Skip to content

Latest commit

 

History

History
721 lines (533 loc) · 26.3 KB

rtp_fg.md

File metadata and controls

721 lines (533 loc) · 26.3 KB

RTP FG

  • RTP FG能够以比较高的效率生成一些复杂的特征,如MatchFeature和LookupFeature, 线上线下使用同一套代码保证一致性.

  • 其生成的特征可以接入EasyRec进行训练,从RTP FG的配置(fg.json)可以生成EasyRec的配置文件(pipeline.config).

  • 线上部署的时候提供带FG功能的EAS processor,一键部署.

训练

编写配置 fg.json

  • 包含了features配置和全局配置两个部分, 示例:
{
  "features": [
     {"expression": "user:user_id", "feature_name": "user_id", "feature_type":"id_feature", "value_type":"String", "combiner":"mean", "hash_bucket_size": 100000, "embedding_dim": 16, "group":"user"},
     {"expression": "user:cms_segid", "feature_name": "cms_segid", "feature_type":"id_feature", "value_type":"String", "combiner":"mean", "hash_bucket_size": 100, "embedding_dim": 16, "group":"user"},
     ...
     {"expression": "item:price", "feature_name": "price", "feature_type":"raw_feature", "value_type":"Integer", "combiner":"mean", "group":"item"},
     {"expression": "item:pid", "feature_name": "pid", "feature_type":"id_feature", "value_type":"String", "combiner":"mean", "hash_bucket_size": 100000, "embedding_dim": 16, "group":"item"},
     {"expression": "user:tag_category_list", "feature_name": "user_tag_cate", "feature_type":"id_feature", "hash_bucket_size":100000, "group":"user"},
     {"map": "user:tag_brand_list", "key":"item:brand", "feature_name": "combo_brand", "feature_type":"lookup_feature",  "needDiscrete":true, "hash_bucket_size":100000, "group":"combo"},
     {"map": "user:tag_category_list", "key":"item:cate_id", "feature_name": "combo_cate_id", "feature_type":"lookup_feature",  "needDiscrete":true, "hash_bucket_size":10000, "group":"combo"}
 ],


 "reserves": [
   "user_id", "campaign_id", "clk"
 ],
 "multi_val_sep": "|"
}
  • Feature配置说明:

    • IdFeature

      • is_multi: id_feature是否是多值属性

        • 默认是false, 转换成EasyRec的config时会转成IdFeature

        • 如果设成true, 转换成EasyRec的config时会转成TagFeature.

        • 多值分隔符使用chr(29)[ctrl+v ctrl+].

      • vocab_file: 词典文件路径,根据词典将对应的输入映射成ID.

      • vocab_list: 词典list,根据词典将对应的输入映射成ID.

      • num_buckets: 当输入是unsigned int类型的时候,并且输入有界的时候,可以指定num_bucket为输入的最大值.

      • hash_bucket_size: 对应EasyRec feature_config.features的hash_bucket_size.

        • 和vocab_file, vocab_list相比,优势是不需要词典,词典可以是不固定的.

        • 劣势是需要设置的容量比较大,容易导致hash冲突.

      • embedding_dimension/embedding_dim: 对应EasyRec feature_config.features里面的embedding_dim.

    • RawFeature

      • bucketize_boundaries: 会生成离散化的结果, 在生成EasyRec config的时候:

      • 设置feature_config.features.num_buckets = len(boundaries) + 1

      • value_dimension > 1时, feature_type = TagFeature

      • value_dimension = 1时, feature_type = IdFeature

      • boundaries: 生成的还是连续值,但在生成EasyRec config的时候:

      会配置离散化的bucket, 如:
      feature_config: {
        features: {
          input_names: "hour"
          feature_type: RawFeature
          boundaries: [1,5,9,15,19,23]
          embedding_dim: 16
        }
      }
      
      • 设置bucketize_boundaries/boundaries的同时需要设置embedding_dimension.

      • value_dimension: 连续值的维度,>1时表示有多个连续值, 也就是一个向量.

