-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathRegionalSeasonality.Rmd
100 lines (81 loc) · 4.37 KB
/
RegionalSeasonality.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
title: "Regional Seasonality"
author: "Michael Karcher"
date: "October 12, 2015"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Regional Seasonality}
%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}
---
This vignette shows a case study of seasonality in influenza data from nine geographic regions, using `phylodyn`.
We start by loading the `phylodyn` package.
```{r message=FALSE}
library(phylodyn)
```
In preparation, we aligned the sequences by region using the software MUSCLE,
and inferred a maximum clade credibility genealogy for each region using the software BEAST[^1].
We packaged the genealogies in a list of `phylo` objects `regional_flu`, and we load it now.
[^1]: We infer the genealogy branch lengths in units of years using a strict molecular clock, a constant effective population size prior, and an HKY substitution model with the first two nucleotides of a codon sharing the same estimated transition matrix, while the third nucleotide's transition matrix is estimated separately.
```{r}
data(regional_flu)
```
We supply region names, plotting parameters, and other statistics unique to each region.
```{r}
mains <- list(USACanada = "USA / Canada", Europe = "Europe", NorthChina = "NorthChina",
JapanKorea = "Japan / Korea", India = "India", SouthChina = "South China",
SouthAmerica = "South America", SoutheastAsia = "Southeast Asia", Oceania = "Oceania")
axlabs <- list(x = seq(1, 0, by=-1/12),
labs = c("Sep", "Oct", "Nov", "Dec", "Jan", "Feb", "Mar",
"Apr", "May", "Jun", "Jul", "Aug", "Sep"))
start <- 8/12
zero_dates <- list(USACanada = 2012.301, Europe = 2011.044, NorthChina = 2011.285,
JapanKorea = 2012.29, India = 2010.814, SouthChina = 2011.282,
SouthAmerica = 2011.518, SoutheastAsia = 2011.995, Oceania = 2010.964)
years = list(USACanada = 12, Europe = 11, NorthChina = 10,
JapanKorea = 12, India = 10, SouthChina = 11,
SouthAmerica = 11, SoutheastAsia = 11, Oceania = 10)
```
We select a region (more than one can be chosen) and use BNPR and BNPR_PS.
```{r}
regions <- list("USACanada")
results <- list()
for (region in regions)
{
results[[region]] <- list(bnpr = BNPR(data = regional_flu[[region]], lengthout = 100),
bnpr_ps = BNPR_PS(data = regional_flu[[region]], lengthout = 100))
}
```
We plot with years overlaid to show seasonal patterns.
```{r, fig.width=8.5, fig.height=4.5*length(regions)}
par(mfrow=c(length(regions), 2), cex=1.0, cex.lab=1.4, cex.main=1.5,
oma=c(2,3,0,0)+0.1, mar=c(3,2,2,1), xpd=NA)
for (region in regions)
{
plot_seasonality(BNPR_out = results[[region]]$bnpr, zero_date = zero_dates[[region]],
start = start, years = years[[region]], ylim = c(0.5, 15), log_y = TRUE,
main=mains[[region]], axlabs = axlabs, xlab="Time",
col_years = rgb(0.943, 0.893, 0.769), col_mean = rgb(0.829, 0.680, 0.306),
ylab="Effective Population Size", heatmap_labels = TRUE,
heatmap_width = 7, heatmap_labels_side = "left", legend = "BNPR")
plot_seasonality(BNPR_out = results[[region]]$bnpr_ps, zero_date = zero_dates[[region]],
start = start, years = years[[region]], ylim = c(0.5, 15), log_y = TRUE,
main=mains[[region]], axlabs = axlabs, xlab="Time",
col_years = rgb(0.777, 0.828, 0.943), col_mean = rgb(0.330, 0.484, 0.828),
ylab="", heatmap_labels = FALSE, heatmap_width = 7,
heatmap_labels_side = "left", legend = "BNPR-PS")
}
```
## References
1. R. C. Edgar.
MUSCLE: Multiple sequence alignment with high accuracy and high through- put.
*Nucleic Acids Research*, 32:1792–1797, 2004.
2. A. J. Drummond, M. A. Suchard, D. Xie, and A. Rambaut.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.
*Molecular Biology and Evolution*, 29:1969–1973, 2012.
3. D. Zinder, T. Bedford, E. B. Baskerville, R. J. Woods, M. Roy, and M. Pascual.
Seasonality in the migration and establishment of H3N2 influenza lineages with epidemic growth and decline.
*BMC Evolutionary Biology*, 14(1):272, 2014.
4. M. D. Karcher, J. A. Palacios, T. Bedford, M. A. Suchard, and V. N. Minin.
Quantifying and mitigating the effect of preferential sampling on phylodynamic inference.
*arXiv preprint arXiv*:1510.00775, 2015.