-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectral.py
409 lines (362 loc) · 14.8 KB
/
spectral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import numpy as np
import numpy.polynomial as P
import math
from scipy.special import chebyt
from scipy.integrate import quad
import scipy.linalg
class util:
def is_in_range(x, x1, x2):
return x1 <= x and x <= x2
def c_n(n):
return 2 if n == 0 else 1
def delta(n, m):
return 1 if n == m else 0
class wavefunc:
def __init__(self, N = 10, V = [0.0, 0.5], Q1 = -1.0, Q2 = 1.0, Nv = None, Vargs = None):
self.N = N
self.M = N + 1
self.hbar = 1
self.m = 1
self.a0 = 1
self.E0 = self.m * self.a0 **2 / self.hbar ** 2
self.Q1 = Q1
self.Q2 = Q2
self.Q3 = 0.5 * (Q1 + Q2)
self.Q0 = 0.5 * (Q2 - Q1)
if Nv != None:
if Vargs != None:
V2 = lambda x: V(x, Vargs)
else:
V2 = V
self.U = self.function_potential_coefs(V2, Nv)
else:
self.U = P.Polynomial(self.calculate_potential_coef(V / self.E0)).convert(kind=P.Chebyshev)
self.Nu = self.U.degree()
# Av=eBv => generalized Eigenvalue problem
A = [[self.A_mel(j, k) for k in range(N + 1)] for j in range(N + 1)]
B = [[self.B_mel(j, k) for k in range(N + 1)] for j in range(N + 1)]
eigenvals, eigenvecs = scipy.linalg.eig(A, B, right = True)
self.sort_eigenvals(eigenvals, eigenvecs)
def function_potential_coefs(self, V, Nv):
integrand = lambda x, n: V(self.Q0 * self.a0 * x + self.a0 * self.Q3)\
* chebyt(n)(x) / np.sqrt(1-x**2)
U = [None] * Nv
c_n = 2
for n in range(Nv):
vnl = quad(integrand,-1, 1, args=n)
U[n] = vnl[0] / self.E0 * 2/np.pi / c_n
c_n = 1
return P.Chebyshev(U)
def A_mel(self, j, k):
if j == self.N - 1:
return self.first_bc(k)
elif j == self.N:
return self.second_bc(k)
else:
return -self.eigenvalue_elements(j, k)
def B_mel(self, j, k):
if j == k and j <= self.N - 2:
return -1.0
else:
return 0.0
# Boundary condition \psi(x=-1) = 0
def first_bc(self, n):
if util.is_in_range(n, 0, self.N):
return -1.0 if n % 2 == 1 else 1.0
else: return 0.0
# Boundary condition \psi(x=+1) = 0
def second_bc(self, n):
if util.is_in_range(n, 0, self.N):
return 1.0
else: return 0.0
def eigenvalue_elements(self, k : int, n : int):
return -1/(2 * self.Q0**2) * self.E_squared_elements(k, n) + 0.5 * self.A_elements(k, n)
def dimlessHamiltonian(self):
return np.array([[self.eigenvalue_elements(k, n) for n in range(self.N + 1)] for k in range(self.N + 1)])
def sort_eigenvals(self, vals, vecs):
valid = []
for i in range(len(vals)):
val = vals[i]
#vec = vecs[:,i]
if val.imag == 0 and val.real >= 0 and val != np.inf:
valid.append([val.real, i])
valid.sort(key = lambda x : x[0])
self.eigenvecs = []
self.eigenvals = []
for val, j in valid:
self.eigenvals.append(val)
self.eigenvecs.append(vecs[:,j])
def E_squared_elements(self, n, p):
#n -= 1
#p -= 1
p_prime = p - n
if util.is_in_range(n, 0, self.N-3) and util.is_in_range(p, n+2, self.N) and p_prime % 2 == 0:
return p * (p * p - n * n) / util.c_n(n)
else:
return 0.0
def A_elements(self, k, n):
a = k - n
b = n - k
c = n + k
vals = [a, b, c]
d = 1/util.c_n(k)
multiplier = [1,d,d]
ret = 0.0
for i in range(3):
ell = vals[i]
if util.is_in_range(ell, 0, self.Nu):
ret += multiplier[i] * self.U.coef[ell]
return ret
def calculate_potential_coef(self, V: list):
U = [self.calculate_nth_potential_coef(V, k) for k in range (len(V))]