        • 比如ctr_1d,ctr_2d,ctr_3d,ctr_12d可以放在一个RawFeature里面.
        • 该选项对生成数据有影响.
        • 该选项对生成EasyRec config也有影响.
    • ComboFeature

      • 需要设置embedding_dimension和hash_bucket_size. 方法一:在fg中生成combo特征,见ComboFeature
      {"expression": "user:user_id", "feature_name": "user_id", "feature_type":"id_feature", "value_type":"String", "combiner":"mean", "hash_bucket_size": 100000, "embedding_dim": 16, "group":"user"},
      {"expression": "user:occupation", "feature_name": "occupation", "feature_type":"id_feature", "value_type":"String", "combiner":"mean", "hash_bucket_size": 10, "embedding_dim": 16, "group":"user"},
      {"expression" : ["user:user_id", "user:occupation"], "feature_name" : "combo__occupation_age_level", "feature_type" : "combo_feature", "hash_bucket_size": 10, "embedding_dim": 16}
      
      
      • fg.json需进行三项配置,生成三列数据

      方法二:在参与combo的特征配置中加入extra_combo_info配置,fg会生成两列数据,在easyrec层面进行combo.

       {"expression": "user:user_id", "feature_name": "user_id", "feature_type":"id_feature", "value_type":"String", "combiner":"mean", "hash_bucket_size": 100000, "embedding_dim": 16, "group":"user"},
       {"expression": "user:occupation", "feature_name": "occupation", "feature_type":"id_feature", "value_type":"String", "combiner":"mean", "hash_bucket_size": 10, "embedding_dim": 16, "group":"user",
         "extra_combo_info": {
           "final_feature_name": "combo__occupation_age_level",
           "feature_names": ["user_id"],
           "combiner":"mean", "hash_bucket_size": 10, "embedding_dim": 16
         }
       }
      
      • 最终会生成两列数据(user_id和occupation),config中生成三个特征配置,分别是user_id,occupation,combo__occupation_age_level.
      • final_feature_name: 该combo特征的名字.
      • feature_names: 除当前特征外,参与combo的特征,至少一项.
      • combiner, hash_bucket_size, embedding_dim 配置与上述一致.
    • LookupFeature

      • 根据id查找对应的value.
    • MatchFeature

      • 双层查找, 根据category和item_id查找value.

      • match Feature里面多值分隔符可以使用chr(29) (ctrl+v ctrl+])或者逗号[,], 如:

        50011740^107287172:0.2^]36806676:0.3^]122572685:0.5|50006842^16788816:0.1^]10122:0.2^]29889:0.3^]30068:19
      
      • needWeighting: 生成特征权重,即kv格式, kv之间用[ctrl+v ctrl+e]分割, 转换成TagFeature.
    • OverLapFeature

    • 所有feature都需要的字段:

      • group: feature所属的分组

        • 对于WideAndDeep/DeepFM是wide/deep.

        • 对于MultiTower可以自定义分组名称,如user/item/combo.

      • combiner: 默认是mean, 也可以是sum.

        • 影响数据生成和 EasyRec feature_config 生成, 主要是多值Feature.
      • 多值类型说明

        • 多值feature使用chr(29)[ctrl+v ctrl+]]作为分隔符.
  • 全局配置说明:

    • reserves: 要在最终表里面要保存的字段,通常包括label, user_id, item_id等

    • separator: sparse格式里面,特征之间的分隔符,不指定默认是",",

      • 训练时,对稠密格式没有影响,对稀疏格式有影响
      • 预测时,item feature在redis里面存储的是稀疏格式,因此是有影响的
      i_item_id:10539078362,i_seller_id:21776327,...
      
    • multi_val_sep: 多值特征的分隔符,不指定默认是chr(29) 即"\u001D"

    • kv_separator: 多值有权重特征的分隔符,如”体育:0.3|娱乐:0.2|军事:0.5”,不指定默认None,即没有权重

    • model_dir: 模型目录,仅仅影响EasyRec config生成.

    • num_steps: 训练的轮数,仅仅影响EasyRec config生成.

