Variable	Selection
	(Barrel)
Full 5x5 $\sigma_{i\eta i\eta}$	< 0.0102
H/E	< 0.0396
charged hadron isolation	< 0.441
neutral hadron isolation	$<$ 5.931 + 0.0163 \times p_T + 1.4 \times 10 ⁻⁵ \times p_T ²
photon isolation	$< 2.571 + 0.0034 \times p_T$
Conversion safe electron veto	Yes

Table 7: Tight photon identification criteria.

- ⁷³³ selection measured in data and simulation as measured by the e-gamma POG relative to the
- ⁷³⁴ Summer-16 MC samples. We assign a 2% systematic uncertainty on the efficiency of the photon ⁷³⁵ selection in the analysis.

Figure 30: The data-MC scale factors for the photon identification and isolation requirements as measured by e-gamma POG asaf of photon probe p_T and η

⁷³⁶ **5.9 Photon Purity**

 The γ +jets events in data suffer from contamination from QCD multijet events in which a jet π ³⁸ is misidentified as a photon, or π ⁰ decays get identified as prompt photons. In order to reli- ably estimate this QCD background in the γ +jets control region of the analysis, we measure the photon purity (or jet-to-photon fake rate) directly in data. Two alternative techniques are employed to perform this measurement: in one case a **template fit is performed to the isolation** sum computed using photon candidates, while in the other one a template fit is performed on τ ⁴³ the shower shape variable $\sigma_{i n j n}$ of the photon. Results from both the measurements are found to be agreement within the estimated uncertainties.

⁷⁴⁵ **5.9.1 Isolation Template Fit**

⁷⁴⁶ In the 'isolation template fit' method, the purity is extracted through a fit to the photon (electro-⁷⁴⁷ magnetic) component of the photon-candidate isolation. This photon isolation component is derived after removing the photon footprint [34] from the isolation sum (isolation cone defined with $\Delta R = 0.3$). The fit procedure is entirely data-driven. Events in data are considered in the fit if and only if they fulfill a basic set of requirements:

- **•** Pass the high p_T single photon triggers (Photon165+H/E or Photon175).
- **•** At least one reconstructed photon with p_T larger than 175 GeV and $|\eta_{SC}| < 1.4442$.
- \bullet Accepted by $E_{\rm T}^{\rm miss}$ filters.
- *•* Veto loosely identified muons, electrons and tau-jets as done in the analysis.
- *•* B-jet veto.

- **•** At least one jet not in overlap with the photon candidate with $p_T > 100$ GeV, $|\eta| <$ 2.5, charged hadron fraction larger than 0.1 and neutral hadron fraction smaller than 0.8.
- \bullet **•** Minimum $\Delta \phi$ between jets and hadronic recoil larger than 0.5 radians.
- \bullet The leading photon candidate in the event should pass the Spring-16⁴ photon ID requirements except for the photon isolation one.

 Signal templates are derived in data by throwing random cones in γ + jets events, while en- suring that the random cone does not overlap with the photon or a jet in the event. Back- ground templates are also derived from data using a σ_{inin} sideband region. In particular, we take photon candidates that pass all the identification requirements except those on the pho- ton isolation and the $\sigma_{i\eta i\eta}$, obtaining a QCD enriched event sample by selecting events with $767 \cdot 0.01 < \sigma_{inin} < 0.014$. An binned Likelihood fit is performed on data using these signal and background templates to obtain the relative contribution of γ + jets events, thus yielding the ₇₆₉ purity estimate. To improve the agreement between the fit result and data (χ^2 of the fit), ad- ditional degrees of freedom are introduced in the Likelihood model. In particular, the signal template is smeared by a Gaussian-peak to accommodate for a possible difference in resolution, while the background template is multiplied by an exponential function to allow a better fit of the photon isolation tail which is dominated by jets with large EM fraction. The measurement is performed in several bins of photon p_T .

 Systematic uncertainty on the purity measurement is assessed by comparing the purity mea-sured with different setups:

- *•* Nominal fit: used to define the central value of the photon purity estimate. It is obtained using a data-driven signal template from random cone ($R = 0.4$) smeared by a Gaussian p.d.f, while the background template is taken from the σ_{init} sideband in data and is multiplied by an exponential function.
- *•* Alternative signal templates: they are taken from both data, using a random cone *r*83 with a different R-size ($R = 0.8$), and γ +jets MC as already described in Ref. [35].
- *•* Alternative background templates: they are obtained using simulated QCD EM- enriched events, requiring the photon candidate not to be matched with a prompt photon in the final state as in Ref. [35].
- **•** Fix the nominal data-driven signal template (from random cone $R = 0.4$) and the background model, while change the smearing function from a Gaussian to a Crystal-Ball p.d.f. The difference is considered as additional systematic uncertainty.
- \bullet **•** Fix the nominal signal model and the data-driven background template (from σ_{inin}

⁴https://twiki.cern.ch/twiki/bin/view/CMS/CutBasedPhotonIdentificationRun2#Recommended Working points for 2

⁷⁹¹ sideband), while change the background analytical tail from an exponential function ⁷⁹² to a power-law. The difference is considered as additional systematic uncertainty.

 Fig. 31 shows the results of the nominal fit for different p_T regions. The photon purity measure- ments as a function of photon p_T obtained from the alternative fit setups are shown in Fig. 32. 795 Eventually, Fig. 33 shows the nominal fit estimate in each photon p_T bin together with the sys- tematic uncertainty taken as the sum in quadrature of the residuals shown in Fig. 32. Values are also listed in Table 8. The purity varies between 94% to 98%, while systematic uncertainty on these purity estimates varies between 1.7% to 3.2%.

Figure 31: Photon purity fits using the isolation templates.

Figure 32: Purity fractions measured in data from different fit setups varying signal/background template (left) or smearing/tail function (right) as a function of photon p_T .

Figure 33: Purity fractions measured in data with their statistical (black bar) and systematic (orange band) uncertainty as a function of photon p_T .

799 **5.9.2** $\sigma_{i n i n}$ Template Fit

800 To determine the purity (or impurity: 1 - purity) of photons in an alternative approach, to the 801 previous isolation fits, we perform a template fit to the shower shape variable $\sigma_{i n i n}$ since true 802 photons have a well defined peak in $\sigma_{i\eta i\eta}$ while fakes have a smaller peak as well as plateau at ⁸⁰³ higher values.

⁸⁰⁴ We measure the impurity of photons using a EM object+jet control region where we require 805 one jet passing some loose identification requirements, with $p_T > 100$ GeV and $|\eta| < 2.5$, and an EM object passing the follow selection an EM object passing the follow selection