return U
def calculate_nth_potential_coef(self, V, k):
ret = 0.0
for n in range(k, len(V)):
ret += V[n] * self.a0**n * self.Q3 **(n - k) * math.factorial(n) / (math.factorial(k) * math.factorial(n - k))
return self.Q0 ** k * ret
def __call__(self, n, q, x_notq = False):
# If we are calling \psi(x)
if x_notq:
x = q
# If we are calling \psi(q)
else:
Q = q / self.a0
x = (Q - self.Q3) / self.Q0
ret = 0.0
coef = self.eigenvecs[n]
for i in range(self.N + 1):
ret += coef[i] * chebyt(i)(x)
return ret
class time_wavefunc:
def __init__(self, soln : wavefunc, n, times):
self.times = times
self.m, self.hbar, self.a0 = soln.m, soln.hbar, soln.a0
self.Q3, self.Q0 = soln.Q3, soln.Q0
self.tau = soln.m * soln.a0**2 / soln.hbar
self.M = len(soln.eigenvecs) # M is the total number of eigenvectors
'''
We now need to Manually create a hamiltonian with the eigenvals and vecs we calculated in soln.
H = P D P^-1
Where P is the eigenvector matrix and D is the diagonal matrix of eigenvalues.
'''
self.evals = soln.eigenvals
self.P = [[soln.eigenvecs[j][i] for j in range(self.M)] for i in range(self.M)]
self.Pinv = scipy.linalg.inv(self.P)
self.avec0 = soln.eigenvecs[n][:self.M] # reduce size of vector by number of boundary conditions (ie 2)
def calc_at(self, times):
avecs = [self.evolutionOperator(time) @ self.avec0 for time in times]
return avecs
def evolutionOperator(self, t):
U = np.zeros((self.M, self.M), dtype = complex)
for i in range(self.M):
U[i][i] = np.exp(1j * t/self.tau * self.evals[i])
return self.P @ U @ self.Pinv
def __call__(self, q, t):
Q = q / self.a0
x = (Q - self.Q3) / self.Q0
ret = 0.0
U = self.evolutionOperator(t)
avec_t = U @ self.avec0
for i in range(len(avec_t)):
ret += avec_t[i] * chebyt(i)(x)
return ret
class wigner:
def __init__(self, Nx, Ny, V = [0], Q1 = -10, Q2 = 10, P0 = 10, a0 = 1, hbar = 1, E=0.5):
self.Nx, self.Ny = Nx, Ny
self.Ny2 = int(Ny/2) + 1
self.N1 = (self.Nx + 1) * (self.Ny2)
self.N2 = (self.Nx + 1) * (self.Ny + 1) # dimension of our contracted matrices and vectors
self.a0 = a0
self.hbar = hbar
self.Q1, self.Q2, self.P0 = Q1, Q2, P0
self.Q0 = 0.5 * (Q2 - Q1)
self.Q3 = 0.5 * (Q2 + Q1)
self.m = 1
self.E = self.m * self.a0**2 / self.hbar * E # dimensionless energy
Vprime = [self.calculate_nth_potential_coef(V, k) for k in range(len(V))]
U = P.Polynomial(Vprime).convert(kind=P.Chebyshev)
self.max_order = np.min((U.degree() + 1, Ny+1))
self.Ucoefs = self.calculate_potential_coefs(V) # ndarray of Ucoefs[n,l] = U^n_l
def num_odd(n: int):
return int((n + 1)/2)
def calculate_potential_coefs(self, V):
Vprime = [self.calculate_nth_potential_coef(V, k) for k in range(len(V))]
U = P.Polynomial(Vprime).convert(kind=P.Chebyshev)
deg = U.degree()
Ucoefs = np.zeros((deg + 1, deg + 1), dtype = float)
Ucoefs[0] = U.coef
for n in range(1,deg + 1):
Un = []
for i in range(deg + 1):
sum = 0.0
for k in range(deg + 1):
sum += self.derivative_mel(n, i, k) * U.coef[k]
Ucoefs[n,i] = sum
return Ucoefs
def calculate_nth_potential_coef(self, V, k):
ret = 0.0
for n in range(k, len(V)):
ret += V[n] * self.a0**n * self.Q3 **(n - k) * math.factorial(n) / (math.factorial(k) * math.factorial(n - k))
return self.Q0 ** k * ret
def compute(self):
print("Computing gamma matrix elements...")