    • embedding_dim: 全局的embedding dimension.

      • 适合DeepFM等需要所有的feature都使用统一的embedding_dim.

      • 如果feature字段没有单独设置embedding_dimension, 将使用统一的embedding_dim.

      • 配置里面的embedding_dim会覆盖从命令行easy_rec.python.tools.convert_rtp_fg传入的embedding_dim.

    • model_type: 模型的类型,当前支持WideAndDeep/MultiTower/DeepFM.

      • 暂未支持的EasyRec模型,可以不指定model_type,在生成EasyRec config之后添加相应的部分.
    • label_fields: label数组,针对多目标模型需要设置多个label fields.

    • model_path: 定义模型部分的config文件, 适用于暂未支持的EasyRec模型或自定义模型.

    • edit_config_json: 对EasyRec config的修改, 如修改dnn的hidden_units

    "edit_config_json": [{"model_config.wide_and_deep.dnn.hidden_units": [48, 24]}]
    

上传数据(如果已经有数据,可以跳过这一步)

支持两种格式: 稀疏格式和稠密格式, 根据表的schema自动识别是哪一种格式, 包含user_feature和item_feature则识别成稀疏格式.

  • 稀疏格式的数据: user特征, item特征, context特征各放一列;特征在列内以kv形式存储, 如:
label user_id item_id context_feature user_feature item_feature
0 122017 389957 tag_category_list:4589,new_user_class_level:,...,user_id:122017 adgroup_id:539227,pid:430548_1007,...,cate_id:4281
-- taobao_train_input.txt oss://easyrec/data/rtp/
-- wget http://easyrec.oss-cn-beijing.aliyuncs.com/data/rtp/taobao_train_input.txt
-- wget http://easyrec.oss-cn-beijing.aliyuncs.com/data/rtp/taobao_test_input.txt
drop table if exists taobao_train_input;
create table if not exists taobao_train_input(`label` BIGINT,user_id STRING,item_id STRING,context_feature STRING,user_feature STRING,item_feature STRING);
tunnel upload taobao_train_input.txt taobao_train_input -fd=';';
drop table if exists taobao_test_input;
create table if not exists taobao_test_input(`label` BIGINT,user_id STRING,item_id STRING,context_feature STRING,user_feature STRING,item_feature STRING);
tunnel upload taobao_test_input.txt taobao_test_input -fd=';';
  • 稠密格式的数据,每个特征是单独的一列,如:
label user_id item_id tag_category_list new_user_class_level age_level
1 122017 389957 4589 0
  drop table if exists taobao_train_input;
  create table taobao_train_input_dense(label bigint, user_id string, item_id string, tag_category_list bigint, ...);
  • Note: 特征列名可以加上prefix: "user__", "item__", "context__"
  如: 列名ctx_position也可以写成 context__ctx_position

生成样本

  • 下载rtp_fg jar
  • 生成特征
add jar target/fg_on_odps-1.3.59-jar-with-dependencies.jar -f;
add file fg.json -f;

set odps.sql.planner.mode=sql;
set odps.isolation.session.enable=true;
set odps.sql.counters.dynamic.limit=true;

drop table if exists taobao_fg_train_out;
create table taobao_fg_train_out(label bigint, user_id string, item_id string,  features string);
jar -resources fg_on_odps-1.3.59-jar-with-dependencies.jar,fg.json -classpath fg_on_odps-1.3.59-jar-with-dependencies.jar com.taobao.fg_on_odps.EasyRecFGMapper -i taobao_train_input -o taobao_fg_train_out -f fg.json;
drop table if exists taobao_fg_test_out;
create table taobao_fg_test_out(label bigint, user_id string, item_id string,  features string);
jar -resources fg_on_odps-1.3.59-jar-with-dependencies.jar,fg.json -classpath fg_on_odps-1.3.59-jar-with-dependencies.jar com.taobao.fg_on_odps.EasyRecFGMapper -i taobao_test_input -o taobao_fg_test_out -f fg.json;

