - start")
results_evaluated = []
for block_, ref_, block_id in zip(tqdm(result_blocks),
reference_blocks,
range(len(result_blocks))):
# Make a block with molecule, MF, smiles for candidates and reference
block = db.process_df(block_, fingerprinter,
construct_from = "smiles",
block_id = block_id)
if retain_single_duplicate:
block.sort_values("score", ascending = False, inplace = True)
block = block.groupby(["n", "inchikey1"]).first().reset_index()
ref = db.process_df(ref_, fingerprinter,
construct_from = "smiles",
block_id = block_id)
# Also actually compute the true fingerprint for the reference
if sc.config["eval_fingerprint_all"]:
fingerprinter.process_df(ref,
out_column = "fingerprint_ref_true",
inplace=True)
# Match ref to predictions
block = block.join(ref, on="n", rsuffix="_ref")
# Keep only correct formula
block_ok = block.loc[block["inchikey1"].notna()].loc[block["mf"] == block["mf_ref"]]
# Now actually compute the fingerprints, only for matching MF
if sc.config["eval_fingerprint_all"]:
fingerprinter.process_df(block_ok,
inplace=True)
block = block.merge(
block_ok[["n","k","fingerprint"]],
left_on = ["n", "k"],
right_on = ["n", "k"],
suffixes = ["_ref", ""],
how = "left")
results_evaluated.append(block)
logger.info(f"Evaluating {n_total} blocks - merging")
results_complete = pd.concat(results_evaluated)
results_complete["nn"] = n * results_complete["block_id"] + results_complete["n"]
results_complete ["evaluation_set"] = evaluation_set
logger.info(f"Pickling predictions from [{evaluation_set}]")
pickle.dump(results_complete, open(picklepath, "wb"))
results_ok = results_complete.loc[results_complete["fingerprint"].notna()].copy()