self.gamma = np.zeros((self.N2 + 1, self.N1), )
for a in range(self.N2):
if a % int(self.N2 / 10) == 0:
print('.', end = "", flush = True)
for b in range(self.N1):
mel = self.construct_gamma3(a,b)
self.gamma[a,b] = mel
print("")
# Boundary condition W(0,0) = 1
for a in range(self.N1):
i, j = self.expand_indices(a)
j = 2 * j
if i % 2 == 0 and j % 2 == 0:
self.gamma[self.N2, a] = ((-1)**(i/2 + j/2))
print("Preforming Least Squares...")
# change to i == self.N2 - 1 for coolness
b = [1 if i == self.N2 else 0 for i in range(self.N2 + 1) ]
self.vec, residuals, rank, sing = scipy.linalg.lstsq(self.gamma, b)
R = self.gamma @ self.vec - b
self.resid = R.transpose() @ R
def compute2(self):
print("Computing gamma matrix elements...")
self.gamma = np.zeros((self.N1, self.N1), )
for a in range(self.N1):
if a % int(self.N1 / 10) == 0:
print('.', end = "", flush = True)
for b in range(self.N1):
self.gamma[a,b] = self.construct_gamma4(a, b)
print("")
for a in range(self.N1):
i, j = self.expand_indices(a)
j = 2 * j
self.gamma[self.N1 - 2, a] = (-1)**i
self.gamma[self.N1 - 3, a] = 1
if i % 2 == 0 and j % 2 == 0:
self.gamma[self.N1- 1, a] = ((-1)**(i/2 + j/2))
else:
self.gamma[self.N1 - 1, a] = 0
print("Preforming Least Squares...")
C = np.diag([1 if int(a / (self.Nx+ 1))%2 == 0 else 0 for a in range(self.N1)])
eigs, self.vecs = scipy.linalg.eig(self.gamma, C)
self.eigs = []
for eig in eigs:
if eig != np.inf and eig != np.nan and eig.imag == 0 and eig.real >0:
self.eigs.append(eig.real)
self.eigs.sort()
self.eigs = np.array(self.eigs)
def construct_gamma3(self, s, t):
mu, nu = self.expand_indices(s)
i, j = self.expand_indices(t)
j = 2*j
if nu %2 == 1:
p1 = -self.P0/ (2 * self.Q0) * self.derivative_mel(1, mu, i) * \
(util.delta(j + 1, nu) + util.delta(np.abs(j -1),nu))
p2 = 0
for n in np.arange(1, self.max_order, 2):
b_n = (1j/(2 * self.Q0 * self.P0))**n / math.factorial(n)
for ell in range(self.max_order - n): # <= Nv - n
d = util.delta(ell + i, mu)+ util.delta(np.abs(ell - i), mu)
if d != 0:
p2 += -1j * b_n * self.Ucoefs[n][ell] * self.derivative_mel(n, nu, j) * d
return (p1 + p2).real
elif nu %2 == 0:
total = 0.0
if mu == i and nu == j:
total += self.P0**2 /4 - self.E
elif mu == i:
deltas = util.delta(j + 2, nu) + util.delta(np.abs(j - 2), nu)
total += deltas * self.P0**2 / 8
if nu == j:
total -= 1/(8* self.Q0**2) * self.derivative_mel(2, mu, i)
for n in np.arange(0, self.max_order, 2):
mel = 0
mel = self.derivative_mel(n, nu, j)
bn = (1j/(2 * self.Q0 * self.P0))**n / math.factorial(n)