--下载查看数据(可选)
tunnel download taobao_fg_test_out taobao_fg_test_out.txt -fd=';';
  • EasyRecFGMapper参数格式:
    • -i, 输入表
      • 支持分区表,分区表可以指定partition,也可以不指定partition,不指定partition时使用所有partition
      • 分区格式示例: my_table/day=20201010,sex=male
      • 可以用多个-i指定多个表的多个分区
    • -o, 输出表,如果是分区表,一定要指定分区,只能指定一个输出表
    • -f, fg.json
    • -m, mapper memory的大小,默认可以不设置
  • EasyRecFGMapper会自动判断是稠密格式还是稀疏格式
    • 如果表里面有user_feature和item_feature字段,那么判定是稀疏格式
    • 否则,判定是稠密格式
  • 生成的特征示例(taobao_fg_train_out):
label user_id item_id features
0 336811 100002 user_id_100002^Bcms_segid_5^Bcms_group_id_2^Bage_level_2^Bpvalue_level_1^Bshopping_level_3^Boccupation_1^B...

从配置文件[fg.json]生成EasyRec的config

从Git克隆EasyRec

git clone https://github.com/alibaba/EasyRec.git
python -m easy_rec.python.tools.convert_rtp_fg  --label clk --rtp_fg fg.json --model_type multi_tower --embedding_dim 10  --output_path fg.config --selected_cols "label,features"

多目标模型写法

python -m easy_rec.python.tools.convert_rtp_fg  --label is_product_detail is_purchase --rtp_fg fg.json --model_type dbmtl --embedding_dim 10  --output_path fg.config --selected_cols "is_product_detail,is_purchase,features"
  • --model_type: 模型类型, 可选: multi_tower, deepfm, essm, dbmtl 其它模型暂时不能设置,需要在生成的config里面增加model_config的部分

  • --embedding_dim: embedding dimension, 如果fg.json里面的feature没有指定embedding_dimension, 那么将使用该选项指定的值

  • --batch_size: batch_size, 训练时使用的batch_size

  • --label: label字段, 可以指定多个

  • --num_steps: 训练的步数,默认1000

  • --output_path: 输出的EasyRec config路径

  • --separator: feature之间的分隔符, 默认是CTRL_B(\u0002)

  • --selected_cols: 指定输入列,包括label、[sample_weight]和features,其中label可以指定多列,表示要使用多个label(一般是多任务模型), 最后一列必须是features, 如:

    label0,label1,sample_weight,features
    
    • 注意不要有空格,其中 sample_weight 列是可选的,可以没有
  • --incol_separator: feature内部的分隔符,即多值分隔符,默认是CTRL_C(\u0003)

  • --input_type: 输入类型,默认是OdpsRTPInput, 如果在EMR上使用或者本地使用,应该用RTPInput, 如果使用RTPInput那么--selected_cols也需要进行修改, 使用对应的列的id:

    0,4
    
    • 其中第0列是label, 第4列是features
    • 还需要指定--rtp_separator,表示label和features之间的分隔符, 默认是";"
  • --train_input_path, 训练数据路径

    • MaxCompute上不用指定,在训练的时候指定
  • --eval_input_path, 评估数据路径

    • MaxCompute上不用指定,在训练的时候指定

启动训练

  • 上传fg.config到oss
  • 启动训练
pai -name easy_rec_ext
-Dconfig=oss://bucket-name/easy_rec_test/fg.config
-Dcmd=train
-Dtables='odps://project-name/tables/taobao_fg_train_out,odps://project-name/tables/taobao_fg_test_out'
-Dcluster='{"ps":{"count":1, "cpu":1000}, "worker" : {"count":3, "cpu":1000, "gpu":100, "memory":40000}}'
-Darn=acs:ram::xxx:role/ev-ext-test-oss
-Dbuckets=oss://bucket-name/
-DossHost=oss-cn-xxx.aliyuncs.com
-Deval_method=separate;

