-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert.py
255 lines (208 loc) · 9.71 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os #handling files and directories
import torch #pytorch
from pytorch_pretrained_bert import BertTokenizer, BertModel, BertConfig #bert
from pytorch_pretrained_bert import BertForTokenClassification #bert
import unidecode, unicodedata #to deal with accented characters
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from seqeval.metrics import f1_score, classification_report, precision_score, recall_score
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam #Adam
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler #data loading
from keras.preprocessing.sequence import pad_sequences #padding
from sklearn.model_selection import train_test_split #data splitting
from early_stopping import EarlyStopping
import time
from load_data import load_data
tstart = time.time()
timestr = time.strftime("%Y%m%d-%H%M%S")
X, Y, Xtest, Ytest = load_data()
#Following on the code inspired from: https://www.depends-on-the-definition.com/named-entity-recognition-with-bert/
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
#Printing the GPU model
print(torch.cuda.get_device_name(0))
#Labels to id's
tag2idx = {"0": 0, "1": 1}
print(tag2idx)
#Assign tag values
tags_vals = ['0' , '1']
#Defining MAX_LEN to be 210 as per the paper
MAX_LEN = 210
#Padding inputs
tr_inputs = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in X],
maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
#Padding targets
tr_tags = pad_sequences([[tag2idx.get(l) for l in lab] for lab in Y],
maxlen=MAX_LEN, value=tag2idx['0'], padding="post",
dtype="long", truncating="post")
#Setting up attention masks
tr_masks = [[float(i>0) for i in ii] for ii in tr_inputs]
#Padding inputs
val_inputs = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in Xtest],
maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
#Padding targets
val_tags = pad_sequences([[tag2idx.get(l) for l in lab] for lab in Ytest],
maxlen=MAX_LEN, value=tag2idx['0'], padding="post",
dtype="long", truncating="post")
#Setting up attention masks
val_masks = [[float(i>0) for i in ii] for ii in val_inputs]
#Converting the dataset to torch tensors
tr_inputs = torch.LongTensor(tr_inputs)
val_inputs = torch.LongTensor(val_inputs)
tr_tags = torch.LongTensor(tr_tags)
val_tags = torch.LongTensor(val_tags)
tr_masks = torch.LongTensor(tr_masks)
val_masks = torch.LongTensor(val_masks)
#Setting the batch size
BATCH_SIZE = 16
#Shuffling the dataset
train_data = TensorDataset(tr_inputs, tr_masks, tr_tags)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data,sampler=train_sampler, batch_size=BATCH_SIZE)
valid_data = TensorDataset(val_inputs, val_masks, val_tags)
valid_sampler = SequentialSampler(valid_data)
valid_dataloader = DataLoader(valid_data,sampler=valid_sampler, batch_size=BATCH_SIZE)
#Init BERT
model = BertForTokenClassification.from_pretrained("/home/snoorali/projects/def-lilimou/snoorali/uncased_L-12_H-768_A-12/", num_labels=len(tag2idx))
#model = BertForTokenClassification.from_pretrained("bert-base-cased", num_labels=len(tag2idx))
#Transfer the model to cuda
print("Detect ", torch.cuda.device_count(), "GPUs!")
#model = nn.DataParallel(model)
model.to("cuda")
epochs = 4
warmup_proportion = 0.1
num_train_optimization_steps = (len(X) / BATCH_SIZE) * epochs
param_optimizer = list(model.classifier.named_parameters())
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
patience = 2
early_stopping = EarlyStopping(patience=patience, verbose=True)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=3e-5,
warmup=warmup_proportion,
t_total=num_train_optimization_steps)
class_weights = torch.Tensor([0.109355466, 0.890644534]).cuda()
loss_criterion = nn.CrossEntropyLoss(weight=class_weights)
def flat_accuracy(preds, labels):
pred_flat = np.argmax(preds, axis=2).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
#Training BERT
max_grad_norm = 1.0
train_loss_list = []
val_loss_list = []
for e in range(epochs):
# TRAIN loop
model.train()
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(train_dataloader):
# add batch to gpu
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
# forward pass
logits = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask)
logits = logits.argmax(-1)
loss = binary_criterion(logits.float(), b_labels.float())
loss.requires_grad = True
# backward pass
loss.backward()
# track train loss
tr_loss += loss.item()
nb_tr_examples += b_input_ids.size(0)
nb_tr_steps += 1
# gradient clipping
torch.nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=max_grad_norm)
# update parameters
optimizer.step()
model.zero_grad()
# print train loss per epoch
print("Epoch #",e+1)
print("Train loss: {}".format(tr_loss/nb_tr_steps))
train_loss_list.append(tr_loss/nb_tr_steps)
# VALIDATION on validation set
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
predictions , true_labels = [], []
for batch in valid_dataloader:
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
with torch.no_grad():
tmp_eval_loss = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask, labels=b_labels)
logits = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask)
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
predictions.extend([list(p) for p in np.argmax(logits, axis=2)])
true_labels.append(label_ids)
tmp_eval_accuracy = flat_accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += b_input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss/nb_eval_steps
print("Validation loss: {}".format(eval_loss))
print("Validation Accuracy: {}".format(eval_accuracy/nb_eval_steps))
val_loss_list.append(eval_loss)
pred_tags = [[tags_vals[p_i] for p_i in p] for p in predictions]
valid_tags = [[tags_vals[l_ii] for l_ii in l_i] for l in true_labels for l_i in l ]
#Store the validation f1
val_f1 = f1_score(valid_tags, pred_tags)
#print("F1-Score: {}".format(val_f1))
print("Validation F1-Score: {}".format(f1_score(valid_tags, pred_tags)))
print("Validation Precision-Score: {}".format(precision_score(valid_tags, pred_tags)))
print("Validation Recall-Score: {}".format(recall_score(valid_tags, pred_tags)))
print(classification_report(valid_tags, pred_tags))
if not os.path.exists('checkpoints'): os.makedirs('checkpoints')
spath = os.path.join('checkpoints', timestr+".pt")
#Do early stopping with validation f1-score
early_stopping(val_f1, model, spath)
#If patience met, stop training
if early_stopping.early_stop:
print("Early stopping")
break
#Test BERT
model.eval()
predictions = []
true_labels = []
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for batch in valid_dataloader:
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
with torch.no_grad():
tmp_eval_loss = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask, labels=b_labels)
logits = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask)
logits = logits.detach().cpu().numpy()
predictions.extend([list(p) for p in np.argmax(logits, axis=2)])
label_ids = b_labels.to('cpu').numpy()
true_labels.append(label_ids)
tmp_eval_accuracy = flat_accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += b_input_ids.size(0)
nb_eval_steps += 1
pred_tags = [[tags_vals[p_i] for p_i in p] for p in predictions]
valid_tags = [[tags_vals[l_ii] for l_ii in l_i] for l in true_labels for l_i in l]
print("Loss: {}".format(eval_loss/nb_eval_steps))
print("Accuracy: {}".format(eval_accuracy/nb_eval_steps))
print("F1-Score: {}".format(f1_score(valid_tags, pred_tags)))
print("Precision-Score: {}".format(precision_score(valid_tags, pred_tags)))
print("Recall-Score: {}".format(recall_score(valid_tags, pred_tags)))
print("\n")
print("Classification Report: ")
print(classification_report(valid_tags, pred_tags))
print("Time taken by the script:",time.time()-tstart)