for ell in range(self.max_order - n):
deltas = util.delta(ell + i,mu) + util.delta(np.abs(ell - i), mu)
if deltas != 0:
total += 0.5 * bn * self.Ucoefs[n][ell] * mel * deltas
return total.real
def construct_gamma4(self, s, t):
mu, nu = self.expand_indices(s)
i, j = self.expand_indices(t)
j*= 2
if j % 2 != 0:
return 0
if nu %2 == 1:
p1 = -self.P0/ 2 / self.Q0 * self.derivative_mel(1, mu, i) * \
(util.delta(j + 1, nu) + util.delta(np.abs(j -1),nu))
p2 = 0
for n in np.arange(1, self.max_order, 2):
b_n = (1j/(2 * self.Q0 * self.P0))**n / math.factorial(n)
for ell in range(self.max_order - n): # <= Nv - n
d = util.delta(ell + i, mu)+ util.delta(np.abs(ell - i), mu)
if d != 0:
p2 += -j * b_n * self.Ucoefs[n][ell] * self.derivative_mel(n, nu, j) * d
return (p1 + p2).real
elif nu %2 == 0:
total = 0.0
if mu == i and nu == j:
total += self.P0**2 /4
elif mu == i:
deltas = util.delta(j + 2, nu) + util.delta(np.abs(j - 2), nu)
total += deltas * self.P0**2 / 8
if nu == j:
total -= 1/(8* self.Q0**2) * self.derivative_mel(2, mu, i)
for n in np.arange(0, self.max_order, 2):
mel = 0
if n == 0:
if nu == j:
mel = 1
else:
mel = 0
else:
mel = self.derivative_mel(n, nu, j)
bn = (1j/(2 * self.Q0 * self.P0))**n / math.factorial(n)
for ell in range(self.max_order - n):
deltas = util.delta(ell + i,mu) + util.delta(np.abs(ell - i), mu)
if deltas != 0:
total += 0.5 * bn * self.Ucoefs[n][ell] * mel * deltas
return total.real
def derivative_mel(self, n : int, i, j):
if n == 0:
return util.delta(i, j)
if j < n + i or (j + i + n)%2 != 0:
return 0
product = 2*j
sigma = -(n/2 - 1)
max = n/2 - 1
while sigma <= max:
product *= (j*j - (i + 2 * sigma)**2)
sigma += 1
try:
fact = math.factorial(n-1)*2**(n-1)
except OverflowError as err:
print(n)
return product * (0.5 if i == 0 else 1) / fact#(math.factorial(n-1)*2**(n-1))
def contract_indices(self, i : int, j: int, major = None, minor = None): #major defuaults to Nx + 1 minor to Ny + 1
if major == None:
major = self.Nx + 1
if minor == None:
minor = self.Ny + 1
assert(i <= major and j <= minor)
return i + major * j
def expand_indices(self, i: int, major = None, minor = None):
if major == None:
major = self.Nx + 1
if minor == None:
minor = self.Ny + 1
assert(i < major * minor)
return i % major, int(i / major)
def __call__(self, x, y):
sum = 0.0
Y = y/self.P0
X = (x/self.a0 - self.Q3)/self.Q0
for j in range(self.Ny2):
for i in range(self.Nx + 1):
sum += self.vec[self.contract_indices(i, j)] * chebyt(i)(X) * chebyt(2 * j)(Y)
return sum