环境里没有安装easy_rec_ext ,则上传easy_rec.tar.gz包

pai -name tensorflow1120_cpu_ext
    -Dscript='oss://<path>/easy_rec.tar.gz'
    -DentryFile='run.py'
    -Dbuckets='oss://<bucket-name>/'
    -Dtables='odps://<project-name>/tables/<train_table_name>/dt=${bizdate},odps://<project-name>/tables/<test_table_name>/dt=${bizdate}'
    -Darn='acs:ram::xxx:role/aliyunodpspaidefaultrole'
    -DossHost='oss-us-west-1-internal.aliyuncs.com'
    -Dcluster='{
      \"ps\": {
          \"count\" : 4,
          \"cpu\" : 600,
          \"memory\" : 30000
      },
      \"worker\" : {
          \"count\" : 33,
          \"cpu\" : 800,
          \"memory\" : 30000
      }
    }'
    -DuserDefinedParameters='--cmd train --config oss://<path>/fg.config --model_dir oss://<model_path>/ --train_tables odps://<project-name>/tables/<train_table_name>/dt=${bizdate} --eval_tables odps://<project-name>/tables/<test_table_name>/dt=${bizdate} --with_evaluator'
;

模型导出

pai -name tensorflow1120_cpu_ext
    -Dscript='oss://<path>/easy_rec.tar.gz'
    -DentryFile='run.py'
    -Dbuckets='oss://<bucket-name>/'
    -Darn='acs:ram::xxx:role/aliyunodpspaidefaultrole'
    -DossHost='oss-us-west-1-internal.aliyuncs.com'
    -DuserDefinedParameters='--cmd export --config=oss://<model_path>/pipeline.config --export_dir=oss://<export_path>/ --asset_files=oss://<path>/fg.json';
;

增加特征

  • 增加特征可以用原来的样本表A left outer join 新增的特征表B 生成表C
  create table C
  as select * from A
  left outer join B
  on A.req_id = B.req_id and A.item_id = B.item_id
  • 表C使用增量incre_fg.json生成表incre_fea_table, incre_fg.json定义了新增的特征
  jar -resources fg_on_odps-1.3.59-jar-with-dependencies.jar,incre_fg.json -classpath fg_on_odps-1.3.59-jar-with-dependencies.jar com.taobao.fg_on_odps.EasyRecFGMapper -i taobao_test_input -o taobao_fg_test_out -f incre_fg.json;
  • 生成新的样本表D:
  create new_feature_table as
  select A.*, wm_concat(fea_table.features, chr(2), incre_fea_table.features) as features
  from A
    inner join fea_table
  on A.req_id = fea_table.req_id and A.item_id = fea_table.item_id
    inner join incre_fea_table
  on A.req_id = incre_fea_table.req_id and A.req_id = incre_fea_table.item_id

特征筛选

  • 可以筛选fg.json里面的部分特征用于训练

  • 方法: 在fg.config的model_config.feature_groups里面把不需要的特征注释掉即可

预测

服务部署

  • 部署的 service.json 示例如下
bizdate=$1
cat << EOF > echo.json
{
  "name":"easyrec_processor",
  "baseimage": "registry.cn-shanghai.aliyuncs.com/eas/eas-worker-amd64:0.4.22",
  "metadata": {
    "region": "us-west-1",
    "cpu": 6,
    "memory": 20000,
    "instance": 3
  },
  "model_config":"{\"holo-conf\":{\"url\":\"postgresql://<AccessKeyID>:<AccessKeySecret>@<域名>:<port>/<database>\",\"prefix\":\"fg_*\",\"table\" : [{\"name\": \"<schema>.<table_name>\",\"key\" : \"<index_column_name>\",\"value\": \"<column_name>\",\"period\": 2880}]},\"period\": 2880,\"fg\":true,\"multitargets\":true,\"outputs\":\"probs_ctr,probs_cvr\",\"inter_op_parallelism_threads\": 6, \"intra_op_parallelism_threads\": 6, \"fg_ins_num\":2}",
  "model_path": "oss://<model_path>/",
  "processor_path": "oss://easyrec/deploy/processor/easyrec_holo_broadwell.tar.gz",
  "processor_entry": "libtf_predictor.so",
  "token": "Y2E4OGY2MTBkODFhMzJhMDUzODM0YmE4OGRjZTI2MTgxYWNhOWRkNw==",
  "processor_type": "cpp"
}

