-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeep_lstm_vae.py
45 lines (36 loc) · 1.94 KB
/
deep_lstm_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from tensorflow import keras, shape
import tensorflow.keras.backend as K
from tensorflow.keras.layers import(LSTM, Dense, Input, Lambda, RepeatVector, TimeDistributed)
from tensorflow.keras.losses import mse
from tensorflow.keras.models import Model
def create_lstm_vae_model(time_steps, number_of_features, int_dim, latent_dim):
def vae_sampling(args):
z_mean, z_log_sigma = args
batch_size = shape(z_mean)[0]
latent_dim = shape(z_mean)[1]
epsilon = K.random_normal(shape = (batch_size, latent_dim), mean = 0, stddev = 1)
return z_mean + K.exp(z_log_sigma / 2) * epsilon
# Encoder
input_x = Input(shape = (time_steps, number_of_features))
encoder_LSTM_int = LSTM(int_dim, return_sequences = True)(input_x)
encoder_LSTM_latent = LSTM(latent_dim, return_sequences = False)(encoder_LSTM_int)
z_mean = Dense(latent_dim)(encoder_LSTM_latent)
z_log_sigma = Dense(latent_dim)(encoder_LSTM_latent)
z_encoder_output = Lambda(vae_sampling, output_shape = (latent_dim,))([z_mean, z_log_sigma])
encoder = Model(input_x, [z_mean, z_log_sigma, z_encoder_output])
# Decoder
decoder_input = Input(shape = (latent_dim))
decoder_repeated = RepeatVector(time_steps)(decoder_input)
decoder_LSTM_int = LSTM(int_dim, return_sequences = True)(decoder_repeated)
decoder_LSTM = LSTM(number_of_features, return_sequences = True)(decoder_LSTM_int)
decoder_output = TimeDistributed(Dense(number_of_features))(decoder_LSTM)
decoder = Model(decoder_input, decoder_output)
# VAE
output = decoder(encoder(input_x)[2])
lstm_vae = keras.Model(input_x, output, name = 'lstm_vae')
# Loss
rec_loss = K.mean(mse(input_x, output)) * number_of_features
kl_loss = - 0.5 * K.mean(1 + z_log_sigma - K.square(z_mean) - K.exp(z_log_sigma))
vae_loss = rec_loss + kl_loss
lstm_vae.add_loss(vae_loss)
return encoder, decoder, lstm_vae