EOF
# 执行部署命令。
#/home/admin/usertools/tools/eascmd -i <AccessKeyID>  -k  <AccessKeySecret>   -e pai-eas.us-west-1.aliyuncs.com create echo.json
/home/admin/usertools/tools/eascmd -i <AccessKeyID>  -k  <AccessKeySecret>   -e pai-eas.us-west-1.aliyuncs.com update easyrec_processor -s echo.json

训练导出的时候需要修改fg.config ,保证导出的模型是支持多个place_holder 的输入

export_config {
  multi_placeholder: true
}
  • processor_path, processor_entry, processor_type 自定义 easyrec processor 设置,与示例保持一致即可

  • model_config: eas 部署配置。主要控制把 item 特征加载到内存中。目前数据源支持redis和holo

    • redis-conf: 配置redis 访问的相关配置,包括 url, password
      • prefix: item_id key的前缀, 为了和其它的key(如user_id等)区分开来
      • cluster: cluster模式访问redis, 默认是false, 使用单例模式
    • pool_size: redis connection pool size
    • period: item feature reload period, 单位minutes
  • 更多选项:

    • model_config:
      • fg_ins_num: fg并行数,可以加快fg的计算速度
      • multitargets: 是否多目标模型
      • outputs: saved_model output signatures, 如果有多个,之间用,分割
      "model_config":{
        "fg_ins_num": 4,
        "multitargets": true,
        "outputs": "probs_ctr,probs_cvr",
        ...
      }
    
  • holo-conf: 也支持使用holo存储item feature, 好处是支持增量更新

    • 需要创建一张holo表, 包含3列:
      |item_id|item_features|update_time|
      
    • url: holo url
    • user: holo db username
    • password: holo db password
    • dbname: holo dbname
    • table: holo table name
    • key: name of the column store item_ids
    • value: name of the column store item features
  {
    "model_config":{
      "holo-conf":{
        "url":"hgprecn-cn-09k22ikm5008-cn-hangzhou.hologres.aliyuncs.com",
        "user":"admin",
        "password":"1234567",
        "dbname":"easyrec_test",
        "table":"test_table",
        "key":"item_id",
        "value":"item_features"
      }
      ...
    }
  }

客户端访问

同eas sdk 中的TFRequest类似,easyrec 也是使用ProtoBuffer 作为传输协议. proto 文件定义:

syntax = "proto3";

option go_package = ".;easyrec";
option java_package = "com.alibaba.pairec.processor.proto";
option java_outer_classname = "PredictProtos";

enum ArrayDataType {
  // Not a legal value for DataType. Used to indicate a DataType field
  // has not been set.
  DT_INVALID = 0;
  // Data types that all computation devices are expected to be
  // capable to support.
  DT_FLOAT = 1;
  DT_DOUBLE = 2;
  DT_INT32 = 3;
  DT_UINT8 = 4;
  DT_INT16 = 5;
  DT_INT8 = 6;
  DT_STRING = 7;
  DT_COMPLEX64 = 8;  // Single-precision complex
  DT_INT64 = 9;
  DT_BOOL = 10;
  DT_QINT8 = 11;     // Quantized int8
  DT_QUINT8 = 12;    // Quantized uint8
  DT_QINT32 = 13;    // Quantized int32
  DT_BFLOAT16 = 14;  // Float32 truncated to 16 bits.  Only for cast ops.
  DT_QINT16 = 15;    // Quantized int16
  DT_QUINT16 = 16;   // Quantized uint16
  DT_UINT16 = 17;
  DT_COMPLEX128 = 18;  // Double-precision complex
  DT_HALF = 19;
  DT_RESOURCE = 20;
  DT_VARIANT = 21;  // Arbitrary C++ data types
}
// Dimensions of an array
message ArrayShape {
  repeated int64 dim = 1 [packed = true];
}
// Protocol buffer representing an array
message ArrayProto {
  // Data Type.
  ArrayDataType dtype = 1;
  // Shape of the array.
  ArrayShape array_shape = 2;
  // DT_FLOAT.
  repeated float float_val = 3 [packed = true];
  // DT_DOUBLE.
  repeated double double_val = 4 [packed = true];
  // DT_INT32, DT_INT16, DT_INT8, DT_UINT8.
  repeated int32 int_val = 5 [packed = true];
  // DT_STRING.
  repeated bytes string_val = 6;
  // DT_INT64.
  repeated int64 int64_val = 7 [packed = true];
  // DT_BOOL.
  repeated bool bool_val = 8 [packed = true];
}
// context features
message ContextFeatures {
  repeated PBFeature features = 1;
}

message PBFeature {
  oneof value {
    int32 int_feature = 1;
    int64 long_feature = 2;
    string string_feature = 3;
    float float_feature = 4;
  }
}

// PBRequest specifies the request for aggregator
message PBRequest {
  // debug mode
  int32 debug_level = 1;

  // user features
  map<string, PBFeature> user_features = 2;

  // item ids
  repeated string item_ids = 3;

  // context features for each item
  map<string, ContextFeatures> context_features = 4;
}

// return results
message Results {
  repeated double scores = 1 [packed = true];
}

enum StatusCode {
  OK = 0;
  INPUT_EMPTY = 1;
  EXCEPTION = 2;
}

// PBResponse specifies the response for aggregator
message PBResponse {
  // results
  map<string, Results> results = 1;

  // item features
  map<string, string> item_features = 2;

  // generate features
  map<string, string> generate_features = 3;

  // context features
  map<string, ContextFeatures> context_features = 4;

  string error_msg = 5;

  StatusCode status_code = 6;

  // item ids
  repeated string item_ids = 7;

  repeated string outputs = 8;

  // all fg input features
  map<string, string> raw_features = 9;

  map<string, ArrayProto> tf_outputs = 10;
}

提供了 java 的客户端实例,客户端 jar 包地址. 下载后的 jar 通过下面命令安装到本地 mvn 库里.

mvn install:install-file -Dfile=easyrec-eas-client-0.0.2-jar-with-dependencies.jar -DgroupId=com.alibaba.pairec -DartifactId=easyrec-eas-client -Dversion=0.0.2 -Dpackaging=jar

然后在pom.xml里面加入:

<dependency>
    <groupId>com.alibaba.pairec</groupId>
    <artifactId>easyrec-eas-client</artifactId>
    <version>0.0.2</version>
</dependency>

java 客户端测试代码参考:

import com.alibaba.pairec.processor.client.*;

PaiPredictClient client = new PaiPredictClient(new HttpConfig());
client.setEndpoint(cmd.getOptionValue("e"));
client.setModelName(cmd.getOptionValue("m"));

EasyrecRequest easyrecRequest = new EasyrecRequest(separator);
easyrecRequest.appendUserFeatureString(userFeatures);
easyrecRequest.appendContextFeatureString(contextFeatures);
easyrecRequest.appendItemStr(itemIdStr, ",");

PredictProtos.PBResponse response = client.predict(easyrecRequest);

for (Map.Entry<String, PredictProtos.Results> entry : response.getResultsMap().entrySet()) {
    String key = entry.getKey();
    PredictProtos.Results value = entry.getValue();
    System.out.print("key: " + key);
    for (int i = 0; i < value.getScoresCount(); i++) {
        System.out.format(" value: %.4f ", value.getScores(i));
    }
}
  • 验证特征一致性
...
easyrecRequest.setDebugLevel(1);
PredictProtos.PBResponse response = client.predict(easyrecRequest);
Map<String, String> genFeas = response.getGenerateFeaturesMap();
for(String itemId: genFeas.keySet()) {
    System.out.println(itemId);
    System.out.println(genFeas.get(itemId));
}
  • Note: 生产环境调用的时候不要设置debug,会导致rt升高,qps下降.